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Abstract

We present new mechanisms for label differ-
ential privacy, a relaxation of differentially
private machine learning that only protects
the privacy of the labels in the training set.
Our mechanisms cluster the examples in
the training set using their (non-private)
feature vectors, randomly re-sample each
label from examples in the same cluster,
and output a training set with noisy labels
as well as a modified version of the true loss
function. We prove that when the clusters
are both large and homogeneous, the model
that minimizes the modified loss on the
noisy training set converges to small excess
risk at a rate that is comparable to the rate
for non-private learning. We also describe a
learning problem in which large clusters are
necessary to achieve both strong privacy
and either good precision or good recall.
Our experiments show that randomizing
the labels within each cluster significantly
improves the privacy vs. accuracy trade-off
compared to applying uniform randomized
response to the labels, and also compared
to learning a model via DP-SGD.

1 INTRODUCTION

The goal of differentially private machine learning
is to train predictive models while preserving the
privacy of user data in a training set. Most dif-
ferentially private learning algorithms protect the
privacy of every feature of every training example,
and consequently inject so much noise into the learn-
ing process that they significantly underperform their

non-private counterparts with respect to the utility
of the learned model (see for instance the results on
CIFAR-10 for DP-SGD (Abadi et al), [2016)). Dif-
ferentially private learning algorithms also typically
need full access to the private training data. These
constraints can be a poor fit for many applications.

For example, consider a hospital that wants to use
demographic data to train a diagnostic model for a
rare illness. The input features to the model (such
as a patient’s age, sex, and race) may be far less
sensitive than the label (whether the patient has
the illness). Also, building an accurate predictive
model is a hands-on, trial-and-error process that
requires technically sophisticated data scientists, and
the hospital is likely to achieve better results if it can
share the training data with outside experts instead
of having to keep all the data in-house.

Label differential privacy, introduced by |Chaudhuri
and Hsu| (2011])), relaxes the goal of differentially pri-
vate machine learning so that only the privacy of
the training labels is protected, since in many appli-
cations that is the only sensitive user attribute. In
this paper, we propose differentially private mecha-
nisms that add noise to the labels in a training set,
and then output the noisy training set and a modi-
fied loss function, where the latter corrects for the
noise added by the mechanism. A learner who wants
to build a predictive model can use the output of
our mechanism to freely experiment with modeling
choices without observing any private user data.

Our approach is to use a variant of randomized re-
sponse (Warner|, 1965) to achieve label differential
privacy. We cluster training examples according to
their (non-private) features, and when randomizing
an example’s label, we choose the replacement label
from the label distribution of the example’s cluster
instead of from the uniform distribution. We show
that this improves the privacy vs. utility tradeoff
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erty we call cluster homogeneity. In particular, we
show that an oracle that minimizes the modified loss
function on the noisy training set outputs a model
whose excess risk depends on the number of samples
and the desired level of privacy, as well as the size
and homogeneity of the clusters.

Our approach requires users to be able to privately
sample from the label distribution of their example’s
cluster. We first describe a mechanism which uses a
trusted server to perform the sampling and forwards
the result to the learner. We also study a peer-to-peer
setting where users are able to exchange messages
with each other without a server’s intervention. For
this setting, we describe a distributed mechanism in
which each user requests a noisy label from exactly
one user in their cluster and then forwards that label
to the learner. We prove that, from the learner’s
perspective, the privacy of this mechanism increases
with the number of users per cluster.

Our contributions: We present our main results
in Table 1l

e In Section [l we describe a centralized cluster-
based randomized response mechanism with ex-
cess risk at most O (K\/g + %
n is the size of the training set, d is the dimension
of hypothesis class, ¢ is the cluster heterogeneity
(the inverse of homogeniety) and K is the num-
ber of classes. Note that the privacy parameter €
appears in a separate term as the dimension d in
the excess risk bound, and thus the convergence
rate of the dimension-dependent term matches
the optimal non-private convergence rate. Also
note that the dimension-free term is small if ei-
ther € is large or ¢ is small, and so there is no
cost of privacy if the clustering is good enough.

, where

e In Section [5] we describe a peer-to-peer cluster-
based randomized response mechanism that sat-
isfies (e, S%)—label differential privacy and has ex-

cess risk O <, / % + gb) for binary classification

problems, where s is the minimum cluster size.
While this is worse than the best-known conver-
gence rate, our mechanism only involves label
flipping and empirical risk minimization, and is
therefore significantly more practical than exist-
ing mechanisms that run in exponential time,
and also does not require a trusted server.

e In Section[6] we present a hardness result relevant
to multiclass classification and label differential
privacy. Our hardness result suggests that a
residual g term cannot be avoided even when

the clustering is pure. To prove the hardness
result we develop a probabilistic analysis method
that bounds the performance of any differential
privacy mechanism.

e Finally, in Section [7] we present experiments
showing that our mechanisms can leverage a
good clustering to improve the privacy vs. util-
ity trade-off, outperforming both uniform ran-
domized response and DP-SGD on real data.

2 RELATED WORK

There is an extensive literature on differentially pri-
vate machine learning. The most common techniques
include output and objective perturbation (Chaud-
huri et al., [2011)) and gradient perturbation (Abadi
et al.l2016)). In comparison, label differential privacy
has received much less attention. (Chaudhuri and Hsul
(2011) introduced the concept and proved a lower
bound on excess risk. |Beimel et al.| (2013)) proved
an upper bound for an inefficient mechanism, while
Bassily et al.| (2018]) described the first efficient mech-
anism with a non-trivial excess risk bound. Their
work is the most closely related to ours, since they
use a PAC oracle as a black box to learn a model on
a private training set. Most previous work relies on a
trusted server to implement the differentially private
mechanism, with the notable exception of (Wang and
Xu,,[2019)), who studied sparse linear regression in the
local model. We will say more about the connections
between previous work and our contributions when
presenting our results below.

Our work is also connected to several areas of research
in non-private machine learning, including learning
from label proportions (Quadrianto et al.; [2009)) and
learning from noisy labels (Natarajan et al.| [2013).

3 PRELIMINARIES

Let X be the ezample space. Let ) be the label space,
with K = |Y| < co. Let D € (X x Y)™ denote a
dataset of n labeled examples, with (z;,y;) denoting
the ¢th element of D.

For each = € X let ¢, € C be the cluster of example
x, where C is the set of all clusters and C' = |C| <
0o. In our setting, clusters are determined using
unlabeled data (i.e., unsupervised clustering), and
since unlabeled data is not private and typically very
abundant, all of our theoretical analysis will assume
that the cluster ¢, of each example z is given. Let
ne(D) = |{(xs,y;) € D : ¢z; = c}| be the size of
cluster ¢ in dataset D.
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Algorithm Excess risk Comments
Optimal o} ( Z) Not private
Beimel et al (2013) 0 <\ / edn> Binary-labels only. Inefficient algorithm.
Bassily et al (2018) 0 (%) Binary labels only.

