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Abstract

Many reinforcement learning (RL) environ-
ments in practice feature enormous state
spaces that may be described compactly by
a “factored” structure, that may be mod-
eled by Factored Markov Decision Processes
(FMDPs). We present the first polynomial-
time algorithm for RL in Factored State
MDPs (generalizing FMDPs) that neither re-
lies on an oracle planner nor requires a lin-
ear transition model; it only requires a lin-
ear value function with a suitable local basis
with respect to the factorization, permitting
efficient variable elimination. With this as-
sumption, we can solve this family of Factored
State MDPs in polynomial time by construct-
ing an efficient separation oracle for convex
optimization. Importantly, and in contrast
to prior work on FMDPs, we do not assume
that the transitions on various factors are
conditionally independent.

1 INTRODUCTION

Many important application domains of Reinforcement
learning (RL) – such as resource allocation or complex
games – feature large state spaces, for which existing
theoretical guarantees are unsatisfactory. But, many of
these domains are believed to be captured by a small
dynamic Bayesian network (DBN) on factored state
variables. Therefore, Factored MDPs (FMDPs) were
introduced by Boutilier et al. (2000) to take advantage
of such a priori knowledge about independence and
the structure of the transition function. Subsequently,
efficient approximate FMDP planners were developed
by Guestrin et al. (2003), and RL in FMDPs was
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considered by Kearns and Koller (1999) assuming access
to an efficient FMDP planner.

More recently, Osband and Van Roy (2014) obtained
near-optimal RL regret bounds in FMDPs assuming ac-
cess to a stronger planner which returns the optimistic
solution to a family of FMDPs. No polynomial-time
algorithm for such a planner is known. Moreover, plan-
ning for a single FMDP is intractable (Mundhenk et al.,
2000; Lusena et al., 2001), and planning over a family
is generally no easier.

Optimization for FMDP learning is difficult in part
because when the factored structure of the unknown
transition probabilities are explicitly represented, the
resulting problem is a polynomial optimization prob-
lem. Even quadratic optimization is NP-hard in gen-
eral. We argue that when given a linear value function
with factored structure, the independence of the tran-
sition components is unnecessary for obtaining a regret
bound, and instead permit potentially correlated tran-
sitions on the state variables. We propose a polynomial
time algorithm for RL for this family of Factored State
MDPs (FSMDPs) with bounded-norm and factored
linear value functions, assuming an efficient variable
elimination order for the induced cost network of the
basis is given.1 We stress that our algorithm does not
use an oracle for planning. Kane et al. (2022) showed
that the general RL problem with linear value function
approximation, in which one simply drops our assump-
tion, is intractable. Thus, some assumption is necessary
to obtain a polynomial-time algorithm. Recent works
(discussed further below) obtained such algorithms by
assuming a linear transition model, which is restrictive.
The conditions for variable elimination on the V func-
tion basis, by contrast, are relatively benign and allow
us to address some tasks in complex environments. (see
Sec. 3, Appx. A for an extended discussion).

1We aren’t learning a basis or solving for an elimination
ordering; the basis and efficient elimination ordering are
fixed in advance. Indeed, moreover, we do not require
an optimal elimination ordering, merely that the induced
width is adequately small. So the approximation algorithms
of Kjærulff (1990); Becker and Geiger (2001); Kask et al.
(2011), could suffice.
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Our RL algorithm is based on UCRL-Factored (Osband
and Van Roy, 2014), which employs an oracle for an
optimistic planner over a family of FMDPs as a subrou-
tine. For general FMDPs, it is unclear whether such
a planner with polynomial time and theoretical guar-
antees can exist. We propose a theoretically grounded
and efficient planner for FSMDPs by modifying the
imprecise FMDP planner of Delgado et al. (2011). Our
formulation has the reward functions R and transition
probabilities P take unknown values from bounded
convex sets centered on their empirical estimates.

Due to the conditional independence assumption on
transition probabilities in FMDP DBNs, and P being
variables, the original imprecise FMDP planner for-
mulation of Delgado et al. (2011) inevitably leads to
multi-linear programming, which in general is a diffi-
cult non-convex problem. We circumvent this by: 1)
removing the conditional independence assumption of
the transition model – hence factored state MDPs –
and only computing estimates of the factored marginal
transition probabilities which do not need to be consis-
tent; 2) utilizing an optimistic formulation as required
by UCRL-Factored, which is easier to formulate and
solve than the pessimistic formulation of Delgado et al.
(2011), which contained a difficult min max constraint;
and 3) constructing an efficient separation oracle for
the program by applying the variable elimination pro-
cedure proposed by Guestrin et al. (2003). Note that
our planning problem is a convex program with an
exponential number of constraints, which cannot sim-
ply be plugged into a standard LP solver to obtain a
polynomial-time guarantee.

1.1 Related Works

Xu and Tewari (2020) improve UCRL-Factored for the
non-episodic setting by discretizing the confidence sets
but still require an oracle planner. Tian et al. (2020)
derive an optimal minimax regret bound for episodic
RL in FMDPs, but utilize a subroutine VI_Optimism
which performs value iteration to find an optimal policy,
iterating over all exponentially many states. Impor-
tantly, our work builds on Jaksch et al. (2010) and Os-
band and Van Roy (2014) by modifying the underlying
structural assumptions to show that exact polynomial-
time planning is indeed possible while retaining RL
regret bounds similar to their oracle-efficient ones.

Beyond Osband and Van Roy (2014) we also assume
that the optimal value function is linear w.r.t. a par-
ticular basis of functions. Linear value functions and
approximations have been well studied (Bradtke and
Barto, 1996; Yu and Bertsekas, 2007; Parr et al., 2010;
Osband et al., 2016). The bounds obtained in these
works are polynomial in the number of states, however,
and the algorithms do not scale to large MDPs that

may still have compact FMDPs. Weisz et al. (2021)
prove an exponential lower bound for linearly-realizable
MDPs, however their construction requires an exponen-
tial sized action space. We instead assume a polynomial
sized action space for tractable planning.

Imprecise MDPs were first introduced by White and
Eldeib (1994) to model transition functions that are
imprecisely specified (i.e. could be any function within
some convex transition set). Using techniques from
Guestrin et al. (2003), Delgado et al. (2011) proposed
a pessimistic planner for imprecise FMDPs but could
not simultaneously guarantee correctness and efficiency.
For the purpose of learning, we instead require (and
thus construct) an optimistic planner for a family of
FMDPs with imprecise transition and reward functions.
Our setting is similar to the Bounded MDPs introduced
by Givan et al. (2000), but with an exponential-sized
state space, additional linear structure, and a less strict
requirement on “well-formed transition functions".

There is also a line of work on simultaneous FMDP
structure and reinforcement learning (Strehl et al., 2007;
Diuk et al., 2009). We instead assume that such struc-
ture is given as input in the RL problem.

Other assumptions for RL with large state-space such as
low Bellman rank (Jiang et al., 2017), Bellman Eluder
(Jin et al., 2021), and bi-linear class (Du et al., 2021)
are structural conditions that permit sample-efficient
RL. However, their algorithms all use the optimization
algorithm OLIVE of Jiang et al. (2017), which uses an
optimistic planner that is not efficient in general.

Block MDPs (Du et al., 2019) permit a provably effi-
cient planner, but are only solved efficiently when the
number of blocks is small, i.e., there is essentially a
small latent state space. Obviously, this substantially
restricts the possible richness of the environment. Com-
putationally efficient algorithms were also obtained by
Jin et al. (2020) assuming linear transitions and re-
wards in RL with finite episodes, and by Yang and
Wang (2019) in the discounted setting with a linear
transition model. (Both show these assumptions im-
ply the optimal Q-function is linear.) Our work in-
stead assumes a linear state value (V ) function, which
is not captured by linear transition models (Sec. 3).
Wang et al. (2020) instead focus on RL with general
Q-function approximation, with bounds parameterized
by the Eluder dimension (Russo and Van Roy, 2013),
which may be large in our setting (Sec. 3 again).

2 PRELIMINARIES

Our work considers RL in a non-discounted, cumulative
episodic reward setting introduced by Burnetas and
Katehakis (1997). Consequently, the value function
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may take different values at the same state at different
points in the time horizon τ . Therefore, any approach
to RL in this setting must solve for a different value
function at each time step.

Let M = (S,A, RM , PM , τ, ρ) be a finite horizon MDP.
Each episode is a run of the MDP M with the finite
time horizon τ . RM : S × A → R is a reward distri-
bution from (s, a) pairs, PM (s′|s, a) is the transition
probability over S from s ∈ S, a ∈ A, and ρ the initial
distribution over S.

A deterministic policy µ is a function mapping each
state s ∈ S to an action a ∈ A. For an MDP M
and policy µ, we define a value function as: VMµ,`(s) :=

EM,µ[
∑τ
`′=`R

M
(s`′ , a`′) | s` = s] for each step ` =

1, . . . , τ , where R
M

(s, a) is the expected reward for tak-
ing action a in state s. The subscripts of E denote that
a` = µ(s`) and s`+1 ∼ PM (·|s`, a`) for each `. A policy
µ is optimal if VMµ,`(s) = maxµ′ V

M
µ′,`(s) for all s ∈ S.

Let µM denote an optimal policy for MDP M . The
RL agent interacts with some latent M∗ in the environ-
ment over episodes, where each episode begins at tk =
(k−1)τ+1, k = 1, 2, .... At time step t, the agent selects
an action at, observes a scalar reward rt, then transi-
tions to st+1. Let Ht = (s1, a1, r1, . . . , st−1, at−1, rt−1)
be the history of observed transitions prior to time
t. An RL algorithm outputs a sequence of functions
{πk | k = 1, 2, . . . }, each mapping Htk to a probability
distribution πk(Htk) over policies which the agent will
employ in episode k. The regret incurred is defined as
Regret(T, π,M∗) :=

∑dT/τe
k=1 ∆k where ∆k is the regret

over the kth episode:

∆k := Es∼ρ
[
VM

∗
µ∗,1(s)− VM

∗
µk,1(s)

]
(1)

with µ∗ = µM
∗
, µk ∼ πk(Htk).

2.1 Factored State MDPs and Structured
Linear Value Functions

We are interested in MDPs with possibly exponential
sized state spaces but containing factored structure.
Definition 1. Let X = X1 × · · · ×Xn. For any subset
of indices Z ⊆ [n], the scope operation of a set is defined
as X [Z] :=

⊗
i∈Z
Xi. For any x ∈ X we can define the

scoped variable x[Z] ∈ X [Z] to be the values of the
variables xi ∈ Xi with indices i ∈ Z.

For simplicity of notation we will also write X = S ×
A = X1×· · ·×Xn in RL, where the action space A has
constant cardinality but S can be exponentially large.

We assume the transition function in the environment
is defined as follows with respect to the scopes of state
variables:

Definition 2. A Factored State MDP (FSMDP) is
an MDP defined by a set of marginal transition prob-
abilities P = {Pi(s′[Zpi ]|s[Pa(Zpi )], a)}i such that the
probability of transitioning to s′[Zpi ] is independent of
state variables outside the scope s[Pa(Zpi )] ⊆ S, i.e.,
where Pa(Zpi ) ⊆ [n] denotes the variables within S that
Zpi depends on in the transition.

