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Abstract

Tractable models such as cutset networks and
sum-product networks (SPNs) have become
increasingly popular because they have supe-
rior predictive performance. Among them,
cutset networks, which model the mechan-
ics of Pearl’s cutset conditioning algorithm,
demonstrate great scalability and prediction
accuracy. Existing research on cutset net-
works has mainly focused on discrete domains,
and the best mechanism to extend cutset net-
works to continuous domains is unclear. We
propose one possible alternative to cutset net-
works that models the full joint distribution
as the product of a local, complex distribution
over a small subset of variables and a fully
tractable conditional distribution whose pa-
rameters are controlled using a neural network.
This model admits exact inference when all
variables in the local distribution are observed,
and although the model is not fully tractable
in general, we show that “cutset” sampling
can be employed to efficiently generate accu-
rate predictions in practice. We show that our
model performs comparably or better than
existing competitors through a variety of pre-
diction tasks on real datasets.

1 INTRODUCTION

Tractable probabilistic models such as cutset networks
(Rahman et al., 2014), sum-product networks (Poon
and Domingos, 2011), arithmetic circuits (Darwiche,
2003), and probabilistic sentential decision diagrams
(Kisa et al., 2014) have gained popularity in recent
years, primarily because of their ability to accurately an-
swer various reasoning queries in linear time in the size
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of the model while maintaining other desirable proper-
ties such as high expressivity and flexibility. However,
to date, with a few exceptions (Poon and Domingos,
2011; Molina et al., 2018; Uria et al., 2013), a majority
of work on learning tractable models has focused on
discrete random variables. This is primarily due to
the fact that, unlike discrete domains, guaranteeing
tractability of models in continuous domains while also
maintaining their high expressivity and flexibility is
very challenging.

Existing tractable models for continuous variables op-
erate under the assumption that the underlying data
can be modeled using a mixture of parametric (e.g.,
Gaussian) or non-parametric probability distributions.
For instance, sum-product networks (SPNs) (Poon and
Domingos, 2011) and mixed-SPNs (Molina et al., 2018)
use latent discrete (variable) architectures distributed
over sum and product nodes via the distributive law
to efficiently represent a Gaussian and non-parametric
mixture respectively. Our goal in this paper is to move
beyond sum-product mixtures and develop a modeling
framework for continuous domains that can effectively
handle non-linear dependencies and still admit efficient
inference schemes.

To this end, we propose a novel tractable model for
continuous domains motivated by cutset networks
(CNs) (Rahman et al., 2014). CNs and their sub-
sequent extensions (Rahman and Gogate, 2016; Roy
et al., 2021) make use of cutset conditioning (Pearl,
1988): select a set of variables to condition on (namely
cutset variables), such that the distribution over
the remaining variables (leaf variables) can be well-
represented by tractable, tree-structured Bayesian net-
works (BNs) (Chow and Liu, 1968). Cutset networks
are expressive and have shown great scalability and pre-
dictive accuracy in high-dimensional discrete domains.
A natural extension of cutset networks to continuous
domains is to condition each cutset variable over a
finite number of ranges, similar to decision tree regres-
sors, and then model the leaf distributions using condi-
tional linear Gaussian (CLGs) Bayesian networks (Grze-
gorczyk, 2010). Although simple and appealing, the
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number of cutset variables should be small enough to
guarantee tractability but large enough not to incur
a significant loss in expressive power. Further, while
cutset networks condition on all possible values of a dis-
crete variable, in the continuous case, conditioning will
correspond to partitioning the space into rectangular
blocks (hyper cubes) – the leaves are then distributions
over rectangular regions, which is not natural in many
practical applications.

To overcome these limitations of cutset networks in
continuous domains, and motivated by the work of
Rahman et al. (2019) on cutset Bayesian networks, we
propose to model the joint distribution as a product of
two distributions: (1) a local, complex unconditional
distribution defined over a small subset of variables
X and (2) a fully tractable conditional distribution
defined over the remaining variables Y whose param-
eters are controlled by a neural network. Like cutset
Bayesian networks, this model admits exact inference
when all variables in the set X are observed, and al-
though the model is not fully tractable, we show that
“cutset” sampling can be employed to efficiently gener-
ate accurate predictions in practice. We demonstrate
the competitive performance of our approach against
two well-known models in the literature: SPNs (Poon
and Domingos, 2011; Molina et al., 2018), which use
latent discrete sum-product architectures and RNADE
(Uria et al., 2016), which uses neural density estimators,
using two sets of prediction tasks on real datasets.

To summarize our contributions, we present (1) a novel
continuous tractable architecture, inspired by cutset
networks, (2) a novel neural network architecture for
choosing the parameters of Gaussian Bayesian Network,
(3) and an extensive study to evaluate the performance
of our model, SPNs, and RNADE through various
prediction tasks on real datasets.

2 RELATED WORK

There is a large body of work on modeling large, con-
tinuous multi-variate distributions using parametric,
semi-parametric, and non-parametric representations;
see e.g., (Lauritzen and Wermuth, 1989; Hofmann and
Tresp, 1996; Monti and Cooper, 1998; Lauritzen, 1996).
More recently, there has been growing interest in learn-
ing tractable continuous models using the sum-product
network framework (Poon and Domingos, 2011; Molina
et al., 2018; Darwiche, 2003). These models can com-
pactly represent sophisticated mixtures of parametric or
non-parametric distributions using a DAG. Moreover,
one can solve many standard inference tasks such as
posterior marginal inference in time that scales linearly
with the size of the DAG.

