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Abstract

We study the problem of distribution-free
PAC learning a single neuron under adver-
sarial label noise with respect to the squared
loss. For a range of activation functions, in-
cluding ReLUs and sigmoids, we prove strong
computational hardness of learning results in
the Statistical Query model and under a well-
studied assumption on the complexity of re-
futing XOR formulas. Specifically, we estab-
lish that no polynomial-time learning algo-
rithm, even improper, can approximate the
optimal loss value within any constant fac-
tor.

1 INTRODUCTION

1.1 Background

The recent success of deep learning has served as a
practical motivation for the development of provable
efficient learning algorithms for various natural classes
of neural networks. Despite extensive investigation,
our theoretical understanding of the assumptions un-
der which neural networks are efficiently learnable re-
mains somewhat limited.

In this work, we study arguably the simplest possible
setting of learning a single neuron, i.e., a real-valued
function of the form x 7→ f(〈w,x〉), where w is the
weight vector of parameters and f : R → R is a fixed
non-linear activation function. Concretely, the learn-
ing problem is the following: Given i.i.d. samples from
a distribution D on (x, y), where x ∈ Rn is the fea-
ture vector and y ∈ R is the corresponding label, our
goal is to learn the underlying function in L2

2-norm.
That is, the learner’s objective is to output a hypoth-
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esis h : Rn → R such that E(x,y)∼D[(h(x) − y)2] is
as small as possible, compared to the minimum possi-
ble loss OPT := minw∈Rn E(x,y)∼D[(f(〈w,x〉) − y)2].
Settings of particular interest for the activation f in-
clude the ReLU and sigmoid functions, corresponding

to f(u) = ReLU(u)
def
= max{0, u} and f(u) = σ(u)

def
=

1/(1 + exp(−u)) respectively.

Recall that a learning algorithm is called proper if the
hypothesis h is restricted to be of the form hŵ(x) =
f(〈ŵ,x〉). Here we are interested in the complexity
of improper learning, where no such assumption is im-
posed on the hypothesis h (beyond the fact that it is
efficiently computable).

Let L2(h;D) := E(x,y)∼D[(h(x)−y)2] be the L2
2-loss of

a function h : Rn → R with respect to a distribution
D on Rn × R. For an activation function f : R → R,

we will denote by Cf
def
= {cw : Rn → R | cw(x) =

f(〈w,x〉)} the concept class of a single neuron with
respect to f . We can now formally define our learning
problem.

Definition 1.1 (α-approximate Learner for Cf ). An
algorithm A is an α-approximate learner for Cf if given
sample access to an unknown distribution D on Rn×R
and ε ≥ 1/poly(n), A outputs a hypothesis h : Rn → R
that with high probability satisfies L2(h;D) ≤ α(n) ·
OPT + ε, where OPT := minc∈Cf L2(c;D).

In the realizable case, i.e., when the labels y are con-
sistent with a function in the class, the above learn-
ing problem is known to be solvable in polynomial
time for a range of activation functions. A line of
work, (see Kalai and Sastry 2009; Soltanolkotabi 2017;
Yehudai and Shamir 2020) and references therein, has
in fact shown that simple algorithms like gradient-
descent efficiently converge to an optimal solution un-
der additional assumptions on the marginal distribu-
tion Dx on examples.

In this work, we focus on the agnostic learning model,
where no realizability assumptions are made on the
distribution D. Roughly speaking, the agnostic model
corresponds to learning in the presence of adversarial
label noise.
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In the distribution-specific setting, when the marginal
distribution on examples Dx is assumed to be “well-
behaved” (e.g., log-concave), recent work (Diakoniko-
las et al., 2020a) developed efficient constant factor
approximate learners for ReLUs and other activations;
their algorithm runs in time poly(n/ε) and achieves er-
ror of O(OPT) + ε. For the special case of ReLU acti-
vations, Goel et al. (2017) gave an algorithm with error
OPT + ε and runtime poly(n)2poly(1/ε) that succeeds
as long as the distribution on examples is supported on
the unit sphere. On the lower bound side, a sequence
of recent works (Goel et al., 2019, 2020; Diakonikolas
et al., 2020b, 2021) have shown that, even under the
Gaussian distribution on examples, achieving error of
OPT + ε requires time nF (1/ε), for some function F
with limu→∞ F (u) =∞.

The complexity of learning single neurons in the
distribution-free (agnostic) model – the focus of this
paper – is poorly understood, even for the case of
ReLU and sigmoid activations. Known NP-hardness
results (Śıma, 2002; Manurangsi and Reichman, 2018)
only rule out efficient constant factor approximations
for proper learning algorithms. On the other hand,
these results do not preclude the existence of an effi-
cient constant factor improper learner. This discussion
prompts the following question:

Is there an efficient improper O(1)-approximate
learner in the distribution-free setting?

The results of this paper rule out this possibility.

1.2 Our Results

In this paper, we provide strong evidence that
no efficient constant factor approximation exists for
distribution-free agnostic learning of a single neuron.
Importantly, our hardness results apply to improper
learning, where the learning algorithm is allowed to
output any polynomially evaluatable hypothesis.

Concretely, our hardness results apply for any activa-
tion function with a finite limit on either side.

Definition 1.2 (Convergent Activation Functions).
An activation function f : R → R is convergent if
limu→∞ f(u) or limu→−∞ f(u) exists, and f is not a
constant function.

A wide range of commonly used activation functions
in deep learning (see, e.g., (Dubey et al., 2021)) are
convergent. This includes the Logistic, Sigmoid, Tanh,
ReLU, ELU, Swish, and Mish activations.

Prior to our work, the only known activation for
which similar hardness results were known is the
sign function, corresponding to the class of linear
threshold functions or halfspaces (Daniely, 2016).

Our techniques generalize and strengthen this prior
work (Daniely, 2016) to a very broad class of activa-
tions.

We provide two complementary hardness results: (1)
An unconditional hardness result in the Statistical
Query (SQ) model, and (2) a reduction-based hard-
ness, starting from a well-known assumption about the
hardness of refuting XOR formulas.

SQ Lower Bounds. SQ algorithms are a class
of algorithms that are allowed to query expectations
of bounded functions on the underlying distribution
rather than directly access samples (Definition 3.1).
The SQ model was introduced by Kearns (1998) in
the context of supervised learning as a natural restric-
tion of the PAC model (Valiant, 1984). Subsequently,
the SQ model has been extensively studied in a range
of settings (see, e.g., (Feldman, 2016) and references
therein). The class of SQ algorithms is broad and cap-
tures a range of known supervised learning algorithms.
Indeed, several known algorithmic techniques in ma-
chine learning are known to be implementable using
SQs. These include spectral techniques, moment and
tensor methods, local search (e.g., Expectation Maxi-
mization), and many others (see, e.g., (Feldman et al.,
2017a,b)).

We prove a super-polynomial SQ lower bound ruling
out any constant factor approximate learner (see The-
orem 3.3 for a detailed formal statement).

