
Efficient Online Bayesian Inference for Neural Bandits

Gerardo Duran-Martin, Aleyna Kara and Kevin Murphy
Queen Mary University Boğaziçi University Google Research

Abstract

In this paper we present a new algorithm
for online (sequential) inference in Bayesian
neural networks, and show its suitability for
tackling contextual bandit problems. The
key idea is to combine the extended Kalman
filter (which locally linearizes the likelihood
function at each time step) with a (learned
or random) low-dimensional affine subspace
for the parameters; the use of a subspace en-
ables us to scale our algorithm to models with
∼ 1M parameters. While most other neu-
ral bandit methods need to store the entire
past dataset in order to avoid the problem of
“catastrophic forgetting”, our approach uses
constant memory. This is possible because
we represent uncertainty about all the param-
eters in the model, not just the final linear
layer. We show good results on the “Deep
Bayesian Bandit Showdown” benchmark, as
well as MNIST and a recommender system.

1 Introduction

Contextual bandit problems (see e.g., [LS19; Sli19])
are a special case of reinforcement learning, in which
the state (context) at each time step is chosen inde-
pendently, rather than being dependent on the past
history of states and actions. Despite this limitation,
contextual bandits are widely used in real-world applica-
tions, such as recommender systems [Li+10; Guo+20],
advertising [McM+13; Du+21], healthcare [Gre+17;
AKR21], etc. The goal is to maximize the sequence
of rewards yt obtained by picking actions at in re-
sponse to each input context or state st. To do this,
the decision making agent must learn a reward model
E [yt|st, at,θ] = f(st, at;θ), where θ are the unknown

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

model parameters. Unlike supervised learning, the
agent does not get to see the “correct” output, but in-
stead only gets feedback on whether the choice it made
was good or bad (in the form of the reward signal).
If the agent knew θ, it could pick the optimal action
using a∗t = argmaxa∈A f(st, a;θ). However, since θ is
unknown, the agent must “explore”, so it can gather
information about the reward function, before it can
“exploit” its model.

In the bandit literature, the two most common solu-
tions to solving the explore-exploit dilemma are based
on the upper confidence bound (UCB) method (see
e.g., [Li+10; KCG12]) and the Thompson Sampling
(TS) method (see e.g., [AG13; Rus+18]). The key
bottleneck in both UBC and TS is efficiently comput-
ing the posterior p(θ|D1:t) in an online fashion, where
D1:t = {(si, ai, yi) : i = 1 : t} is all the data seen so far.
This can be done in closed form for linear-Gaussian
models, but for nonlinear models, such as deep neural
networks (DNNs), it is computationally infeasible.

In this paper, we propose to use a version of the ex-
tended Kalman filter to recursively approximate the
parameter posterior p(θ|D1:t) using constant time and
memory (i.e., independent of T). The main novelty of
our approach is that we show how to scale the EKF to
large neural networks by leveraging recent results that
show that deep neural networks often have very few “de-
grees of freedom” (see e.g., [Li+18; Izm+19; Lar+21]).
Thus we can compute a low-dimensional subspace and
perform Bayesian filtering in the subspace rather than
the original parameter space. We therefore call our
method “Bayesian subspace bandits”.

Although Bayesian inference in DNN subspaces has pre-
viously been explored (see related work in Section 2), it
has not been done in an online or bandit setting, as far
as we know. Since we are using approximate inference,
we lose the well-known optimality of Thompson sam-
pling [PAYD19]; we leave proving regret bounds for our
method to future work. In this paper, we restrict at-
tention to an empirical comparison. We show that our
method works well in practice on various datasets, in-
cluding the “Deep Bayesian Bandits Showdown” bench-
mark [RTS18], the MNIST dataset, and a recommender

Efficient Online Bayesian Inference for Neural Bandits

system dataset. In addition, our method uses much
less memory and time than most other methods.

Our algorithm is not specific to bandits, and can be
applied to any situation that requires efficient online
computation of the posterior. This includes tasks such
as life long learning, Bayesian optimization, active learn-
ing, reinforcement learning, etc.1. However, we leave
such extensions to future work.

2 Related work

In this section, we briefly review related work. We di-
vide the prior work into several groups: Bayesian neural
networks, neural net subspaces, and neural contextual
bandits.

Most work on Bayesian inference for neural networks
has focused on the offline (batch) setting. Com-
mon approaches include the Laplace approximation
[Mac92; Mac95; Dax+21a]; Hamiltonian MCMC
[Nea95; Izm+21]; variational inference, such as the
“Bayes by backprop” method of [Blu+15], and the “vari-
ational online Gauss-Newton” method of [Osa+19]; ex-
pectation propagation, such as the “probabilistic back-
propagation” method of [HLA15]; and many others.
(For more details and references, see e.g., [PS17; Wil20;
WI20; Kha20].)

There are several techniques for online or sequential
Bayesian inference for neural networks. [RBB18] pro-
pose an online version of the Laplace approximation,
[Ngu+18] propose an online version of variational infer-
ence, and [GDFY16] propose to use assumed density
filtering (an online version of expectation propagation).
However, in [RTS18], they showed that these meth-
ods do not work very well for bandit problems. In
this paper, we build on older work, specifically [SW89;
FNG00], which used the extended Kalman filter (EKF)
to perform approximate online inference for DNNs. We
combine this with subspace methods to scale to high
dimensions, as we discuss below.

There are several techniques for scaling Bayesian in-
ference to neural networks with many parameters. A
simple approach is to use variational inference with a
diagonal Gaussian posterior, but this ignores important
correlations between the weights. It is also possible to
use low-rank factorizations of the posterior covariance

1These problems are all very closely related. For exam-
ple, BayesOpt is a kind of (non-contextual) bandit problem
with an infinite number of arms; the goal is to identify the
action (input to the reward function f : RD → R) that
maximizes the output. Active learning is closely related to
BayesOpt, but now the actions correspond to choosing data
points x ∈ Rn that we want to label, and our objective is
to minimize uncertainty about the underlying function f ,
rather than find the location of its maximum.

matrix. In [Dax+21b], they propose to use a MAP esti-
mate for some parameters and a Laplace approximation
for others. However, their computation of the MAP
estimate relies on standard offline SGD (stochastic gra-
dient descent), whereas we perform online Bayesian
inference without using SGD. In [Izm+19], they com-
pute a linear subspace of dimension d by applying PCA
to the last L iterates of stochastic weight averaging
[Izm+18]; they then perform slice sampling in this low-
dimensional subspace. In this paper, we also leverage
subspace inference, but we do so in the online setting,
which is necessary when solving bandit problems.

The literature on contextual bandits is vast (see e.g.,
[LS19; Sli19]). Here we just discuss recent work which
utilizes DNNs to model the reward function, combined
with Thompson sampling as the policy for choosing
the action. In [RTS18], they evaluated many different
approximate inference methods for Bayesian neural
networks on a set of benchmark contextual bandit
problems; they called this the “Deep Bayesian Bandits
Showdown”. The best performing method in their
showdown is what they call the “neural linear” method,
which we discuss in Section 3.3.

Unfortunately the neural linear method is not a fully
online algorithm, since it needs to keep all the past
data to avoid the problem of “catastrophic forgetting”
[Rob95; Fre99; Kir+17]. This means that the memory
complexity is O(T), and the computational complexity
can be as large as O(T 2). This makes the method
impractical for applications where the data is high
dimensional, and/or the agent is running for a long
time. In [NZM21], they make an online version of the
neural linear method which they call "Lim2", which
stands for “Limited Memory Neural-Linear with Like-
lihood Matching”. We discuss this in more detail in
Section 3.3.

More recently, several methods based on neural tangent
kernels (NTK) have been developed [JGH18], including
neural Thompson sampling [Zha+21] and neural UCB
[ZLG20]. We discuss these methods in more detail in
Section 3.3. Although Neural-TS and Neural-UCB in
principle achieve a regret of O(

√
T), in practice there

are some disadvantages. First, these algorithms per-
form multiple gradient steps, based on all the past data,
at each step of the algorithm. Thus these are full mem-
ory algorithms that take O(T) space and O(T 2) time.
Second, it can be shown [AZL19; Gho+20] that NTKs
are less data efficient learners than (finite width) hierar-
chical DNNs, both in theory and in practice. Indeed we
will show that our approach, that uses constant mem-
ory and finite width DNNs, does significantly better in
practice.

Gerardo Duran-Martin, Aleyna Kara and Kevin Murphy

3 Methods

In this section, we discuss various methods for tackling
bandit problems, including our proposed new method.