Our centralized mechanism

1

Cluster size s > 3

Our peer-to-peer mechanism

0 (K\/EJr 1+(Ie(€¢1)¢>
O < 44 ¢>

Binary labels only, cluster size s > ﬁ

(¢,6)-DP with § = %

Table 1: Summary of our results. Let n denote the size of the training set, d the dimension of hypothesis
class, K the number of classes, s the minimum cluster size, and ¢ the cluster heterogeneity.

Let P be a distribution on X x Y. Let (X,Y) ~ P
denote that (X,Y) is drawn from P and let X ~ Py
denote that X is drawn from the marginal distribu-
tion of P on X. We write D ~ P" to indicate that
dataset D contains n labeled examples each drawn
independently from P. Let

p(ylz) = Prix yyplY =y | X = 2]

R _ H@iyi) €D i =z ANy =y}
Puie (D) = e € D a = o

denote true conditional probability and empirical
conditional probability, respectively, of label y € )
for example x € X'. With a slight abuse of notation,
let

p(y‘C) = PI‘(ny)NP[Y =y | cx = C]

H(zi,yi) € D :cy; =cNy; =y}
{(xi,y:) € D : ¢y, = ¢}

denote true conditional probability and empirical

conditional probability, respectively, of label y € )
in cluster ¢ € C.

ﬁy|c(D) =

We write q to denote arbitrary cluster label distribu-
tions, where ¢(y|c) is the conditional probability of
label y € Y in cluster ¢ € C according to q.

A pair of datasets D, D" € (X x J)™ are label neigh-
bors if they contain exactly the same labeled examples
except that one example’s label may differ between
D and D'. A mechanism M : (X x V)" — O is a
randomized algorithm that takes as input a dataset
and outputs into some set . Mechanism M satisifies
(¢, 0)-label differential privacy if for all datasets D, D’
that are label neighbors and all subsets O C O we
have Pr[M(D) € O] < e*Pr[M(D’) € O] + 6, where
the probability is with respect the internal random-
ization of M. Let e-label differential privacy be an
abbreviation for (e, 0)-label differential privacy.

Let H be a hypothesis class containing functions
with domain X. Let £ : H x X x Y + [0,1] be a
loss function that maps each hypothesis and labeled
example to a non-negative loss value. Let R(h) =
E(x yy~pll(h,X,Y)] be the risk of hypothesis h € H
with respect to loss function £. We call R(h) —
infreq R(h) the excess risk of h.

Define dim(#, ¢) to be the dimension of loss func-
tion ¢ and hypothesis class H: dim(H, ¢) = %,
where N, (F) is the a-covering number of the func-
tion class F = {(z,y) — £(h,z,y) : h € H}. We use
covering number as our definition of dimension mostly
for convenience, as it applies to any real-valued loss
function and simplifies comparisons to previous work.
For example, it is known (Mohri et al.l [2018)) that
if ¢ is boolean-valued (say £(h,z,y) = 1 {h(z) # y}
is the zero-one loss) then dim(H,¢) is at most the
VC dimension of H (up to a constant factor), which
permits a direct comparison with Beimel et al.| (2013)
and Bassily et al| (2018). We could substitute an-
other learning-theoretic notion of the complexity of a
hypothesis class (such as pseudodimension) without
significantly affecting our results.

4 CENTRALIZED MECHANISM

In this setting, the dataset is stored by the curator,
who applies a privacy mechanism to the dataset and
outputs a dataset with noisy labels, as well as a
modified loss function.

The centralized mechanism (Algorithm [1)) adds noise
to the labels as follows: (1) Compute the empirical la-
bel distribution in each cluster. (2) Add noise drawn
from Laplace(o/n.(D)) to each label probability in
each cluster ¢. (3) Truncate the per-cluster label
probabilities so they are each in the interval [r,1].
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(4) Renormalize the per-cluster label probabilities so
that they form distributions. (5) With probability A,
replace each label with a random label drawn from
the example’s cluster label distribution.

The modified loss function output by the centralized
mechanism reduces the bias that was introduced by
adding noise to the labels. The modified loss is con-
structed by re-weighting the original loss using matrix
inverses that essentially ‘undo’ the randomization of
the labels. Setting the bias correction parameter
B = X in Algorithm [I] completely removes the effect
of this randomization, in expectation (see Corollary
. Natarajan et al.|(2013) developed this debiasing
technique for the special case of binary labels, which
we generalize to K > 2 labels.

In the supplement we show that the renormalization
procedure in Algorithm [I| keeps each per-cluster label
probability above threshold 7, which is key to proving
the following privacy guarantee.

Theorem 1 (Centralized privacy). The centralized
mechanism (Algom'thm satisfies e-label differential
privacy with € = % + log (1 + %) .

Given a noisy dataset D and a modified loss function
l output by Algorithm |1} our goal is to upper bound
the excess risk (also called the generalization error)
of the hypothesis i that minimizes the average of ¢
on D. A key benefit of such a guarantee is that it
is agnostic to the internal operation of the learning
algorithm, and thus applies to any algorithm for
empirical risk minimization.

The minimum excess risk we can achieve, and the rate
at which we approach that excess risk, will depend
on both the size and quality of the clusters. We
measure the quality of the clusters in terms of their
heterogeneity.

Definition 1 (Cluster heterogeneity). Let ¢ =

Ex~py [Zy Ip(y|X) —p(y|cx)\] be the average to-
tal variation distance between the conditional label
distribution of an example and its cluster.

If clusters have low heterogeneity then it should be
easier to add privatizing noise to the labels without
impacting utility because, intuitively, one can swap
labels among examples in the same cluster without
badly distorting the original data distribution. Our
analysis confirms this intuition.

Theorem 2 (Centralized utility). Let D and { be
the dataset and loss function output by the cen-
tralized mechanism (Algorithm (1]) with threshold T,
noise scale o, resampling probability \, and bias
correction 3, and dataset D as input, and assume

Algorithm 1 Centralized mechanism

Parameters: Threshold 7 € [O, %}, noise scale
o > 0; label resampling probability A € [0, 1);
bias correction parameter 5 € [0, 1).

Input: Dataset D = ((1,91),..., (Zn,Yn)) of
labeled examples.

1: // Add noise to cluster label distributions.

2: for ce C do

3: // Add noise to each empirical probability and
clip.

4: for y € Y do

5: q(yle) -
max {7, min {1, p, (D) + zy.c} },
6: where z, . ~ Laplace ﬁ)
end for
8: // Renormalize distribution.