Another popular approach is to employ neural models

to build density estimators (Monti and Cooper, 1998;
Uria et al., 2013, 2016; Papamakarios et al., 2017; Ger-
main et al., 2015). Although, these models yield good
test set loglikelihood scores, they typically have poor
prediction accuracy because probabilistic inference over
them is intractable.

In this work, we aim to develop a novel modeling frame-
work for continuous domains which enables the user to
learn models that are intractable in general but admit
efficient cutset-based inference algorithms (Bidyuk and
Dechter, 2007). We employ neural networks for com-
puting the parameters of our proposed model similar
to Jordan and Jacobs (1994); Shao et al. (2020) and
Thoma et al. (2021). However, unlike these previous
works, which learn discriminative models, we learn gen-
erative models. Moreover, we use a different template
distribution for the underlying model and develop a
novel neural network architecture for predicting the
parameters of the model.

3 CONDITIONALLY TRACTABLE
DENSITY ESTIMATION

In this section, we describe our approach for building
tractable models in continuous domains. Note that we
use bold uppercase letters for a set of random variables,
e.g., X, while a single random variable is denoted using
uppercase letters, e.g., A. The instantiations (configu-
rations) of random variables are denoted as lowercase
letters. For example, x is one possible configuration
for all variables in X and a is a possible value that
the random variable A can take. All random variables
considered in this paper are assumed to be defined over
the real domain R unless otherwise noted.

3.1 Our Proposed Generative Model

Motivated by cutset Bayesian networks (Rahman et al.,
2019), we model the full joint distribution over a set
of random variables Z as the product of two parts: a
complex local distribution p(X) over a small subset
of variables X ⊂ Z and a fully tractable conditional
distribution p(Y |X) over Y = Z\X. Technically, we
can use any complex, parametric or non-parametric dis-
tribution to represent p(X); the only constraint is that
the distribution should be easy to sample from (since
we will use cutset sampling (Gogate and Dechter, 2005;
Bidyuk and Dechter, 2007; Gogate, 2009) for infer-
ence). For simplicity, we use a mixture of multivariate
Gaussian (MixMG) distribution to model p(X).

We propose to use a templated Gaussian Bayesian Net-
work (GBN) to model the distribution p(Y |X) such
that we obtain a multi-variate Gaussian density over
Y for each assignment X = x. The parameters of
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the templated GBN are given by a neural network
(NN) that takes an assignment x as input and out-
puts a GBN over Y , i.e., p(Y |x) ∼ GBN(Y ; θ) where
θ = NN(x).1 The NN models non-linear dependence
between X and Y and yields a potentially infinite
Gaussian mixture model over Z.2

Note that any GBN can be converted into an equiva-
lent Multivariate Gaussian (MG) distribution with full
covariance matrix (Koller and Friedman, 2009). There-
fore, the conditional distribution p(Y |X = x) is fully
tractable, which means our model admits tractable
inference when all variables in the local distribution
p(X) are observed. When X is not fully observed,
cutset sampling can be employed to efficiently generate
accurate predictions in practice.

In the following sections, we will first introduce the
detailed architecture of our model, this includes the
architecture of the NN, as well as how we select the con-
ditional variables X from Z, and then we will discuss
learning and inference algorithms.

3.2 Design of Parameter Generation Neural
Network

In this work, we propose a neural network architecture
that we dub parameter generation neural networks
(PGNNs) that can be used to generate the parameters
for other models (specifically GBNs).

The input to the PGNN is an assignment x to all vari-
ables in the set X and the output is a set of parameters
for a GBN. We assume that we are given the directed
acyclic graph G associated with the GBN. Namely we
assume that each (conditional) GBN has the same struc-
ture but different parameters which are controlled by a
neural network. More formally, let Y = {Y1, . . . , Ym}
and let Si ⊆ Y be the parents of Yi in G. Then, the
conditional linear Gaussian distribution at each node
Yi is given by

p(Yi|Si = si) ∼ N(Yi;µi = wT
i si + bi, σ

2
i ),

where the mean µi of the normal distribution over Yi is
a linear function of its parent variables Si controlled by
the weight vector wi as well as a bias term bi and the
conditional standard deviation is denoted as σi, which
must be greater than zero. Thus, given x, the PGNN
outputs a triple (wi, bi, σi) for each variable Yi. Our
proposed PGNN architecture is shown in Fig. 1. It is
composed of a series of building blocks that are used
to extract a shared feature vector stage by stage and

1Any regression method can be used instead of the NN.
2If we use linear regression, our model yields a multi-

variate Gaussian density over Z. However, when we use non-
linear regression, we obtain a potentially infinite mixture
of Gaussians.
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Figure 1: Structure of Parameter Generation Neural
Network (PGNN), n is the size of input vector, k is
the size of extracted shared feature vector, r > 1 is the
compress ratio and s controls number of stages.

a collection of headers that are used to compute the
parameters based on the shared feature vector. The
architecture consists of a basic building block (BBlock)
that is used to extract non-linear features. It consists
of three layers: (1) a (fully connected) linear layer that
produces linear features, (2) a one-dimension batch
normal layer, and (3) finally a ReLU layer for non-
linearity. The Header block consists of a BBlock used
to refine the shared features and a linear layer that is
used to compute the parameters. Given a input vector
of size n, we first stack s+ 1 building blocks to extract
a feature vector of size k that is shared by all headers.
The first building block creates a large and expressive
feature vector of size k ·rs, and the following s building
blocks compress the large vector stage by stage until
we reach a feature vector with size k. The size of the
feature vector is reduced by a factor of r each time it
passes through a building block.