3.1 Algorithmic framework

Algorithm 1: Online-Eval(Agent, Env, T , τ)
Dτ = Environment.Warmup(τ);
bτ = Agent.InitBelief(Dτ) ;
R = 0 // cumulative reward ;
for t = (τ + 1) : T do

st = Environment.GetState(t) ;
at = Agent.ChooseAction(bt−1, st) ;
yt = Environment.GetReward(st, at) ;
R+ = yt ;
Dt = (st, at, yt) ;
bt = Agent.UpdateBelief(bt−1,Dt);

Return R

In Algorithm 1, we give the pseudocode for a way
to estimate the expected reward for a bandit policy
(agent), given access to an environment or simulator.
In the case of a Thompson sampling agent, the ac-
tion selection is usually implemented by first sam-
pling a parameter vector from the posterior (belief
state), θ̃t ∼ p(θt|D1:t−1), and then predicting the re-
ward for each action and greedily picking the best,
at = argmaxa∈A E

[
y|st, at, θ̃t

]
. In the case of a UCB

agent, the action is chosen by first computing the poste-
rior predicted mean and variance, and then picking the
action with the highest optimistic estimate of reward:

pt|t−1(y|s, a) ,
∫
p(y|s, a,θ)p(θ|D1:t−1)dθ (1)

µa = Ept|t−1
[y|st, a] (2)

σa =
√
Vpt|t−1

[y|st, a] (3)

at = argmax
a∈A

µa + ασa (4)

where α > 0 is a tuning parameter that controls the de-
gree of exploration. In this paper, we focus on Thomp-
son sampling, but our methods can be extended to
UCB in a straightforward way.

Since the prior on the parameters is usually uninfor-
mative, the initial actions are effectively random. Con-
sequently we let the agent have a “warmup period”,
in which we systematically try each action Nw times,
in a round robin fashion, for a total of τ = Na ×Nw
steps. We then use this warmup data to initialize the
belief state to get an informative prior. If we have a
long warmup period, then we will have a better initial
estimate, but we may incur high regret during this pe-
riod, since we are choosing actions “blindly”. Thus we
can view τ as a hyperparameter of the algorithm. The

optimal value will depend on the expected lifetime T
of the agent (if T is large, we can more easily amortize
the cost of a long warmup period).

3.2 Modeling assumptions

We will assume a Gaussian bandit setting, in which the
observation model for the reward is a Gaussian with
a fixed or inferred observation variance: p(yt|st, at) =
N (yt|f(st, at;θt), σ2). (We discuss extensions to the
Bernoulli bandit case in Section 5.)

Many current bandit algorithms assume the reward
function is a linear model applied to a set of learned fea-
tures. That is, it has the form f(s, a;θ) = wT

aφ(s;V),
where φ(s;V) ∈ RNz is the hidden state computed by
a feature extractor, V ∈ RDb are the parameters of this
feature extractor “body”, and W ∈ RNz×Na is the final
linear layer, with one output “head” per action. For
example, in Figure 1a, we show a 2 layer model where
φ(s;V) = ReLU(V2 ReLU(V1s)) is the feature vector,
and V1 ∈ RN

(1)
h ×Ns and V2 ∈ RN

(2)
h ×N

(1)
h are the first

and second layer weights. (We ignore the bias terms for
simplicity.) Thus Nz = N

(2)
h is the size of the feature

vector that is passed to the final linear layer. If the
feature vector is fixed (i.e., is not learned), so φ(s) = s,
we get a linear model of the form f(s, a;w) = wT

as.

An alternative model structure is to concatentate the
state vector, φ(st), with the action vetcor, φ(at) to
get an input of the form xt = (φ(st),φ(at)). This is
shown in Figure 1b. This can be useful if we have many
possible actions; in this case, we can represent arms
in terms of their features instead of their indices, just
as we represent states in terms of their features. In
this formulation, the linear output layer returns the
predicted reward for the specified (s,a) input combi-
nation, and we require Na forwards passes to evaluate
the reward vector for each possible action.

Instead of concatenating the state and action vectors,
we can compute their outer product and then flatten
the result, to get xt = flatten(φ(st)φ(at)T). This can
model interaction effects, an proposed in [Li+10]. If
φ(at) is a one-hot encoding, we get the block-structured
input xt = (0, · · · ,0,φ(st),0, · · · ,0), where we insert
the state feature vector into the block corresponding
to the chosen action (see Figure 1c). This approach is
used by recent NTK methods. If we assume φ(s) = s,
so the state features are fixed, and we assume that the
MLP has no hidden layers, then this model becomes
equivalent to the linear model, since wTxt = w

T
ast.

3.3 Existing methods

In this section, we briefly describe existing inference
methods that we will compare to. More details on all

Efficient Online Bayesian Inference for Neural Bandits

(a) (b) (c)

Figure 1: Illustration of some common MLP architectures used in bandit problems. s represents the state (context) vector,
a represents the action vector, y represents the reward vector (for each possible action), and zli is the i’th hidden node in
layer l. (a) The input is s, and there are A output “heads”, y1, . . . , yA, one per action. (b) The input is a concatentation
of s and a; the output is the predicted reward for this (s,a) combination. (c) The input is a block structured vector, where
we insert s into the a’th block (when evaluating action a), and the remaining input blocks are zero.

methods can be found in the Supplementary Informa-
tion. These methods differ in the kind of belief state
they use to represent uncertainty about the model pa-
rameters, and in their mechanism for updating this
belief state. See Table 1 for a summary.

Linear method The most common approach to
bandit problems is to assume a linear model for the
expected reward, f(s, a;θ) = wT

as. If we use a
Gaussian prior, and assume a Gaussian likelihood,
then we can represent the belief state as a Gaussian,
bt = {(µt,a,Σt,a) : a = 1 : Na}. This can be efficiently
updated online using the recursive least squares algo-
rithm, which is a special case of the Kalman filter (see
Appendix A.1 for details).

Neural linear method In [RTS18], they proposed
a method called “neural linear”, which they showed out-
performed many other more sophisticated approaches,
such as variational inference, on their bandit showdown
benchmark. It assumes that the reward model has the
form f(s, a;θ) = wT

aφ(s;V), where φ(s;V) ∈ RNz is
the hidden state computed by a feature extractor (see
Figure 1a for an illustration). The neural linear method
computes a point estimate of V by using SGD, and
uses Bayesian linear regression to update the posterior
over each wa, and optionally σ2.

If we just update V at each step using Dt, we run
the risk of “catastrophic forgetting” (see Section 2).
The standard solution to this is to store all the past
data, and to re-run (minibatch) SGD on all the data
at each step. Thus the belief state is represented as
bt = (θt,D1:t). See Appendix A.2 for details.

The time cost is O(T 2NeCf), where Ne is the number
of epochs (passes over the data) at each step, and Cf
is the cost of a single forwards-backwards pass through
the network (needed to compute the objective and its
gradient).2 Since it is typically too expensive to run

2The reason for the quadratic cost is that each epoch

SGD on each step, we can just perform updating every
Tu steps. The total time then becomes O(T ′TNeCf),
where T ′ = T/Tu is the total number of times we invoke
SGD.

The memory cost is O(D+ TNx), where Nx is the size
of each input example, xt = (st, at). If we limit the
memory to the lastM observations (also called a “replay
buffer”), the memory reduces to O(D +MNx), and
the time reduces to O(T ′MNeCf). However, naively
limiting the memory in this way can hurt (statistical)
performance, as we will see.

LiM2 In [NZM21], they propose a method called
“LiM2”, which stands for “Limited Memory Neural-
Linear with Likelihood Matching”. This is an exten-
sion of the neural linear method designed to solve the
“catastrophic forgetting” that occurs when using a fixed
memory buffer. The basic idea is to approximate the
covariance of the old features in the memory buffer
before replacing them with the new features, computed
after updating the network parameters. This old co-
variance can be used as a prior during the Bayesian
linear regression step.

Computing the updated prior covariance requires solv-
ing a semi-definite program (SDP) after each SGD step.
In practice, the SDP can be solved using an inner loop
of projected gradient descent (PGD), which involves
solving an eigendecomposition at each step. This takes
O(T ′MNeNp(Cf +N

3
z)) time, where Np is the number

of PGD steps per SGD step. See Appendix A.3 for
details.

NTK methods In [Zha+21], they propose a method
called “Neural Thompson Sampling”, and in [ZLG20],
the propose a related method called “neural UCB”. Both
methods are based on approximating the MLP with a
neural tangent kernel or NTK [JGH18]. Specifically,
the feature vector at time t is defined to be φt(s, a) =

passes over O(T) examples, even if we use minibatching.