9 Ao+ 1-37 a(yle)
10: for y € Y do

11: if A, <0 then

12: §ye < qyle) — 7
13: else

14: gy,c —1- q(y‘c)
15: end if

16: end for
17: for y€ Y do

18: q(yle) < alyle) + zf,yé}.cAc
19: end for
20: end for

21: // Randomize labels.

22: for (z;,y;) € D do

23: y; + y with probability ¢(y|ca,).
y;  with probability 1 — A

24: :Ijz < ; . .
y;  with probability A

25: end for

26: // Construct noisy dataset.
27: D ((xlagl)v L) (wnvgn))

28: // Construct modified loss function.

29: For each z € X let Q, 5 € REXK be the label
randomization matrix defined by

Quply yl = (1= B)L{Y =y} + Ba(y|ca).-

30: Define the loss function £ : H x X x Y +— R as

Uh,zy) =D Quply yl(h, 2, y).
y/

31: return Dataset D and loss function /.
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each cluster in D has size at least s. Let h =
arg mlnheHZ (y)eD U(h,z,y) be the hypothesis in

H that minimizes { over D. Then with probability
1 —~ over the choice of D ~ P™

. _ CK [dim(#H,¢)logt
EWMH—g%MMSI_B - B
CK|B - )|

where C' > 0 is a universal constant and the expecta-
tion is with respect to the Laplace random variables
(the zy.c’s) in Algorithm|[1]

Proof sketch. The complete proof is lengthy and is
deferred to the supplementary material. Here we
present a sketch of the main ideas.

Given access to the original dataset D, it is well-
known that the excess risk of the empirical risk
minimizer is upper bounded with high-probability

by O (L\/E), where maxy, 5, [0(h, z,y)| < L. We
show that the modified loss function ¢ satisfies
Af;

— B’

also show that when 8 = A\ we have

max |[{(h, z,y)| < (1)

h,x,y

E Z U(h,x,y)

(:L’,y)ED (z,y)€D

for every hypothesis h. In other words, the modified
loss on the noisy dataset is an unbiased estimate
of the true loss on the original dataset. Combining
these results enables us to prove that h converges to
zero excess risk as n — oo if § = A, at the cost of
increasing the convergence rate by a O(%) factor
compared to non-private learning.

If B # A then the modified loss function does not
completely remove the bias introduced by adding
noise to the labels. In this case we prove that the
residual excess risk as n — oo is upper bounded by

[U(h,z,y)| - 1B = Al (6 +¥)

where ¢ is the cluster heterogeneity from Definition
[[]and % is a measure of cluster distortion. The proof
is completed by using Eq. . to bound |€(h x,y)|
and also by showing

4.1 Discussion

Taken together, Theorems|[I]and 2] specify a three-way
trade-off between privacy, excess risk and convergence
rate. The first term in the upper bound in Theorem
[ is asymptotically zero as n — oo and determines
the convergence rate, while the remaining terms are
asymptotically non-zero when 8 # A and represent
the residual excess risk when n — oco. Thus the
bias correction parameter 3 of Algorithm [1| trades-off
between excess risk and convergence rate, while the
label resampling probability A, the noise scale o, and
the threshold 7 trade-off between excess risk and
privacy.

To illustrate these trade-offs, we consider some special
cases of Theorems [I] and [2] starting with a setting of
the parameters in Algorithm [I] that reduces the cen-
tralized mechanism to uniform randomized response
on the labels (which can of course be implemented
as a local mechanism).

Corollary 1 (Uniform randomized response). If

_ K
€e>0, T—K,B A= T e

- and o = oo then the
centralized mechanism (Algomthml) replaces each
label with a uniform random label and satisfies e-label
differential privacy. If in addition €e < 1 and D ~ P™
then with probability 1 — ~v over the choice of D and
the randomness in the mechanism the hypothesis h

from Theorem |9 satisfies

dim(H, £) log *
nf B0 — 0 | £,/ 3m0LOlos 5
heH € n

R(Rh) — inf R(h)

Despite its extreme simplicity, to the best of our
knowledge the excess risk of uniform randomized
response for label differential privacy has not previ-
ously been analyzed. For binary classification (i.e.,
K = 2) we know that dim(#H, ¢) = O(d), where d is
the VC dimension of hypothesis class H, and thus
the excess risk converges asymptotically to zero at

a rate O (iﬁ) By comparison, the convergence
rate of the mechanism due to Beimel et al.| (2013) is
0 ) However, their mechanism is significantly

less practical than empirical risk minimization, as it
involves running the exponential mechanism on €(2)
hypotheses. Bassily et al.| (2018)) give an efficient al-

72/0), which is
a worse dependence on both d and n. Also, previous

work was limited to binary classification, while our
analysis applies to multi-class classification.

gorithm that obtains a rate of O (

We now show that the convergence rate can be sig-
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nificantly improved when the clusters are both large
and have low heterogeneity.

Corollary 2 (Cluster-based randomized response).
Ife>0,r=¢,,8:0,/\:1+(66+1)¢ andaz%
then the centralized mechanism (Algorithm |1]) sat-
isfies O(e)-label differential privacy. If in addition
each cluster has size at least s > Ei and D ~ P™
then with probability 1 — v over the choice of D the
hypothesis h from Theorem |9 satisfies

E[R(h)] - inf R(h)

dim(H, ¢) log% K24

1+ (ec—1)9p

< 0

where the expectation is with respect to the Laplace
random variables (the z, .’s) in Algorithm .

If we let K = 2 then the dimension-dependent term
in the convergence rate in Corollary

o A d
2[is O <\/;>,
where d is the VC dimension of hypothesis class H,

and this is the optimal rate for non-private learning.
However, instead of converging to zero, the excess

risk converges to O (ﬁ) when the minimum

cluster size s > é Note that this residual excess
risk is small when the privacy parameter € is large or
the cluster heterogeneity ¢ (see Definition [1f) is small.
Thus there is not necessarily any cost of privacy if
the clustering is good enough.

5 PEER-TO-PEER MECHANISM

In the peer-to-peer setting, the dataset is stored in a
distributed manner, with each user 7 storing labeled
example (x;,y;). Instead of communicating with a
central curator, each user sends and receives messages
directly to other users. In this section we assume the
labels are binary, so that each y; € {0, 1}.

In the peer-to-peer mechanism (Algorithm , each
user 7 first adds noise to her own label, and then
replaces her label with the noisy label of a user j.
User j is selected uniformly at random from among all
the users in user ¢’s cluster. Note that this means we
may have ¢ = 7, and also that user 7 may be selected
by other users besides user i. In other words, the
mechanism is based on resampling, not permuting,
the labels within a cluster.