We assume that the environment has the same reward
structure as Osband and Van Roy (2014):
Definition 3. The reward function class R is factored
over S × A with scopes ZR1 , . . . , ZRl ⊆ [n] iff for all
R ∈ R, x ∈ X there are functions {Ri ∈ PC,σX [ZRi ],R}

l
i=1

such that E[r] =
∑l
i=1 E[ri] where r ∼ R(x) is equal to∑l

i=1 ri with each ri ∼ Ri(x[ZRi ]) individually observed.
Here PC,σX [Z],R denotes the set of functions mapping X [Z]

to σ-subgaussian probability measures over the measure
space (R,B(R)) with mean in [0, C] and Borel σ-algebra
B(R).

For tractable learning, we assume that there is a fac-
tored linear value function class:
Definition 4. The value function class V is linear
and factored over S = S1 × · · · × Sm with scopes
Zh1 , . . . , Z

h
φ ⊆ [m] iff there exists a set basis functions

hj : S[Zhj ] 7→ R, j ∈ [φ], such that for any function V ∈
V we have V (s) =

∑φ
j=1 wjhj(s[Z

h
j ]) for all s ∈ S, for

some weight vector w ∈ Rφ.

We assume the true value functions at each step
in an episode are linear and factored: VM

∗

µ∗,` =∑φ
j=1 w

∗(`)
j hj(s[Z

h
j ]), for all s ∈ S, ` = 1, . . . , τ .

We assume that the scopes {Zpi }i and {Zhj }j are the
same in our environment. In that case, the second term
of the Bellman operator simplifies to the following with
a factored linear V (similar to Koller and Parr (1999)).∑

s′∈S
P (s′|s, a)V (s′)

=
∑
s′∈S

P (s′|s, a)

φ∑
j=1

wjhj(s
′[Zhj ])

=

φ∑
j=1

wj
∑

ŝ′∈Val(Zhj )

hj(ŝ
′)
∑

s̄′∈Val(Zhj )

P (ŝ′, s̄′|s, a)

=

φ∑
j=1

wj
∑

ŝ′∈Val(Zhj )

hj(ŝ
′)P (ŝ′|s, a)

=

φ∑
j=1

wj
∑

ŝ′∈Val(Zhj )

hj(ŝ
′)Pj(ŝ

′|s[Pa(Zhj )], a). (2)

Val(Zhj ) is the set of all assignments to state variables
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in Zhj , and Val(Z
h

j ) to variables /∈ Zhj , e.g., if the scope
S[Zhj ] has three binary state variables, then we would
have Val(Zhj ) = {0, 1}3. Here we split s′ into ŝ′ and

s̄′. We first marginalized out s̄′ ∈ Val(Z
h

j ), the parts
of the state s which are outside of the scope of the
jth basis function (Def. 4), then condition P on the
variables of s that occur in the parents w.r.t. a ∈ A of
the scope Zhj . Thus we only need to keep track of the
marginal probabilities Pj(s[Zhj ]|s′[Pa(Zhj )], a) instead
of P (s|s′, a) as in standard MDPs.

The number of distinct marginals required to represent
the FSMDP is bounded:

|P| ≤
φ∑
j=1

|A||Val(Sk)||Pa(Zhj )| (3)

≤ O(poly(m)|Val(Sk)|ζφ) (4)

where ζ ≥ |Pa(Zhj )| is a scope size bound, and |Val(Sk)|
denotes the number of values a state variable can take.
Remark 1. Our setting captures interesting environ-
ments. Consider for example a gridworld, in which
there is a penalty for colliding with other, randomly
moving objects. If there is a safe policy, the optimal
V ≡ 0 (and is thus linear), and the local movement
ensures a compact DBN. Yet, the presence/absence of
objects is not independent across positions. Indeed,
since the location of objects in the gridworld is mutu-
ally exclusive over the grid, the factors are negatively
correlated. Therefore such environments cannot be cap-
tured by the usual FMDPs (with independent factors)
but they are captured by FSMDPs.
Remark 2. FSMDPs subsume regular FMDPs in
the linear value function case, as our transition
marginals can express conditionally-independent and
non-conditionally-independent transition functions.

3 LINEAR V FUNCTIONS WERE
NOT PREVIOUSLY ADDRESSED

We stress that we learn MDPs that weren’t addressed
by prior work. As we discussed in Sec. 1.1 recent liter-
ature has mostly focused on sample efficiency in RL
problems with large state space (whose regret bound
does not depend on the state space). However, they
usually involve a planner that is potentially intractable.
Other than Block MDPs, whose difference from our
problem class is clearer, linear transition function is
a common assumption that permits polynomial time
complexity in large state space (Jin et al., 2020; Yang
and Wang, 2019). It’s obvious that this highly restricts
the learnable environments. Indeed, even if the V func-
tion is linear, the transition function can be nonlinear
(please see Appx. A for details).

Proposition 1. Let a state-action (Q-function) basis
{h1(s, a), .., hφ(s, a)} be given such that φ < N = 2m.
Then there is an MDP family M on N states (m
binary factors) for which the optimal Q-function cannot
be expressed as a linear combination of these basis
functions with high probability (1− 2−N+φ ≥ 1/2) for
any MDP M ∈M, whereas every MDP M ∈M has a
compact, optimal linear V function representation for
any given basis set of state feature functions.

Jin et al. (2020); Yang and Wang (2019) proved that
linear transition functions imply linear Q functions. So,
contrapositively:
Corollary 1. There exists an MDP with a linear V
function but not a linear transition function.

Moreover, in addition to not having a nice linear form,
the Q-function in our example can also have a high
Eluder dimension, since the MDP is a random envi-
ronment when one of the unsafe actions is chosen—
specifically, fixing a sequence of actions is not informa-
tive about the effect of subsequent actions until/unless
the process revisits a state, which is unlikely in our
exponential state space. Indeed, Russo and Van Roy
(2013) gave lower bounds on the Eluder dimension that
carry over to our example.

4 ALGORITHM

Our proposed algorithm modifies UCRL-Factored (Os-
band and Van Roy, 2014), keeping track of confi-
dence sets around each RMi and marginal distribu-
tion PM (·|s[Pa(Zhj )], a), where the true RM

∗
, PM

∗

reside w.h.p. We use the definition of Osband and
Van Roy (2014): The confidence set at time t is cen-
tered at an empirical estimate f̂t ∈ MX ,Y defined by
f̂t(x) = 1

nt(x)

∑
τ<t:xτ=x δyτ , where nt(x) counts the

number of occurrences of x in (x1, . . . , xt−1) and δyt
is the probability mass function over Y which assigns
all probability to outcome yt. Our sequence of con-
fidence sets depends on a choice of norm || · || and a
non-decreasing sequence {dt : t ∈ N}. For each t, the
confidence set Ft = Ft(|| · ||, xt−1

1 , dt) is defined as:

{
f ∈ F

∣∣∣∣||(f − f̂t)(xi)|| ≤
√

dt
nt(xi)

∀i ∈ [t− 1]

}
.

We write Rit(d
Ri
t ) as shorthand for the re-

ward confidence set Rit(|E[·]|, xt−1
1 [ZRi ], d

Rj
t ) and

Pjt (d
Pj
t ) for a vector of confidence sets Pj,at (‖ ·

‖1, (st−1
1 [Pa(Zhj )], at−1

1 ), d
Pj,a
t ), over (jth marginal, ac-

tion a) pairs.

Let N = |P| be the number of transition function
marginals in (3). Alg. 1 gives our full RL algorithm
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Algorithm 1 UCRL-Factored for FSMDP
for episode k = 1 . . .K do
dRit = 4σ2 log(4l|X [ZRi ]|k/δ) for i = 1 . . . l

d
Pj
tk

= 2|Val(Zhj )| log(2) −2 log(δ/(2N |Pa[Zhj ]|k2))
for j = 1 . . . N

Mk = {M |Ri ∈ Rit(d
Ri
t ), Pj ∈ Pjt (d

Pj
t ) ∀i, j}

µk = OptimisticPlanner(Mk, ε =
√

1/k)
sample initial state variables s1

1, . . . , s
m
1

for timestep t = 1 . . . τ do
sample and apply at = µk(st)
observe r1

t , . . . , r
l
t and s1

t+1, . . . , s
m
t+1

end for
end for

Algorithm 2 OptimisticPlanner

w = w0 // centroid of the initial large ellipsoid
MR ← optimistic rewards Ri(z) with (9)
MP ← optimistic transition marginals (Alg. 3,
Apx. B.3)
Ω← Simplify constraints of (1) with variable elimi-
nation Alg. 4 and computed MR,MP

while w does not satisfy constraints Ω do
Use tightness to construct cutting-plane (Thm. 1)

w ← new ellipsoid centroid within cutting-plane
Ω = Simplify constraints of (1) with variable elim-
ination Alg. 4 and computed MR,MP

end while

which modifies UCRL-Factored by changing the num-
ber and choice of confidence set sequences, and using
the OptimisticPlanner we propose instead of an oracle.

We formulate our MDP planning task as an LP solving
for the optimal value function V ∗(s) over each state
s. By using the fact that V` and V`+1 are related
through the Bellman operator V`(s) = maxa{R(s, a) +∑
s′ P (s′|s, a)V`+1(s′)}, and inductively applying the

tightness of the LP at its optimum, we can show that
planning with multiple Vi’s is equivalent to the follow-
ing linear programming problem (Please see Appx. B.1
for details):

min
V1

∑
s

V1(s) (5)

s.t. V`(s) ≥ R(s, a) +
∑
s′

P (s′|s, a)V`+1(s′), (6)

∀s ∈ S, a ∈ A, ` = 1, . . . , τ,

Vτ+1(s) = 0, ∀s ∈ S.

Remark 3. We stress that in contrast to prior works,
we are not using value iteration, but rather solving a
convex program for the V function. Therefore, we don’t
run into the problem of whether or not the iterates of

Bellman operator remain close to the subspace spanned
by the basis functions.

The seminal work by Guestrin et al. (2003) showed that
the Approximate Linear Programming formulation for
planning in an FMDP gives the optimal value function
V ∗ iff V ∗ lies within the subspace spanned by the cho-
sen basis. Using the linear value function assumption,
each of the inequality constraints can be written in the
following form, where w(`)

j denotes the coefficient of
the basis function hj in the linear representation of V`.

φ∑
j=0

w
(`)
j hj(s) ≥ R(s, a)+

∑
s′∈S

P (s′|s, a)

φ∑
j=0

w
(`+1)
j hj(s

′). (7)

We also include a constant basis function h0 to ensure
the LP is feasible (Guestrin et al., 2003).

In Alg. 1, the reward distribution and transition func-
tions are learned by successively updating the cor-
responding confidence sets for each reward compo-
nent function Rit(d

Ri
t ) and transition function marginal

Pjt (d
Pj
t ). Combining the formulations of Guestrin et al.

(2003) and Delgado et al. (2011), we obtain the im-
precise LP formulation Fig. 1 for FSMDP, where R
and P are defined over bounded convex sets centered
on an empirical estimate of the reward and transition
functions (see Appx B.2). The arg max in Fig. 1 spec-
ifies an optimistic solution, which guarantees that the
reward and transition function are set to the best pos-
sible value within their respective confidence sets. In
this formulation, the variables are: the linear weights
w, rewards R, and transition probabilities P .