Gerardo Duran-Martin, Aleyna Kara and Kevin Murphy

Method Belief state Memory Time
Linear (µt,a,Σt,a) O(NaN

2
z) O(T (Cf +NaN

3
x))

Neural-Greedy θt = (Vt,Wt) O(Db +NaNz + TNx) O(T ′TNeCf)
Neural-Linear (Vt,µt,a,Σt,a,D1:t) O(Db +NaN

2
z + TNx) O(T ′TNeCf + TNaN

3
z)

LiM2 (Vt,µt,a,Σt,a,Dt−M :t) O(Db +NaN
2
z +MNx) O(T ′MNeNp(Cf +N3

z) + TNaN
3
z)

Neural-Thompson (θt,Σt,D1:t) O(D +D2 + TNx) O(T (TNeCf +D3))
EKF (µt,Σt) O(D2) O(T (Cf +D3))
EKF-Subspace (µt,Σt,θ∗,A) O(d2 +Dd) O(T (Cf + d3 +Dd))

Table 1: Summary of the methods for Bayesian inference considered in this paper. Notation: T : num steps taken by the
agent in the environment; Tu: update frequency for SGD; T ′ = T/Tu: total num. times that we invoke SGD; Ne: num.
epochs over the training data for each run of SGD; Cf : cost of to evaluate gradient of the network on one example, Na:
num. actions; Nx: size of input feature vector for state and action. Nz: num. features in penultimate (feature) layer; Db:
num. parameters in the body (feature extractor); Dh = NaNz: num. parameters in final layer linear; D = Db +Dh: total
num. parameters; d: size of subspace; M : size of memory buffer;

(1/
√
Nh)∇θf(s, a)|θt−1

, where Nh is the width of each
hidden layer, and the gradient is evaluated at the most
recent parameter estimate. They use a linear Gaussian
model on top of these features. The network parameters
are re-estimated at each step based on all the past data,
and then the method effectively performs Bayesian
linear regression on the output layer (see Appendix A.4
for details).

3.4 Our method: Subspace EKF

A natural alternative to just modeling uncertainty in
the final layer weights is to “be Bayesian” about all
the network parameters. Since our model is nonlin-
ear, we must use approximate Bayesian inference. In
this paper we choose to use the Extended Kalman Fil-
ter (EKF), which is a popular deterministic inference
scheme for nonlinear state-space models based on lin-
earizing the model (see Appendix A.5 for details). It
was first applied to inferring the parameters of an MLP
in [SW89], although it has not been applied to bandit
problems, as far as we know. In more detail, we define
the latent variable to be the unknown parameters θt.
The (non-stationary) observation model is given by
pt(yt|θt) = N (yt|f(st, at;θt, σ2), where st and at are
inputs to the model, and the dynamics model for the
parameters is given by p(θt|θt−1) = N (θt|θt−1, τ2I).
We can set τ2 = 0 to encode the assumption that the
parameters of the reward function are constant over
time. However in practice we use a small non-zero
value for τ , for numerical stability.

The belief state of an EKF has the form bt = (µt,Σt).
This takes O(D2) space and O(TD3) time to com-
pute. Modern neural networks often have millions of
parameters, which makes direct application of the EKF
intractable. We can reduce the memory from O(D2) to
O(D) and the time from O(TD3) to O(TD2) by using
a diagonal approximation to Σt. However, this ignores
correlations between the parameters, which is impor-
tant for good performance (as we show empirically in

Section 4). We can improve the approximation by us-
ing a block structured approximation, with one block
per layer of the MLP, but this still ignores correlations
between layers.

In this paper, we explore a different approach to scal-
ing the EKF to large neural networks. Our key in-
sight is to exploit the fact that the DNN pararame-
ters are not independent “degrees of freedom”. Indeed,
[Li+18] showed empirically that we can replace the
original neural network weights θ ∈ RD with a lower
dimensional version, z ∈ Rd, by defining the affine
mapping θ(z) = Az + θ∗, and then optimizing the
low-dimensional parameters z. Here A ∈ RD×d is a
fixed but random Gaussian matrix with columns nor-
malized to 1, and θ∗ ∈ RD is a random initial guess of
the parameters (which we call an “offset”). In [Li+18],
they show that optimizing in the z subspace gives good
results on standard classification and RL benchmarks,
even when d� D, provided that d > dmin, where dmin

is a critical threshold. In [Lar+21], they provide a
theoretical explanation for why such a threshold exists,
based on geometric properties of the high dimensional
loss landscape.

Instead of using a random offset θ∗, we can optimize
it by performing SGD in the original θ space during a
warmup period. Similarly, instead of using a random
basis matrix A, we can optimize it by applying SVD
to the iterates of SGD during the warmup period, as
proposed in [Izm+19; Lar+21]. (If we wish, we can
just keep a subset of the iterates, since consecutive
samples are correlated.) These two changes reduce
the dimensionality of the subspace d that we need to
use in order to get good performance. (We can use
cross-validation on the data from the warmup phase to
find a good value for d.)

Once we have computed the subspace, we can per-
form Bayesian inference for the embedded parameters
z ∈ Rd instead of the original parameters θ ∈ RD.
We do this by applying the EKF to the a state-space

Efficient Online Bayesian Inference for Neural Bandits

model with a (non-stationary) observation model of the
form pt(yt|zt) = N (yt|f(st, at;Azt + θ∗), σ2), and a
deterministic transition model of the form p(zt|zt−1) =
N (zt|zt−1, τ2I).

The overall algorithm is summarized in Algorithm 2.
(If we use a random subspace, we can skip the warmup
phase, but results are worse, as we show in Section 4.)
The algorithm takes O(d3) time per step. Empirically
we find that we can reduce models with D ∼ 106 down
to d ∼ 102 while getting the same (or sometimes better)
performance, as we show in Section 4. We can further
reduce the time to O(d) by using a diagonal covariance
matrix, with little change to the performance, as we
shown in Section 4. The time cost of the warmup
phase is dominated by SVD. If we have τ samples, the
time complexity for exact SVD is O(min(τ2D,D2τ)).
However, if we use randomized SVD [HMT11] this
reduces the time to O(τD log d+ (τ +D)d2).

The memory cost is O(d2+Dd), since we need to store
the belief state, bt = (µt,Σt), as well as the offset θ∗
and the D × d basis matrix A. We have succesfully
scaled this to models with ∼ 1M parameters, but going
beyond this may require the use of a sparse random
orthogonal matrix to represent A [CRW17]. We leave
this to future work.

Note that our method can be applied to any kind of
DNN, not just MLPs. The low dimensional vector z
depends on all of the parameters in the model. By
contrast, the neural linear and Lim2 methods assume
that the model has a linear final layer, and they only
capture parameter uncertainty in this final layer. Thus
these methods cannot be combined with the subspace
trick.

Algorithm 2: Neural Subspace Bandits
Dτ = Environment.Warmup(τ);
θ1:τ = SGD(Dτ) ;
θ∗ = θτ ;
A = SVD(θ1:τ);
(µτ ,Στ) = EKF(µ0,Σ0,D1:τ);
for t = (τ + 1) : T do

st = Environment.GetState(t) ;
z̃t ∼ N (µt,Σt)
at = argmaxa f(st, at;Az̃t + θ∗) ;
yt = Environment.GetReward(st, at) ;
Dt = (st, at, yt) ;
(µt,Σt) = EKF(µt−1,Σt−1,Dt);

4 Results

In this section, we present empirical results in which
we evaluate the performance (reward) and speed (time)
of our method compared to other methods on various
bandit problems. We also study the effects of various

hyper-parameters of our algorithm, such as how we
choose the subspace.

4.1 Tabular datasets

To compare ourselves to prior works, we consider a sub-
set of the datasets used in the “Deep Bayesian Bandits
Showdown” [RTS18]. These are small tabular datasets,
where the goal is to predict the class label given the
features.3 We turn this into a bandit problem by defin-
ing the actions to be the class labels, and the reward
is 1 if the correct label is predicted, and is 0 otherwise.
Thus the cumulative reward is the number of correct
classifications, and the regret is the number of incorrect
classifications.

Following prior work, we use the multi-headed MLP in
Figure 1a, with one hidden layer with Nh = 50 units
and ReLU activations. (The Neural-TS results are
based on the multi-input model in Figure 1c.) We use
Nw = 20 “pulls” per arm during the warmup phase and
run for T = 5000 steps. We run 10 random trials and
report the mean reward, together with the standard
deviation.