An alternative approach would be for users to com-
municate with a server that randomly permutes the
labels within each cluster before forwarding the data
to the learner. We could analyze such a mechanism

via the technique of privacy amplification by shuf-
fling (Cheu et all 2019; Erlingsson et al., [2019]). But
this approach would require a shuffling server that is
trusted by all users.

Theorem 3 (Peer-to-peer privacy). There exists
a constant C' > 0 such that if each cluster in D

has size at least s and o = CL(;’;S then the peer-to-
peer mechanism (Algorithm |9) satisfies (¢, 0)-label

differential privacy with

93/2 93/4

1
< — < —.
6_O<9+\/§10g8+81/4) and6_82

Algorithm 2 Peer-to-peer mechanism
Parameters: Label flipping probability a €
[0, 1]; subsampling rate 6 € [0, 1]
Assume: Label set J) = {0,1}.
Input: Dataset D = ((z1,y1),---,(Tn,yn)),
where each labeled example (x;,y;) is stored by
user 4.

1: for user ¢ do
// Add noise to own label.

. Ui with probability 1 — «
3: Yi . s
1 —y; with probability «
4: // Select a random user in the same cluster.
¥ Select user j uniformly at random from the

set {j' ¢z, =z}

6: // Replace own label with other user’s noisy
label.
7 gl < yoj

8: // Subsample.
9: Add i to I with probability 6.
10: end for

11: // Construct noisy dataset.
12: D« ((%iy,¥iy )5 - -+, ((4,,, sy, ), where each i; €
1.

13: return Dataset D.

While the centralized mechanism outputs a modified
loss function that corrects for the bias introduced by
adding noise to the labels, the peer-to-peer mecha-
nism does not output a modified loss function, since
there is no single party with knowledge of how the la-
bels were randomized. As a result, our upper bound
on excess risk (Theorem {4} does not converge asymp-
totically to zero, although it does converge to small
excess risk when the clusters have low heterogeneity.
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Theorem 4 (Peer-to-peer utility). Let D be the
dataset output by the peer-to-peer mechanism (Al-
gorithm @) when given dataset D as input. Let
h = argminycy Z(w,y)ef) L(h,x,y) be the hypothe-
sis in H that minimizes the true loss function ¢ over
D. Then with probability 1 — v over the choice of
D ~ P™ and the randomness in the mechanism

- dim(#, ¢) log *
R(h) — inf R(h) <O w

(6%
heH on o+

Combining Theorems [3] and [4] shows that if each
cluster has minimum size s > % and € < 1 then

the peer-to-peer mechanism satisfies (e, % )-label dif-

ferential privacy and has excess risk O ( % + ¢>.

This is worse than the O <\ / ;fl) convergence rate

obtained by Beimel et al. (2013), but our peer-to-
peer mechanism is significantly more practical, since
it only consists of label flipping and empirical risk
minimization, instead of requiring the exponential
mechanism to be run on Q(2%) hypotheses. Our
mechanism also does not require a central curator.

5.1 Comparison to the shufle model

The shuffle model (Cheu et all |2019; Erlingsson
et al.,[2019) involves (at least) two servers: a curator
and a shuffler. Typically, each user applies a local
randomizer to her data, encrypts the noisy data using
the curator’s public key, and sends the encrypted
data to the shuffler. The shuffler strips identifiers
from the messages it receives and randomly permutes
them, then forwards the messages to the curator, who
decrypts them.

The major benefit of the shuffle model is that the
privacy provided by the local randomizers is ampli-
fied by the shuffling procedure and increases with
the number of users. However, if the curator and
shuffler collude with one another, then this privacy
amplification property is invalidated. In real-world
implementations of the shuffle model (e.g., RAPPOR
(Erlingsson et al., [2014))) both servers are operated
by the same entity thus limiting the privacy benefits.

By contrast, in our peer-to-peer model, each user
receives an unencryted message from exactly one
other user, and the learner need not be trusted by
any user for privacy amplification to be achieved.

Of course, the peer-to-peer model has its own limita-
tions. Unlike in the shuffle model, we have not shown

a privacy amplification result that applies to any lo-
cal randomizer, but only to simple label flipping.
Also, each user observes the noisy label of another
user, and the privacy of this label is not amplified.
Indeed, it is straightforward to show that, from the
perspective of each user, Algorithm [2] only satisfies
log(1=2)-label differential privacy, as well as only
(0, %)-1abel differential privacy. However, the amount
of data observed by any single user is minuscule (i.e.,
a single bit).

One could implement shuffling in our peer-to-peer
model by having all users in each cluster agree on
a random permutation of the users, and then have
each user request the noisy label of the user they are
mapped to by the permutation. However, agreeing
on a random permutation (say, by agreeing on a pseu-
dorandom seed) would itself require a cryptographic
protocol (such as key-agreement protocol (Merklel
1978))), since the permutation must be kept secret
from the learner.

Since Algorithm [2] involves a subsampling step, it
is tempting to ask whether we could achieve pri-
vacy amplification in the peer-to-peer model by label
flipping and subsampling alone, without exchanging
messages among users. It is straightforward to see
that this will not work. Since only the labels of the
dataset are private, any subsampling applies to the
labels only, so the learner can always construct a
complete dataset in which some of the labels are
replaced with L, indicating that a label was not pro-
vided by the user. So a mechanism in which some
users drop their label, but do not communicate with
other users, is equivalent to randomized response on
the set {0,1, L}. Essentially, amplification by sub-
sampling is only effective when users can completely
remove themselves from the dataset, but this isn’t
possible when only the users’ labels are private.

6 LOWER BOUND

Note that, in Theorem [2] even if we assume that we
have perfect clusters (i.e. ¢ = 0) of size s, then by
setting =0, A=1,7=0,and 0 = %, we have an e-

label differentially private mechanism with an excess
risk of O <\/g + i) In other words, we have the

optimal non-private convergence rate plus a residual
term £ which is ©(1) for s = K. In this section we
motivate this relationship between the size of clusters
and the number of labels. We fix a basic learning task
and show that, for any constant € it is not possible to
learn a nontrivial e-label differentially private model,

when the size of high quality clusters are small. In
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fact, our result holds in a simpler yet relevant setting
where we have access to the whole label distribution
statically. This motivates the necessity of having
large high quality clusters in our positive result when
the number of labels is large.

We first define our learning task.

Definition 2. Label Association Problem (LAP):
Setup: We have a dataset D € (X x V)", where
each example x appears with only one label y. C is a
partitioning of the data in D and size of each cluster
c € C is exactly s.

Task: For each cluster ¢ € C we intend to learn the
set of labels that are associated with examples in c,
denoted as Y. = {y | Ix € X s.t. ¢, = c A (z,y) €
D}.