Once the shared feature vector is built, the individual
headers (output layers) generate the parameters for
the underlying model. Note that we do not use a
single header for all parameters to encourage diversity
among the different types of generated parameters.
Similarly, the model does not include a header for each
parameter as, due to the large number of parameters,
the computation complexity can be prohibitive and
this could lead to overfitting. The compromise, which
we adopt here, is to use multiple smaller headers, one
for each group of parameters.

Specifically, we first create a parameter group {σi|i =
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1, . . . ,m} and use a single header to predict all standard
deviations. Then, we do the same for all bias terms
{bi|i = 1, . . . ,m}. And finally, we construct one header
for each of the weight vectors wi with size equal to
ni = |Si|. When Yi has no parents, we simply remove
the corresponding header. Note that the output of the
σ header is clipped to a predefined threshold t > 0 in
order to guarantee validity of σ as well as to ensure
numerical stability.

3.3 Variable Selection

Clearly, the performance of our model is highly depen-
dent on the selection of the conditional variables, X,
and the number of mixture components used in p(X).
In order to circumvent overfitting and underfitting, we
use a validation set to determine |X| (size of X) and
the number of mixture components (namely, we treat
them as hyper-parameters).

Once the size of X, denoted by k is determined, we
employ the following heuristic method to select the
k conditional variables. We first use Principal Com-
ponents Analysis (PCA) to analyze the amount of
variance explained by each variable and use it to rank
variables from highest to lowest. Intuitively, the more
variance a feature explains, the more informative it is.
Therefore, we simply choose the first k variables to be
the conditional variables X. We also experimented
with other variable selection heuristics that rank vari-
ables based on their pairwise mutual information score,
variance, etc. We found experimentally that on average,
the PCA based method is superior to other methods.
All experimental results reported in this paper use the
PCA based method for selecting X.

3.4 Inference

The main prediction task in our model is computing
the most likely assignment to a subset of (query) vari-
ables given observations on another disjoint subset of
variables (evidence). Next, we describe algorithms for
solving this prediction task, which is called marginal
max-a-posteriori (MMAP) inference. A special case
of MMAP inference is MAP inference in which all un-
observed variables are query variables. This (MMAP)
prediction task frequently arises in structured predic-
tion where the model has hidden variables whose pre-
dictions are not required at test time but data over
these hidden variables is available at training time.

Formally, given evidence Ze = ze, query variables
Zq and missing variables Zm, MMAP inference aims
to find the best assignment z∗

q such that p(zq|ze) =∫
zm

p(zq, zm|ze)dzm is maximized. Because our model
partitions the variables into two sets X and Y , we
denote the query, missing, and evidence variables from

the local distribution as Xq, Xm, and Xe and those
in the conditional part as Yq, Ym, and Ye respectively.
The inference task can be formulated as finding x∗

q and
y∗
q such that

x∗
q ,y

∗
q ∈ argmax

xq,yq

∫
xm

∫
ym

p(xq,m,yq,m|xe,ye)dymdxm

= argmax
xq,yq

∫
xm

∫
ym

p(xq,m,e,yq,m,e)dymdxm

= argmax
xq,yq

∫
xm

∫
ym

pX(xq,m,e)pY (yq,m,e|xq,m,e)dymdxm

= argmax
xq,yq

∫
xm

pX(xq,m,e)p
′
Y (yq,e|xq,m,e)dxm,

where p′Y is the marginal distribution obtained by
integrating out Ym from pY and xq,m denotes the
composition of xq and xm. The difficulty of the above
MMAP problem depends on whether the sets Xq and
Xm are empty or not.

Case 1: All variables in X are observed. This means
Xq,Xm = ∅, and the distribution over the remaining
variables Y is a GBN with parameters θ = NN(x). In
this case, we can do exact MMAP inference by convert-
ing the GBN into a multivariate Gaussian distribution.

Case 2: Xq ≠ ∅ while Xm = ∅. In this case, since
the joint distribution is not tractable, strategy simi-
lar to cutset sampling can be employed to efficiently
answer the above query. Compared to standard sam-
pling techniques that sample all the variables, cutset
sampling only samples a subset of variables X and
does exact inference over the remaining variables Y ,
which makes the inference more accurate (Gogate and
Dechter, 2005; Bidyuk and Dechter, 2007). In our

case, we first generate n samples x
(1)
q , . . . ,x

(n)
q for Xq

from the distribution pX given evidence xe. After

that, for each x
(i)
q , we do exact MMAP inference on

p′Y to find the best assignment y
(i)
q for Yq such that

p′Y (y
(i)
q ,ye|x(i)

q ,xe) is maximized. Finally, we evaluate

the joint density for each pair (x
(i)
q ,y

(i)
q ) along with

the evidence and treat the one with maximum density
as the MMAP result. Note that the size of X is usually
small in our case. Therefore, the number of variables
being sampled is small, which enables the cutset sam-
pling inference to generate high quality approximations
in practice.