Theorem 1.3 (SQ Lower Bound, Informal version).
Let f : R→ R be any convergent activation and α > 0
be any universal constant. Any SQ algorithm that is an
α-approximate learner for a single neuron defined by f
on Rn with `2-weight O(n) requires either nω(1) many
queries or at least one query with n−ω(1) accuracy.

Computational Hardness. Our SQ lower bound
serves as an inspiration for our second result: a
reduction-based hardness result, ruling out efficient
constant-factor approximations. Our result relies on a
widely believed assumption on the hardness of strongly
refuting random K-XOR formulae. See Assumption
4.3 for the precise statement.

Under this assumption, we establish the following.

Theorem 1.4. Let f : R → R be any convergent ac-
tivation and α > 0 be any universal constant. Un-
der Assumption 4.3, there is no polynomial-time α-
approximate learner for a single neuron defined by f
on Rn with `2-weight poly(n).

We note that under a plausible strengthening of As-
sumption 4.3, we can even rule out (slightly) super-
constant approximation ratios (as a function of the
dimension). See the supplementary material.
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Applebaum et al. (2008) proved several barriers in
proving hardness for improper learning based on
worst-case hardness assumption. For example, NP-
hardness (via Karp reductions) would imply a collapse
of the polynomial hierarchy. As such, for the hardness
results proved in our paper, either average-case hard-
ness assumptions (e.g. Assumption 4.3) or a restric-
tion of the learning algorithms (e.g. the SQ model) is
likely required.

2 PRELIMINARY

Notation. We will use small boldface characters to
denote vectors. For a vector x ∈ Rn and i ∈ [n]

def
=

{1, . . . , n}, xi denotes the i-th coordinate of x. For
r ≥ 1, we will use ‖x‖r for the `r-norm of the vector
x and 〈w,x〉 for the standard inner product between
vectors w,x ∈ Rn.

For a discrete set S, we will use x ∼U S to denote that
x is sampled uniformly at random (u.a.r.) from S. We
define the degree-t Veronese mapping as the function
Vt : Rn → R(n+1)t that takes as input n real values
and outputs all (n+ 1)t monomials of degree at most
t (including the degree-0 constant 1).

Learning a Single Neuron. We focus on Conver-
gent Activation functions (Definition 1.2). Through-
out this paper, we will assume w.l.o.g. that
limu→−∞ f(u) exists, as otherwise one can always
treat −w as w to make limu→−∞ f(u) finite. We will
use flim to denote limu→−∞ f(u) and c+ ∈ R to denote
a fixed value such that f(c+) 6= flim.

Our concept classes of interest are those of single neu-
rons, defined below.

Definition 2.1 (Neuron with Activation Function f).
Let f : R → R. The function class Cf of a single
neuron with activation function f contain all functions
cw : Rn → R of the form cw(x) = f(〈w,x〉).

As specified below, all of our hardness results apply
even when ‖w‖1 ≤ poly(n). This is a regime where
the underlying learning problem can be solved (ineffi-
ciently) using poly(n) samples. Our hardness results
give evidence that no efficient algorithm exists.

Predicates. Our proofs will make essential use of
certain Boolean functions that we define here. We
will use K-XOR: {±1}K → {±1} to denote the parity

function, i.e., K-XOR(x1, · · · , xK) :=
∏K
i=1 xi. Ad-

ditionally, it will be convenient to define a truncated
version of the parity function, denoted by (K, t)-XOR,
which is defined as follows:

(K, t)-XOR(x1, · · · , xK) :=

{
K-XOR(x1, · · · , xK) , if

∑K
j=1 xj ∈ [−2t,+2t]

−1 , otherwise.

We will also need the majority function over a pred-
icate. We define L-MAJP : {±1}LK → {±1} for a
predicate P : {±1}K → {±1} as

L-MAJP (x) := sign

(
L−1∑
i=0

P (xiK+1, · · · , xiK+K)

)
.

Polynomial Approximation. Our reductions and
their analysis will make essential use of the following
polynomial approximation lemma (see supplementary
material for the proof.) For a polynomial p, we write
‖p‖1 to denote the sum of the absolute values of its
coefficients.

Lemma 2.2. Let f : R→ R be a convergent activation
function. Consider a function g : R → {flim, f(c+)}
and a, b ∈ Z with a < b. Then, for any constant ν > 0,
there exist a degree-O(b−a) polynomial p : R→ R such
that

(i) |g(u)− f(p(u))| ≤ ν for u ∈ Z and u ∈ (a, b),

(ii) |flim − f(p(u))| ≤ ν for u 6∈ (a, b), and

(iii) ‖p‖1 ≤ max(|a|, |b|)O(b−a).

3 SQ HARDNESS

3.1 Basics on SQ Algorithms

A Statistical Query (SQ) algorithm has access to the
oracle defined below.

Definition 3.1. Let D be a distribution on labeled
examples supported on X ×R, for some domain X. A
statistical query is a function q : X × R → [−1,+1].
We define STAT to be the oracle that given any
such query q(·, ·) outputs a value v such that |v −
E(x,y)∼Dq[(x, y)]| ≤ τ , where τ > 0 is the tolerance
parameter of the query.

It turns out one can prove unconditional lower bounds
on the complexity of SQ algorithms via an appropri-
ate notion of SQ dimension. A lower bound on the
SQ dimension of a learning problem provides an un-
conditional lower bound on the complexity of any SQ
algorithm for the problem. Interestingly, in our SQ
lower bound construction, we bound the SQ complex-
ity of our problem indirectly, by reducing from a known
problem with a known SQ lower bound.

For our SQ hardness result, we reduce from the well-
known SQ lower bound for learning K-parities, stated
below:
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Fact 3.2 (Kearns 1993). For any constant c ∈ (0, 1)
and K ≤ n1−c, any SQ algorithm that can distinguish
the following two cases of joint distributions (x, y) on
{±1}n × {±1} requires either nΩ(K) many queries or
at least one query with n−Ω(K) accuracy.

• (YES Case) x ∼U {±1}n and y =
K-XOR(xi1 , · · · , xiK ) for some fixed unknown
i1, · · · , iK ∈ [n].

• (NO Case) (x, y) ∼U {±1}n × {±1}.

3.2 Formal Theorem and Proof Overview

With the aforementioned background, we can now for-
mally state the main result of this section.

Theorem 3.3. For any convergent activation func-
tion f : R→ R the following holds: For any universal
constant ζ > 0, any SQ algorithm that can distinguish
between the following two cases of joint distribution
(x, y) on {±1}N × {flim, f(c+)} requires either Nω(1)

queries or at least one query with N−ω(1) accuracy.

• (YES Case) E[(y−f(〈w,x〉))2] ≤ ζ for some w ∈
RN such that ‖w‖1 = O(N).

• (NO Case) y ∼U {flim, f(c+)} independently of
x.

Notice that Theorem 3.3 immediately implies Theo-
rem 1.3, because the NO case of the former clearly
implies that any output hypothesis must incur error
at least (flim − f(c+))2/4.