Although Fig. 1 is presented as a non-trivial bilevel
program, we argue that we can construct an efficient
separation oracle to solve it with an algorithm such as
the Ellipsoid method (Grötschel et al., 1988) (or a more
efficient equivalent (Jiang et al., 2020)) in polynomial
time. We accomplish this by removing the bilevel
constraints and adding a polynomial number of linear
constraints describing all possible variations of R and
P within their confidence sets: while the product of
w and P seemed to introduce nonlinear terms in the
formulation, we treat the possible values of P as a
family of constraints. Indeed, the arg max’s for R, P
of (8) are the largest of the RHS for the family of
constraints we generate in Fig. 1, so the two programs
are equivalent. This reduces the problem to an LP over
the exponential sized state space—importantly, since
we no longer seek to represent a factorization of P ,
we are able to avoid the terms P (s[Zhj ]|s[Pa(Zhj )], a) =∏
i∈Zhj

P (si|x[Zhj ]). which exist in Delgado et al. (2011).
Our problem is thus linear rather than multi-linear.

In an Ellipsoid based algorithm, at each step we fix
some w, and use a provably efficient algorithm imple-
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∀(s, a, `) ∈ S ×A× [τ ]

φ∑
j=0

w
(`)
j hj(s) ≥

l∑
i=1

Ri(s, a) +

φ∑
j=0

∑
ŝ′∈Val(Zhj )

w
(`+1)
j hj(ŝ

′)P
(`+1)
j (ŝ′|s[Pa(Zhj )], a) (w

(τ+1)
j = 0)

(Ri)
l
i=1, (P

(`+1)
j (·|s[Pa(Zhj )], a))φj=1 = arg max

R̃i∈Rit(d
Ri
t )

P̃j(·|s[Pa(Zhj )],a)∈Pjt (d
Pj
t )

l∑
i=1

R̃i(s, a) +

φ∑
j=0

∑
ŝ′∈Val(Zhj )

w
(`+1)
j hj(ŝ

′)P̃
(`+1)
j (ŝ′|s[Pa(Zhj )], a)

Figure 1: Constraints for the OptimisticPlanner optimization problem. The objective is min
w

∑
s

∑φ
j=0 w

(1)
j hj(s).

menting a “separation oracle” that either identifies the
feasibility of the LP with the given w or finds a violated
constraint. If it is infeasible, then we find a new w
satisfying the additional constraint, and so on.

We note that the arg max computation (which also
appears in (8)) for Pj depends (only) on {sign(w

(`)
j )}j .

We further relax each Pj to a set {P (`)
j }`∈[τ ], one for

each step. All P (`)
j are still constrained by the single

confidence set Pjt (d
Pj
t ) for each episode. Maximizing

these separately yields a (more) optimistic estimate of
each V`, making it possibly larger than the actual V ∗.
Indeed, the argmax over our relaxed R and P can only
make the RHS of (8) larger, which in turn makes the
RHS of the inequalities in Fig. 1 larger.

Remark 4. Each Pj(·|s[Pa(Zhj )], a) marginal has its
own confidence set in Pjt (d

Pj
t ), and only depends on

the inner sum over Val(Zhj ) within each constraint in
Fig. 1. This is essential.

4.1 Algorithm for Separation Oracle

We now describe the algorithm implementing the sepa-
ration oracle for solving Fig. 1. We repeat the following
for each action a ∈ A separately.

4.1.1 Computing Optimistic Parameters

If all constraints in Fig. 1 are satisfied, the tightest
constraint in particular is satisfied. If a constraint is
not satisfied, then this constraint can be returned for
w. Our algorithm checks whether the following inequal-
ities hold for each action a, obtained by rewriting the
constraints in Fig. 1:

0 ≥ max
`∈[τ ],s∈S,Ri∈Rit

Pj(·|s[Pa(Zhj )],a)∈Pjt

[
l∑
i=1

Ri(s, a) +

φ∑
j=0

(
−w(`)

j hj(s)

+w
(`+1)
j

∑
ŝ′∈Val(Zhj )

hj(ŝ
′)P

(`+1)
j (ŝ′|s[Pa(Zhj )], a)




(8)

Notice each Ri depends only on the subset of state
variables given by its scope ZRi . We can thus precom-
pute the optimal value of Ri(x[ZRi ]) for the polyno-
mial number of assignments to x[ZRi ], represented by
z ∈ Val(ZRi ), in O(1) time by using the largest value
within the confidence set:

Ri(z) =
1

nt(z)

∑
τ<t;xτ=x

δyτ +

√
dt

nt(z)
, (9)

where – by abuse of notation – nt(z) denotes the num-
ber of visits to any (s, a) which takes the values given
by z over state variables in ZRi , up until time t − 1.
Notice that this allows us to fix optimistic values for the
rewards in O(lm) time by creating a polynomial-sized
lookup table for the value of Ri at any (s, a) constraint.

We would like to use a similar procedure to determine
an optimistic transition function. For each j in (8),
given a, there are multiple transition marginals to solve
for, where each depend only on an assignment z ∈
Val(Pa(Zhj )) to the parents of the jth scope (Rmk. 4).
Therefore, we have the following optimization problem
over each P (`)

j (·|s[Pa(Zhj )], a):

max
P

w
(`)
j

∑
ŝ′∈Val(Zhj )

hj(ŝ
′)P

(`)
j (ŝ′|s[Pa(Zhj )], a)

subject to the constraint that P (`)
j (·|s[Pa(Zhj )], a) ∈ Pjt .

As Pjt is a convex set (for a given marginal), we can use
a variation of Figure 2 of Jaksch et al. (2010) to solve
this problem. To maximize a linear function over a
convex polytope, we need only consider the polynomial
number of polytope vertices. Our Alg. 3 given in
Appx. B.3 simply greedily assigns resources to high
valued hj(s

′
k) functions, while normalizing to ensure

that P remains a true probability distribution.
Remark 5. We only compute the optimistic param-
eters for both the reward and transition functions a
single time before solving Fig. 1. Notice the optimistic
reward did not depend on w, so we can use the result-
ing values for each later call to the separation oracle
algorithm. Similarly, optimistic transition probabilities
depend only on sign(w

(`)
j ) in Alg. 3, which means there
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we only need to compute at most two P (`)
j for each j.

For each of N transition marginals, we compute and
store both orderings based on sign(w

(`)
j ) in the lookup

table. To check (8) for a query w in the algorithm, we
use transition functions corresponding to the correct
ordering in O(1) by table lookup.

4.1.2 Variable Elimination

We now have a polynomial-size lookup table for each
possible Ri(x[ZRi ]) and P (`)

j (·|s[Pa(Zhj )], a). However,
we are still left with a maximization over an exponential
sized state space S in (8). To ameliorate this, we utilize
the procedure of variable elimination from probabilistic
inference, which was applied to FMDPs by Guestrin
et al. (2003).

Variable elimination constructs a new optimization
problem Ω, equivalent to (8), but over a tractable
constraint space. Let some order over S1, . . . ,Sm be
given, and assume that our state space is {0, 1}m.

Based on (8), we define c(`)j (s, a) as:

−w(`)
j hj(s) + w

(`+1)
j

∑
ŝ′∈Val(Zhj )

hj(ŝ
′)P

(`+1)
j (ŝ′|s[Pa(Zhj )], a).

Without loss of generality, we will only use one cj(s, a)
to demonstrate the variable elimination, because the
variable elimination order is only controlled by the
scopes Zhj indexed by j, so procedure is the same for
each c(`)j (s, a). We illustrate one step of the variable
elimination, and the rest follow similarly. Suppose that
the only scopes containing S1 are ZR1 = {S1}, and
Pa(Zh1 ) = {S1,S4}. Suppose that the first state vari-
able to eliminate is S1. Variable elimination rewrites
(8) by moving the “relevant functions" inside (due to
linearity):

max
s∈

⊗m
i=2 Si

[ l∑
i=2

Ri(x[ZRi ]) +
∑

j=0,2...φ

cj(s, a)

+ max
S1

[
R1(x[ZR1 ]) + c1(s, a)

]] (10)

Next, we replace max
S1

[R1(x[ZR1 ]) + c1(s, a)] with a new

LP variable uerS1 . However, to enforce uerS1 to be the
max, we need to add four additional linear constraints
in the form of uerS1 ≥ R1(x[ZR1 ]) + c1(s, a), one for each
binary assignment to S1,S4. These constraints involve
evaluating R1(x[ZR1 ]) and c1(s, a) at each assignment,
which simply uses our previously-constructed poly sized
lookup table. (details in Appx. B.3).

In the general case the complexity of such variable
elimination has an exponential dependence on the width
of the induced cost-network of our scopes. Let the set

of all scopes Z = {ZRi | i ∈ [l]} ∪ {Pa(Zhj ) | j ∈ [φ]} be
given. We can construct a cost network over variables
S1, . . . ,Sm s.t. there is an undirected edge between any
two variables iff they appear together in any scope in Z.
The width of this network is the longest path between
any two variables.

Theorem 1. Given an efficient variable elimination
ordering over the induced cost network, a polynomial-
time (strong) separation oracle exists.

Proof : For a given w, obtain the simplified version
Ω of the exponentially large LP formulation through
variable elimination as above (Alg. 4). Given w, we
can efficiently check the feasibility of the original LP
by checking feasibility of Ω. If Ω is infeasible for w,
then we obtain a sequence of tight simplified linear
constraints with the final exceeding the bound of (8).
Since simplified constraints are obtained by iteratively
maximizing state variables, from these tight constraints
we can read off the corresponding state variable values
s∗. The inequality in (8) with s∗ is the one that w vio-
lates, and we use this to define a separating hyperplane,
which follows from tightness of the new optimization
problem and Thm. 4.4 of Guestrin et al. (2003).

This implies planning inAlg. 2 is efficient (Appx. B.4).

4.2 Completing the Cutting Plane Analysis

By standard arguments, any separating hyperplane
may be made strict by a perturbation. We thus obtain
a strong separation oracle, which returns w if it lies
in the solution set, or a strict separating hyperplane
whose half-space contains the feasible solution set and
does not contain the query point w.

We now establish the objective can be evalu-
ated efficiently for Fig. 1. First, recall that
min
w

∑
s∈S

∑φ
j=0 w

(1)
j hj(s) is the objective of our prob-

lem. A naïve summation over states may require expo-
nential time, so we simplify:

φ∑
j=0

w
(1)
j

∑
s∈S

hj(s) =

φ∑
j=0

w
(1)
j g(Zhj )

∑
sk∈Val(Zhj )

hj(sk)

where g : {Zhj | j ∈ [φ]} 7→ Z+ counts the number of
states that take value hj(sk) by counting combinations
of state variables which are not in the scope of hj :
g(Zhj ) =

∏
i=1,...,m/∈Zhj

|Val(Si)|. We can now evaluate
our objective in polynomial time by iterating only over
states within the scope of each hj .

Next, the Ellipsoid algorithm also requires that w lies
in a bounded convex set. We will assume ‖w‖1 ≤ W
for someW ∈ R, for reasons discussed further in Sec. 5.
It is clear that if the MDP is well defined and has a
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bounded linear value function, thenwmust be bounded.
Our main planning result follows.