Case 3: There are missing variables in X, which
means Xm ̸= ∅. In this case, we treat those missing
variables as part of the query variables and use the
cutset sampling method described in Case 2 to find
best assignment x∗

q,m for both Xq and Xm. Then we
simply discard x∗

m and return x∗
q as the MMAP result
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for Xq. This is a popular method in practice used for
approximating MMAP by using the partial assignment
from the MAP results (Liu and Ihler, 2013; Poon and
Domingos, 2011).

3.5 Learning

Given a dataset D defined over variables Z, our learn-
ing algorithm works as follows. First, we use our vari-
able selection method to select a small subset of vari-
ables X ⊂ Z as the conditional variables. Then, we
learn a mixture of multivariate Gaussian (MixMG)
over X using the expectation maximization algorithm,
where the number of components is automatically de-
termined by tuning on the validation set. After that,
we build an undirected complete graph G over all vari-
ables in Y = Z\X and remove the edge between Yi

and Yj if the Pearson correlation between them is less
than 0.05. We use a random ordering of Y variables
to convert G into a directed acyclic graph, which gives
us the structure of template GBN. Finally, we train a
PGNN for generating the parameters of the GBN using
the negative log-likelihood of D as the loss function.

4 EXPERIMENTS

We conducted two different sets of experiments to
systematically evaluate our model’s performance on
prediction tasks. In the first set of the experiments,
we evaluate our model’s MAP prediction performance
through various image completion tasks on the MNIST
dataset (LeCun et al., 1998). For the second set of
experiments, we perform a comprehensive simulated
prediction task on ten real UCI datasets (Dua and
Graff, 2017) to evaluate our model’s MMAP prediction
performance in the case of missing data.

Three competitors are considered in our experiments.

Multivariate Gaussians (MGs) with full covariance
matrix. This is considered as a baseline model.

Real-valued Neural Autoregressive Density Es-
timators (RNADEs) (Uria et al., 2013, 2016)
are equivalent to a fully connected Bayesian Network
where each of the conditional distributions that de-
fine the model are given by a mixture of multivariate
Gaussians whose parameters are controlled by neural
networks. We developed an approximate MMAP infer-
ence algorithm for RNADE since there are no inference
algorithms described in the original paper. Specifi-
cally, we first employ likelihood weighting to generate
N samples for both the query and the missing vari-
ables given the evidence. After that, we choose the
sample that achieves highest likelihood as the initial
point, and perform gradient ascent to further opti-
mize the assignment for a fixed number of iterations.

(a) (b) (e) (d) (e)

Figure 2: Image completion results where (a) is the
ground truth and (b-e) is the completion results when
right, left, bottom, top are missing (marked in red),
respectively. The order in group (b-e) are organized as
MG, RNADE, SPN, OURS from left to right.

Finally, we return the iteration with the highest log-
likelihood. Note that the gradient is approximated
using numerical methods since a closed form gradient
is not available for RNADE. In addition, backtracking
line search is used to determine an appropriate step
size in each iteration. For the tuning of hyperparame-
ters, we tune the number of components, {2, 5, 10, 20};
the weight-decay, {0.1, 0.01, 0.001, 0}; and the learning
rate {0.1, 0.05, 0.025, 0.0125}. The remaining hyperpa-
rameters, where possible, are set following Uria et al.
(2013), left at the default value determined by existing
code, or set to a value that is equivalent to our method
if we have the same hyperparameter. For example,
both our model and RNADE use the same number of
pre-trainings.

Sum-Product Networks (SPNs) (Poon and
Domingos, 2011; Molina et al., 2018) admit
tractable MAP inference (under certain constraints).
However for MMAP inference, SPNs are not tractable,
but MMAP can be approximated by first approximately
marginalizing out the missing variables and then ap-
plying MAP inference over the marginalized SPN. We
implement SPNs using existing libraries (Molina, 2019;
Molina et al., 2019; Lorenzo, 2020), and tune three dif-
ferent hyperparameters: the instance threshold for cre-
ating leaf nodes, {50, 100, 150, 200, 250, 300, 400, 500};
the row splitting method, {kmeans, gmm, rdc}; and
the column splitting method, {rdc, gvs}. Note that
we restrict the leaf nodes in SPNs to univariate Gaus-
sian distributions and thus we do not need to tune the
feature threshold for creating product nodes.

PGNNs (our model) is trained using the Adam op-
timizer from pyTorch (Paszke et al., 2019) with fixed
batch size 100, and weight decay 1e−3 for 150 epochs.
For each of the experiments, the number of stages
s = 3, the reduction factor r = 2.5, and the standard
deviation threshold t =

√
5e−3 are fixed. In addition,
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Table 1: Prediction RMSE of ten UCI datasets under nine query and missing settings. Our model achieves the
best average prediction error over the ten dataset for all nine scenarios.

Models
Datasets

Average
airquality energy hepmass miniboone onlinenews parkinson sdd superconduct wec sydney cropmapping

Query: 10% Missing: 10%

MG 0.2407 0.2810 0.8146 0.4165 0.3875 0.3495 0.4744 0.1529 0.5586 0.2237 0.4084
RNADE 0.5851 0.2639 0.7803 0.4117 0.6703 0.3720 0.4616 0.2660 0.6451 0.9620 0.4951
SPN 0.1527 0.1926 0.9040 0.4980 0.4518 0.3899 0.3469 0.1933 0.5695 0.3245 0.4110
OURS 0.1451 0.1316 0.8011 0.3854 0.3296 0.2432 0.5088 0.0723 0.4368 0.2442 0.3393