Proof Overview. Here we provide an intuitive
overview of our SQ lower bound proof. Our proof pro-
ceeds in three steps:

• Truncating XOR. First, observe that
K-XOR(xi1 , · · · , xiK ) is a function of
xi1 + · · · + xiK . When xi1 , · · · , xiK are sampled
i.i.d. from {±1}, the value of xi1 + · · · + xiK
concentrates within [−o(K), o(K)] with high
probability. This allows us to replace K-XOR
with its truncated variant (K, t)-XOR (defined
in Section 2) that evaluates to a constant value
outside of the range [−2t,+2t].

Notice that this step means that in the YES case
we have that y = (K, t)-XOR(xi1 , · · · , xiK ) with
high probability – as opposed to with probability
one. This property – and to a less extent the last
step – is the source of the final adversarial label
noise.

• Polynomial Approximation. Since the
(K, t)-XOR predicate evaluates to a constant

everywhere outside [−2t,+2t], we can replace
(K, t)-XOR with a degree-O(t) polynomial that
coincides with (K, t)-XOR for xi1 + · · ·+ xiK ev-
erywhere.

• From Polynomial to Learning a Neuron.
Viewing a polynomial as a linear function on the
monomials, the hardness result of a polynomial
(after the activation function is applied) can be
transformed to the desired hardness result of neu-
rons. The only tricky part is how to put the
activation function f outside. The idea here is
to change the {±1} labeled classification problem
to a regression problem that only has two differ-
ent real values, namely {flim, f(c+)} for labels.
We can then show if a learner can achieve small
squared error, it can be used to correctly distin-
guish the two cases in the original binary classifi-
cation problem.

In the following subsections, we elaborate on each of
the above steps.

3.3 Step I: Truncating XOR

We start by noting that Fact 3.2 yields a similar SQ
hardness result for the truncated version of XOR. The
only difference is that the YES case only satisfies the
predicate with high probability (instead of with prob-
ability one). Specifically, we have:

Lemma 3.4. For any constant c ∈ (0, 1) and K ≤
n1−c, any SQ algorithm that can distinguish the fol-
lowing two cases of joint distributions (x, y) supported
on {±1}n × {±1} either requires at least nΩ(K) many
queries or at least one query with n−Ω(K) accuracy.

• (YES Case) With probability 1−exp(−Θ(t2/K)),
we have that y = (K, t)-XOR(xi1 , · · · , xiK ) for
some fixed unknown i1, · · · , iK ∈ [n].

• (NO Case) (x, y) ∼U {±1}n × {±1}.

Proof. We claim that the two cases in Fact 3.2 satisfy
the conditions in the corresponding cases here. The
NO case is immediate. As for the YES case, since
xi1 , · · · , xiK are picked independently and uniformly
at random from {±1}, standard concentration inequal-
ities imply that with probability 1 − exp(−Θ(t2/K))
we have that xi1 + · · · + xiK ∈ [−2t,+2t], which
indeed gives that y = (K, t)-XOR(xi1 , · · · , xiK ) =
K-XOR(xi1 , · · · , xiK ). Thus, if any SQ algorithm
solves this (K, t)-XOR problem, then it solves the orig-
inal K-XOR problem.
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3.4 Step II: Polynomial Approximation

Then by approximating (K, t)-XOR functions by poly-
nomials with the activation function outside, we get
the following lemma.

Lemma 3.5. For any convergent activation function
f : R → R the following holds: For any constant
c ∈ (0, 1), t ≤ K ≤ n1−c, and β > 0, any SQ algorithm
that can distinguish the following two cases of joint dis-
tributions (x, y′) supported on {±1}n × {flim, f(c+)}
either requires nΩ(K) many queries or at least one
query with n−Ω(K) accuracy.

• (YES Case) E[(y − f(p(x)))2] ≤ β +
exp(−Θ(t2/K)), where p is a degree-O(t)
and ‖p‖1 = tO(t).

• (NO Case) y ∼U {flim, f(c+)} independently of
x.

Proof. We reduce from the problem in Lemma 3.4
to this problem. Given an instance of the prob-
lem in Lemma 3.4, we replace the labels −1,+1 with
flim, f(c+) respectively.

For the YES case, first observe that (K, t)-XOR is a
function that only depends on the sum of its inputs,
i.e., (K, t)-XOR(xi1 , . . . , xiK ) = q(xi1 + · · · + xiK ),
for some function q. Applying Lemma 2.2 with ν =
min{

√
β, |flim − f(c+)|}, g = q and (a, b) = (−2t −

1, 2t + 1), we obtain a degree-O(t) polynomial p with
‖p‖1 = tO(t) satisfying the properties of the lemma.

To calculate E[(y − f(p(x)))2], we consider two cases
based on whether the original label is equal to (K, t)-
XOR(xi1 , . . . , xiK ) or not. If it is indeed equal, then
Lemma 2.2 ensures that |y−f(p(x))| ≤

√
β, and there-

fore this contributes to at most β. On the other hand,
Lemma 3.4 implies that the unequal case can happen
with probability only exp(−Θ(t2/K)). Our choice of
p also ensures that |y − f(p(x))| ≤ |flim − f(c+)| +
ν ≤ 2|flim − f(c+)|, which is a constant (depend-
ing only on f). Thus, in total, E[(y − f(p(x)))2] ≤
β + exp(−Θ(t2/K)).

For the NO case, since the original labels are from
U({±1}) uniform at random and independent of x,
the new labels are from U({flim, f(c+)}) uniform at
random and independent of x. This completes the
proof.

3.5 Step III: From Polynomial to Learning a
Neuron

We have already established an SQ hardness result
on agnostic learning a polynomial with an activation
function outside. Since a polynomial is linear in the

Veronese mapping of the inputs, the above lemma im-
plies the main theorem of the SQ hardness result on
agnostic learning a single neuron, as formalized below.

Proof for Theorem 3.3. We reduce from Lemma 3.5
with β = ζ/2, K = C log n, where C is a sufficiently
large constant, t = dK3/4e so that the exp(−Θ(t2/K))
term in the YES case is at most β. Our reduction
keeps the label the same while applying the Veronese
mapping of degree-O(t) on the sample x to map it to
x′ ∈ {0, 1}N , where N = nO(t).

The NO case is immediate. The YES case of
Lemma 3.5 together with our choice of parameters im-
plies that E[(f(〈w,x′〉) − y)2] ≤ ζ, where w is the
coefficient vector of p and ‖w‖1 = ‖p‖1 = tO(t) =

logO(t) n ≤ O(nt) ≤ O(N). This completes the
proof.

4 COMPUTATIONAL HARDNESS
FROM REFUTING RANDOM
XORS

In this section, we prove Theorem 1.4. In Section 4.1,
we introduce the required background on the hardness
assumption we rely on. In Section 4.2, we present our
reduction-based hardness result and prove its correct-
ness.