Let M be a label differentially private mechanism for
LAP. D = M (D) is a set of pairs (c,y). We interpret
D as a binary classification, where the input is (¢,y)
and the output is 1 if (¢,y) € D. We use precision
and recall defined as follows to measure the accuracy
of model D. We have

Yeee Lyey, Bu[D(ey)]

Precision = .
Em(D]]
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where the expectations are over the randomness of
the mechanism M. Note that without differential
privacy, this problem can be learned with precision 1
and recall 1.

The next theorem states our main hardness result,
and the proof is in the supplementary material. Our
proof defines a randomized process that generates
two neighboring datasets D and D’. Then we fix an
arbitrary e-label differentially private mechanism M
and show that if € is a constant either recall of M
on D’ is sub-constant or precision of M on D is sub-
constant. We do this by analysing the probability
that, the label in D’ that is not in D, is preserved
by mechanism M. If such probability is small then
the the recall of M(D’) is small, if it is large the
precision of M (D) is small.

Theorem 5. When s < o(K), it is impossible to
have an e-differential privacy mechanism M for LAP
with a constant €, that guarantees a constant precision
and a constant recall.

7 EXPERIMENTS

We evaluated the following mechanisms on the
MNIST (LeCun and Cortes|, 2010), Fashion-MNIST

(Xiao et al.,|2017)) and CIFAR-10 (Krizhevskyj, 2009)
datasets:

e UniformRR: Algorithm 1 with parameters set
according to Corollary 1.

e ClusterRR: Algorithm 1 with parameters set
according to Corollary 2.

e DP-SGD: Differentially-private variant of SGD
(Abadi et al., |2016]).

For the ClusterRR mechanism we learned 100
clusters on each wunlabeled training set us-
ing the sklearn.cluster.KMeans package
(with default parameters). For both ran-
domized response mechanisms we used the
sklearn.linear_model.LogisticRegression

package (set to ‘multinomial’ and using the ‘SAGA’
solver) to learn a classifer on the noisy training
set output by the mechanism. For DP-SGD we
learned a logistic regression model by adapting the
implementation from the TensorFlow Privacy library
(TFP, |2019). We varied the noise added to the
gradients, and for each noise level computed € using
the privacy-by-iteration method (Feldman et al.|
2018) with § = 1/n, where n is the training set size.

For each mechanism and each dataset we evaluated
the learned classifer’s accuracy on the test set. See
the first three panels of Figure [I] for results, where
each data point is the average of 5 trials, and each y-
axis is normalized, i.e., divided by the accuracy of the
non-private classifier that is learned on the original
training set. Observe that ClusterRR outperforms
both UniformRR and DP-SGD on each dataset for a
wide range of the privacy parameter e.

We also assessed the importance of a good clustering
for ClusterRR by fixing the privacy parameter € =
0.5 and varying the number of clusters. See the
bottom panel of Figure which shows that the
performance of ClusterRR degrades sharply when
there are too few clusters (since the clusters are
too heterogeneous) or too many (since the clusters
are too small). This empirical finding matches our
theoretical analysis (see Theorem [2)).

7.1 Comparsion to LP-2ST mechanism

We also compared ClusterRR to LP-2ST, a mecha-
nism proposed in recent and concurrent work by
Ghazi et al| (2021). Similar to ClusterRR, the
LP-2ST mechanism generates a label-private training
set by using a variant of randomized response. The
mechanism proceeds in two stages. In the first stage,
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Figure 1: Performace of each mechanism on the
MNIST (first panel), Fashion-MNIST (second panel)
and CIFAR-10 (third panel) datasets. Performance
of the ClusterRR mechanism (for ¢ = 0.5) on each
dataset when varying the number of clusters (bottom
panel).
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Figure 2: Performance of each mechanism on bina-
rized MNIST dataset.

the mechanism applies uniform randomized response
to a portion of the training set, which is then used
to learn a model. In the second stage, the mech-
anism applies uniform randomized response to the
remainder of the training set, but only after using
the model’s predictions to prune the label set to the
most likely labels. While effective when the number
of labels is large, this approach can lead to degen-
erate prunings consisting of only a single label in
the second stage, especially for binary classification
problems and for small values of the privacy param-
eter €. Figure [2| compares ClusterRR to LP-2ST on
a binarized version of MNIST (i.e., one digit is the
positive label and all other digits are the negative
label). Each data point in the figure is the average
of 5 trials.

8 CONCLUSION

In this work we presented centralized and distributed
label differential privacy mechanisms. Our mecha-
nisms are based on a clustering of examples in the
training set. We upper bound the excess risk of
our mechanisms by a rate comparable to that of
non-private learning, especially when the clusters are
both large and homogeneous. We complement our
results with a lower bound that illustrates why it is
hard to learn privately when we do not have large
homogeneous clusters. We also present experimen-
tal results on real data showing that our proposed
mechanisms outperform existing mechanisms for dif-
ferentially private learning.
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Supplementary Material:
Label differential privacy via clustering

A Analysis of the centralized mechanism

A.1 Label randomization matrices

We first establish properties of the label randomization matrices Qxﬁ € REXE defined by the centralized
mechanism (see line 29| of Algorithm [1]).
1-5

Lemma 1. The minimum singular value of any label randomization matriz Qm,g s at least N

Proof. For brevity, we drop subscripts and conditioning on z, letting Q = Qxﬁ and q = q(-|c;) Let
v =<w1,...,Vk > be an arbitrary vector such that ||v|s = 1. Let u =< uy,...,ux >= Qv. Note that for
all i we have u; = (1 — B)v; + Bq' v. We prove this lemma in two cases: First, all v;s have the same sign.
Second, there exists a v; which is negative and a v; which is positive.

Case 1: All v;s have the same sign. Note that we have

fullz = (| (L= B)os + BaTv)?

W

e
=
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e

same sign
=1
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Case 2: There exists a v; which is negative and a v; which is positive. Note that we have

[ull2 =

K

ST((1 - By + BqTv) >

i=1
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Lemma 2. Fach label randomization matrix Qxﬁ satisfies max, Zy, V2K

Q;,}g[y’,y]( < 2K

Proof. By properties of matrix norms we have
ool = Jazy], < VR Jacs], <125

where the last inequality follows from Lemma [I] O

A.2 ‘Well-definedness of centralized mechanism

Theorem 6 (Well-definedness). In Algorithm[i] the cluster label distributions q satisfy 4(y|c) € [r,1] and
Zy’ey G(y'|c) =1 for every label y € ¥ and cluster ¢ € C. Also, each label randomization matriz Qg g is
invertible.