Query: 10% Missing: 20%

MG 0.2879 0.3251 0.7875 0.4598 0.4963 0.4126 0.4508 0.1929 0.5961 0.2301 0.4455
RNADE 0.5537 0.3354 0.7351 0.4414 0.7595 0.4559 0.4657 0.3388 0.6439 0.9841 0.5255
SPN 0.1646 0.1921 0.8787 0.5209 0.5162 0.4420 0.3245 0.1982 0.5389 0.3399 0.4196
OURS 0.1567 0.1972 0.7823 0.3848 0.4783 0.3565 0.4797 0.0866 0.4554 0.2512 0.3753

Query: 10% Missing: 30%

MG 0.3677 0.3581 0.7840 0.4744 0.5286 0.3842 0.4977 0.1975 0.6175 0.2570 0.4678
RNADE 0.6055 0.3312 0.7370 0.5020 0.8479 0.4356 0.5346 0.3061 0.6782 1.0154 0.5531
SPN 0.2201 0.1960 0.8436 0.5530 0.5870 0.4350 0.3996 0.1933 0.5758 0.3351 0.4448
OURS 0.2313 0.1889 0.7877 0.3957 0.4632 0.3122 0.4884 0.0967 0.5097 0.2906 0.3860

Query: 20% Missing: 10%

MG 0.3192 0.3723 0.8573 0.4655 0.4895 0.4237 0.5266 0.1940 0.6087 0.2675 0.4730
RNADE 0.6665 0.3674 0.8497 0.4637 0.7921 0.4782 0.5255 0.3310 0.6885 1.0217 0.5736
SPN 0.1920 0.2047 0.9458 0.5247 0.5649 0.4389 0.4072 0.2075 0.5697 0.3472 0.4506
OURS 0.1898 0.2081 0.8466 0.4349 0.4522 0.3824 0.5232 0.0997 0.4769 0.2915 0.4015

Query: 20% Missing: 20%

MG 0.3400 0.4359 0.8744 0.5023 0.5878 0.4219 0.5089 0.2091 0.6526 0.2525 0.5037
RNADE 0.7200 0.4169 0.8957 0.5272 0.8427 0.4200 0.5568 0.3267 0.6885 1.0757 0.5994
SPN 0.2535 0.2082 0.9862 0.5493 0.6190 0.4591 0.4224 0.1989 0.5844 0.3257 0.4757
OURS 0.2556 0.2727 0.8737 0.4287 0.5770 0.3823 0.5130 0.0976 0.5249 0.2872 0.4362

Query: 20% Missing: 30%

MG 0.3879 0.4355 0.8285 0.5154 0.6271 0.4111 0.5405 0.2425 0.6754 0.2579 0.5182
RNADE 0.7509 0.4334 0.8704 0.5333 0.9257 0.4496 0.5876 0.3404 0.7156 1.0375 0.6230
SPN 0.2655 0.2119 0.9483 0.5526 0.7053 0.4499 0.4698 0.2056 0.6112 0.3330 0.4911
OURS 0.2811 0.2749 0.8234 0.4604 0.6003 0.3835 0.5525 0.1210 0.5328 0.2961 0.4478

Query: 30% Missing: 10%

MG 0.361 0.418 0.881 0.487 0.529 0.458 0.544 0.215 0.664 0.281 0.506
RNADE 0.863 0.402 0.925 0.513 0.897 0.516 0.619 0.330 0.717 1.060 0.643
SPN 0.272 0.230 1.002 0.552 0.581 0.491 0.495 0.203 0.602 0.342 0.492
OURS 0.356 0.247 0.878 0.439 0.498 0.418 0.572 0.096 0.527 0.313 0.448

Query: 30% Missing: 20%

MG 0.4232 0.4234 0.8978 0.5293 0.6120 0.4942 0.5623 0.2564 0.7001 0.2793 0.5443
RNADE 0.8547 0.4310 0.9816 0.5377 0.9821 0.5445 0.6073 0.3621 0.7042 1.0807 0.6673
SPN 0.2965 0.2415 1.0288 0.5578 0.7108 0.5289 0.5110 0.2080 0.5941 0.3372 0.5197
OURS 0.3472 0.2937 0.9009 0.4633 0.5842 0.4606 0.5714 0.1359 0.5420 0.3079 0.4777

Query: 30% Missing: 30%

MG 0.4928 0.4390 0.8857 0.5758 0.7050 0.4864 0.5776 0.2893 0.7503 0.3107 0.5780
RNADE 0.8830 0.4834 0.9823 0.6079 0.9878 0.5501 0.9062 0.3965 0.7612 1.1024 0.7287
SPN 0.4184 0.2384 1.0419 0.5735 0.8257 0.5574 0.5105 0.2125 0.6421 0.3590 0.5578
OURS 0.5034 0.3495 0.9014 0.5059 0.7082 0.4215 0.5889 0.1548 0.5938 0.3440 0.5253
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Table 2: Loglikelihood and RMSE of MAP assignment
for different image completion tasks.

Models MG RNADE SPN OURS

MAP LL

Right 49.003 -59.100 -61.856 -13.108
Left 49.552 -58.061 -60.997 -11.381

Bottom 67.826 -56.063 -62.004 -0.548
Top 68.966 -56.890 -60.271 -0.796

MAP RMSE

Right 0.1698 0.1572 0.1603 0.161
Left 0.1664 0.1549 0.154 0.1436

Bottom 0.1738 0.1699 0.1719 0.1573
Top 0.1693 0.1659 0.164 0.158

Table 3: Test set LL of image completion tasks.

