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Abstract

Multi-marginal optimal transport (MOT) is a
generalization of optimal transport to multi-
ple marginals. Optimal transport has evolved
into an important tool in many machine learn-
ing applications, and its multi-marginal exten-
sion opens up for addressing new challenges
in the field of machine learning. However,
the usage of MOT has been largely impeded
by its computational complexity which scales
exponentially in the number of marginals.
Fortunately, in many applications, such as
barycenter or interpolation problems, the cost
function adheres to structures, which has re-
cently been exploited for developing efficient
computational methods. In this work we de-
rive computational bounds for these meth-
ods. In particular, with m marginal distri-
butions supported on n points, we provide a
Õ(d(T )mnw(G)+1ε−2) bound for a ε-accuracy
when the problem is associated with a graph
that can be factored as a junction tree with
diameter d(T ) and tree-width w(G). For the
special case of the Wasserstein barycenter
problem, which corresponds to a star-shaped
tree, our bound is in alignment with the ex-
isting complexity bound for it.

1 Introduction

The history of optimal transport can be traced back
to the 18-th century when the French mathematician
Monge introduced this tool for his engineering projects.
In optimal transport problems one seeks an optimal
strategy to move resources from an initial distribution
to a target one. This theory has initially had a tremen-
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dous impact to fields such as economics and logistics.
During the last decades, with new efficient computa-
tional methods (Villani, 2009; Cuturi, 2013) and more
available computational power, optimal transport the-
ory has also been used for addressing a broad class of
problems both within the machine learning community
(Peyré et al., 2019; Solomon et al., 2014, 2015; Arjovsky
et al., 2017), but also in related fields such as imaging
(Haker et al., 2004) and systems and control (Chen
et al., 2016).

Multi-marginal optimal transport (MOT) is a natural
extension of standard optimal transport to scenarios
with more than two marginal distributions. In the
discrete setting, the objective of MOT is to find an
optimal coupling between m marginals µ1, . . . , µm ∈
Rn+ over X, where X is a discrete space with support
in n points. A m-mode tensor B ∈ Rnm

+ is a feasible
transport plan if it satisfies the assigned marginals,
Pk(B) = µk, where

[Pk(B)](xk) =
∑
x\xk

B(x), for all xk ∈ X, (1)

where x = (x1, . . . , xm) ∈ Xm. In this paper we con-
sider a version of this problem where the marginals
are typically only imposed on a subset of the transport
tensors nodes, and we denote this subset of indices by
Γ ⊂ {1, . . . ,m}. The set of feasible transport plans
consistent with these marginals {µk}k∈Γ is then

Πm
Γ ((µk)k∈Γ) = {B ∈ Rn

m

: Pk(B) = µk,∀k ∈ Γ}.

Given a non-negative cost tensor C ∈ Rnm

+ , where C(x)
denotes the cost associated with a unit mass on the
tuple x, the multi-marginal optimal transport problem
reads

min
B∈Πm

Γ ((µk)k∈Γ)
〈C,B〉. (2)

The MOT problem is a linear program, thus, in prin-
ciple, the simplex algorithm can be used to solve it
exactly. The complexity however explodes quickly as
the problem size increases. In practice, the MOT is
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solved approximately instead. The goal of these ap-
proximation algorithms is to find B̂ ∈ Πm

Γ ((µk)k∈Γ)

such that 〈C, B̂〉 is an ε-approximation of the MOT
problem (2). That is, B̂ is an approximation of the
transport tensor and satisfies

〈C, B̂〉 ≤ min
B∈Πm

Γ ((µk)k∈Γ)
〈C,B〉+ ε.

A popular method to approximately solve the MOT
problem (2) is to solve an entropic regularized version
of it where an entropy barrier term is added to the
objective. This regularized problem can be solved by
the renowned Sinkhorn iterations (Deming & Stephan,
1940; Cuturi, 2013).

Related work: A fundamental question in the study
of MOT algorithms is understanding their complexi-
ties, and several complexity bounds have been derived
over the last few years for various MOT algorithms
(Lin et al., 2019; Altschuler & Boix-Adsera, 2020; Car-
lier, 2021). The best known complexity bound for the
general multi-marginal Sinkhorn iterations is Õ(m

3nm

ε2 )
(Lin et al., 2019) with greedy updates, which scales
exponentially in the number of marginals m. This is
not surprising as the size of the variable B grows expo-
nentially. This complexity bound can be improved by
exploiting the structure of the cost tensor C. A well-
known example is the Wasserstein barycenter problem
where the cost can be decomposed into pairwise costs
between the marginals and the barycenter. Kroshnin
et al. (2019) shows that the iterative scaling algorithm
finds an ε-approximate solution to the barycenter be-
tween L distributions in Õ(Ln