Proof. To show that ¢(y|c) € [1,1], first note that clearly ¢(y|c) € [r, 1], and therefore &, . > 0. So if A, <0
then ¢(y|c) < 1 and

~ _ gy,c A
q(ylc) q(y|c)+72y,§y',c c

JAVS
=7+ q(yle) — 7 + (q(yle) — T)W
AV
=71+a(yle) =7+ (ale) =T A %
—“A,
=74+q(ylc) =7+ (7 — Q(y|c))m
> 74 q(yle) — 7+ 7 — q(yle)
= 7'7
where we used 1 — K7 > 0. Similarly, if A, > 0 then ¢(y|c) > 7 and
a(le) = alyle) + <A,
Zy/ 5y’7c
TS F S R Y R —
>y =a(y']e)
JAVS
=1+4q(yle)—1+(1— q(yIC))m

<1+q(yle) =14+ 1 —q(ylc)
— 1’

where we used K — 1 > 0. Thus g(y|c) € [r,1]. Also we have 3 , G(y'|c) = 1 because

> dly qul +ZZ Ac=1-Ac+A, =1.

o 1 é.y” c

Finally, the invertibility of each label randomization matrix Qw g is immediate from Lemma |1 and the fact
that g < 1.
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A.3 Proof of Theorem [l

Proof. Let M be the mechanism in Algorithm [l We can write M as the composition of two mechanisms,
M; and M, with M (D) = Ms(D, M,(D)), where M;(D) outputs the noisy cluster label distributions q,
and M2(D, @) uses q to resample the labels in D to form D and constructs the modified loss function /. By
sequential composition and post-processing, if M; and My are €1- and eo-differentially private, respectively,
then M is (€1 + e)-differentially private.

Note that after adding z, . to each py.(D), mechanism M; does not access dataset D again. Since each
Pylc(D) is computed using a disjoint subset of the dataset and has sensitivity 1/n.(D), and the scale of
Laplace random variable z, . is 0/n.(D), mechanism M is (1/0)-differentially private.

Mechanism My is just randomized response per label, using ¢(-|c,,) as the random label distribution for each
labeled example (x;,y;), followed by post-processing. Thus My is log(1 + (1 — X)/A7)-differentially private,
since for all y € ) we have

Prigi=ylyi=yl 1-X+A(yles,)) 1-A

=~ = ~ <1+ .
Pr(g; =y | vi # v A(yle,) AT

A.4 Proof of Theorem

Fix threshold 7 and noise scale 0. We write (x,y,¥y,y,2) ~ Pg  to denote the following joint distribution:
Draw (x,y) = ((z1,%1);- - -, (¥n,Yn)) ~ P", run Algorithm [1]on input dataset D = (x,y) with bias correction
parameter 8 and label flipping probability A, and let y, ¥, z be the vectors of variables zy ¢, s, ¥;, respectively,
defined in the algorithm. Note that Algorithm [I|is deterministic if (x,y,y,¥,2) is fixed.

Let Rﬁ’,\(h) = % Z(m,y ch g(h, z,y) be the empirical loss of & with respect to the loss function and dataset
output by Algorithm (1| when (x,y,y,¥,2) ~ Pj ,, and let Rg \(h) = Ex,y7§,797z[1%5’>\(h)].
Lemma 3 (Unbiasedness of modified loss). Rg g(h) = R(h) for any hypothesis h € H.

Proof. Let (x,y,¥,¥,2) ~ Pg 5- We have
Rp,5(h) = Exy.3.3.4[R5,5(h)]

- . N )
= Ex,y,i’/,y,z E Z E(h, Li, yl)

1 . _
=Bayyya |~ 2D Quslt 5il(hwiry)
L Z y/

1 i -
=By gy |~ Z SO 1 {Gi =y} Q. v wlt(h, i,y
L iy Yy

1 - .
== Ex,y,Sl,z E ZZZQLﬁ[yvyl]Qxll,ﬁ[ylvy]g(ha xiay/) (2)
L ¢ Yy v

1 o N
= Ex,y,ﬁ/,z E Z Z é(ha Zi, y/) Z QMl’,@ [yla y}Qri,ﬁ [ya yz]
L ¢ v y

=Exy li Z 5(7% Zi, yi)] (3)
= R(h)
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where Eq. . ) follows from the definition of QI 5 in Algorlthm I (see line [29] and recall that in this case
B =X). We establish Eq. ( . 3) by letting M = Qx BQ% g and noting

My, yi] ZQ L Qx, 8ly, i)

and M =1, and therefore M|y, y;] =1 if ¢ = y; and M[y’,y;] = 0 otherwise. O

Lemma 4 (Boundedness of modified loss). maxy, 5, ’E(h,x,y)’ < \f—lﬁ(

Proof. By the definition of ¢ in Algorithm (see line

~_ V2K
;Lngﬂf(h z,y)| = max > @ply’sylllh,,y')| < | maxy ‘Qx,}a[y’,y]’ (gnaif(h,x,y)l) <175
bhadt] $I / © y/ $E5
where the last inequality follows from Lemma [2] and the fact that ¢(h,z,y) € [0, 1]. O

Definition 3 (Cluster distortion). For any mechanism that takes as input a dataset D and defines cluster

label distributions qp let
X lavtie) - 5|

Y =Eppn lmaXE
) y

be the expected maximum total variation between the empirical cluster label distributions and qp.

Lemma 5 (Boundedness of cluster distortion). If n.(D) > s with probability 1 then

22K o
P

P <2KT+

Proof. Let [z]; = max{0, z} for all z € R. For any label y and cluster ¢

q(ylc) = Pyje(D) = max {7, min {1, (D) + zy.c } } — Dyjc(D)
< max {7, Py|c(D) + zy,c} — Py|c(D)
ST+ Pyle(D) + [2y,e]+ — Dyje(D)
=T+ [zy,c]+

and
Pyle(D) = a(yle) = pyje(D) — max {7, min {1, pyjc(D) + zy.c } }
< Pyle(D) —min {1, p, (D) + 2y, }
= max {ﬁy|c(D) -1, —zy7c}
< [=zyel+

which implies

lq(yle) = Byje(D)] = max {q(ylc) = Pyc(D), Byle(D) — q(ylo)} <7+ [zyelt + [=2pelt =T+ 2] (4)
We also have
—Ac=ale) =1 <Y (Bye(D) +7+ [zy.es) = 1= KT+ [2.0]4

and

Ac =1- Z Z py\c - Zy70]+) = Z[_Z%C]-i-

Y Y
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which implies

|Ac| = max {—A., Ac} < K7+ Z[Zym]-&- + Z[*Zymh = K7+ Z |2y.c (5)
y y y
Therefore
Gwle) — Bye(D)] = |alyle) + Zgy;gy A= ylD)
< la(vle) - ,10(D)] + Efy’fy 1A
§T+|zy,c|+2:jf’g/70 KT+Z\Zy/,C| (6)

where Eq. @ follows from Eq. and Eq. . Therefore for any cluster ¢
Zy fy,c
Z‘q yle) — Pyl )| SKT"’ZEZ [lzy,cl] + Ez S & KT+Z|Z?J’,C|
y y! SY,¢ y’