We compare the following 11 methods: EKF in a
learned (SVD) subspace (with full or diagonal covari-
ance), EKF in a random subspace (with full or diago-
nal covariance), EKF in the original parameter space
(with full or diagonal covariance), Linear, Neural-Linear
(with unlimited or limited memory), LiM2, and Neural-
TS. For the 6 EKF methods, we use our own code.4
For LiM2 and Neural-TS, we use the original code from
the authors.5 For Linear and Neural-Linear methods,
we reproduced the original code from the authors in
our own codebase. All the hyperparameters are the
same as in the original papers/code (namely [NZM21]
for Linear, Neural-Linear and Lim2, and [Zha+21] for
Neural-TS).

We show the average reward for each method on each
dataset in Figure 2. (We use d = 200 for all experi-
ments, which we found to work well.) On the Adult
dataset, all methods have similar performance, showng
that this is an easy problem. On the Covertype dataset,
we find that the best method is EKF in a learned (SVD)

3The datasets are from the UCI ML repository https:
//archive.ics.uci.edu/ml/datasets. Statlog (shuttle)
has 9 features, 7 classes. Coverype has 54 features, 7 classes.
Adult has 89 features, 2 classes. We use T = 5000 samples
for all datasets.

4Our code is available (in JAX) at https://github.
com/probml/bandits.

5LiM2 is available (in TF1)
at https://github.com/ofirnabati/
Neural-Linear-Bandits-with-Likelihood-Matching.
Neural-TS is available (in PyTorch) at https:
//github.com/ZeroWeight/NeuralTS.

https://archive.ics.uci.edu/ml/datasets
https://archive.ics.uci.edu/ml/datasets
https://github.com/probml/bandits
https://github.com/probml/bandits
 https://github.com/ofirnabati/Neural-Linear-Bandits-with-Likelihood-Matching
 https://github.com/ofirnabati/Neural-Linear-Bandits-with-Likelihood-Matching
https://github.com/ZeroWeight/NeuralTS
https://github.com/ZeroWeight/NeuralTS

Gerardo Duran-Martin, Aleyna Kara and Kevin Murphy

Figure 2: Reward for various methods on 3 tabular datasets. The maximum possible reward for each dataset is 5000.

Figure 3: Reward for various methods on the Movielens
dataset.

subspace with full covariance (light blue bar). This is
the only method to beat the linear baseline (purple).
On the Shuttle (Statlog) dataset, we see that all the
EKF subspace variants work well, and match the ac-
curacy of Lim2 while being much faster. (We discuss
speed in Section 4.5.) We see that EKF in the original
parameter space peforms worse, especially when we
use a diagonal approximation (red). We also see that
limited memory version of neural linear (light orange)
is worse than unlimited memory (dark orange).

However, we also see that differences between most
methods are often rather small, and are often within
the error bars. We also noticed this with other exam-
ples from the Bandit Showdown benchmark (results
not shown). We therefore believe this benchmark is
too simple to be a reliable way of measuring perfor-
mance differences of neural bandit algorithms (despite
its popularity in the literature). In the sections below,
we consider more challenging benchmarks, where the
relative performance differences are clearer.

4.2 Recommender systems

One of the main applications of bandits is to recom-
mender systems (see e.g., [Li+10; Guo+20]). Unfor-
tunately, evaluating bandit policies in such systems
requires running a live experiment, unless we have
a simulator or we use off-policy evaluation methods
such as those in [Li+11]. In this section, we build a

simple simulator by applying SVD to the MovieLens-
100k dataset, following the example in the TF-Agents
library.6

In more detail, we start with the MovieLens-100k
dataset, which has 100,000 ratings on a scale of 1–
5 from 943 users on 1682 movies. This defines a sparse
943 × 1682 ratings matrix, where 0s correspond to
missing entries. We extract a subset of this matrix
corresponding to the first 20 movies to get a 943× 20
matrix X. We then compute the SVD of this matrix,
X = USVT, and compute a dense low-rank approx-
imation to it X̂ = UKSKVT

K . (This is a standard
approach to matrix imputation, see e.g., [SJ03; BK07]).
We treat each user i as a context, represented by ui,
and treat each movie j as an action; the reward for
taking action j in in context i is Xij ∈ R. We follow
the TF-Agents example and use K = 20, so the context
has 20 features, and there are also 20 actions (movies).

Having created this simulator, we can use it to evaluate
various bandit algorithms. We use MLPs with 1 or 2
hidden layers, with 50 hidden units per layer. Since
the Lim2 and NeuralTS code was not designed for this
environment, we restrict ourselves to the 9 methods we
have implemented ourselves. We show the results in
Figure 3. On this dataset we see that the EKF subspace
methods perform the best (by a large margin), followed
by linear, and then neural-linear, and finally EKF in
the original space (diagonal approximation). We also
see that the deeper model (MLP2) performs worse than
the shallower model (MLP1) when using the neural
linear approximation; we attribute this to overfitting,
due to not being Bayesian about the parameters of
the feature extractor. By contrast, our fully Bayesian
approach is robust to using overparameterized models,
even in the small sample setting.

Efficient Online Bayesian Inference for Neural Bandits

Figure 4: Reward for various methods on MNIST. The
maximum possible reward is 5000.

4.3 MNIST

So far we have only considered low dimensional prob-
lems. To check the scalability of our method, we ap-
plied it to MNIST, which has 784 input features and
10 classes (actions). In addition to a baseline linear
model, we consider three different kinds of deep neural
network: an MLP with 50 hidden units and 10 linear
outputs (MLP1, with D = 39, 760 parameters), an
MLP with two layers of 200 hidden units each and 10
linear outputs (MLP2 with D = 48, 420 parameters),
and a small convolutional neural network (CNN) known
as LeNet5 [LeC+98] with D = 61, 706 parameters.

Not surprisingly, we find that the CNN works better
than MLP2, which works better than MLP1 (see Fig-
ure 4). Furthermore, for any given model, we see that
our EKF-subspace method outperforms the widely used
neural-linear method, even though the latter has un-
limited memory (and therefore potentially takes O(T 2)
time).

For this experiment, we use a subspace dimensionality
of d = 470 (chosen using a validation set). With this
size of subspace, there is not a big difference between us-
ing an SVD subspace and a random subspace. However,
using a full covariance in the subspace works better
than a diagonal covariance (compare blue bars with the
green bars). We see that all subspace methods work
better than the neural linear baseline. In the original
parameter space, a full covariance is intractable, and
EKF with a diagonal approximation (red bar) works
very poorly.

4.4 Varying the subspace

A critical component of our approach is how we es-
timating the parameter subspace matrix A ∈ RD×d.
As we explained in Section 3.4, we have two different
approaches for computing this: randomly or based on
SVD applied to the parameter iterates computing by
gradient descent during the warmup phase. We show
the performance vs d for these two approaches in Fig-
ure 5 for a one-layer MLP with D ∼ 40k parameters
on some tabular datasets. We see two main trends:

6See https://bit.ly/3r9WkQd.

SVD is usually much better than random, especially
in low dimensions; and performance usually increases
with d, and then either plateaus or even drops. The
drop in performance with increasing dimensionality is
odd, but is consistent with the results in [Lar+21], who
noticed exactly the same effect. We leave investigating
the causes of this to future work.

4.5 Time and space complexity

One aspect of bandit algorithms that has been over-
looked in the literature is their time and space complex-
ity, which is important in many practical applications,
like recommender systems or robotic systems, that may
run indefinitely (and hence need bounded memory) and
need a fast response time. We give the asymptotic com-
plexity of each method in Table 1. In Figure 6, we
show the empirical wall clock time for each method
when applied to the MovieLens dataset. We see the fol-
lowing trends: Neural-linear methods (orange) are the
slowest, with the limited memory version usually being
slightly faster than the unlimited memory version, as
expected. The EKF subspace methods are the second
slowest, with SVD slightly slower than RND, and full
covariance (blue) slower than diagonal (green). Finally,
the fastest method is diagonal EKF in the original
parameter space; however, the performance (expected
reward) of this method is poor. It is interesting to note
that our subspace models are faster than the linear
baseline; this is because we only have to invert a d× d
matrix, instead of inverting Na matrices, each of size
Nz ×Nz.

In Figure 7, we show the empirical wall clock time
for each method when applied to the MNIST dataset.
The relative performance trends (when viewed on a
log scale) are similar to the MovieLens case. However,
the linear baseline is much slower than most other
methods, since it works with the 784-dimensional input
features, whereas the neural methods work with lower
dimensional latent features. We also see that the neural
linear method is quite slow, especially when applied
to CNNs, and even more so in the unlimited memory
setting. (We could not apply Lim2 to MNIST since
the code is designed for the tabular datasets in the
showdown benchmark.)