2

ε2 ) operations. A more
general class of costs where better computation com-
plexity can be achieved is associated with the tree struc-
ture (see Section 2). Such structures appear in various
applications, such as barycenter problems (Lin et al.,
2020; Kroshnin et al., 2019), interpolation problems
(Solomon et al., 2015), and estimation problems (Elvan-
der et al., 2020). It was shown in Haasler et al. (2021c)
that a complexity bound for MOT problems with tree-
structured cost (including the barycenter problem as a
special case) is Õ(m

4n2

ε2 ), where m denotes the number
of marginals. Many other MOT problems are struc-
tured according to graphs that contain cycles, e.g., in
the generalized Euler flow problem (Benamou et al.,
2015), control applications (Haasler et al., 2020), and
multi-species problems (Haasler et al., 2021b). Tree-
structured optimal transport problems are often for-
mulated as a sum of bi-marginal optimal transport
problems and in previous works the numerical scheme
is often based on regularizing each of the bi-marginal
problems locally. However, if the underlying graph
structure contains cycles, there is no such represen-
tation of the problem. In Altschuler & Boix-Adsera

(2020), it was shown that the complexity for MOT
with general graph-structured cost scales polynomially
as the number of marginals increases, as long as the
tree-width of the graph is properly bounded, but they
do not provide explicit dependencies on the parameters.
Note that some other structures of the cost tensors such
as the low rank property can be leveraged (Altschuler
& Boix-Adsera, 2020), but these are very different to
the graphical structure considered in this work.

Our contribution: The purpose of this work is to
provide a tighter complexity bound for solving the
MOT problem with general graph-structured costs.
For the cases where the MOT problem is structured
according to a tree, i.e., the graph does not contain
any cycles, we show that an ε-approximation of the
solution can be found within Õ(d̄(G)mn2ε−2) opera-
tions, where d̄(G) denotes the average distance between
two leaves of the tree. This improves on the previous
result Õ(m4n2ε−2) for tree-structured MOT in Haasler
et al. (2021c). For the barycenter problem, which corre-
sponds to the special case of a star-shaped graph, this
matches the best known bound when no further accel-
eration of the method is applied. The framework in
this paper also treats a class of MOT problems that is
much larger than what can be described by bi-marginal
OT problems. In the case of a general graph G, the
complexity is Õ

(
d̄(T )mnw(G)+1ε−2

)
, where T is a min-

imal junction tree over the graph G, and w(G) is the
tree-width of G. Our contribution can be summarized
as follows:

i) By a novel analysis of the method, leveraging a
random update scheme, we improve on the best
known complexity result (cf. Table 1).

ii) By using a novel regularization term we simplify
the complexity analysis (cf. Remark 1).

iii) We augment the Sinkhorn belief propagation
method (Algorithm 1, see also Haasler et al. (2021c,
Algorithm 2)) by a new rounding scheme for tree-
structured MOT, given in Algorithm 2.

iv) We extend the analysis to MOT problems with
general graph-structured costs.

We remark that our Algorithm 1 is very similar to those
in Haasler et al. (2021c); Altschuler & Boix-Adsera
(2020); the main results are on the explicit complexity
bounds. There are accelerated versions of the Sinkhorn
algorithm, see, e.g., Lin et al. (2019); Kroshnin et al.
(2019) that can improve the dependence with respect
to ε from ε−2 to ε−1. Note that these accelerations
cannot improve the dependence over m or n. Since
the algorithm studied in this work is not accelerated,
we compare the complexity bounds only to algorithms
with no acceleration.
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Table 1: Best-known complexity bounds for optimal transport without acceleration.
Note that our bounds hold with high probability.

Problem Complexity Paper

Bi-marginal optimal transport Õ(n2ε−2) Dvurechensky et al. (2018)

Barycenter optimal transport Õ(mn2ε−2) Kroshnin et al. (2019)

General MOT Õ(m3nmε−2) Lin et al. (2019)

Tree-structured MOT Õ(m4n2ε−2) Haasler et al. (2021c)

Tree-structured MOT Õ(d(G)mn2ε−2) Ours

balanced Graph-structured MOT Õ(d(T )mnw(G)+1ε−2) Ours

µ

µ1

µ2

µ3

µ4

µ5

Figure 1: Graph asso-
ciated with a barycen-
ter problem (3), where
L = 5.