=2K7+2) B[zl (7)

Recall that each z, . has mean zero and standard deviation - . Continuing from Eq. (7)) we have

22K 202K
2K7 +2Y B, [lzy0l] < 2K7+23 /B, [22,] = 2K7 + V2Ko e \/j9 o
Yy Yy

ne(D)
where we used Jensen’s inequality and n.(D) > s. O

Lemma 6 (Excess risk). If maxy, ., [0(h, z,y)| < L then for any hypothesis h
[Rp,5(h) = Roa(h)| < LIB = A (6 + )

Proof. Let (x,y,y,¥,2) ~ Pj 5 and (x',y',¥',¥',2") ~ Pj ,. Note that between each corresponding pair of
variables only ¥ and ¥’ can have different distributions. Therefore

Rgp(h) — Rga(h) = Exy 35,2 [Rﬂ,ﬁ(h)} —Exyy.5 .2 [Rﬁ,x(h)]

Zﬁhxz,yll— ,yyyz[ Zéhxuyz]

= xyyz[ ZZ (1= B)1{y: =y} + B1 {5 = y}) (hxz,y)l

x,Y,¥,¥ 2z

xyyz[ ZZ 1= N1{y; =y} +A1{gi =y}) ¢ (hzvz,y)]
=Exyy.2 l ZZ (A=) 1{yi =y} + (B—N1{i = y}) {(h, s, )]

- )‘)% ZEx,y,z lz (py\czl( ) -1 {yl - y}) (h xlvy)] (8)
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Y

Each term in Eq. is

Exy.z [Z (py|cz,i (D) —1{y; = y}) (b, mi, y)]

Y

Z; Ne, . D) - Ca; 0
Z(ify,|<z>>)+( 1(n)c .(%M )_p(ym> o V(h’xi’y)w

E, [g(hvxiay)} ”

< Ex

> Ip(ylex,) — p(ylas)]

INA
e

¢ (10)

where Eq. follows from our assumption about L and the definition of cluster heterogeneity in Definition
Each term in Eq. @D is

Exy.y.z lz (1 {9 =y} — pyle., (D)) 0(h, y)]

Y

=Exyz

Z (Q(y|cz,) ~ Dylca, (D)> g(haxlay)]

Y

< By

E, lz ivlea) = Py, (D) \ﬂh»WWH
o (11)

where Eq. follows from our assumption about L and the definition of cluster distortion in Definition
Combining Eq. , @[), and proves the lemma. O

Lemma 7 (Complexity bound). There erists a universal constant C > 0 such that

max

. CK [dim(H,¢) log%
max [E, (5.0 (h)] = Raa(h)] <

—1-8 n

with probability 1 — .

Proof. We first review some results from statistical learning theory Mohri et al.|(2018)). Let a = (aq,...,a,) €
A™ be a vector of independent random variables, and let F be a class of real-valued functions with domain
A™. We say F has b-bounded differences if |f(a) — f((a_;,a;))| < % for all f € F and a; € A. If F has
b-bounded differences then with probability 1 —

blog%
max|f(a) - Ba [f@)]] < 2R(F,a) + | — (12)

where R(F, a) is the Rademacher complexity of F for random variable a. For any b > 0 let
N N
absconvy(F) = {szfl N e NZ lw;| <b, f; € ]:} (13)
i=1 i=1
be the absolute convex hull of F scaled by b. We have

R(absconvy(F),a) = b- R(F,a) (14)
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Finally, if F = {(z,y) — ¢(h,z,y)} then

R(F,a) < 0 TR (15)
for a universal constant C' > 0.
We now proceed to prove the lemma. We have
B, [Roa(h)] = Raa(h)| = [Ba [Raa(h)] = Bxyyg.alRoa)]
< [Bs [Roa(0)] — By gulfon(h) | %y
+ |Ey.5.alRoa(h) | x,¥] Ex,y&,y,z[ﬁfﬁ,x(h)]’
= |Ex [Ron ()] ~ EysalRoa(h) | x.¥]]
+ By galfaa(h) | x,¥] — Bay [EysalBoah) [ x3]]|  (16)

which follows from definitions. Let F/, F” be the function classes

o {(5’,,}7) — E, [f%g,,\(h)”

Recalling that (x,y,y,¥,z) ~ Pj ,, note that each (z;,y;) is independent and each (y;, 7;) is independent
given (x,y,z). Continuing from Eq. ., we have with probability 1 —

s [Boa(W)] = Boa(W)] < 28(F.(3.9) + 28(F". (x.¥)) + 2, [max|#(h 2.)| )
log =
< 2R(FL (3.3)) + 2R(F, (x.y)) + \/z i” (18)
8CK dim(H 2K
<175 \/ ,/1_ \/ (19)

where Eq. (| . follows from , Eq. (18 ) follows from Lemma ' and Eq. ( . follows from the definition
of / in Algorithm I (see line 3 ) Lemma and Eq. ( . Combining terms proves the lemma. [

We are now ready to prove Theorem [2]

Proof of Theorem[4 Combining Lemma [4 Lemma [5| Lemma |§| and our assumption that n.(D) > s with
probability 1 we have

4K Ko
R o) = R (0] < 05 (o K+ 27 (20)
Therefore

R(h) = R(h*) = Rg g(h) — Ry 5(h")
= Rga(h) — Rga(h*) + (Rp,a(h) — Rga(h)) + (Raa(R*) — Rg a(h*))
+ (Rga(h) — Rga(h)) + (Rga(h*) — RgA(h"))
8K Ko
<0+_IB<¢+KT+>
0 N

+ (Rga(h) = Ra(h) + (Raa(h*) = Rga(h")) (21)
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where Eq. follows from the choice of h and Eq. . Taking the expectation of both sides over z and
continuing from Eq. we have

~ . 8K Ko -
By R()] - R() < 7 (gb + K7+ S) + 2max|E, [Ron ()] = Ron(h)|
8K Ko .
< - _
<13 (¢+KT+ - > + 2max|E, [Roa(W)] = Ron(h) (22)
where Eq. follows from Lemma m O

B Analysis of peer-to-peer mechanism

B.1 Proof of Theorem [3

First we need a technical lemma.