In addition to time constraints, memory is also a con-
cern for long-running systems. Most online neural
bandit methods store the entire past history of obser-
vations, to avoid catastrophic forgetting. If we limit
SGD updates of the feature extractor to a window of
the last M = 100 observations, performance drops (see
e.g., Figure 2). The Lim2 method attempts to solve
this, but is very slow, as we have seen. Our subspace
EKF method is both fast and memory efficient.

https://bit.ly/3r9WkQd

Gerardo Duran-Martin, Aleyna Kara and Kevin Murphy

(a) (b)

Figure 5: Reward vs dimensionality of the subspace on (a) Adult, (b) Covertype. Blue estimates the subspace using SVD,
orange uses a random subspace.

Figure 6: Running time (CPU seconds) for 5000 steps using
various methods on MovieLens.

Figure 7: Running time (CPU seconds) for 5000 steps
using various methods on MNIST. Note the vertical axis is
logarithmic.

5 Discussion

We have shown that we can perform efficient online
Bayesian inference for large neural networks by apply-
ing the extended Kalman filter to a low dimensional
version of the parameter space. In future work, we
would like to apply the method to other sequential
decision problems, such as Bayesian optimization and
active learning. We also intend to extend it to Bernoulli
and other GLM bandits [Fil+10]. Fortunately, we can
generalize the EKF (and hence our method) to work
with the exponential family, as explained in [Oll18].

Finally, a note on societal impact. Our method makes
online Bayesian inference for neural networks more
tractable, which could increase their use. We view
this as a positive thing, since Bayesian methods can
express uncertainty, and may be less prone to making
confident but wrong decisions [Bha+21]. However, we

acknowledge that bandit algorithms are often used for
recommender systems and online advertising, which can
have some unintended harmful societal effects [MTF20].

Acknowledgements

We would like to thank Luca Rossini, Alex Shestopaloff
and Efi Kokiopoulou for helpful comments on an earlier
draft of the paper. This work was supported by an
EPSRC studentship (for Gerardo) and by Google TPU
Research Cloud (TRC).

Efficient Online Bayesian Inference for Neural Bandits

References

[AG13] S. Agrawal and N. Goyal. “Thompson
Sampling for Contextual Bandits with
Linear Payoffs”. In: ICML. Ed. by S. Das-
gupta and D. McAllester. Vol. 28. Pro-
ceedings of Machine Learning Research.
Atlanta, Georgia, USA: PMLR, 2013,
pp. 127–135 (page 1).

[AKR21] M. Aziz, E. Kaufmann, and M.-K. Riviere.
“On Multi-Armed Bandit Designs for Dose-
Finding Clinical Trials”. In: JMLR 22.14
(2021), pp. 1–38 (page 1).

[AZL19] Z. Allen-Zhu and Y. Li. “What Can
ResNet Learn Efficiently, Going Beyond
Kernels?” In: NIPS. 2019 (page 2).

[Bha+21] U. Bhatt et al. “Uncertainty as a Form
of Transparency: Measuring, Commu-
nicating, and Using Uncertainty”. In:
AAAI/ACM Conference on Artificial In-
telligence, Ethics, and Society (AIES).
2021 (page 9).

[BK07] R. M. Bell and Y. Koren. “Lessons from
the Netflix Prize Challenge”. In: SIGKDD
Explor. Newsl. 9.2 (Dec. 2007), pp. 75–79
(page 7).

[Blu+15] C. Blundell, J. Cornebise, K.
Kavukcuoglu, and D. Wierstra. “Weight
Uncertainty in Neural Networks”. In:
ICML. May 2015 (page 2).

[Bor16] S. M. Borodachev. “Recursive least
squares method of regression coefficients
estimation as a special case of Kalman fil-
ter”. In: Intl. Conf. of numerical analysis
and applied mathematics. Vol. 1738. Amer-
ican Institute of Physics, 2016, p. 110013
(page 13).

[CRW17] K. Choromanski, M. Rowland, and A.
Weller. “The Unreasonable Effectiveness
of Structured Random Orthogonal Em-
beddings”. In: NIPS. Mar. 2017 (page 6).

[Dax+21a] E. Daxberger, A. Kristiadi, A. Immer,
R. Eschenhagen, M. Bauer, and P. Hen-
nig. “Laplace Redux–Effortless Bayesian
Deep Learning”. In: arXiv preprint
arXiv:2106.14806 (2021) (page 2).

[Dax+21b] E. Daxberger, E. Nalisnick, J. U. Alling-
ham, J. Antorán, and J. M. Hernández-
Lobato. “Bayesian Deep Learning via
Subnetwork Inference”. In: ICML. 2021
(page 2).

[Du+21] C. Du et al. “Exploration in Online Ad-
vertising Systems with Deep Uncertainty-
Aware Learning”. In: KDD. 2021 (page 1).

[Fil+10] S. Filippi, O. C. Ltci, L. T. P. T. Cnrs, and
T. P. T. Cnrs. “Parametric bandits: The
generalized linear case”. In: NIPS. 2010
(page 9).

[FNG00] N. de Freitas, M. Niranjan, and A. Gee.
“Hierarchical Bayesian models for regular-
isation in sequential learning”. In: Neu-
ral Computation 12.4 (2000), pp. 955–993
(page 2).

[Fre99] R. M. French. “Catastrophic forgetting
in connectionist networks”. In: Trends in
Cognitive Science (1999) (page 2).

[GDFY16] S. Ghosh, F. M. Delle Fave, and J. Yedidia.
“Assumed Density Filtering Methods for
Learning Bayesian Neural Networks”. In:
AAAI. 2016 (page 2).

[Gho+20] B. Ghorbani, S. Mei, T. Misiakiewicz, and
A. Montanari. “When Do Neural Networks
Outperform Kernel Methods?” In: (June
2020). arXiv: 2006 . 13409 [stat.ML]
(page 2).

[Gre+17] K. Greenewald, A. Tewari, P. Klasnja, and
S. Murphy. “Action Centered Contextual
Bandits”. In: NIPS. Nov. 2017 (page 1).

[Guo+20] D. Guo, S. I. Ktena, F. Huszar, P. K.
Myana, W. Shi, and A. Tejani. “Deep
Bayesian Bandits: Exploring in Online
Personalized Recommendations”. In: Rec-
Sys. Aug. 2020 (pages 1, 7).

[HLA15] J. M. Hernández-Lobato and R. P. Adams.
“Probabilistic Backpropagation for Scal-
able Learning of Bayesian Neural Net-
works”. In: ICML. Feb. 2015 (page 2).

[HMT11] N. Halko, P.-G. Martinsson, and J. A.
Tropp. “Finding structure with random-
ness: Probabilistic algorithms for con-
structing approximate matrix decomposi-
tions”. In: SIAM Rev., Survey and Review
section 53.2 (2011), pp. 217–288 (page 6).

[Izm+18] P. Izmailov, D. Podoprikhin, T. Garipov,
D. Vetrov, and A. G. Wilson. “Averag-
ing Weights Leads to Wider Optima and
Better Generalization”. In: UAI. 2018
(page 2).

[Izm+19] P. Izmailov, W. J. Maddox, P. Kirichenko,
T. Garipov, D. Vetrov, and A. G. Wilson.
“Subspace Inference for Bayesian Deep
Learning”. In: UAI. 2019 (pages 1, 2, 5).

[Izm+21] P. Izmailov, S. Vikram, M. D. Hoffman,
and A. G. Wilson. “What Are Bayesian
Neural Network Posteriors Really Like?”
In: ICML. Apr. 2021 (page 2).

https://arxiv.org/abs/2006.13409

Gerardo Duran-Martin, Aleyna Kara and Kevin Murphy

[JGH18] A. Jacot, F. Gabriel, and C. Hongler.
“Neural Tangent Kernel: Convergence and
Generalization in Neural Networks”. In:
NIPS. 2018 (pages 2, 5).

[KCG12] E. Kaufmann, O. Cappe, and A. Garivier.
“On Bayesian Upper Confidence Bounds
for Bandit Problems”. In: AISTATS. Ed.
by N. D. Lawrence and M. Girolami.
Vol. 22. Proceedings of Machine Learn-
ing Research. La Palma, Canary Islands:
PMLR, 2012, pp. 592–600 (page 1).

[Kha20] M. E. Khan. Deep learning with Bayesian
principles. NeurIPS tutorial. 2020
(page 2).

[Kir+17] J. Kirkpatrick et al. “Overcoming catas-
trophic forgetting in neural networks”. en.
In: PNAS 114.13 (2017), pp. 3521–3526
(page 2).