Theorem 2. The Ellipsoid algorithm solves the opti-
mization problem Fig. 1 in polynomial time.

This follows from the strong separation oracle of
Thm. 1, but we defer the details to Appx. B.5.

4.3 Runtime

For each episode, the optimistic P,R for all scopes are
precomputed in time O(τ |A|Jφ) (please see Thm. 3
for notations). The state-of-the-art convex program
solver of Jiang et al. (2020) takes a separation oracle
for a convex set K ⊂ Rn, where K is contained in a box
of radius R, and finds the optimum in K up to error
ε in O(n log(nR/ε)) oracle calls, taking an additional
O(n2) steps per call. In our case, n = τφ, because
we are searching for φ-dimensional linear weights w ∈
Rφ for each step in the episode, and R ≤ O(τφW )
because ‖w‖1 ≤ W . The runtime of the separation
oracle is |A| times the cost of solving the small LP
after variable elimination. Cohen et al. (2021) can
solve LPs with n variables to relative accuracy δ near
time O(n2.5 log(n/δ)) using fast matrix multiplication
algorithms.

The variable elimination procedure introduces
n ≤ O(τmκω) variables into our reduced LP, where
m is the number of state variables (not states),
and ω is the small induced the width of the cost
network of the scopes, so our separation oracle runs
in time O(|A|(τmκω)2.5 log(τmκω/δ)). Therefore, the
planner runtime for each episode is O(τ |A|Jφ +
|A|(τmκω)2.5 log(τmκω/δ)τφ log(τ2φ2W/ε) +
τ3φ3 log(τ2φ2W/ε)).

5 REGRET ANALYSIS

By using an analysis similar to Osband and Van Roy
(2014), we can also derive the following regret bound
for Alg. 1, UCRL-Factored for FSMDPs (details in
Appx. C).

Theorem 3. Let M∗ be a FSMDP with V ∗∗ having
a linear decomposition. Let l + 1 ≤ φ, C = σ = 1,
|Si| = |Xi| = κ, |ZRi | = |Pa(Zhi )| = ζ for all i, and let
J = κζ , ‖w‖1 ≤ W , and maxj and s∈Val(Zhj ) |hj(s)| ≤
G. Assuming WG ≥ 1, and an efficient vari-
able elimination ordering, then Regret(T, πτ ,M∗)

≤ τ
(

30φWG
√
TJ(J log(2) + log(2NζT 2/δ))

)
w.p. at

least 1− 3δ.

Remark 6. There is a lower bound example in Xu
and Tewari (2020) that shows such a dependence on
J is necessary. Their example extends Jaksch et al.

(2010) where there are two states s, s′, and r(s, a) =
0, r(s′, a) = 1 for any action a. This can be changed to
only receiving penalty at s, thus giving linear V ∗ ≡ 0,
which is captured by linear V FSMDP.

We modify analysis of Osband and Van Roy (2014) by
replacing their use of the FMDP product transition
structure with a factored linear basis assumption on the
value function. Let VM

∗

µM ,` represent the resulting value
function after applying policy µM instead of µ∗ to M∗.
Importantly, we note that we do not need to assume
each VM

∗

µM ,` is linear (Eq. (37)-(41) in Appx. C).

To start our analysis, we denote:

T MµM ,`V (s) = R
M

(s, µ(s)) +
∑
s′∈S

PM (s′|s, µ(s))V (s′),

We simplify our notation by writing ∗ in place of M∗
or µ∗ and k in place of M̃k and µ̃k. Without loss of
generality, we examine the regret of an episode starting
from each given state. Let stk+1 be the first state in
the kth episode. The regret of the kth episode is then
given by ∆k = V ∗∗,1(stk+1)−V ∗k,1(stk+1). Note that P ∗
is homogeneous throughout the episode, but there are
distinct (optimistic) estimates {P k,(`)}`∈[τ ] for each
step. We will also denote xk,i = (stk+i, µk(stk+i)).
Importantly, V ∗k,` = T ∗k,`V ∗k,`+1 because here we are
applying the action of µk to the actual environment
of M∗, and V kk,` = T kk,`V kk,`+1 because at the optimal
solution, the LP constraints are tight.

First, let’s add and subtract the computed optimal
reward:

V ∗∗,1(stk+1)− V ∗k,1(stk+1) =

(V kk,1(stk+1)−V ∗k,1(stk+1))+(V ∗∗,1(stk+1)−V kk,1(stk+1)),

where the second term on the RHS can be bounded
by a choice of planning error ε =

√
1/k. Indeed V kk,1

without planning error can only overestimate V ∗∗,1 by
optimism.

Now let’s deconstruct the first term on the RHS above
through dynamic programming (Osband and Van Roy,
2014):

=

τ∑
`=1

(T kk,` − T ∗k,`)V kk,`+1(stk+`) +
τ∑
`=1

dtk+`, (11)

where dtk+` is a martingale difference bounded by
maxs∈S V

k
k,`+1(s), which in turn is bounded by Bw,h =

‖w‖1 maxs∈S maxj |hj(s)| due to Hölder’s inequality
being applied to the linear form of the computed
V kk+i. Next, similarly to Jaksch et al. (2010), we ap-
ply Azuma–Hoeffding to obtain

∑dT/τe
k=1

∑τ
i=1 dtk+i ≤

O(Bw,h
√
T ) w.p. ≥ 1−δ. (However, we now have Bw,h

instead of a dependence on the MDP diameter.)
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For the remaining terms in (11), we apply Cauchy-
Schwarz to obtain the following bound:

≤
τ∑
`=1

[∣∣∣Rk(xk,`)−R
∗
(xk,`)

∣∣∣+
φ∑
j=1

∣∣∣∣wk,(`+1)
k,j

∑
s′∈S

(P k,(`)(s′|xk,`)− P ∗(s′|xk,`))hj(s′)
∣∣∣∣
]
(12)

The difference between the actual reward R̄∗ and com-
puted reward R̄k in (12) are bounded by the widths of
reward confidence sets, akin to Osband and Van Roy
(2014). For the rest of terms in (12), we diverge from
Osband and Van Roy (2014) by applying a differ-
ent Hölder’s inequality argument which results in a
bound with respect to ‖w‖1 maxs∈S maxj |hj(s)| and
‖P k−P ∗‖1, where the latter is bounded by the widths
of transition probability confidence sets similar to
those of the rewards. We then apply Corollary 2
from Appx. C to bound the widths of confidence
sets over time, which uses the concentration bound
≤ O(poly(J)

√
T ) for each confidence set.

Discussion Our bound is similar to Cor. 2 from Os-
band and Van Roy (2014), but not identical. Most
importantly, we have provided an efficient planning
algorithm which Osband and Van Roy (2014) assume
as an oracle when computing their regret bound. We
also have an extra

√
J cost due to the support of each

the transition marginal functions we are estimating
being of size J and not of size κ. This follows naturally
from considering transition functions that don’t fully
factorize.

Instead of a dependence on the number of state vari-
ables m, we have a factor of φ, the number of basis
functions. Osband and Van Roy (2014) have a factor
of the diameter in their formal guarantee. However,
our bound does not rely on the diameter and instead
depends only on the 1-norm of the basis vector W and
the max value that any basis function G. Our depen-
dence on the horizon τ rather than diameter matches
the recent minimax-regret of Tian et al. (2020) for fi-
nite episode RL in FMDPs. However, our regret bound
can be obtained using a provably efficient algorithm
(without assuming there is an oracle that efficiently
iterates through every state).

6 FUTURE WORK

No lower bound for our problem setting is known. Our
regret bound in Thm. 3 is polynomial in φ, which
represents the size of our basis. We also ask if it is
possible to remove this dependency on φ in our tran-
sition function error analysis (12). This would allow

for our approach to be utilized with kernels and a pos-
sibly infinitely sized basis. Correspondingly, we ask if
there exists an efficient kernelized planning algorithm;
if both could be resolved affirmatively, this would in
turn enable the use of rich, kernelized value functions
(as opposed to Q-functions) for RL in large FMDPs.
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A Relation Between Linear Value and Linear Q-function

Many recent advances on provable polynomial RL algorithms assumes the state-action value function (Q-function)
to be linear: a linear Q-function is defined as Q∗ =

∑φ
i=1 wihi(s, a), with basis elements {h1, .., hφ}, and almost all

of them use Least Square Value Iteration (LSVI) based algorithms. However, the linear Q-function assumption has
its limitations. For example, Yang and Wang (2019) shows that a linear Q function requires the transition function
to be linear in order to avoid unbounded Bellman error. (A similar argument appears in Proposition 2.3, 5.1
of Jin et al. (2020)). By contrast, we will show in Prop. 1 that a linear value function does not entail that the
Q-function is linear. As a contraposition, it’s been shown ( (Jin et al., 2020), (Yang and Wang, 2019) ) that
linear transition function implies linear Q function. Therefore in our example, the transition function is not linear
either.

Moreover, value iteration based algorithms with linear Q function require Bellman Error to be zero. This needs
to be either explicitly assumed or it requires linear transition function in order for this to be true. This drastically
reduced the practicality of the linear function model. Since our algorithm is not value iteration based and our
problem has a finite-episode, this restriction does not apply to us.

Intuitively, we can have nonlinear Q function while V function being linear because V (s) = maxaQ(s, a) and
maximum function being linear does not necessarily infer that piece-wise functions are linear. Concretely, for a
given state-action basis {hi(s, a)}i, we can provide an MDP for which there is no coefficient setting w for which
the optimal Q-function is linear, whereas this MDP will have an optimal linear value function V ∗ =

∑φ
i=1 wifi(s)

for any state value function basis {fi(s)}i.

Proposition 1. Let a state-action (Q-function) basis {h1(s, a), .., hφ(s, a)} be given such that φ < N = 2m.
Then there is an MDP familyM on N states (m binary factors) for which the optimal Q-function cannot be
expressed as a linear combination of these basis functions with high probability (1 − 2−N+φ ≥ 1/2) for any
MDP M ∈ M. On the other hand, every MDP M ∈ M does admit a compact, optimal linear value function
representation for any given basis set of state feature functions.

Proof. Consider a family of environments where there are N states S1, . . . , SN , and for simplicity the time horizon
τ = 1. Pick one of the states and call it Sopt. There are two actions everywhere within these MDPs: action a1

takes any state Si to Sopt for all i ∈ [N ] and gives reward 0; action a2 takes Si to Sj(i), j(i) 6= opt, and gives
a reward from the set {−1,−1/2}. Call the family of all possible MDPs of this formM. We sample M ∈ M
uniformly at random—equivalently, by taking j(i) ∼ uniform(N − 1) independently for each i, and the rewards
independently and uniformly from {−1,−1/2}.

The optimal value function is a constant 0 for every state in every MDP M ∈ M. That is, V (Sj) = 0 for all
j ∈ [N ] as the optimal policy simply takes the action a1 everywhere – we can always obtain 0 by taking a1 and
the other action incurs negative reward in all states. Therefore, the value function can be represented with any
basis by taking the zero linear combination.