Lemma 8. (1+ %)Sxa <e? 143 forallz>2,s€{-11},a € {5,1}

We next state and prove a more general version of Theorem [3

Lemma 9 (Peer-to-peer privacy, general version). If non-empty clusters in D have size at least % then the
peer-to-peer mechanism (Algorithm@ satisfies (¢, 0)-label differential privacy with

e = flog (6+3> +\/§flog <1+3>
sa

Vsa
_ ag?
0= oxp <_4(a—|—i) (1—&))

forall € € [O, 3ay/0s(1 — a)]

Proof. Consider two neighboring datasets D and D’ such that there is an example with label 0 in D but label
1in D’, and let ¢ be the cluster containing this example. Let D and D’ be the output of the peer-to-peer
mechanism when given D and D', respectively, as input. Since the labels in D and D’ are chosen independently
per cluster, the label distribution in all clusters other than c is identical in both D and D'.

Let n = n.(D) = n.(D’) > s be the number of examples in cluster ¢, and let p be the fraction of examples
in cluster ¢ with a positive label in D. Also let ¢ = On be the fraction of users in cluster ¢ who send an
example to the learner. Observe that the label distribution in cluster ¢ in D is completely characterized
by the binomial density function f(k;¢,p), which gives the probability of k successes in ¢ trials that each
have success probability p. Similarly, the label distribution in cluster ¢ in D' is completely charaterized by
f(k;t,p'), where p’ =p+ L.

Let g=1—p. Alsolet S_ ={keN:k>tp—¢&/lq} and S; = {k € N: k <tp+ &/tp}. Thus to prove the
theorem it suffices to show

f(k;t,p) . f(kst,p) .
o < efifkeS_and V= <e‘ifkecS 23
[kt p') — fk;t,p) — - (23)
and
> flkit,p) <dand Y f(kit,p)) <0 (24)
kgS_ kS,

To prove the first part of Eq. we can simplify

= o= () () =) () @
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and if k € S_ then k > ¢p — £\/tq which implies

O A o Rt (5 (5 By

and by applying Lemma 8 and ng > sa > 2 we have

() (02 =) e 2"
(o 2) (o) e e

Similarly, to prove the second part of Eq. we can simplify

Flstp) @)L =) (np+ 1)’“ (nq— 1)” _ <1 N 1)'“ (1 _ 1) (20)

f(k;t,p) pk(1 —p)t=k np ng

and if k € Sy then k < ¢p + £/tp which implies

() () <) ()Y (o))

and by applying Lemma [8| and np > sa > 2 we have
1)\’ v\ v 3\° 3\ Y%
() ) ((1+) <(er2) (1+) (31)
np np np V1P

(s 2Y (1 )" e @

To prove the first part of Eq. define the binomial cumulative distribution function F'(k;t,p) =
Zk/gk f(k;t,p). By Bernstein’s inequality

7%t
F(tp —ty;t,p) < exp (‘W)

for all v > 0. Let v = f\/g and note that
2 2 q q S s
37 = §€ . <2a4v/0s(1 — ) 1= 2avV1 — an/q - <2(1—-gq)q - < 2pq,

and thus

2t 52 §2
> flkit,p) = F(tp — ty;t,p) < exp <_Zm> < exp (—4]3) < exp (—4(1_Q)> <.

keS_

To prove the second part of Eq. let v = @/g and ¢ =1 —p’. We have

2 2
37 = 35\/§ < 2a4/0s(1 — oz)\/é =2av1 — a\/ﬁ\/z <2(1- p)p\/z <2(1—=p"p =2p'¢,

and since 1 — F(tp' + ty;t,p') = F(tq' — tv;t;¢') we have

/ / / 72t O‘f2
Zf(k;t,p)=F(tq—tv;t;q)SeXp(— )SGXP<_4(OZ+§)(1Q)>:5' O

/ !
keS4 4p 4
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We are now ready to prove the Theorem

Proof of Theorem[3 Let & = 4y/logs. Since a = 4‘/\5/:%";8 < %

£ =4+/logs < 4logs < 041/92—8 <aybs(l —a)

where the last inequality uses o < % Therefore the conditions of Lemma |§| hold. Also

a « 1 1
1 _a) > - T 25
(a+3H1—-a)  at+: 1+ 2

since s > % Therefore by Lemma@

— 04§2 €2 _ _—2logs __ 1
5‘6"p<‘4<a+;><1—a>>SexP(‘s)‘e o

. o §2 .
and since o« = ENNC it follows from Lemma |§| that

3 3 V720 23/4301/4
=61 = O¢log (1 + — | =01 O¢log (1 + ———
‘ Og(“sa)“& Og( +x/@> % <e+¢510g5)+\f§ og( g > (33)

0 393/2 23/4393/4
<
=0+ ey/slog s T

O

C Hardness result

C.1 Proof of Theorem [5

Proof. Fix a set of examples X. Select a pair of neighboring datasets D € (X x V)™ and D’ € (X x Y')" as
follows.

To construct D, for each cluster ¢ € C, select s labels uniformly at random without replacement and assign
them to the examples in ¢. Examples in different clusters may have the similar labels. To construct D’ from
D, select an example x; uniformly at random form X and redraw its label uniformly at random from '\ Ve,, -
We use i to denote the index of the data that differs between D and D’, with the datapoints being (x;, y;)
and (x;,y;) respectively. Let mechanism M be an e-differential privacy mechanism for LAP that guarantees a
¢ precision and an 7 recall. Denote D = M (D) and D' = M(D').

Note that by construction of D', for each cluster ¢ we have |V’| = s. Hence, we have

n < z:CEC Zy’ey{: EM[D/(C’ y/)}
a ZCEC |yé‘

o Z(w,y’)ED’ ]E]\/[[I)I(CQL-7 y/)]
" .

This means that for a [uniformly] random (z,3’) € D’ we have D'(c,,y') = 1 with probability at least .
Recall that index 7 that indicates the difference of D and D’ is chosen uniformly at random from {1,...,n}.
Let O be the set of all possible models that can be generated by M(.) that contains (cy,,y;). By definition of
differential privacy we have Pr[D’ € O] < ¢ Pr[D € O]. This implies that

Pr[D € O] > e “Pr[D’ € O] > e~ .
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Hence, with probability at least e™“n, we have D(cm,y;) = 1. Recall that by construction y; is a label chosen
uniformly at random from )\ V., . Hence each any cluster c is associated with any label y; ¢ ). with
probability e~ ¢n. Therefore, we have

Hence, we can bound the precision of D by

>eee Lyey, Eu[D(e )

¢ < _
En([|D]]
ZCEC Zyeyc EM[D(Cv y)}
- B(K —s)e~cn
<"
T 2K —s)en
B s
(K —s)e~n’
This gives us ¢ne ¢ < %= € o(1). Hence, for a constant e, either precision ¢ is sub-constant or recall 7 is

(K—s)
sub-constant. O
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