[LA21] E. Levecque and R. Abecidan. Study of
the Neural Thompson Sampling algorithm.
Tech. rep. U. Lille, 2021 (page 15).

[Lar+21] B. W. Larsen, S. Fort, N. Becker, and S.
Ganguli. “How many degrees of freedom
do we need to train deep networks: a loss
landscape perspective”. In: (July 2021).
arXiv: 2107.05802 [cs.LG] (pages 1, 5,
8).

[LeC+98] Y. LeCun, L. Bottou, Y. Bengio, and
P. Haffner. “Gradient-Based Learning
Applied to Document Recognition”. In:
Proceedings of the IEEE 86.11 (1998),
pp. 2278–2324 (page 8).

[Li+10] L. Li, W. Chu, J. Langford, and R. E.
Schapire. “A contextual-bandit approach
to personalized news article recommenda-
tion”. In: WWW. 2010 (pages 1, 3, 7).

[Li+11] L. Li, W. Chu, J. Langford, and X.
Wang. “Unbiased offline evaluation of
contextual-bandit-based news article rec-
ommendation algorithms”. In: WSDM.
2011 (page 7).

[Li+18] C. Li, H. Farkhoor, R. Liu, and J. Yosin-
ski. “Measuring the Intrinsic Dimension
of Objective Landscapes”. In: ICLR. 2018
(pages 1, 5).

[LS19] T. Lattimore and C. Szepesvari. Bandit
Algorithms. Cambridge, 2019 (pages 1, 2).

[Mac92] D. J. C. MacKay. “A Practical Bayesian
Framework for Backpropagation Net-
works”. In: Neural Comput. 4.3 (May
1992), pp. 448–472 (page 2).

[Mac95] D. MacKay. “Probable networks and plau-
sible predictions — a review of practical
Bayesian methods for supervised neural
networks”. In: Network: Computation in
Neural Systems 6.3 (1995), pp. 469–505
(page 2).

[McM+13] H. B. McMahan et al. “Ad click prediction:
a view from the trenches”. In: KDD. 2013,
pp. 1222–1230 (page 1).

[MTF20] S. Milano, M. Taddeo, and L. Floridi.
“Recommender systems and their ethical
challenges”. In: AI Soc. 35.4 (Dec. 2020),
pp. 957–967 (page 9).

[Nea95] R. M. Neal. “Bayesian Learning for Neu-
ral Networks”. PhD thesis. University of
Toronto, 1995 (page 2).

[Ngu+18] C. V. Nguyen, Y. Li, T. D. Bui, and R. E.
Turner. “Variational Continual Learning”.
In: ICLR. 2018 (page 2).

[NZM21] O. Nabati, T. Zahavy, and S. Mannor.
“Online Limited Memory Neural-Linear
Bandits with Likelihood Matching”. In:
ICML. Vol. 139. Proceedings of Machine
Learning Research. 2021, pp. 7905–7915
(pages 2, 4, 6, 14, 15).

[Oll18] Y. Ollivier. “Online natural gradient as a
Kalman filter”. en. In: Electron. J. Stat.
12.2 (2018), pp. 2930–2961 (pages 9, 19).

[Osa+19] K. Osawa et al. “Practical Deep Learning
with Bayesian Principles”. In: NIPS. 2019
(page 2).

[PAYD19] M. Phan, Y. Abbasi-Yadkori, and J.
Domke. “Thompson sampling with ap-
proximate inference”. In: NIPS. Aug. 2019
(page 1).

[PF03] G. V. Puskorius and L. A. Feldkamp.
“Parameter-based Kalman filter training:
Theory and implementation”. In: Kalman
Filtering and Neural Networks. New York,
USA: John Wiley & Sons, Inc., 2003,
pp. 23–67 (page 20).

[PF91] G. V. Puskorius and L. A. Feldkamp. “De-
coupled extended Kalman filter training
of feedforward layered networks”. In: In-
ternational Joint Conference on Neural
Networks. Vol. i. July 1991, 771–777 vol.1
(page 20).

[PS17] N. G. Polson and V. Sokolov. “Deep
Learning: A Bayesian Perspective”. en. In:
Bayesian Anal. 12.4 (Dec. 2017), pp. 1275–
1304 (page 2).

https://arxiv.org/abs/2107.05802

Efficient Online Bayesian Inference for Neural Bandits

[RBB18] H. Ritter, A. Botev, and D. Barber. “On-
line Structured Laplace Approximations
for Overcoming Catastrophic Forgetting”.
In: NIPS. Curran Associates, Inc., 2018,
pp. 3738–3748 (page 2).

[Rob95] A. Robins. “Catastrophic Forgetting, Re-
hearsal and Pseudorehearsal”. In: Conn.
Sci. 7.2 (June 1995), pp. 123–146 (page 2).

[RTS18] C. Riquelme, G. Tucker, and J. Snoek.
“Deep Bayesian Bandits Showdown: An
Empirical Comparison of Bayesian Deep
Networks for Thompson Sampling”. In:
ICLR. 2018 (pages 1, 2, 4, 6, 14).

[Rus+18] D. J. Russo, B. Van Roy, A. Kazerouni,
I. Osband, and Z. Wen. “A Tutorial on
Thompson Sampling”. In: Foundations
and Trends in Machine Learning 11.1
(2018), pp. 1–96 (page 1).

[SJ03] N. Srebro and T. Jaakkola. “Weighted
low-rank approximations”. In: ICML. 2003
(page 7).

[Sli19] A. Slivkins. “Introduction to Multi-Armed
Bandits”. In: Foundations and Trends in
Machine Learning (2019) (pages 1, 2).

[SW89] S. Singhal and L. Wu. “Training Mul-
tilayer Perceptrons with the Extended
Kalman Algorithm”. In: NIPS. Vol. 1.
1989 (pages 2, 5).

[WH97] M. West and J. Harrison. Bayesian fore-
casting and dynamic models. Springer,
1997 (page 14).

[WI20] A. G. Wilson and P. Izmailov. “Bayesian
Deep Learning and a Probabilistic Per-
spective of Generalization”. In: NIPS. Feb.
2020 (page 2).

[Wil20] A. G. Wilson. “The Case for Bayesian
Deep Learning”. In: (Jan. 2020). arXiv:
2001.10995 [cs.LG] (page 2).

[Zha+21] W. Zhang, D. Zhou, L. Li, and Q. Gu.
“Neural Thompson Sampling”. In: ICLR.
2021 (pages 2, 4, 6, 15).

[ZLG20] D. Zhou, L. Li, and Q. Gu. “Neural Con-
textual Bandits with UCB-based Explo-
ration”. In: ICML. Vol. 119. Proceed-
ings of Machine Learning Research. 2020,
pp. 11492–11502 (pages 2, 4).

https://arxiv.org/abs/2001.10995

Supplementary Material:
Efficient Online Bayesian Inference for Neural Bandits

A More details on the methods

A.1 Linear bandits

In this section, we discuss how to do belief updating for a linear bandit, where the reward model has the form
f(s, a;θ) = wT

as, where θ = W are the parameters. (We ignore the bias term, which can be accomodated by
augmenting the input features s with a constant 1.) To simplify the notation, we give the derivation for a single
arm. In practice, this procedure is repeated separately for each arm, using the contexts and rewards for the time
periods where that arm was used.

A.1.1 Known variance σ2

For now, we assume the observation noise σ2 is known. We start with the uniformative prior b0 = N (w|µ0,Σ0),
where µ0 = 0 is the prior mean and Σ0 = (1/ε)I is the prior covariance for some small ε > 0. Let X be the
N ×Ns matrix of contexts for this arm during the warmup period (so N = Nw if we pull each arm Nw times),
and let y be the corresponding N × 1 vector of rewards. We can compute the initial belief state based on the
warmup data by applying Bayes rule to the uninformative prior to get

p(w|Xτ ,yτ) = N (w|µτ ,Στ) (5)

Στ = (Σ−10 +
1

σ2
XTX)−1 (6)

µτ = Στ (Σ
−1
0 µ0 +

1

σ2
XTy) (7)

After this initial batch update, we can perform incremental updates. We can use the Sherman-Morrison formula
for rank one updating to efficiently compute the new covariance, without any matrix inversions:

Σt = (Σ−1t−1 +
1

σ2
xtx

T
t)
−1 = Σt−1 −

Σt−1xtx
T
tΣt−1

σ2 + xTtΣt−1xt
(8)

To compute the mean, we will assume µ0 = 0 and Σ0 = κ2I. Then we have

µt =
1

σ2
ΣtX

Ty =
1

σ2
Σtψt (9)

ψt = ψt−1 + xtyt (10)

An alternative (but equivalent) approach is to use the recursive least squares (RLS) algorithm, which is a special
case of the Kalman filter (see e.g., [Bor16] for the derivation). The updates are as follows:

et = yt − xTtµt−1 (11)

st = x
T
tΣt−1xt + σ2 (12)

kt =
1

st
Σt−1xt (13)

µt = µt−1 + ktet (14)

Σt = Σt−1 − ktkTt st (15)

(Of course, we only update the belief state for the arm that was actually pulled at time t.)