4.1 Additional Background

To describe our hypothesis, we require some termi-
nology. Here we follow the notation used by Daniely
(2016). For a predicate P : {±1}K → {±1}, a P -
clause C consisting of K literals `1, . . . , `K is evaluated
as P (`1, . . . , `K). A P -formula J consists of P -clauses
C1, . . . , Cm over n variables and values v1, . . . , vm ∈
{±1}. Let Valz(J) denote the value of assignment
z : {±1}n, i.e., the fraction of clauses satisfied by
the assignment1, and let Val(J) denote the maxi-
mum value across all assignments, i.e., Val(J) =
maxz:{±1}n Valψ(J). In a random formula, the liter-
als of C1, . . . , Cm are picked independently and uni-
formly at random, i.e., for each clause C consisting of
l1, · · · , lK , each literal is chosen independently u.a.r.
from the set of all literals, and v1, . . . , vm are also
picked independently and u.a.r. from {±1}.

We are now ready to define the relevant decision prob-
lem.

Definition 4.1. For a predicate P , let
CSPrand,1−η

m (P ) be the distinguishing problem

1A clause (Ci, vi) is satisfied iff Ci evaluated on z equals
to vi.
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between the following cases of the input P -formula J
with m clauses.

• (YES Case) Val(J) ≥ 1− η.

• (NO Case) J is a random formula of m P -clauses.

An algorithm is said to solve CSPrand,1−η
m (P ) if in the

YES case (resp. in the NO case), it outputs YES (resp.
NO) with probability at least 3/4.

We use ~0q to denote length-q all-zero vector. Here it is
convenient to use the vector representation for a clause
and an assignment.

Definition 4.2. For a clause C consisting of literals
l1, · · · , lK , let ~C ∈ {−1, 0,+1}Kn be the concatenation
of indicator vectors for literals.

For a given position j ∈ [K], we represent an assign-
ment z ∈ {±1}n by wz

j := ~0n(j−1)z~0n(K−j).

For example, for n = 4, the clause

C(z) = 2-MAJ((3, t)-XOR(z1, z̄3, z2),

(3, t)-XOR(z̄4, z̄1, z3))

has the vector representation

~C = ((1, 0, 0, 0|0, 0,−1, 0|0, 1, 0, 0),

(0, 0, 0,−1| − 1, 0, 0, 0|0, 0, 1, 0)) .

Furthermore, if z = (−1, 1,−1,−1), then we have

wz
2 = ((0, 0, 0, 0| − 1, 1,−1,−1|0, 0, 0, 0)

(0, 0, 0, 0|0, 0, 0, 0|0, 0, 0, 0)) .

An important observation here is that 〈wz
j ,
~C〉 is equal

to the value of the j-th literal of C.

We now describe our computational assumption,
which can be interpreted as noisy versions of Theorem
3.2 generalized to arbitrary (i.e., even non-SQ) algo-
rithms. We remark that we cannot directly use the
noiseless version as a computational hardness assump-
tion; if we take non-SQ algorithms into considerations,
then Gaussian elimination can solve the problem effi-
ciently. This extra noise introduced here ensures that
known algebraic techniques do not work.

Assumption 4.3. There exist constants b > 0
and η ∈ (0, 1/2) such that for any sufficiently

large constant K ∈ N, with m = O(nb
√
K logK),

CSPrand,1−η
m (K−XOR) cannot be solved in poly(n,m)

time.

Assumption 4.3 is widely believed and is the same as
that used by Daniely (2016). The best known efficient
algorithm for CSPrand,1−η

m (K−XOR) requires m ≥

Õ(nK/2) (Allen et al., 2015), and when m < O(nk/2−ε)
it is not efficiently solvable via Sum-of-Square relax-
ations (Schoenebeck, 2008), a strong algorithmic tech-
nique that encompasses various convex relaxations.

The above assumption only enables us to rule out
α · OPT for any constant α. In the supplementary
material, we also prove hardness for super-constant α,
under a stronger (but still plausible) assumption.

4.2 Ruling Out Efficient Constant-Factor
Approximate Learners

Here we give the proof for Theorem 1.4 which rules out
(even non-SQ) O(1)-approximate learners for a single
neuron with a convergent activation function.

Proof Overview. While our high-level approach is
similar to that of the SQ proof from the previous sec-
tion, there are several subtle differences, which we out-
line below.

• Boosting Completeness via Majority. While
in the YES case of SQ there is no noise at all,
our starting assumption (Assumption 4.3) has a
fixed noise rate of η > 0 even in the YES case. If
we apply the reduction directly as before, we will
only be able to rule out α-approximate agnostic
learners for some α > 0. To prove such a hardness
for all constant α > 0, we “boost” the complete-
ness in the YES case by taking the majority of
L clauses, similar to what was done by Daniely
(2016). Essentially, this gives us the hardness of
CSPrand,1−ζ

m (L-MAJ(K,t)-XOR), where ζ > 0 can
now be any positive constant.

• From Clause to Samples & Polynomial Ap-
proximation. So far we have discussed about
CSPs, which are not learning problems yet. To
arrive at a learning problem, we view each clause
(C, v) as a sample, where the sample is its vec-

tor representation ~C (Definition 4.2) and v gets
mapped to a label. Then, we find a polynomial
approximation for the hypothesis (corresponding
to an assignment to CSP). We remark that our
polynomial approximation is very different from
that of Daniely (2016), because halfspaces already
have the sign activation function, which nicely
represents the majority function. In our setting,
we need to come up with a more careful way to
approximately represent a L-MAJ(K,t)-XOR-clause
for any convergent activation function.



Ilias Diakonikolas, Daniel Kane, Pasin Manurangsi, Lisheng Ren

4.2.1 Step I: Boosting Completeness via
Majority

Similar to Daniely (2016), we can prove that
CSPrand,1−ζ

m (L-MAJ(K,t)-XOR) is hard for all ζ > 0. In
fact, we need a slightly stronger condition in the YES
case, namely that the inner (K, t)-XOR-clauses must
have the sum of their literals belonging to [−2t,+2t],
as stated below.

Lemma 4.4. Given Assumption 4.3, there exists a
constant b > 0 such that for arbitrary constant ζ ∈
(0, 1), sufficiently large constant L ∈ N which only
depends on ζ, and sufficient large constant K ∈ N,

with m = O(nb
√
K logK) and t =

√
K log2/3K, if we

are given an input of m (C, y) tuples, where C is a
L-MAJ(K,t)-XOR-clause and y ∈ {±1}, the following
two cases cannot be distinguished in poly(n,m) time:

• (YES Case) There exists an input assignment z ∈
{±1}n such that 1− ζ fraction of the (C, y) tuples
satisfies the following properties.

(i) (C, y) is satisfied by z, and,

(ii) Every (K, t)-XOR clause in C has the sum
of inputs inside the interval [−2t, 2t].

• (NO Case) For each tuple (C, y), C is sampled
u.a.r. from all possible clauses and the label y ∼U
{±1}.

4.2.2 Step II: Polynomial Approximation

Next, we view each C as a vector and use polynomial
approximation to arrive at the following hardness.