Test LL MG RNADE SPN OURS

P (Xl,Xr) 37.203 -73.419 -77.708 -25.331
P (Xt,Xb) 56.793 -71.771 -78.909 -12.727

the learning rate update is scheduled using a linear
warm up of 5 epochs starting from 1% of the maximum
learning rate, followed by cosine decay. As for the size
of the shared feature vector k, it is highly dependent on
the data dimension; we make it a hyper-parameter and
use a validation set to determine the best value from
a predefined candidate set. Note that the dimensions
of different datasets can vary greatly, and the candi-
date set for parameter k might be too large, incurring
significant tuning overhead. Therefore, we decided to
make the candidate set for parameter k adaptive to
the given data by tuning the feature ratio fr and then
using it to determine the parameter k. Specifically,
we first apply PCA to the dataset and then find the
minimum number of components k such that the total
variance explained by those components is larger than
a given percentage fr (called feature ratio). At last,
following Uria et al. (2013, 2016), we pretrain 4 times
for 15 epochs each and select the model that achieves
best loss for subsequent training. For hyperparameter
tuning, we considered base maximum learning rate,
{0.025, 0.01, 0.004}; maximum number of conditional
variables, {10%, 20%, 30%, 40%}; and the feature ratio
{0.9, 0.95, 0.97, 0.99}.

We compare our model against the above three com-
petitors by evaluating both the test set loglikelihood
(LL) as well as the root mean square error (RMSE) of
the MAP/MMAP inference results. Note that most
existing research on continuous domains only evalu-
ate their model using the loglikelihood, e.g., (Molina
et al., 2018; Uria et al., 2013, 2016), with some ex-
ceptions (Strauss and Oliva, 2021) that also present
prediction/imputation results evaluated by RMSE-like
metrics. Our results indicate that loglikelihood can
sometimes be misleading as it is not bounded in contin-

Table 4: One-to-One comparison of win/tie/lose
achieved by one model (row) over the other (column)
on prediction tasks with missing variables.

MG RNADE SPN OURS

MG - 65/21/4 44/6/40 12/22/56
RNADE 4/21/65 - 14/10/66 3/5/82
SPN 40/6/44 66/10/14 - 19/6/65
OURS 56/22/12 82/5/3 65/6/19 -

uous domains. As a result, it may not be able to accu-
rately reflect the model’s true performance. Therefore,
we present results with respect to both loglikelihood
and prediction RMSE.

For each dataset, we randomly selected 200 instances
for both validation and testing. The remaining in-
stances are used as the training split. All models (SPN,
RNADE, OURS) are tuned based on the best RMSE
achieved on the validation set as we found that tun-
ing with respect to loglikelihood tends to overfit the
training data and often leads to poor MAP/MMAP
inference results. In addition, for sample based ap-
proximate inference schemes, the sample size is based
on the number of query and missing variables during
inference, with a minimum number of 200 samples.

All experiments were conducted on a workstation with
a 16-core Intel Xeon Gold 6130 CPU and two Quadro
P5000 GPUs. Note that running on a GPU is not
required for our model as the PGNNs are typically small
compared to modern deep neural networks. For a small
datasets like UCI Parkinson, CPU only performance
is 2x faster than using GPUs. For larger datasets like
UCI cropmapping, running our model on GPUs can
achieve a 3x to 5x speedup over CPUs. All datasets
and codes are publicly available on GitHub3.

4.1 Image Completion

In this set of experiments, we consider the image com-
pletion problem on the MNIST dataset to evaluate
our model’s MAP prediction performance. Following
Molina et al. (2018), we process the original 28 × 28
MNIST image as two halves: left Xl and right Xr, top
Xt and bottom Xb. We fit an auto-encoder to each
half and featurize the half images into a 25 dimensional
vector. Then we train our model along with other three
competitors to learn the joint distribution P (Xl,Xr)
and P (Xt,Xb). Finally, we perform MAP inference
on the models to predict one half of the image given
the other half as evidence for each test instance.

Table 2 shows the loglikelihood and RMSE of the MAP
assignments for the four image completion tasks. We

3Github Repository - TractableDE-ContCNet

https://github.com/LeonDong1993/TractableDE-ContCNet
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Table 5: Test set loglikelihood of ten UCI datasets.

Test LL MG RNADE SPN OURS

airquality -7.639 4.691 29.682 12.743
energy -13.627 -5.849 8.657 2.785
hepmass -28.348 -21.773 -25.801 -26.011
miniboone -37.182 -21.01 -30.026 -21.421
onlinenews -27.195 6.772 64.882 -32.274
parkinson -10.566 -3.899 -9.706 -3.313

sdd -26.362 6.215 18.526 -8.882
superconduct -4.764 26.918 176.616 67.913
wec sydney -48.627 -29.862 -20.65 -24.119
cropmapping 33.762 -116.632 46.459 97.908

Average -17.055 -15.443 25.864 6.533

also evaluated the test set loglikelihood (see Table 3).
The best results are marked in bold and we consider
results within 5% difference as a tie. To better demon-
strate the prediction quality of different models, in Fig-
ure 2, we show qualitative results for a few instances
chosen from the test set such that the prediction among
the models differs the most. More visualizations can
be found in Appendix.