Efficient Online Bayesian Inference for Neural Bandits

A.1.2 Unknown variance σ2

Now we consider the case where σ2 is also unknown, as in [RTS18; NZM21]. This lets the algorithm explictly
represent uncertainty in the reward for each action, which will increase the dynamic range of the sampled
parameters, leading to more aggressive exploration. We have noticed this gives improved results over fixing σ.

We will use a conjugate normal inverse Gamma prior NIG(w, σ2|µ0,Σ0, a0, b0). The batch update is as follows,
where X is all the contexts for this arm up to t, and y is all the rewards for this arm up to t:

p(w, σ2|X,y) = NIG(w, σ2|µt,Σt, at, bt) (16)

Σt = (Σ−10 + XTX)−1 (17)

µt = Σt(Σ
−1
0 µt + XTy) (18)

at = a0 +
Nt
2

(19)

bt = b0 +
1

2

(
yTy + µT

0Σ−10 µ0 − µtΣ−1t µt
)

(20)

This matches Equations 1–2 of [RTS18].7 To sample from this posterior, we first sample σ̃2 ∼ IG(at, bt), and
then sample w ∼ N (µt, σ̃

2Σt).

We can rewrite the above equations in incremental form as follows:

p(w, σ2|D0:t) = NIG(w, σ2|µt,Σt, at, bt) (21)

Σt = (Σ−1t−1 + xtx
T
t)
−1 (22)

µt = Σt(Σ
−1
t−1µt−1 + xtyt) (23)

at = at−1 +
1

2
(24)

bt = bt−1 +
1

2

(
y2t + µ

T
t−1Σ

−1
t−1µt−1 − µtΣ

−1
t µt

)
(25)

It is natural to want to derive a version of these equations which avoids the matrix inversion at each step. We
can incrementally update Σt without inverting Σt−1, using Sherman-Morrison, as in Appendix A.1.1. However,
computing bt needs access to Σ−1t . Fortunately, we can generalize the Kalman filter to the case where V = σ2 is
unknown, as described in [WH97, Sec 4.6]; this avoids any matrix inversions.

To describe this algorithm, let the likelihood at time t be defined as follows:

pt(yt|wt, V) = N (yt|xTtwt, V) (26)

Let λ = 1/V be the observation precision. To start the algorithm, we use the following prior:

p0(λ) = Ga(
ν0
2
,
ν0τ0
2

) (27)

p0(w|λ) = N (µ0, VΣ∗0) (28)

where τ0 is the prior mean for σ2, and ν0 > 0 is the strength of this prior. We now discuss the belief updating
step. We assume that the prior belief state at time t− 1 is

N (w, λ|D1:t−1) = N (zw|µt−1, VΣ∗t−1)Ga(λ|νt−1
2

,
νt−1τt−1

2
) (29)

The posterior is given by

N (w, λ|D1:t) = N (w|µt, VΣ∗t)Ga(λ|νt
2
,
νtτt
2

) (30)

7There is a small typo in Equation 2 of [RTS18]: the Σ0 should be inverted.

Gerardo Duran-Martin, Aleyna Kara and Kevin Murphy

where

et = yt − xTtµt−1 (31)

s∗t = x
T
tΣ
∗
t−1xt + 1 (32)

kt =
1

s∗t
Σ∗t−1xt (33)

µt = µt−1 + ktet (34)

Σ∗t = Σ∗t|t−1 − ktk
T
t s
∗
t (35)

νt = νt−1 + 1 (36)

νtτt = νt−1τt−1 + e2t/s
∗
t (37)

If we marginalize out V , the marginal distribution for zt is a Student distribution. However, for Thompson
sampling, it is simpler to sample λ̃ ∼ Ga(νt2 ,

νtτt
2), and then to sample w ∼ N (µt, σ̃

2Σ∗t), where σ̃2 = 1/λ̃.

A.2 Neural linear bandits

The neural linear model assumes that f(s, a;θ) = wT
aφ(s;V), where φ(s;V) is the feature extractor. It

approximates the posterior over all the parameters by using a point estimate for V, a Gaussian distribution for
each wi (conditional on σ2

i), and an inverse Gamma distributon for each σ2
i , i.e.,

p(θ|D1:t) = δ(V − V̂t)

Na∏
i=1

N (wi|µt,i, σ2
iΣt,i)IG(σ2

i |ai, bi) (38)

where θ = (V,W,a, b) are all the parameters, and δ(u) is a delta function. Furthermore, to avoid catas-
trophic forgetting, we also need to store all of the previous observations, so the belief state has the form
bt = (D1:t, V̂t,µt,1:Na ,Σt,1:Na ,a1:Na , b1:Na). The neural network parameters are computed using SGD. After
updating V̂t, we update the parameters of the Normal-Inverse-Gamma distribution for the final layer weights W,
using the following equations

Σi = (Σ−10,i + XT
iXi)

−1 (39)

µt,i = Σi(Σ
−1
0,iµ0,i + XT

i yi) (40)

ai = a0,i +
Ni
2

(41)

bi = b0,i +
1

2
(yTi yi + µ

T
0,iΣ0,iµ0,i − µT

iΣiµi) (42)

where we define Xi = [φj : aj = i] as the matrix whose rows are the features φj from time steps where action
i was taken, and yi = [rj : aj = i] is the vector of rewards from time steps where action i was taken. See
Algorithm 3 for the pseudocode.

A.3 LiM2

In this section, we describe the LiM2 method of [NZM21]. It is similar to the neural linear method except that
the prior (µ0,i,Σ0,i) gets updated after each SGD step, so as to not forget old information. In addition, SGD is
only applied to a rolling window of the last M most recent observations, so the memory cost is bounded. See
Algorithm 4 for the pseudocode.

See Algorithm 5 for the pseudocode for the step that updates the DNN and the prior on the last layer, to avoid
catastrophic forgetting.

See Algorithm 6 for the projected gradient descent (PGD) step, which solves a semi definite program to optimize
the new covariance.

A.4 Neural Thompson

In this section, we discuss the “Neural Thompson Sampling” method of [Zha+21]. We follow the presentation of
[LA21], that shows the connection with linear TS.

Efficient Online Bayesian Inference for Neural Bandits

Algorithm 3: Neural Linear.
for t = (τ + 1) : T do

st = Environment.GetState(t) ;
σ̃i ∼ InverseGamma(ai, bi) for all i ;
w̃i ∼ N (µi, σ̃iΣi) for all i;
at = argmaxi w̃

T
i φ(st;Vt) ;

yt = Environment.GetReward(st, at) ;
Dt = (st, at, yt) ;
if t is an SGD update step then

θ = SGD(θ,D1:t) ;
V = parameters-for-body(θ) ;
Compute new features: φj = φ(sj ;V) for all j ∈ D1:t ;
for i = 1 : Na do

// Update sufficient statistics ;
ψi =

∑
j≤t:at=i φjyj ;

Φi =
∑
j≤t:at=i φjφ

T
j ;

R2
i =

∑
j≤t:at=i y

2
t ;

Ni =
∑
j≤t:at=i 1 ;

// Update belief state ;
(µi,Σi, ai, bi) = update-bel(µ0,i,Σ0,i, a0,i, b0,i,ψi,Φi, R

2
i , Ni)

else
i = at ;
ψi = ψi + φtyt ;
Φi = Φi + φtφ

T
t ;

R2
i = R2

i + y2t ;
Ni = Ni + 1 ;
(µi,Σi, ai, bi) = update-bel(µ0,i,Σ0,i, a0,i, b0,i,ψi,Φi, R

2
i , Ni)

;
function update-bel(µ0,i,Σ0,i, a0,i, b0,i,ψi,Φi, R

2
i , Ni)) ;

Σi = (Σ−10,i + Φi)
−1 ;

µi = Σi(Σ
−1
0,iµ0,i +ψi) ;

ai = a0,i +
Ni

2 ;
bi = b0,i +

1
2 (R

2
i + µ

T
0,iΣ0,iµ0,i − µT

iΣiµi) ;
return (µi,Σi, ai, bi)