On the other hand, consider the φ× 2N matrix of Q-function basis feature representations for each s, a pair:

B =


h1(S1, a1) h1(S2, a1) . . . h1(SN , a1) h1(S1, a2) . . . h1(SN , a2)
h2(S1, a1) h2(S2, a1) . . . h2(SN , a1) h2(S1, a2) . . . h2(SN , a2)

...
...

. . .
...

...
. . .

...
hφ(S1, a1) hφ(S2, a1) . . . hφ(SN , a1) hφ(S1, a2) . . . hφ(SN , a2)


Choose a maximal (d) size set of states S′ = {S′1, . . . , S′d} such that the column vectors given by[
h1(S′i, a2) h2(S′i, a2) . . . hφ(S′i, a2)

]T are linearly independent for all states S′i ∈ S′ (naturally, d ≤ φ
). Next, consider any assignment of rewards from {−1,−1/2} for these d states, and suppose for contradic-
tion that there is a linear representation of every environment in M. By assumption, any state Ŝ /∈ S′ has[
h1(Ŝ, a2) h2(Ŝ, a2) . . . hφ(Ŝ, a2)

]T
determined by a linear combination of columns of states in S′, given by

λ1, . . . , λd. In particular, supposing that for some choice of {w1, . . . , wφ},
∑
i wihi(S

′
j , a2) = Q(S′j , a2) for all j, if
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these also represent Q(Ŝ, a2), then

Q(Ŝ, a2) =

φ∑
i=1

wihi(Ŝ, a2) =

φ∑
i=1

wi

d∑
j=1

λjhi(S
′
j , a2) =

d∑
j=1

λj

φ∑
i=1

wihi(S
′
j , a2) =

d∑
j=1

λjQ(S′j , a2).

I.e., Q(Ŝ, a2) is therefore determined by rewards of states in S′, but we have two distinct, possible values for
Q(Ŝ, a2) in our family: {−1,−1/2}. Therefore, MDPs taking one of them cannot be captured by linear functions
over the basis. Furthermore, for an MDP M ∈ M chosen at random, since the reward of each Ŝ is chosen
independently, the Q-function is linear with probability only 2−(N−d). Since d ≤ φ < N , this is at most 1/2.

We emphasize that we are first given a basis, and are interested in understanding families of environments which
may or may not be a linear combination of these bases elements. We do not state that a random MDP from the
family we provide does not have its own linear Q-function representation. (Indeed, any basis that includes Q(s, a)
trivially represents the Q function.) We only state that for a given basis, we can find an MDP M whose optimal
Q-function does not admit a linear decomposition with high probability.

Prop. 1 demonstrates that there exist some RL environments where it is feasible to learn a compact linear value
function but for which a compact linear Q-function is not expressive enough. We remark that conversely to
Prop. 1, due to the relationship V (s) = maxaQ(s, a), there surely exist MDPs for which there is a compact
linear Q-function but no compact linear value function. (It is in general only piecewise linear.) Therefore, we
argue that the linear Q-function work is orthogonal to ours.

B Planner Construction Derivation

B.1 Linear Programming Formulation

We introduce a distinct value function V` for step ` each episode for the linear programming. Concretely, based on
the Bellman operator V`(s) = maxa{R(s, a) +

∑
s′ P (s′|s, a)V`+1(s′)}, we need to solve the following multi-level

linear problem with the following constraints (for simplicity we do not write out the linear constraints that R,P
must be within their respective confidence sets):

min
V1

∑
s

V1(s) s.t. V1(s) ≥ R(s, a) +
∑
s′

P (s′|s, a)V2(s′), ∀s ∈ S, a ∈ A,

where V2 is the solution of

min
V2

∑
s

V2(s) s.t. V2(s) ≥ R(s, a) +
∑
s′

P (s′|s, a)V3(s′), ∀s ∈ S, a ∈ A,

where V3 is the solution of subsequent subproblem involving V4 with the same structure, and so on. This
multi-level linear problem ends with

min
Vτ

∑
s

Vτ (s) s.t. Vτ (s) ≥ R(s, a) +
∑
s′

P (s′|s, a)Vτ+1(s′), ∀s ∈ S, a ∈ A,

where Vτ+1(s) = 0,∀s ∈ S because each episode only has τ steps. These linear programming formulations are
equivalent to the step-wise sequential relationship:

V`(s) = max
a

{
R(s, a) +

∑
s′

P (s′|s, a)V`+1(s′)

}
, i = 1, . . . , τ.

By inductively following a similar argument as Lemma 1. of Delgado et al. (2011), we can see that this multi-level
linear programming problem is equivalent to the following linear programing problem:

min
V1

∑
s

V1(s) (13)

s.t. V`(s) ≥ R(s, a) +
∑
s′

P (s′|s, a)V`+1(s′), ∀s ∈ S, a ∈ A, ` = 1, . . . , τ,

Vτ+1(s) = 0, ∀s ∈ S.
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Here each V`(s) has the factored linear form
∑
j w

(`)
j hj(s). Intuitively, the tightness at the optimal of the LP

“pushes” V`(s) to be the min of its own corresponding sub-problem.

B.2 Relation to Previous Formulations

Imprecise MDPs are MDPs where the transition function may be defined imprecisely over a bounded convex set.
Naturally, this leads to multiple notions of optimality. One such notion is pessimism, where we are interested in
the optimal policy in the case where the transition function is always working “against us" (maximin). Delgado
et al. (2011) formulate the maximin solution to imprecise FMDPs by extending (7) as follows.

min
w

∑
x

k∑
i=0

wihi(x)

s.t.
k∑
i=0

wihi(x) ≥ R(x, a) + γ
∑
x′∈S

P (x′|x, a)

k∑
i=0

wihi(x
′),∀x ∈ S,∀a ∈ A

P (x′|x, a) = arg min
Q

∑
x′∈S

Q(x′|x, a)

k∑
i=0

wihi(x
′)

where Q(x′|x, a) =
∏
i

Q(x′i|pa(X ′i), a)

s.t. Q(x′i|pa(X ′i), a) ∈ Ka(X ′i|pa(X ′i))

(14)

Where K denotes a convex transition credal set.

Guestrin et al. (2003) give a simplification of approximate linear programming (ALP) in the factored case,
reducing the number of constraints to allow ALPs to be tractable even with exponentially many states in the
MDP. Delgado et al. (2011) applies a similar simplification to the imprecise case, allowing them to heuristically
solve imprecise factored MDPs with an exponential number of states. However, due to their product constraint,
the problem is non-convex in general and may not find the optimum value function.

Our approach is based upon an insight into the constraints in (7), and utilizes the constraint simplification of
(14) to efficiently and exactly run a linear program to solve for the optimistic solution to the imprecise FMDP
defined over our confidence sets.

Let Rit(d
Ri
t ) and Pjt (d

Pj
t ), the reward function and transition function confidence sets at the tth time step, be

given. Our goal is to generate an ε-optimal planner which returns the optimistic solution to the set of MDPs
given by these confidence sets. Formally, at the kth episode of our procedure we would like the optimistic solution
to the set of MDPs Mk given as follows.

Mk = {M |Ri ∈ Rit(d
Ri
t ), Pj ∈ Pjt (d

Pj
t ) ∀i,∀j} (15)

Where Ri is the expected reward of the ith σ-subgaussian factored reward function.

Combining the formulations of Guestrin et al. (2003) and Delgado et al. (2011), we then obtain the LP formulation
for our problem Fig. 1.

B.3 Constructing a Separation Oracle

Consider the stated separation oracle objective.

0 ≥ max
`∈[τ ],s∈S,Ri∈Rit

Pj(·|s[Pa(Zhj )],a)∈Pjt

 l∑
i=1

Ri(s, a) +

φ∑
j=0

(
−w(`)

j hj(s) +w
(`+1)
j

∑
ŝ′∈Val(Zhj )

hj(ŝ
′)P

(`+1)
j (ŝ′|s[Pa(Zhj )], a)

 (16)

Notice that maximizing over s ∈ S is the same as maximizing over S1, . . . ,Sm individually as the state space
is factored. We can then apply the methods from Delgado et al. (2011) and Guestrin et al. (2003) to simplify
the maximization procedure. Checking whether (8) is satisfied can be done in two steps, first by solving the
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exponential sized LP given on the RHS for each a, and second comparing the maximum over all a ∈ A to 0. We
will focus on the first step, since the second is trivial. We can group and rewrite the program as follows.

max
A

[ l∑
i=1

Ri(x[ZRi ]) +

φ∑
j=0

c
(`)
j (s, a)

]
(17)

Where A is S1, . . . ,Sm, Ri ∈ Rit, P (·|s[Pa(Zhj )], a) ∈ Pjt ∀i = 1 . . . l ∀j = 0 . . . φ,∀` = 1, . . . , τ , the cartesian
product of states, confidence sets for rewards, and confidence sets for marginal distributions. Furthermore,
x = (s, a) is scoped on the ith reward scope, and c(`)j is defined as:

−w(`)
j hj(s) + w

(`+1)
j

∑
ŝ′∈Val(Zhj )

hj(ŝ
′)P

(`+1)
j (ŝ′|s[Pa(Zhj )], a).

Without loss of generality, we will only use one cj(s, a) to demonstrate the variable elimination, because the
variable elimination order is only controlled by the scopes Zhj indexed by j, so procedure is the same for each
c
(`)
j (s, a).

We will use variable elimination to reduce the (17) to a tractable linear program. Let some order criterion O over
1 . . .m be given, where O(k) returns a variable to eliminate at time step k = 1 . . .m. Note that determining the
optimal order O∗ is in general NP-hard. At each iteration of variable elimination, we will bring the relevant state
variable Sk inside the max. Algorithm 4 gives the full description of our proposed simplification, heavily based
on Delgado et al. (2011) and Guestrin et al. (2003).

To illustrate the variable elimination procedure, we will work through the hypothetical example from Delgado
et al. (2011) while noting differences along the way. Suppose that O(1) = S1 at the first iteration of simplification,
and that the only scopes ZRi and Pa(Zhj ) including S1 are ZR1 = S1 and Pa(Zh1 ) = S1 × S4. Here, the function
c1 is scoped on Pa(Zh1 ) due to the transition function being backprojected for simplification earlier (see (2)).
Therefore, we can rewrite (17) as follows due to linearity of the objective.

max
A

[ l∑
i=2

Ri(x[ZRi ]) +
∑

j=0,2...φ

cj(s, a) + max
S1,R1∈R1

t ,P (·|s[Pa(Zh1 )],a)∈P1
t

[
R1(x[ZR1 ]) + c1(s, a)

]]
(18)

Where A is as before, but with S1, l = 1, and j = 1 removed: A = S2, . . . ,Sm, , Ri ∈ Rit, P (·|s[Pa(Zhj )], a) ∈
Pjt ∀i = 2 . . . l ∀j = 0, 2 . . . φ. In general, we will have L relevant functions to pull into the second max
each iteration, which we will rename as uf1Z1

, . . . , ufLZL . In our example, we have that uf1S1,a = R1(x[ZR1 ]) and
uf2S1,S4 = c1(s, a).