We have several observations. (1) Our model achieves
the best or comparable RMSE as well as relatively
high MAP and test set LL in all four cases. In addi-
tion, as shown in Figure 2, our model can generate
correct and plausible completions in most cases. In
cases where our model gives the wrong completions,
the images often still look like valid digits. (2) SPNs
achieve slightly better RMSE despite its lower MAP
and test set loglikelihood scores compared to RNADE.
From the visualization results, SPNs are more likely to
generate incorrect completions compared to our model,
while the prediction quality of RNADE is worse than
both ours and SPNs in most cases. (3) MG achieves
extremely high test set and MAP loglikelihood. How-
ever, the RMSE and the completion it generates is the
worst among all the models. This is not surprising as
Gaussian distributions are unimodal, but the MNIST
dataset is obviously not unimodal (it has ten different
classes of images). (4) We observed that loglikelihood-
like metrics in continuous domains can be misleading
in some cases. In other words, high loglikelihood may
not translate into good prediction performance in prac-
tice. Recall that the loglikelihood is not bounded in
continuous domains. As a result, the test set LL can
be heavily biased by some of the test instances (this
can be counteracted with (much) larger test sets but
this may not be realistic in practice).

4.2 Prediction with Missing Variables

In this experiment, we evaluate our model’s MMAP
performance through a comprehensive series of simu-

lated prediction tasks on ten publicly available UCI
datasets. Following Uria et al. (2013), we preprocess
the datasets by eliminating discrete valued features
and one of the attributes from every pair of attributes
whose Pearson correlation coefficient is greater than
0.98. The number of instances and features for each
dataset after pre-processing is included in the supple-
mentary material. All datasets were normalized by
subtracting the mean and then dividing by the stan-
dard deviation. We consider nine different settings of
the query and missing variables where the percentage
of query and missing variables is chosen from the set
{10%, 20%, 30%}. For each setting, we randomly assign
query and missing variables for each of the instances in
test set. Table 1 shows the average RMSE and Table 5
reports the test set loglikelihood of our model along
with the other competitors. As before, the best results
are marked in bold, and we consider results within
5% difference as a tie. In addition, Table 4 presents a
one-to-one comparison of win/tie/lose for one model
(row) over another (column).

From the above results, we have the following observa-
tions.

First, our model has significantly better average RMSE
for all nine query and missing settings despite being
only the second best model in terms of test set loglike-
lihood. In addition, we achieve the best or comparable
RMSE for over 65% of the cases against all other com-
petitors.

Second, SPNs are the second best model overall; they
achieve the best test set loglikelihoods as well as good
prediction RMSE in general. However, the predictive
performance is not stable across datasets, and it fails
to beat the baseline MG for over 45% of the cases as
shown in Table 4.

Third, RNADE, somewhat surprisingly, seems to be
the worst one among all models tested. For exam-
ple, it fails to beat the baseline MG in over 70% of
the cases. We believe there are two likely reasons for
this. First, RNADE is a complicated model and is in-
tractable everywhere (even the gradient is numerically
approximated). This might degrade the performance
of the approximate MMAP procedures used in this
case. Further, the MMAP techniques are quite general,
i.e., they are not specifically hand-tailored to RNADE.
Also, the number of hyperparameters that need to
be tuned in RNADE is extensive. Uria et al. (2013)
manually tuned RNADE on a relatively large dataset.
In our case, we only tuned a fraction of the possible
hyperparameters as otherwise the search would have
been computationally expensive. As such, with addi-
tional tuning, the performance of RNADE could likely
be improved (though the same could be said of more
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extensive tuning for SPNs and our model as well).

Finally, MG can produce acceptable or even good re-
sults on some datasets (cropmapping). This may be due
to the fact that MGs admit exact MMAP inference (no
approximation), and good practical performance if the
data distribution is well-approximated by a Gaussian.

Note that in the MMAP scenario, the RMSE of the
MMAP assignment against the true value of the test in-
stance might not be appropriate as we need to find the
most probable assignment to only query variables and
average across the missing variables under the given
evidence. In other words, neither RMSE nor condi-
tional log-likelihood is a perfect measure but because
the former is bounded while the latter is not, RMSE
is typically more well behaved and is likely to pick
the correct best performing scheme. Ideally, if a true
model is available, the perfect measure is conditional
loglikelihood of the assignment w.r.t. to the true model.
However, because the true model is often not available,
RMSE is a reasonable choice for evaluating the model’s
predictive performance in the continuous case.

While popular as an evaluation metric for continuous
models (cf. Uria et al. (2013); Molina et al. (2018)),
test-set log-likelihood can result in a misleading pic-
ture of a model’s practical performance when used to
compare models from different families. To illustrate
this, we evaluated the LL and RMSE of SPNs and our
model under different hyperparameters on the valida-
tion portion of ten UCI datasets. Figure. 3 shows the
result on the superconduct dataset (visualizations on
other datasets can be found in the supplementary ma-
terial). The general trend in these results is that if we
focus on one model (either ours or SPNs), better pre-
dictive performance tends to correlate with higher LL.
However, when we compare the LL and RMSE across
two models, higher test-set LL does not necessarily
translate into better RMSE. As such, caution should
be exercised when using LL to compare models across
different families, especially in limited data settings.

5 DISCUSSION AND CONCLUSION

We described a flexible family of tractable models for
solving MMAP/MAP prediction tasks in continuous do-
mains. Experimentally, we verified that our approach
outperforms existing approaches such as SPNs and
RNADE on a variety of prediction tasks. In particular,
we found that (1) although SPNs typically produced
models with higher test set log-likelihoods, our model
typically resulted in the best performance on the pre-
diction task and (2) the number of hyperparameters
required to fit RNADE in practice was computationally
prohibitive and/or much more careful hand-tuning may
be required, which limits it applicability.