Gerardo Duran-Martin, Aleyna Kara and Kevin Murphy

Algorithm 4: LiM2
for t = (τ + 1) : T do

st = Environment.GetState(t) ;
σ̃i ∼ IG(ai, bi) for all i ;
w̃i ∼ N (µi, σ̃iΣi) for all i;
at = argmaxi w̃

T
i φ(st;Vt) ;

yt = Environment.GetReward(st, at) ;
Dt = (st, at, yt) ;
Mt = push(Dt) ;
if |Mt| > M then
Mt = pop(Mt)

(θ, {µ0,i,Σ0,i}) = update-DNN-and-prior (θ, {µ0,i,Σ0,i},Mt) ;
V = body(θ) ;
Compute new features: φj = φ(sj ;V) for all j ∈Mt ;
for i = 1 : Na do

// Update sufficient statistics ;
ψi =

∑
j∈Mt:at=i

φjyj ;
Φi =

∑
j∈Mt:at=i

φjφ
T
j ;

R2
i =

∑
j∈Mt:at=i

y2t ;
Ni =

∑
j∈Mt:at=i

1 ;
// Update belief state ;
(µi,Σi, ai, bi) = update-bel(µ0,i,Σ0,i, a0,i, b0,i,ψi,Φi, R

2
i , Ni)

Algorithm 5: LiM2 update step
Input: θ = (V,W), {µ0,i,Σ0,i}, D ;
for P1 steps do

Sample mini batch D′ = {sj , aj , yj) : j = 1 : Nb} from D ;
Compute old features: φj,old = φ(sj ;V) for all j ∈ D′ ;
θ = SGD(θ, D′) ;
V = params-for-body(θ), W = params-for-head(θ) ;
Compute new features: φj = φ(sj ;V) for all j ∈ D′ ;
for i = 1 : Na do

Σ0,i = PGD(Σ0,i, {φj,old : aj = i}, {φj : aj = i}) ;

µ0,i = wi for each i ;
Return θ, {µ0,i,Σ0,i} ;

Algorithm 6: Projected Gradient Descent
Input: A, {φj,old}, {φj}
s2j = φ

T
j,oldAφj,old for all j ;

Φj = φjφ
T
j for all j ;

for P2 steps do
g = 2

∑
j(tr(AΦj)− s2j)Φj

A = A− ηg
(Λ,V) = eig(A)
N = {k : λk < 0}
Λ[k, k] = 0 for all k ∈ N
V[:, k] = 0 for all k ∈ N
A = VΛVT

Return A;

Efficient Online Bayesian Inference for Neural Bandits

First consider the linear model rt,a = xTt,aw. We assume σ2 is fixed, Σ0 = κ2I, µ0 = 0, and λ = σ2

κ2 . Recall from
Appendix A.1.1 that the posterior over the parameters is given by

Σt =

 1

σ2
(σ2Σ−10 +

t∑
j=1

xjx
T
j

−1 = σ2

λI +

t∑
j=1

xjx
T
j︸ ︷︷ ︸

Bt


−1

(43)

µt =
1

σ2
Σtψt = B−1t ψt = B−1t

T∑
j=1

xjyj (44)

Thus the posterior over the parameters is given by

p(w|D1:t) = N (w|µt, λκ2B−1t) (45)

The induced posterior predictive distribution over the reward is given by

p(y|s, a,D1:t−1) = N (y|µt,a, vt,a) (46)

µt,a = xTt,aE [w] = xTt,aµt−1 (47)

vt,a = xTt,aV [w]xt,a = κ2λxTt,aB
−1
t−1xt,a (48)

Now consider the NTK case. We replace xt,a with

φt,a =
1√
Nh
∇θf(s, a;θ)|θt−1

(49)

which is the gradient of the neural net (an MLP with Nh units per layer). If we set κ2 = 1/Nh, then the posterior
predictive distribution for the reward becomes

p(y|s, a,D1:t) = N (y|µt,a, vt,a) (50)
µt,a = f(st, a;θt−1) (51)

vt,a = λφT
t,aB

−1
t−1φt,a (52)

where

Bt = Bt−1 + φ(st, at;θt)φ(st, at;θt)
T (53)

and we initialize with B0 = λI. We sample the reward from this distribution for each action a, and then the
greedy action is chosen.

A.5 EKF

In this section, we describe the extended Kalman filter (EKF) formulation in more detail. Consider the following
nonlinear Gaussian state space model:

zt = ft(zt−1) +N (0,Qt) (54)
yt = ht(zt) +N (0,Rt) (55)

where zt ∈ RNz is the hidden state, yt ∈ RNy is the observation, ft : RNz → RNz is the dynamics model, and
ht : RNz → RNy is the observation model. The EKF linearizes the model at each step by computing the following
Jacobian matrices:

Ft =
∂ft(z)

∂z
|µt−1

(56)

Ht =
∂ht(z)

∂z
|µt|t−1

(57)

Gerardo Duran-Martin, Aleyna Kara and Kevin Murphy

(These terms are easy to compute using standard libraries such as JAX.) The updates then become

µt|t−1 = f(µt−1) (58)
Σt|t−1 = FtΣt−1Ft + Qt (59)

et = yt − h(µt|t−1) (60)

St = HtΣt|t−1H
T
t + Rt (61)

Kt = Σt|t−1HtS
−1
t (62)

µt = µt|t−1 + Ktet (63)

Σt = Σt|t−1 −KtHtΣt|t−1 = Σt|t−1 −KtStK
T
t (64)

(In the case of Bernoulli bandits, we can use the exponential family formulation of the EKF discussed in [Oll18].)

The cost of the EKF is O(NyN2
z), which can be prohibitive for large state spaces. In such cases, a natural

approximation is to use a block diagonal approximation. Let us define the following Jacobian matrices for block i:

Fit =
∂f it (z)

∂z
|µt−1

(65)

Hi
t =

∂hit(z)

∂z
|µt|t−1

(66)

We then compute the following updates for each block:

µit|t−1 = f i(µt−1) (67)

Σi
t|t−1 = (Fit−1)

TΣi
t−1F

i
t + Qi

t−1 (68)

St =
∑
i

(Hi
t)
TΣi

t|t−1H
i
t + Rt (69)

Ki
t = Σi

t|t−1H
i
tS
−1
t (70)

µit = µt|t−1 + Ki
tet (71)

Σi
t = Σi

t|t−1 −Ki
tH

i
tΣ

i
t|t−1 (72)

Now we specialize the above equations to the setting of this paper, where the latent state is zt = θt, and the
dynamics model ft is the identify function. Thus the state space model becomes

p(θt|θt−1) = N (θt|θt−1,Qt) (73)
p(yt|xt,θt) = N (yt|f(xt,θt),Rt) (74)

where xt = (st, at). We set Rt = σ2, and Qt = εI, to allow for a small amount of parameter drift. The EKF
updates become

Σt|t−1 = Σt−1 + Qt (75)

St = HT
tΣt|t−1Ht + Rt (76)

Kt = Σt|t−1HtS
−1
t (77)

µt = µt−1 + Ktet (78)
Σt = Σt|t−1 −KtHtΣt|t−1 (79)

The block diagonal version becomes

Σi
t|t−1 = Σi

t−1 + Qi
t−1 (80)

St =
∑
i

(Hi
t)
TΣi

t|t−1H
i
t + Rt (81)

Ki
t = Σi

t|t−1H
i
tS
−1
t (82)

µit = µ
i
t−1 + Ki

tet (83)

Σi
t = Σi

t|t−1 −Ki
tH

i
tΣ

i
t|t−1 (84)

Efficient Online Bayesian Inference for Neural Bandits

This is called the “decoupled EKF” [PF91; PF03].

To match the notation in [PF03], let us define Pt = Σt|t−1, wt = µt|t−1, At = S−1t , ĤT
t = Ht. (Note that At is

a No ×No matrix, so is a scalar if yt ∈ R.) Then we can rewrite the above as follows:

At =

(
Rt +

∑
i

(Hi
t)
TPi

tH
i
t

)−1
(85)

Ki
t = Pi

tH
i
tA

i
t (86)

wi
t+1 = wi

t + Ki
tet (87)

Pi
t+1 = Pi

t −Ki
t(Ĥ

i
t)
TPi

t + Qi
t (88)

	Introduction
	Related work
	Methods
	Algorithmic framework
	Modeling assumptions
	Existing methods
	Our method: Subspace EKF

	Results
	Tabular datasets
	Recommender systems
	MNIST
	Varying the subspace
	Time and space complexity

	Discussion
	More details on the methods
	Linear bandits
	Known variance 2
	Unknown variance 2

	Neural linear bandits
	LiM2
	Neural Thompson
	EKF