For each variable Sk we wish to eliminate, we select the L relevant functions and replace them with a maximization
over Sk as follows. Here we diverge from Delgado et al. (2011) since they need only maximize over Sk, but we
still have a maximization over R,P .

uerZ = max
Sk,Rit,P

j
t

L∑
j=1

u
fj
Zi

(19)

Where Z is the union of all variables appearing in any scope Zi setminus the variable Sk, since we maximize it
out. Note that there may be none or any number of relevant reward and marginal distribution functions (within
c) in a single uerZ , and we must include all relevant confidence sets within the maximization. Each confidence set
will belong only to the relevant uerZ which is the first to pull it out of the larger max in (17) according to the
elimination order criterion O. Note that uerZ is a new variable which we add to the optimization procedure.

For ease of notation, for the factored reward functions we will only refer to the state variables within their
scope, since the action must be included in the scope anyways. Returning to the example, our Z will be
{S1} ∪ {S1,S4} \ {S1}. So we have that

uerS4 = max
S1,R1∈R1

t ,P (·|s[Pa(Zh1 )],a)∈P1
t

[
uf1S1 + uf2S1,S4

]
, (20)
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Algorithm 3 Transition Function Optimization
Optimal marginal transition function P (`)(·|z, a) is returned for some assignment z ∈ Val(Pa(Zhj )).
Sort S = Val(Zhj ) = {s′1, . . . , s′k} in descending order s.t. hj(s′1) ≥ · · · ≥ hj(s′k). Reverse order if w(`)

j < 0.

Set P (`)(s′1|z, a) := min{1, P̂ (s′1|z, a) + 1
2

√
dt

nt(z,a)}

Set P (`)(s′j |z, a) := P̂ (s′j |z, a) for all states s′j s.t. j > 1.
Set i := k
while

∑
s′j∈S

P (`)(s′j) > 1 do

Reset P (`)(s′i|z, a) := max{0, 1−
∑
s′j 6=s′i

P (`)(s′j |z, a)}
Set i := i− 1

end while

and we can then rewrite (18) as

max
A

[ l∑
i=2

Ri(x[ZRi ]) +
∑

j=0,2...φ

cj(s, a) + uerS4

]
, (21)

with A = S2, . . . ,Sm, , Ri ∈ Rit, P (·|s[Pa(Zhj )], a) ∈ Pjt ∀i = 2 . . . l ∀j = 0, 2 . . . φ. However, to enforce the
definition of uerS1 in (20), we need four new inequality constraints, one for each combination of S1 and S4 (in the
binary state variable case):

uers4 ≥ u
f1
s1 + uf2s1,s4 , (22)

uers4 ≥ u
f1
s1 + uf2s1,s4 , (23)

uers4 ≥ u
f1
s1

+ uf2s1,s4 , (24)

uers4 ≥ u
f1
s1

+ uf2s1,s4 . (25)

Furthermore, we need to also consider the relevant confidence sets R1
t and P1

t . For example, consider uf1s1 =

max
R1
t

R1(s1, a). The appropriate confidence set R1
t has width based on how many times the pair s1, a has been

observed up to time t. Note that s1 here refers only to the value of the first state variable in the state vector
(which is set to zero), the rest of the state values are arbitrary. However, since we are maximizing we can exactly
set R1(s1, a) to the maximum value in the confidence set given by:

R1(s1, a) = f̂t(s1, a) +

√
dt

nt(s1, a)
(26)

=
1

nt(s1, a)

∑
τ<t;xτ=x

δyτ +

√
dt

nt(s1, a)
(27)

in O(1) time. In general, we can compute Ri for any assignment z ∈ Val(ZRi ) in O(1) time as follows:

Ri(z) =
1

nt(z)

∑
τ<t;xτ=x

δyτ +

√
dt

nt(z)
(28)

Similarly, we must optimize for each assignment z ∈ Val(Pa(Zhj )), for example, uf2s1,s4 = max
P1
t

c1(s1, s4, a), where

s1 = 1 and s4 = 1 is given. We can optimize for cj w.r.t some assignment z by Algorithm 3, similar to Figure 2
of Jaksch et al. (2010) and originally given by Strehl and Littman (2008). A full proof is given in Jaksch et al.
(2010).

Lemma 1. For all w, we can precompute each function Ri and cj to remove the bounded nature of our MDP in
polynomial time.
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Proof. Let w be fixed and given. Assume that some Ri has restricted scope ZRi . For a given s, a pair, we know
that Ri ∈ Rit since the width of the confidence set Rit depends on the s, a pair scoped on ZRi . However, the scope
ZRi can take only a polynomial number of different assignments. Therefore, we can iterate over all assignments
z ∈ Val(ZRi ) and compute the maximum Ri for each. Since Ri is a single dimensional value, the maximum takes
exactly the form (9).

We can do a similar procedure for each cj , which is scoped on Pa(Zhj ), although optimization here is multidimen-
sional. By iterating over all Val(Pa(Zhj )), we can solve the optimization problem given by (4.1.1) independently
for both possible signs of w.

Since the number of confidence sets is polynomial, and solving over each is a polynomial time operation, we can
remove the “imprecise" nature of our MDP in polynomial time by explicitly optimizing for the transition and
reward functions.

B.4 Separation Oracle Proofs

We will prove that this reduction is tight, and that we can extract a state s where the constraint is violated if w
lies outside the feasible set.

Lemma 2. Minimizing (29) will return a polynomial sized set of tight constraints ω ⊆ Ω if κ > 0 where κ is the
objective value at the solution of the LP in (29).

Proof. Due to Lemma 1, the only difference between our algorithm and Guestrin et al. (2003) is that instead of
adding (29) as a constraint relative to κ, we explicitly minimize over it. Once we retrieve its minimum objective
value, we compare that to 0. If it is less than or equal to 0, then our current w belongs in the feasible set, i.e. it
satisfies the exponentially many constraints of our program by setting φ = 0 in the induction proof of Theorem
4.4 of Guestrin et al. (2003). This follows from enforcing that each introduced variable must satisfy being at least
as large as the sum of the relevant functions it represents.

Now assume that κ > 0. By minimization of a sum of LP variables, each u
ej
zj must be tight on at least one

constraint by construction, given by an assignment to some subset of variables. Add this constraint to ω for each
j = 1 . . . |F|. Since |Ω| is poly(m) by Guestrin et al. (2003), so is ω ⊂ Ω.

A strong oracle is an oracle which returns either the point given to it if the point lies in the solution set, or a
separating halfspace / hyperplane which completely contains the feasible solution set and does not contain the
query point.

We restate Thm. 1 from the main text, and provide a proof:

Theorem 1. Given an efficient variable elimination ordering over the induced cost network, a polynomial-time
(strong) separation oracle exists.

Proof. For each action a, run Algorithm 4. Take the maximum objective value κ∗ of (29) over all actions a.
If κ∗ ≤ 0, then w lies in the set described by the exponential number of state constraints. If κ∗ > 0, then we
have a set of tight constraints ω given by Lemma 2, since κ∗ is exactly the κ for some action a. Any state
s = (s1, . . . , sm) which is consistent with assignments within the tight constraints ω will be a violating constraint
in (1). This is due to the fact that the simplified tight constraint, when κ∗ > 0, represents an s, a constraint
violation in the original formulation (17).

We can then use the s, a and appropriately optimize for each Ri and P marginal described by this violating
constraint as a separating hyperplane in terms of w as follows:

hp(w) =

l∑
i=1

Ri(s, a) +

φ∑
j=0

−w(`)
j hj(s) +

∑
ŝ′∈Val(Zhj )

w
(`+1)
j hj(ŝ

′)P (`+1)
(
ŝ′|s[Pa(Zhj )], a

) (30)
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Algorithm 4 Separation Oracle Objective Simplification
Optimal objective value (17) for a fixed action a is returned.
// Data structure for constraints of LP
Let Ω = {}
// Data structure for functions generated by variable elimination
Let F = {}
// Generate equality constraints using lookup over pre-computed confidence set values
for j = 1 . . . φ do
for each assignment z ∈ Val(Pa(Zhj )) do
Create a new LP variable ufjz and add the constraint to Ω:

ufjz = max
Pjt

cj(z, a)

Plug in RHS from lookup table generated by Algorithm 3.
Store new function fj to be used in variable elimination step: F = F ∪ {fj}.

end for
end for
for i = 1 . . . l do
for each assignment z ∈ Val(ZRi ) do
Create a new LP variable ufiz and add the constraint to Ω:

ufiz = max
Rit

Ri(z, a)

Plug in RHS from lookup table generated by (9).
Store new function fi to be used in variable elimination step: F = F ∪ {fi}.

end for
end for
// Now, F and Ω contain all the functions and constraints we need to construct the simplified objective using
variable elimination.
for i = 1 . . .m do
// Next variable to be eliminated
Let l = O(i)
// Select the relevant functions from F
Let e1, . . . , eL be the functions in F whose scope contains Sl, and let Zj = Scope[ej ].
// Introduce linear constraints for maximum over current variable Sl
Define A new function e with scope Z = ∪Lj=1Zj − {Sl} to represent maxsl

∑L
j=1 ej .

// Add constraints Ω to enforce maximum.
for each assignment z ∈ Val(Z) do
Add constraints to Ω to enforce max:

uez ≥
L∑
j=1

u
ej
(z,sl)[Zj ]

∀sl

end for
// Update set of functions.
F = F ∪ {e} \ {e1, . . . , eL}

end for
// Now, all variables have been eliminated and all functions have empty scope.
Let κ be the objective value at the solution of the following LP:

min
j=1...|F|

∑
ej∈F

uejzj

s.t. Ω

(29)

Return κ.
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B.5 Convergence of Ellipsoid Method

Theorem 2. The Ellipsoid algorithm solves the optimization problem Fig. 1 in polynomial time.

Proof. By Theorem 6.4.9 of Grötschel et al. (1988), the strong optimization problem of maximizing cTw over
some convex set P (which may require asserting that P is empty) can be solved given a strong separation oracle.
However, the optimization problem must be over a “well-described polyhedron", P . By definition, P is well
described if there exists a system of inequalities with rational coefficients that has a solution set P such that the
encoding length of each inequality in the system is at most γ (Definition 6.2.2 Grötschel et al. (1988)).

Although our system is defined by an exponential number of state constraints (1), at the solution to the problem
each reward and transition marginal function is fixed. Therefore, we can represent each inequality in binary with
some bounded length γ.

We also have a strong separation oracle by Theorem 1: an oracle which returns either the point wt if given
a point in P or a separating hyperplane completely containing P . Lastly, to apply the ellipsoid algorithm to
strong optimization in polynomial time, one binary searches for the minimum objective value d by solving a
sequence of ellipsoid problems with cTw ≤ dt added to the inequality set P . This also has bounded encoding
length. Therefore, our polyhedron P is well-described, and we can solve the strong optimization problem in
polynomial time.

C Full Regret Analysis

Our analysis closely follows Osband and Van Roy (2014). The main difference is that we do not use the product
transition structure as in Osband and Van Roy (2014) and instead use the linear basis scopes of the V function.
We begin the full regret analysis of our algorithm. We simplify our notation by writing ∗ in place of M∗ or µ∗,
and k in place of M̃k and µ̃k. We begin by adding and subtracting the computed optimal reward. Let stk+1 be
the first state in the kth episode. Then the regret at episode k decomposes as follows.