Negative RMSE

L
o

g
li

k
el

ih
o

o
d

Figure 3: RMSE and loglikelihood achieved on vali-
dation dataset (superconduct) for OURS (black stars)
and SPN (blue dots) under different hyper parameters.

Compared to other existing tractable models or den-
sity estimators, our model can generate more accurate
predictions while still achieving a reasonable test set
loglikelihood. In particular, our model is ideally suited
for applications where a clear delineation exists be-
tween query and observed variables. In such cases, we
can choose variables that are likely to be observed at
query time to be part of the set X. This is because
our predictions are exact or close to it when the set of
observed variables is included in the set X.

One of the main limitations of our model is that, it is
not tractable when calculating the marginal density of
a partial assignment if some of the conditional variables
are missing. This issue can be alleviated if we choose
variables that have high chance to be observed as con-
ditional variables. Also, the PGNNs used in our model
have potential scalability issues as the size of Header
blocks is quadratic w.r.t. the number of variables. How-
ever, this can be easily solved by projecting the data
into low-dimensional space or restricting the number of
parents a node can have inside the template GBN. The
model is prone to overfitting and in practice we can
alleviate this limitation by using simpler models (e.g.,
linear regression) for some conditional distributions
p(Yi|Si,x) and using learning methods that are robust
to minor perturbations (e.g., adversarial learning).

We are also interested in exploring applications of this
approach to temporal data or more generally in situa-
tions where there may be additional graphical structure
that can be exploited. In addition, many more neural
network structures are possible for parameter selec-
tion, and in different applications, it may be of interest
to explore different function characterizations of both
local distribution p(X) and conditional distribution
p(Y |X). We leave these extensions for future work.
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Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick
Haffner. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE, 86(11):
2278–2324, 1998.

Qiang Liu and Alexander Ihler. Variational algorithms
for marginal MAP. The Journal of Machine Learning
Research, 14(1):3165–3200, 2013.

Loconte Lorenzo. Sum-product networks and normaliz-
ing flows for tractable density estimation [mit license].
https://github.com/loreloc/spnflow, 2020.

Alejandro Molina. Sum product flow: An easy and ex-
tensible library for sum-product networks [apache li-
cense v2.0]. https://github.com/SPFlow/SPFlow,
2019.

Alejandro Molina, Antonio Vergari, Nicola Di Mauro,
Sriraam Natarajan, Floriana Esposito, and Kristian
Kersting. Mixed sum-product networks: A deep
architecture for hybrid domains. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 32, 2018.

Alejandro Molina, Antonio Vergari, Karl Stelzner,
Robert Peharz, Pranav Subramani, Nicola Di Mauro,
Pascal Poupart, and Kristian Kersting. Spflow: An
easy and extensible library for deep probabilistic
learning using sum-product networks, 2019.

S. Monti and Gregory F. Cooper. Learning Hy-
brid Bayesian Networks from Data, pages 521–540.
Springer Netherlands, Dordrecht, 1998.

George Papamakarios, Theo Pavlakou, and Iain Murray.
Masked autoregressive flow for density estimation.
arXiv preprint arXiv:1705.07057, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam
Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca
Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Te-
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,
Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning li-
brary. In H. Wallach, H. Larochelle, A. Beygelzimer,
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Supplementary Material:
Conditionally Tractable Density Estimation using Neural Networks

A UCI Dataset Information

We show the number of instances and features for each UCI dataset after pre-processing in Table. 6.

Table 6: Number of instances and features of ten UCI datasets (after preprocessing).

Name #instance #feature

airquality 9357 12
cropmapping 50000 117

energy 19735 24
hepmass 150000 21
miniboone 36488 43
onlinenews 39644 32
parkinson 5875 15

sdd 58509 29
superconduct 21263 68
wec-sydney 72000 49

B Additional Experimental Results

B.1 Image Completion Visualizations

We present extra visualizations (50 in total) of the image completion results of different models on MNIST dataset.
Details can be found in Figure. 4.

B.2 Hyperparameter Space Visualization

To better illustrate a model’s predictive performance respect to its loglikelihoods in the continuous case, we
evaluated the loglikelihood and RMSE on the validation portion of ten UCI datasets for SPN and our model
under different hyper parameters. The result for superconduct dataset is shown in Figure. 3, where the results
for other nine datasets in shown in Figure. 5.

From these results, it is easy to see that there is no clear relationship between the loglikelihood and RMSE across
two different models. In other words, we cannot determine the predictive performance of different models by just
looking at their loglikelihoods. In addition, even for a single model, the prediction performance can be quite
different even though the loglikelihoods are quite close, and vice versa (see results of OURS on sdd dataset).
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(b) Right Missing

MG RNADE SPN OURS

(a) Ground Truth (c) Left Missing (e) Top Missing(d) Bottom Missing

MG RNADE SPN OURS MG RNADE SPN OURS MG RNADE SPN OURS

Figure 4: Image completion results where (a) is the ground truth and (b-e) is the completion results when right,
left, bottom, top are missing (marked in red), respectively.
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Figure 5: RMSE and loglikelihood achieved on validation portion of 9 UCI datasets for OURS (black stars) and
SPN (blue dots) under different hyper parameters.
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