Lemma 4.5. Let f be a convergent activation func-
tion. Given Assumption 4.3, there exists a constant
b > 0 such that, for any constants ζ ∈ (0, 1), β > 0,
sufficiently large constant L ∈ N which only depends
on ζ, and sufficient large constant K ∈ N, with m =

O(nb
√
K logK) and t =

√
K log2/3K, if we are given

an input of m (x, y) ∈ {−1, 0,+1}LKn × {flim, f(c+)}
tuples, then the following two cases cannot be distin-
guished in poly(n,m) time:

• (YES Case) There exists a degree-O(t + L) poly-
nomial p satisfying the following properties.

(i) ‖p‖1 ≤ (Kn)Oζ(t), and,

(ii) 1 − ζ fraction of tuples satisfy |f(p(x)) −
y| ≤ β and the remaining ζ fraction satisfies
|f(p(x))− y| ≤ β + |flim − f(c+)|.

• (NO Case) y ∼U {flim, f(c+)} independently of x

Proof. We reduce the problem in Lemma 4.4 to the
problem in Lemma 4.5. Given an instance of the prob-
lem in Lemma 4.4, we change the −1,+1 labels to

flim, f(c+) respectively and rewrite each clause C as

its vector representation ~C on {−1, 0,+1}LKn. Then
the new instance would be of the form

(~C1, y1), (~C2, y2), · · · , (~Cm, ym) .

For the NO case, it is clear that y ∼U {flim, f(c+)}
independently of x. For the YES case, let z be the as-
signment that satisfies the condition in Lemma 4.4.
Note that the value of a clause C evaluated with
L-MAJ(K,t)-XOR predicate is then the following.

C(z) = L-MAJ((K, t)-XOR(〈wz
1, ~C〉, · · · , 〈wz

K , ~C〉),
· · · ,

(K, t)-XOR(· · · , 〈wz
LK ,

~C〉)) .

We select polynomials p1, p2 as follows:

• Recall that (K, t)-XOR can be written as q(s),
where s is the sum of its inputs. Let p1 be a
degree-O(t) polynomial such that p1(u) = q(u) for
all u ∈ {−2t,−2t + 2, . . . , 2t} and p1(u) < −3L
for all u /∈ [−2t,+2t]. Note that such polynomial
p1 exists according to Lemma A.1.

• Let g : Z→ {flim, f(c+)} be such that

g(u) =

{
f(c+) if u ∈ [0, L],

flim otherwise.

We then apply Lemma 2.2 to construct a degree-
O(L) polynomial p2.

From the YES condition in Lemma 4.4, for 1− ζ frac-
tion of clauses (C, v), its i-th (K, t)-XOR-clause C ′i has
its input sum si lie in [−2t,+2t] for all i ∈ [L], and
the clause C itself is satisfied. The condition (ii) means
that p1(si) = C ′i(z) for all i ∈ [L], while the condition
(i) implies that |f(p2(C ′1(z) + · · · + C ′L(z)) − y| < ν,
where y ∈ {flim, f(c+)} is the new label. Combining
these, we have that

|f(p2(p1(s1) + · · ·+ p1(sL)))− y| < ν .

For the remaining ζ fraction of clauses, it is simple to
verify that p1(s1) + · · ·+ p1(sL) is either an integer in
[−2t,+2t] or is less than −L. In both cases, Lemma
2.2 guarantees that

|f(p2(p1(s1) + · · ·+ p1(sL)))− y| < |flim − fc+ |+ ν .

Finally, notice that

p2(p1(s1) + · · ·+ p1(sL))

= p2

 L∑
i=1

p1

 iK∑
j=(i−1)K+1

〈wz
j , ~C〉

 ,
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which can be viewed as a degree-O(t+ L) polynomial

p in ~C because p1 is a degree-O(t) polynomial and p2

is a degree-O(L) polynomial.

Next we will show ‖p‖1 ≤ (Kn)Oζ(t). Note that

〈wz
i ,
~C〉 here has ‖wz

i ‖1 = n for all i. Note that
p1’s degree is O(t) and ‖p1‖1 = tO(t) and is in-
dependent of n. Moreover, p2 only depends on L,
thus p2 only depends on ζ and is fixed with respect
to K and n. Also note that p2’s degree is O(L).

Therefore, ‖p‖1 ≤ ‖p2‖1 ·
(
L · ‖p1‖1 · (Kn)O(t)

)O(L) ≤(
tO(t) · (Kn)O(t)

)O(L) ≤ (Kn)
Oζ(t)

.

4.2.3 Step III: From Polynomial to Learning
a Neuron

The above is a computational hardness result on ag-
nostic learning of a polynomial with an activation
function outside. Since a polynomial is linear in the
Veronese mapping of the inputs, the above lemma im-
plies the main theorem of the computational hardness
result on agnostic learning a single neuron.

Theorem 4.6. Let f be a convergent activation func-
tion. Given Assumption 4.3, for any constant ζ ′ > 0
and m = poly(N), if we are given an input of m
(x, y) ∈ {−1, 0,+1}N × {flim, f(c+)} tuples, then the
following two cases cannot be distinguished in poly(N)
time:

• (YES Case) There exists w such that

(i) ‖w‖1 ≤ NOζ′ (1), and,

(ii) E[(y − f(〈w,x〉))2] ≤ ζ ′.

• (NO Case) y ∼U {flim, f(c+)} independently of
x.

Proof. Suppose we have a poly(N)-time algorithm A
for solving the problem here with m = Nu tuples.

We let ζ = ζ′

2(flim−f(c+))2 and take β to be a suf-

ficiently small constant such that β2 ≤ ζ ′/4 and
(|flim−f(c+)|+β)2

(flim−f(c+))2 ≤ 3/2. Then select L (depending on

ζ) as specified in Lemma 4.5. Let d = O(t + L) =

Oζ′(
√
K log2/3K) be the degree of the polynomial

p in Lemma 4.5, N = (LKn)O(d) be the dimen-
sion after applying degree-d Veronese mapping, and
select K to be a sufficiently large constant so that

nb
√
K logK ≥ Nu.

Given an instance of the problem in Lemma 4.5, we ap-
ply the Veronese mapping of degree-d on x. Note that
A runs in poly(N) time, which is also poly(n) time,
since N = (LKn)O(t+L). Furthermore, our choice of
parameters ensures that there are sufficiently many
samples for A.

We claim that the two cases in Lemma 4.5 satisfy
the conditions in the corresponding cases here. For
both cases, there are at least Nu tuples. The NO
case here is immediate. For the YES case, ‖w‖1 =
‖p‖1 ≤ (Kn)Oζ(t) ≤ (LKn)Oζ(t) ≤ NOζ′ (1), since N =
(LKn)O(t+L). For the expected error, we can write
E[(y−h(x))2] ≤ ζ(|flim−f(c+)|+β)2 +(1−ζ)·β2 ≤ ζ ′
. This completes the proof.

Theorem 1.4 then follows from Theorem 4.6.

Proof of Theorem 1.4. Suppose we have an algorithm
A that is an α-approximate agnostic learner and runs
in time O(N t). Then, we claim that we can solve

the problem in Theorem 4.6 for ζ ′ ≤ (flim−f(c+))2

16α and
m = N t+1. The inputs distribution for A will be the
uniform distribution on the set of m tuples in Theorem

4.6 with ε = (flim−f(c+))2

16 .