∆k = V ∗∗,1(stk+1)− V ∗k,1(stk+1) =

(
V kk,1(stk+1)− V ∗k,1(stk+1)

)
+

(
V ∗∗,1(stk+1)− V kk,1(stk+1)

)
(31)

The term V ∗∗,1(stk+1)− V kk,1(stk+1) relates the optimal rewards of the MDP M∗ to those near optimal for M̃ . We
can bound this difference by planning accuracy ε =

√
1/k by optimism. Indeed, any relaxation to R or P can

only cause the computed V kk,1 (without planning error) to be larger than the actual V ∗∗,1 because the argmax over
our relaxed R and P can only make the RHS of (8) larger, which in turn makes the RHS of the inequalities in
Fig. 1 larger. Importantly, this includes the relaxation where we don’t insist that the transition marginals are
consistent (in that they represent the marginals of a real distribution). This is what allowed us to relax enforcing
that the marginals are consistent within our proposed oracle.

V kk also overestimates V ∗k because V ∗k is worse than V ∗∗ , which by definition uses the best µ∗ instead of µk.

We then decompose the first term by repeated application of the dynamic programming of Bellman operator
Osband et al. (2013):

(V kk,1 − V ∗k,1)(stk+1) =

τ∑
`=1

(T kk,` − T ∗k,`)V kk,`+1(stk+`) +

τ∑
`=1

dtk+`, (32)

where dtk+` :=
∑
s∈S

{
P ∗(s|xk,`)(V kk,`+1−V ∗k,`+1)(s)

}
− (V kk,`+1−V ∗k,`+1)(stk+`+1), and xk,` = (stk+`, µk(stk+`)).

The derivation is as follows:

(V kk,1 − V ∗k,1)(stk+1) =
(
T kk,1V kk,2 − T ∗k,1V ∗k,2

)
(stk+1)

=
(
T kk,1V kk,2 − T ∗k,1V kk,2 + T ∗k,1V kk,2 − T ∗k,1V ∗k,2

)
(stk+1)

=
[(
T kk,1 − T ∗k,1

)
V kk,2 + T ∗k,1

(
V kk,2 − V ∗k,2

)]
(stk+1)

=
(
T kk,1 − T ∗k,1

)
V kk,2(stk+1) +

∑
s′∈S

P ∗(s′|xk,1)
(
V kk,2 − V ∗k,2

)
(s′),
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where T ∗k,1
(
V kk,2 − V ∗k,2

)
(stk+1) = R∗(xk,1) +

∑
s∈S P

∗(s′|xk,1)V kk,2(s′) − R∗(xk,1) −
∑
s∈S P

∗(s′|xk,1)V ∗k,2(s′).
Continuing the derivation above, we have:

=
(
T kk,1 − T ∗k,1

)
V kk,2(stk+1) +

∑
s′∈S

P ∗(s′|xk,1)
(
V kk,2 − V ∗k,2

)
(s′)

−
(
V kk,2 − V ∗k,2

)
(stk+2) +

(
V kk,2 − V ∗k,2

)
(stk+2)

=
(
T kk,1 − T ∗k,1

)
V kk,2(stk+1) + dtk+1 +

(
V kk,2 − V ∗k,2

)
(stk+2)

=
(
T kk,1 − T ∗k,1

)
V kk,2(stk+1) + dtk+1 +

(
T kk,2V kk,3 − T ∗k,2V ∗k,3

)
(stk+2)

= . . .

=

τ∑
`=1

(T kk,` − T ∗k,`)V kk,`+1(stk+`) +

τ∑
`=1

dtk+`.

Note that we can apply V ∗k,` = T ∗k,`V ∗k,`+1 because here we are applying the action of µk to the actual environment
of M∗, and V kk,` = T kk,`V kk,`+1 because at the optimal solution, the LP constraints in Fig. 1 are tight:

V kk,`(stk+`) =

φ∑
j=0

w
k,(`)
k,j hj(stk+`)

=

l∑
i=1

R
k

i (stk+`, µ
k(stk+`)) +

φ∑
j=0

∑
ŝ′∈Val(Zhj )

w
k,(`+1)
k,j hj(ŝ

′)P
k,(`+1)
j (ŝ′|stk+`[Pa(Zhj )], µk(stk+`))

=R
k
(stk+`, µ

k(stk+`)) +
∑
s′∈S

P k,(`+1)(s′|xk,`)V kk,`+1(s′)

=T kk,`V kk,`+1(stk+`).

Lemma 3. The quantity dtk is a bounded martingale difference.

Proof.

E[dtk+`] = E
[∑
s∈S

{
P ∗(s|xk,`)(V kk,`+1 − V ∗k,`+1)(s)

}]
− E

[
(V kk,`+1 − V ∗k,`+1)(stk+`+1)

]
(33)

=

[∑
s∈S

{
P ∗(s|xk,`)(V kk,`+1 − V ∗k,`+1)(s)

}]
−
[∑
s∈S

{
P ∗(s|xk,`)(V kk,`+1 − V ∗k,`+1)(s)

}]
= 0, (34)

since the first term already takes the expectation, so dtk+` is a martingale difference. Furthermore, we can show
that is bounded as follows.

dtk+` =
∑
s∈S

{
P ∗(s|xk,`)(V kk,`+1 − V ∗k,`+1)(s)

}
− (V kk,`+1 − V ∗k,`+1)(stk+`+1) (35)

≤
∑
s∈S

{
P ∗(s|xk,`)(V kk,`+1 − V ∗k,`+1)(s)

}
(36)

≤ max
s∈S

(V kk,`+1 − V ∗k,`+1)(s) (37)

≤ max
s∈S

V kk,`+1(s) ≤ max
s∈S

∣∣∣∣∣∣
φ∑
j=1

w
(`+1)
j hj(s)

∣∣∣∣∣∣ (38)

≤ ‖w‖1 max
s∈S

max
j
|hj(s)| = ‖w‖1 max

j
max

s∈Val(Zhj )
|hj(s)| (39)

The last fact is proven by Hölder’s inequality. Note that in this analysis we do not use or assume a factored linear
expansion of V ∗k,`+1.



Zihao Deng, Siddartha Devic, Brendan Juba

Importantly, the above bound is not dependent on the diameter of the MDP, which may be exponential in general.
With a bounded martingale difference, we may then use the Azuma-Hoeffding inequality to obtain the following
concentration guarantee Osband and Van Roy (2014), Jaksch et al. (2010):

P
( dT/τe∑

k=1

τ∑
`=1

dtk+` > ‖w‖1 max
j

max
s∈Val(Zhj )

|hj(s)|
√

2T log(2/δ)

)
≤ δ. (40)

The remaining first term of the RHS of (32) is the one step Bellman error of the imagined MDP M̃k, which
depends only on observed states and actions xk,`. Using Cauchy-Schwartz repeatedly we have the following.

τ∑
`=1

(T kk,` − T ∗k,`)V kk,`+1(stk+`) (41)

=

τ∑
`=1

(T kk,` − T ∗k,`)
φ∑
j=1

w
k,(`+1)
k,j hj(stk+`) (42)

=

τ∑
`=1

(R
k
(xk,`)−R

∗
(xk,`)) +

∑
s′∈S

P k,(`+1)(s′|xk,`)
φ∑
j=1

w
k,(`+1)
k,j hj(s

′)−
∑
s′∈S

P ∗(s′|xk,`)
φ∑
j=1

w
k,(`+1)
k,j hj(s

′)


(43)

≤
τ∑
`=1

[
|Rk(xk,`)−R

∗
(xk,`)|+

φ∑
j=1

∣∣∣∣wk,(`+1)
k,j

∑
s′∈S

(P k,(`+1)(s′|xk,`)− P ∗(s′|xk,`))hj(s′)
∣∣∣∣ ] (44)

Note that LHS of Eq. (41) does not contain V ∗k,`, so we don’t need it to be factored linear either. Since
xk,` = (stk+`, µk(stk+`)) we can simplify further. Denote µk(stk+`) as ak,` and we have the following for the
rightmost transition function term by Hölder’s inequality.

φ∑
j=1

∣∣∣∣wk,(`)k,j

∑
s′∈S

(P k,(`)(s′|xk,`)− P ∗(s′|xk,`))hj(s′)
∣∣∣∣ (45)

=

φ∑
j=1

∣∣∣∣wk,(`)k,j

∑
s′∈Val(Zhj )

(P k,(`)(s′|stk+`[Pa(Zhj )], ak,`)− P ∗(s′|stk+`[Pa(Zhj )], ak,`))hj(s
′)

∣∣∣∣ (46)

≤ ||wk
k||1 max

j

∣∣∣∣∣∣
∑

s′∈Val(Zhj )

(P k,(`)(s′|stk+`[Pa(Zhj )], ak,`)− P ∗(s′|stk+`[Pa(Zhj )], ak,`))hj(s
′)

∣∣∣∣∣∣ (47)

≤ ||wk
k||1 max

j

[
max

s′∈Val(Zhj )

(
|hj(s′)|

)
‖P k,(`)(·|stk+`[Pa(Zhj )], ak,`)− P ∗(·|stk+`[Pa(Zhj )], ak,`))‖1

]
(48)

This shows that the one step Bellman error is bounded by the diameter of our convex set for w and a maximum
over all basis function transition confidence set accuracy products. Finally, we can also bound the reward function
term factor by factor by the triangle inequality:

|Rk(xk,`)−R
∗
i (xk,`)| (49)

= |
l∑
i=1

R
k

i (xk,`)−R
∗
i (xk,`)| (50)

≤
l∑
i=1

|Rki (xk,`[Z
R
i ])−R∗i (xk,`[ZRi ])|. (51)

Note that ‖P k −P ∗‖1 and ‖Rk −R∗‖1 can all be bounded due to the concentration guarantees for the confidence
sets.
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C.1 Concentration Guarantees

We will use the guarantees provided by Osband and Van Roy (2014).

Lemma 4. For all finite sets X , finite sets Y , function classes P ⊆ PX ,Y , then for any x ∈ X , ε > 0 the deviation
of the true distribution P ∗ to the empirical estimate after t samples P̂t is bounded:

P(‖P ∗(x)− P̂t(x)‖1 ≥ ε) ≤ exp

(
|Y| log(2)− nt(x)ε2

2

)
(52)

Proof. Osband and Van Roy (2014) claims that this is a relaxation of a proof by Weissman et al. (2003).

One can show Lemma 4 ensures that for any x ∈ X P
(
‖P ∗j (x) − P̂jt(x)‖1 ≥

√
2|Val(Zhj )| log(2)−2 log(δ′)

nt(x) )

)
≤ δ′.

Note that previous analysis in Osband and Van Roy (2014) has a minor technical error which changes the choice
of ε (Appendix C.2).

The number of marginal transition function confidence sets that we have is given by N = |A|
∑φ
j=1 |Val(Pa[Zhj ])|.

Let us give them some ordering i ∈ [N ]. Then we define a sequence for each confidence set at each episode
d
Pj
tk

= 2|Val(Zhj )| log(2)− 2 log(δ′k,i), where δ
′
k,i = δ/(2N |Pa[Zhj ]|k2). Now with a union bound over all confidence

set events over all time steps k we have that:

N⋃
i=1

∞⋃
k=1

P(P ∗i /∈ Pit(d
Pi
tk

)) ≤
N∑
i=1

∞∑
k=1

δ′k,i =

N∑
i=1

∞∑
k=1

δ

2N |Pa[Zhj ]|k2
(53)

=
δ

2N

π2

6

N∑
i=1

1

|Pa[Zhj ]|
≤ δ π

2

12

1

N
N ≤ δ (54)

So we have that P(P ∗i ∈ Pit(d
Pi
tk

) ∀k ∈ N, ∀j ∈ [N ]) ≥ 1− δ.
Lemma 5. If {εi} are all independent and sub σ-gaussian, then ∀β ≥ 0:

P
(

1

n
|
n∑
z=1

εz| > β

)
≤ exp

(
log(2)− nβ2

2σ2

)
. (55)

In particular, we may use Lemma 5 to say that for any x ∈ X :

P
(

1

nt(x)
|
nt(x)∑
z=1

R̂i,z(x)−R∗i (x)| >

√
σ22 log( 2

δ′ )

nt(x)

)
≤ δ′ (56)

Where the sub σ-gaussian random variable R̂i,z represents the empirical value of the ith component of the reward
function at the zth time the pair x = (s, a) was observed before time t. Recall that the true mean of the ith reward
component R

∗
i (x) is a fixed scalar value. Now for each component of the factored reward function i = 1 . . . l,

define the sequence dRitk = σ22 log(2/δ′k,i), where δ
′
k,i = δ/(2l|X [ZRi ]|k2). With the same union bound as (53) over

all confidence set events over all time steps k, we have that:

l⋃
i=1

∞⋃
k=1

P(R
∗
i /∈ Rit(d

Ri
tk

)) ≤
l∑
i=1

∞∑
k=1

δk,i ≤ δ. (57)

Combining (53) and (57), we have that:

P
(
M∗ ∈Mk ∀k ∈ N

)
≥ 1− 2δ. (58)
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C.2 Aside: Technical Error in Osband

We point out a minor technical error in Osband and Van Roy (2014) which changes the analysis and simplification

of the regret. In their Section 7.2, they claim that they may use ε =
√

2|Sj |
nt(x) log( 2

δ′ ) with their Lemma 2 (our

Lemma 4) to obtain the following: for any x ∈ X P
(
‖P ∗j (x)− P̂jt(x)‖1 ≥ ε

)
≤ δ′. Plugging their choice of ε

into Lemma 4, we get the following.

P
(
‖P ∗j (x)− P̂jt(x)‖1 ≥ ε

)
≤ exp

(
|Y| log(2)− nt(x)ε2

2

)
(59)

= exp

(
|Sj | log(2)−

nt(x)
2|Sj |
nt(x) log( 2

δ′ )

2

)
(60)

= exp

(
|Sj | log(2)− |Sj | log(

2

δ′
)

)
(61)

= exp

(
|Sj | log(δ′)

)
(62)

In Osband and Van Roy (2014), |Sj | ∈ N is the size of the scope for the jth transition function. In general,

|Sj | > 1 implies exp

(
|Sj | log(δ′)

)
> δ′. Therefore, they are assuming more tightness than they should with their

empirical estimates of the transition functions. They subsequently use dPjtk = 2|Sj | log( 2
δ′k,j

) as their increasing
sequence, which incorrectly assumes the result above.

If we wish to end up with δ′, we can solve for the correct ε as follows.

δ′ = exp

(
|Sj | log(2)− nt(x)ε2

2

)
(63)

log(δ′) = |Sj | log(2)− nt(x)ε2

2
(64)

ε =

√
2|Sj | log(2)− 2 log(δ′)

nt(x)
(65)

Now we let dPjtk = 2|Sj | log(2)− 2 log(δ′k,j), where δ
′
k,j = δ/(2m|X [ZPj ]|k2) which is the same δ′k,j value as from

Osband and Van Roy (2014). Therefore as k increases, so does dPjtk , and we still have the increasing sequence
required for applications of Corollary 2 from Osband and Van Roy (2014).

C.3 Corollary from Osband and Van Roy (2014)

Corollary 2. For all finite sets X , measurable spaces (Y,ΣY), function classes F ⊆ MX ,Y with uniformly
bounded widths wF ≤ CF ∀x ∈ X and non-decreasing sequences {dt : t ∈ N}:

T∑
k=1

wFk(xtk+1) ≤ 4(τCF |X |+ 1) + 4
√

2dT |X |T , (66)

where xtk+1 is the first x ∈ X for episode k.
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C.4 Regret Bound

We can now analyze the regret bounds for our algorithm.

Regret(T, πτ ,M∗) =

dT/τe∑
k=1

∆k =

dT/τe∑
k=1

[(
V kk,1(stk+1)− V ∗k,1(stk+1)

)
+

(
V ∗∗,1(stk+1)− V kk,1(stk+1)

)]

≤
dT/τe∑
k=1

[√
1/k

]
︸ ︷︷ ︸

1

+ ‖w‖1 max
j

max
s∈Val(Zhj )

|hj(s)|
√

2T log(2/δ)︸ ︷︷ ︸
2

+

dT/τe∑
k=1

τ∑
`=1

l∑
i=1

|Rki (xk,`[Z
R
i ])−R∗i (xk,`[ZRi ])|︸ ︷︷ ︸

3

+

dT/τe∑
k=1

τ∑
`=1

||wk
k||1 max

j

[
max

s′∈Val(Zhj )

(
|hj(s′)|

)
‖P k,(`)(·|stk+`[Pa(Zhj )], ak,`)− P ∗(·|stk+`[Pa(Zhj )], ak,`))‖1

]
︸ ︷︷ ︸

4

With probability at least 1− δ (PAC regret bound), and where 1 is the planning oracle error contribution, 2
is the contribution of the bounded martingale (Lemma 3) over all episodes with the Azuma-Hoeffding inequality
from (40), 3 is the contribution of the reward functions in the one step Bellman error, and 4 is contribution
from the marginal transition functions from (45). We begin by bounding 1 ≤ 2

√
dT/τe by integral sum bound.

Next, let maxj maxs∈Val(Zhj ) |hj(s)| ≤ G be some global bound on all the basis functions which must exist as the

value function is bounded over a finite set. Then we can say: 2 ≤ ‖w‖1G
√

2T log(2/δ).

Henceforth, let dT/τe = K be the number of true episodes. For 3 , we apply Corollary 2 and plug in CF = C

as a width bound of each reward confidence set and dRiT as our sequence:

3 =

K∑
k=1

τ∑
`=1

l∑
i=1

|Rki (xk,`[Z
R
i ])−R∗i (xk,`[ZRi ])| (67)

=

l∑
i=1

[
4(τC|X [ZRi ]|+ 1) + 4

√
2σ22 log(2/(δ/2l|X [ZRi ]|T 2))|X [ZRi ]|T

]
(68)

≤
l∑
i=1

[
5τC|X [ZRi ]|+ 8σ

√
|X [ZRi ]|T log(4l|X [ZRi ]|T 2/δ)

]
(69)

We can bound the confidence sets of 4 by again applying Corollary 2.

4 ≤ ‖w‖1G
K∑
k=1

τ∑
`=1

max
j

[
‖P k,(`)(·|stk+`[Pa(Zhj )], ak,`)− P ∗(·|stk+`[Pa(Zhj )], ak,`))‖1

]
(70)

≤ ‖w‖1G
K∑
k=1

τ∑
`=1

φ∑
j=1

[
‖P k,(`)(·|stk+`[Pa(Zhj )], ak,`)− P ∗(·|stk+`[Pa(Zhj )], ak,`))‖1

]
(71)

≤ ‖w‖1G
φ∑
j=1

[
4(τCF |Val[Zhj ]|+ 1) + 4

√
2|X [Pa(Zhj )]|TdPjT

]
(72)

≤ ‖w‖1G
φ∑
j=1

[
5τ |Val[Zhj ]|+ 4

√
4|X [Pa(Zhj )]|T [|Val(Zhj )| log(2)− log(δ/(2N |Pa[Zhj ]|T 2))]

]
(73)
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Where φ is the number of basis functions, and dPjT = 2|Val(Zhj )| log(2)− 2 log(δ/(2N |Pa[Zhj ]|T 2)) from our union
bound.
Remark 7. Note that from (70) to (71) we do not have a dependence on the number of confidence sets N
because we are conditioning on historical state action observations, with respect to individual basis function
scopes Zhj .
Theorem 4. Let M∗ be an MDP with our special factored structure as well as an exactly linear factored optimal
value function, and an efficient variable elimination ordering O be given. Using our procedure, we can bound the
regret over T iterations (K episodes) for any M∗, Regret(T, πτ ,M∗)

≤ 2
√
K + ‖w‖1G

√
2T log(2/δ) +

l∑
i=1

[
5τC|X [ZRi ]|+ 8σ

√
|X [ZRi ]|T log(4l|X [ZRi ]|T 2/δ)

]
(74)

+ ‖w‖1G
φ∑
j=1

[
5τ |Val[Zhj ]|+ 4

√
4|X [Pa(Zhj )]|T [|Val(Zhj )| log(2)− log(δ/(2N |Pa[Zhj ]|T 2))]

]
(75)

with probability at least 1− δ.

We will simplify the bound in the symmetric case similar to Osband and Van Roy (2014) to present our result
from the main paper.

Theorem 3. Let l + 1 ≤ φ, C = σ = 1, |Si| = |Xi| = κ, |ZRi | = |Pa(Zhi )| = ζ for all i, and let J = κζ , and
‖w‖1 ≤W . Then we have that:

Regret(T, πτ ,M∗) ≤ 30φτWG
√
TJ(J log(2) + log(2NζT 2/δ)) (76)

with probability at least 1− 3δ.

Proof. Assume WG ≥ 1, then by Thm. 4 we have the following.

Regret(T, πτ ,M∗) ≤ 2
√
K +WG

√
2T log(2/δ) + φ

[
5τJ + 8

√
JT log(4φJT 2/δ)

]
(77)

+WGφ

[
5τJ + 4

√
4JT (J log(2)− log(δ/2NζT 2))

]
(78)

≤
(
φ5τJ(1 +WG) +

√
T

[
2 +WG

√
2 log(2/δ) (79)

+ φ8
√
J log(4φJT 2/δ) +WGφ8

√
J2 log(2) + J log(2NζT 2/δ)

]
(80)

To combine the two rightmost square root terms, we compare the terms inside the logarithms:

2ζN ≥ 4φJ (81)

2ζ|A|
φ∑
j=1

|Val(Pa[Zhj ])| = 2ζ|A|φJ ≥ 4φJ (82)

|A| ≥ 2

ζ
(83)

Which is true for any non-trivial MDP with more than a single action. Therefore:

≤ 10φJWGτ +
√
T

[
2 +WG

√
2 log(2/δ) + 16φWG

√
J2 log(2) + J log(2NζT 2/δ)

]
(84)

≤ 10φJWGτ + 18φWG
√
T (J2 log(2) + J log(2NζT 2/δ)) (85)

≤ 10φWGτ
√
TJ2 + 18φτWG

√
TJ(J log(2) + log(2NζT 2/δ)) (86)

≤ 30φτWG
√
TJ(J log(2) + log(2NζT 2/δ)) (87)
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