In the YES case, w.h.p. A will return a hypothesis of

squared error at most (flim−f(c+))2

8 . In the NO case,
no hypothesis can have a nontrivial advantage over the

constant hypothesis h(x) = flim+f(c+)
2 on the support

it has not seen. Since A can see at most O(N t) samples
among all the N t+1 samples, with sufficiently large
N , A cannot return a hypothesis with error smaller

than (flim−f(c+))2

6 . Thus, A will return a hypothesis

of squared error at least (flim−f(c+))2

6 . Therefore, we
can distinguish the two cases in Theorem 4.6 for ζ ′ ≤
(flim−f(c+))2

16α and m = N t+1 with algorithm A. This
contradicts Assumption 4.3.

5 Conclusions and Further Work

In this paper, we prove that for a single neuron with a
convergent activation function, any algorithm achiev-
ing error α ·OPT (for constant α) must require super-
polynomial running time under a plausible assumption
on an average-case hardness of CSPs. In the supple-
mentary material, we also prove hardness for super-
constant α, under a stronger (but still plausible) as-
sumption. An immediate open question here would
be whether one can prove the stronger result in the
supplementary material under the weaker Assumption
4.3.

Another interesting future direction would be to ex-
pand the understanding to the case where the activa-
tion function is not convergent. In some cases (e.g.
identity activation), the problem is clearly computa-
tionally feasible. Is there a characterization of the ac-
tivation functions for which the learning problem is
hard? And for which values of α do the hardness re-
sults hold?
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Supplementary Material:
Hardness of Learning a Single Neuron

with Adversarial Label Noise

A Proof of Lemma 2.2

Here we give a more general version of Lemma 2.2 which will be useful in proving a stronger hardness of learning
result in the subsequent sections.

Lemma A.1. Let f : R → R be a convergent activation function. We define fgap(c−) = supu≤c− |flim − f(u)|.
Consider a function g : R → {flim, f(c+)} and a, b ∈ Z with a < b. Then, for any c− < c+, there exists a
degree-O(b− a) polynomial p : R→ R such that

(i) |g(u)− f(p(u))| ≤ fgap(c−) for u ∈ Z and u ∈ (a, b),

(ii) |flim − f(p(u))| ≤ fgap(c−) for u 6∈ (a, b), and

(iii) ‖p‖1 ≤ O(c−) ·max(|a|, |b|)O(b−a).

Proof. We may assume without loss of generality that b − a is even (as otherwise, we may consider a − 1, b
instead, where we let g(a− 1) = flim). We will construct a polynomial p such that

1. For u ∈ Z and u ∈ (a, b), p(u) = c+ if g(u) = f(c+) and p(u) = c− if g(u) = flim.

2. For u 6∈ (a, b), p(u) ≤ c−.

One can construct such a polynomial p through the following process:

1. First, for each u ∈ Z and u ∈ (a, b), we construct a polynomial pu that

(a) pu(u) = 1 ,

(b) for v ∈ Z, v ∈ (a, b) and v 6= u, pu(v) = 0 ,

(c) for v 6∈ (a, b), pu(v) ≤ 0 .

To construct pu, we start by taking the Lagrange basis function

qu(v) =
∏

i∈Z,i∈[a,b] and i6=u

v − i
u− i

.

It is not hard to see that this satisfies the first two conditions. Notice also that the degree of qu is b − a
which is even. Now consider the following cases:

• Case I: the leading coefficient of qu is negative. Here we may take pu = qu as it already satisfies the
third condition.

• Case II: the leading coefficient of qu is positive. In this case, we may take pu(v) = qu(v) · (v−a)(b−v)
(u−a)(b−u) .

It is not hard to see that the first two conditions remain true. Furthermore, the degree of pu remains
even and its leading coefficient is now negative, which implies the third condition.

Thus, in both cases, we have constructed the desired pu and its degree is at most b− a+ 2.

2. We define the polynomial p′ as follows

p′(v) =
∑

u∈Z,u∈(a,b) and g(u)=f(c+)

pu(v) .
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3. Finally, we construct our desired polynomial p as p(v) = (c+ − c−) · p′(v) + c−.

Then observe that such a polynomial p satisfies properties (i) and (ii). Also notice that ‖pu‖1 = max(|a|, |b|)O(b−a)

for all u, thus, ‖p‖1 = O(c−) ·max(|a|, |b|)O(b−a).

By the definition of f , fgap must be a monotone nondecreasing function and limu→−∞ fgap(u) = 0. Therefore,
taking c− to be a sufficiently small universal constant such that fgap(c−) ≤ ν, Lemma A.1 yields Lemma 2.2.

B Proof of Lemma 4.4

To prove Lemma 4.4, firstly, we use the concentration property of the sum of inputs to get the following lemma.

Lemma B.1. Given Assumption 4.3, there exist constants b > 0 and η ∈ (0, 1/2) such that for any sufficiently

large constant K ∈ N, with m = O(nb
√
K logK), if we are given an input of m (C, 1) tuples where C is a

(K, t)-XOR clause, then the following two cases cannot be distinguished in poly(n,m) time:

• (YES Case) There exists an input assignment z ∈ {±1}n such that 1− η − exp(−Ω(t2/K)) fraction of the
(C, 1) tuples satisfies the following properties.

(i) (C, 1) is satisfied by z, and,

(ii) The (K, t)-XOR clause C has the sum of inputs inside the interval [−2t+ 2, 2t− 2].

• (NO Case) For each tuple (C, 1), C is sampled u.a.r. from all possible clauses.

Proof. We reduce the problem in Assumption 4.3 to the problem above. Given an instance of the problem in
Assumption 4.3 as a sequence of tuples

((C1, y1), · · · , (Cm, ym)) .

For each tuple (C, y), we randomly negate every literal in the clause C with probability 1/2 independently. Then
we negate y if we had negated an odd number of literals in C, and leave y unchanged otherwise. If this process
ends up with y = −1, we negate the first literal again and change y to +1. This gives a new sequence of tuples
as an instance for the problem here

((C ′1, 1), · · · , (C ′m, 1)) .

We claim if the original instance is a YES instance (resp. a NO instance), then this new instance is also in
the YES case (resp. the NO case). The argument for the NO case here is immediate. For the YES case, there
is a value assignment z that makes 1 − η fraction of constraints satisfied with the K-XOR predicate. Since
we flipped both the clauses and the labels accordingly, z still makes 1 − η fraction of constraints satisfied with
the K-XOR predicate in the new instance. For each clause C ′ = (l1, · · · , lK), li ∼U {±1} for all i 6= 1, thus,
Pr [l1 + · · ·+ lk 6∈ [−2t+ 2, 2t− 2]] = exp(−Ω(t2/K)). Noting that l1 + · · ·+ lk ∈ [−2t+ 2, 2t− 2] implies that
k−XOR(l1, · · · , lK) = (k, t)−XOR(l1, · · · , lK). Therefore, z makes 1−η−exp(−Ω(t2/K)) fraction of constraints
satisfied with (K, t)-XOR predicate in the new instance.

Proof of Lemma 4.4. We reduce the problem in Lemma B.1 to the problem in Lemma 4.4. Given an instance of
the problem in Lemma B.1 is

((C1, 1), · · · , (Cm, 1)) .

We first randomly permute the sequence so the clauses that cannot be satisfied will be randomly distributed.
Then we divide them to buckets so there are L clauses in each bucket and treat each bucket as an L-MAJ(k,t)-XOR

clause.

(((C1, · · · , CL), 1), · · · , ((· · · , Cm), 1)) . (1)

Then for each ((C1, · · · , CL), 1) tuple, with 1/2 probability we negate the label and negate the first literal of
each C. With the remaining 1/2 probability, we leave the tuple unchanged. This gives a new instance for the
problem in Lemma 4.4 as

(((C ′1, · · · , C ′L), y1), · · · , ((· · · , C ′m), ym′)) . (2)
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We claim if the original instance is in the YES case (resp. the NO case), then this new instance is in the YES
case (resp. is the NO case). The NO case here is immediate. For the YES case, there is a value assignment z
that makes 1− η − exp(−Ω(t2/K)) fraction of the K-XOR clauses satisfying the following properties.

(i) (C, 1) is satisfied by z, and,

(ii) The (K, t)-XOR clause C has the sum of its inputs inside the interval [−2t+ 2, 2t− 2].

With t =
√
K log2/3K and a sufficient large constant K, η + exp(−Ω(t2/K)) is at most a constant in (0, 1/2).

Then, using the Chernoff bound, one can show that the same z makes 1− ζ fraction of L-MAJ(k,t)-XOR clauses
in (1) satisfied for arbitrary small constant ζ ∈ (0, 1) with L being a sufficiently large constant depending on ζ.
Consider we flipped both the clauses and labels accordingly in (1) and for each K-XOR clause, we changed at
most one literal. Thus, z makes 1− ζ fraction of L-MAJ(k,t)-XOR clauses in (2) satisfy the following properties.

(i) ((C ′1, · · · , C ′L), y) is satisfied by z, and,

(ii) Every (K, t)-XOR clause C ′ has the sum of inputs inside the interval [−2t, 2t].

C Larger Inapproximability Ratio under Stronger Assumption

In this section, we prove a stronger (super constant) inapproximability ratio under a stronger computational
hardness assumption. Our improved result applies to convergent activation functions that converge “sufficiently
quickly”. To formalize this notion, we introduce the definition of fast convergent Convergent Activation function:

Definition C.1 (Fast Convergent Activation Functions). Let f be a Convergent Activation function. Without
loss of generality, assume that limu→−∞ f(u) exists. We say that f is fast convergent if there exist a constant
c < 0 such that for u < c we have that |flim−f(u)| ≤ (−u)−Ω(1). We also define fgap(c−) = supu≤c− |flim−f(u)|.
Note from the definition of f , for u < c, we have that fgap(u) = (−u)−Ω(1).

It is easy to see that most of the commonly used activations such as the Logistic, Sigmoid, Tanh, ReLU, ELU,
Swish, and Mish satisfy the condition above.

Remark C.2. We note our results also hold under a weaker convergence speed. Specifically, we only need that
there exists a constant c < 0 such that for u < c it holds that |flim − f(u)| = exp(−Ω(log1/2(−u))).

C.1 SQ Hardness

We formally state the main theorem of this section here.

Theorem C.3. For any fast convergent Convergent Activation function f : R→ R the following holds: For any
constant ν ∈ (0, 1/2), any SQ algorithm that can distinguish between the following two cases of joint distribution
(x, y) on {±1}N × {flim, f(c+)} requires either Nω(1) queries or at least one query with N−ω(1) accuracy.

• (YES Case) E[(y − f(〈w,x〉))2] = exp(−Ω(logν N)) for some w ∈ RN such that ‖w‖1 = O(N).

• (NO Case) y ∼U {flim, f(c+)} independently of x.

Proof Overview. To prove our theorem, we will follow the approach of Step II and Step III in Section 3,
using Lemma A.1 and Definition C.1 instead.

C.1.1 Step II: Polynomial Approximation

Lemma C.4. For any fast convergent activation function f : R → R the following holds: For any constant
c ∈ (0, 1), t ≤ K ≤ n1−c and c− : N→ (−∞, c+), any SQ algorithm that can distinguish the following two cases
of joint distributions (x, y) supported on {±1}n × {flim, f(c+)} either requires nΩ(K) many queries or at least
one query with n−Ω(K) accuracy.

• (YES Case) E[(y − f(p(x)))2] ≤ f2
gap(c−(n)) + O(fgap(c−(n))) + exp(−Ω(t2/K)), where p is a degree-O(t)

and ‖p‖1 = O(c−(n)) · tO(t).
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• (NO Case) y ∼U {flim, f(c+)} independently of x.

Proof. We reduce from the problem in Lemma 3.4 to this problem using the same methods as in the proof of
Lemma 3.5. The only difference here is that we apply Lemma A.1 instead of Lemma 2.2.

C.1.2 Step III: From Polynomial to Learning a Neuron

Considering a polynomial is linear in the Veronese mapping of the inputs, we have Theorem C.3.

Proof of Theorem C.3. We reduce from Lemma C.4 by applying the Veronese mapping of degree-O(t) on the
sample x to map it to x′ ∈ {0, 1}N , where N = nO(t). The labels are kept the same. Our choice of parameter
is K = log n, t = logb n so that the exp(−Ω(t2/K)) term in the YES case is at most exp(−Ω(logν N)), i.e.,
2b−1
b+1 ≥ ν. We let c−(n) = −N1/2 so that the f2

gap(c−(n)) term and O(fgap(c−(n))) term in the YES case is at

most N−Ω(1).

The NO case is immediate. The YES case of Lemma 3.5 together with our choice of parameters implies that
E[(f(〈w,x′〉)− y)2] = exp(−Ω(logν N)), where w is the coefficient vector of p and ‖w‖1 = ‖p‖1 = N1/2tO(t) =

N1/2logO(t) n = O(N1/2nt/2) = O(N). This completes the proof.

C.2 Computational Hardness

In this section, we prove a computational hardness result with a larger (super-constant) inapproximability ratio
by introducing a stronger assumption.

Assumption C.5. There exists a constant b > 0 such that, for η = 2− log0.5 n and K = log n, with m = nbK ,
CSPrand,1−η

m (K−XOR) cannot be solved in poly(n,m) time.

Then we formally state the main theorem of this section.

Theorem C.6. Let f : R → R be any fast convergent activation function and α = exp(O(logν
′
n)), where

ν′ ∈ (0, 1/2) is an universal constant. Under Assumption C.5, there is no polynomial-time α-approximate
learner for a single neuron defined by f on Rn with `2-weight poly(n).

Proof Overview. To prove the theorem, we will follow the template of Step II and Step III in Section 4 using
Lemma A.1, Definition C.1 and Assumption C.5 instead. Note that Step I can be skipped, as we do not need to
boost the completeness here.

C.2.1 Step II: Polynomial Approximation

First, we need to truncate the K-XOR functions as (K, t)-XOR functions in order to approximate them with a
polynomial.

Lemma C.7. Given Assumption C.5, there exists a constant b > 0 such that for η = 2− log0.5 n and 0 < t <
K = log n, with m = nbK , if we are given an input of m (C, y) tuples where C is a (K, t)-XOR clause, then the
following two cases cannot be distinguished in poly(n,m) time:

• (YES Case) There exists an input assignment z ∈ {±1}n such that 1− η − exp(−Ω(t2/K)) fraction of the
(C, y) tuples satisfies the following properties.

(i) (C, y) is satisfied by z, and,

(ii) The (K, t)-XOR clause C has the sum of inputs inside the interval [−2t, 2t].

• (NO Case) For each tuple (C, y), C is sampled u.a.r. from all possible clauses and the label y ∼U {±1}.

Proof. We reduce from the problem in Assumption C.5. Given an instance of the problem in Assumption C.5
as a sequence of tuples

((C1, y1), · · · , (Cm, ym)) .
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For each tuple (C, y), we randomly negate every literal in the clause C with probability 1/2 independently. Then
we negate y if we had negated an odd number of literals in C, and leave y unchanged otherwise. This gives a
new sequence of tuples as an instance for the problem here

((C ′1, y
′
1), · · · , (C ′m, y′m)) .

We claim if the original instance is in the YES case (resp. the NO case), then this new instance is in the YES
case (resp. the NO case). The NO case here is immediate. For the YES case, there is a value assignment z that
makes 1 − η fraction of constraints satisfied with K-XOR predicate. Since we flipped both the clauses and the
labels accordingly, z still makes 1−η fraction of constraints satisfied with K-XOR predicate in the new instance.
For each clause C ′ = (l1, · · · , lK), li ∼U {±1} for all i, thus, Pr [l1 + · · ·+ lk 6∈ [−2t, 2t]] = exp(−Ω(t2/K)).
Noting that l1 + · · · + lk ∈ [−2t, 2t] implies k−XOR(l1, · · · , lK) = (k, t)−XOR(l1, · · · , lK). Therefore, z makes
1− η − exp(−Ω(t2/K)) fraction of constraints satisfied with (K, t)-XOR predicate in the new instance.

Then we approximate the (K, t)-XOR functions with polynomials.

Lemma C.8. Let f be a fast convergent activation function. Given Assumption C.5, there exists a constant
b > 0 such that, for η = 2− log0.5 n, 0 < t < K = log n and c− : N→ (−∞, c+), with m = O(nbK), if we are given
an input of m (x, y) ∈ {−1, 0,+1}Kn×{flim, f(c+)} tuples, then the following two cases cannot be distinguished
in poly(n,m) time:

• (YES Case) There exists a degree-O(t) polynomial p satisfying the following properties.

(i) ‖p‖1 ≤ O(c−(n)) · (Kn)O(t), and,

(ii) 1 − η − exp(−Ω(t2/K)) fraction of tuples satisfy |f(p(x)) − y| ≤ fgap(c−(n)) and the remaining η +
exp(−Ω(t2/K)) fraction satisfies |f(p(x))− y| ≤ fgap(c−(n)) + |flim − f(c+)|.

• (NO Case) y ∼U {flim, f(c+)} independently of x.

Proof. We reduce from the problem in Lemma C.7. The proof is the same as the proof of 4.5. The only
difference is that we uses Lemma A.1 to approximate (K, t)-XOR instead of using Lemma 2.2 to approximate
L-MAJ(K,t)-XOR.

C.2.2 Step III: From Polynomial to Learning a Neuron

Considering a polynomial is linear in the Veronese mapping of the inputs, we have Theorem C.9.

Theorem C.9. Let f be a fast convergent activation function. Given Assumption C.5, there exists a constant
ν ∈ (0, 1/2) such that if we are given an input of poly(N) (x, y) ∈ {−1, 0,+1}N × {flim, f(c+)} tuples, then the
following two cases cannot be distinguished in poly(N) time:

• (YES Case) There exists w such that

(i) ‖w‖1 ≤ NO(1), and,

(ii) E[(y − f(〈w,x〉))2] ≤ exp(−Ω(logν n)).

• (NO Case) y ∼U {flim, f(c+)} independently of x.

Proof. We reduce from the problem in Lemma C.8. Suppose we have a poly(N)-time algorithm A for solving
the problem in Theorem C.9 with m = Nu tuples. Let d = O(t) be p’s degree in Lemma C.8 and N = (Kn)O(d)

be the dimension after applying degree-d Veronese mapping. We let c−(n) = −N and t = logb n in Lemma C.8
and select universal constant b such that b < 1 and exp(−Ω(t2/K)) = exp(−Ω(logν n)), i.e., 2b−1

b+1 > ν.

Given an instance of the problem in Lemma C.8, we apply the Veronese mapping of degree-d on x. Note that A
runs in poly(N) = poly((Kn)t) = poly(nbK) = poly(m) time. Furthermore, there arem = nbK = N bK/t = Nω(1)

many samples which are sufficient for A.

We claim that the two cases in Lemma C.8 satisfy the conditions in the corresponding cases here. For both
cases, there are at least Nu tuples. The NO case here is immediate. For the YES case, ‖w‖1 = ‖p‖1 ≤
O(c−(n)) · (Kn)O(t) ≤ O(N) · (Kn)O(t) ≤ NO(1), since N = (Kn)O(t). For the expected error, we can write
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E[(y − h(x))2] = (η + exp(−Ω(t2/K))) · (|flim − f(c+)|+ fgap(−N))2 + (1− η − exp(−Ω(t2/K))) · f2
gap(−N) ≤

exp(−Ω(logν N)). This completes the proof.

Theorem C.6 then follows from Theorem C.9.

Proof of Theorem C.6. Suppose we have an algorithm A that is an α-approximate agnostic learner and runs in
time O(N t). Then, we claim that we can solve the problem in Theorem C.9 for ν > ν′ and m = N t+1. The inputs

distribution for A will be the uniform distribution on the set of m tuples in Theorem C.9 with ε = (flim−f(c+))2

16 .

In the YES case, w.h.p. A will return a hypothesis of squared error at most α·exp(−Ω(logν N))+ε ≤ (flim−f(c+))2

8
for N greater than a sufficiently large constant. In the NO case, no hypothesis can have a nontrivial advantage

over the constant hypothesis h(x) = flim+f(c+)
2 on the support it has not seen. Since A can see at most O(N t)

samples among all the N t+1 samples, with sufficiently large N , A cannot return a hypothesis with error smaller

than (flim−f(c+))2

6 . Thus, A will return a hypothesis of squared error at least (flim−f(c+))2

6 . Therefore, we can
distinguish the two cases in Theorem C.9 for ν > ν′ and m = N t+1 with algorithm A. This contradicts
Assumption C.5.
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