Notation: For a matrix C ∈ Rn×n, we denote ‖C‖∞
its largest element. We denote a graph as the tuple
G = (V,E), where V is the set of vertices, and E is
the set of edges. For a vertex k ∈ V , we denote the
set of neighbouring vertices by N(k) ⊂ V . Let 1d
denote the all-ones vector/matrix/tensor in Rd, and
let exp(·), log(·),�, and ./ denote the element-wise
exponential, logarithm, multiplication, and division of
tensors, respectively. The p(m,n, ε) = Õ(q(m,n, ε))
notation absorbs polylogarithmic factors related to
n, i.e., there exist positive constants c2, c3 such that
p(m,n, ε) ≤ c2q(m,n, ε)(log n)c3 .

2 Graph-structured MOT

In this paper we consider MOT problems with a cost
that decouples according to a graph. Such structures
appear in many applications, for instance in barycen-
ter problems (Lin et al., 2020; Kroshnin et al., 2019),
interpolation problems (Solomon et al., 2015), and es-
timation problems (Elvander et al., 2020; Singh et al.,
2020). In fact, one of the very first studies of MOT,
on the generalized Euler-flow problem, has a graph-
structured cost (Brenier, 1989; Benamou et al., 2015).

Example 1. (Fixed-support Wasserstein Barycenter).

A special case of a graph-structured optimal transport
problem is the fixed support barycenter problem (Agueh
& Carlier, 2011) with uniform weights

min
µ∈Rn

L∑
`=1

1

L
W (µ, µ`), with W (µ, ν) = inf

B∈Π(µ,ν)
〈C,B〉,

(3)

where Π(µ, ν) = Π2
{1,2}(µ, ν) denotes the standard set

of feasible transport plans for two marginals. The un-
derlying structure can be described by a star-graph as
illustrated in Figure 1. Problem (3) can be written as
the multi-marginal problem (2), where the cost tensor

ρt1 ρt2 ρtN

µ0 µ1

Figure 2: Graph associated with a Wasserstein least
square problem (5).

C ∈ RnL+1

is defined as

C(x1, . . . , xL, xL+1) =

L∑
`=1

1

L
C(xL+1, x`), (4)

and constraints are given on the set Γ = {1, . . . , `}.

Example 2. (Wasserstein least squares problem in
Karimi et al. (2020)) Given a a set of probability mea-
sures ρt1 , ρt2 , . . . , ρtN with 0 ≤ t1 < t2 < · · · < tN ≤ 1,
we aim to find two distributions µ0 and µ1 such that
the set of measures is closest to the displacement inter-
polation between µ0 and µ1 in terms of the Wasserstein
distance. More specifically, we seek the solution to

min
µ0,µ1

N∑
i=1

W (ρti , µti)
2 (5)

where µt denotes the displacement interpolation con-
necting µ0 and µ1. The structure of this problem is
described by the graph in Figure 2. By associating µ0

and µ1 with the first and last marginal, respectively,
problem (5) can be reformulated as a MOT problem (2)
where constraints are given on the set Γ = {1, . . . , N}
and the cost tensor is defined as

C(x0, x1, . . . , xN+1) =

N∑
i=1

‖xi − (1− ti)x0 − tixN+1‖2

+ α‖x0 − xN+1‖2,

where a regularization term α‖x0 − xN+1‖2 is added
to promote short interpolation. Note that this cost can
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be written in terms of pairwise interactions between
marginals, which are represented by the edges in the
graph in Figure 2.

Similar to Example 1 and 2, we can define a MOT
problem that is structured according to any graph
G = (V,E). Therefore, we associate each vertex in V
with a marginal of the transport plan B, and each edge
in E with a pair-wise cost. That is, for the interaction
between vertices k1 and k2 we define a cost matrix
C(k1,k2), and we let E be the set of all these pair-wise
interactions. Then the graph-structured cost tensor is
defined by

C(x1, . . . , xm) =
∑

(k1,k2)∈E

C(k1,k2)(xk1
, xk2

). (6)

Problem (2) with a cost tensor of the form (6) is
called a graph-structured MOT problem (Haasler et al.,
2021a,c).

Many graph-structured optimal transport problems,
for instance interpolation and barycenter problems, are
naturally described by tree graphs, i.e., graphs that
do not contain any cycles. It is important to note
that every tree-structured MOT problem can equiva-
lently be expressed as a sum of coupled bi-marginal OT
problems. However, general graph-structured MOT
problems contain more information and cannot be rep-
resented as a sum of coupled OT problems, cf. Haasler
et al. (2021a, Remark 3). Even in the case of tree-
structured problems, the multi-marginal regularization
is often favorable, because it yields less smoothed out
solutions and is stable for smaller regularization param-
eters η (Haasler et al., 2021a, Section 5). In this work
we utilize the fact that any graph can be converted
into a tree using the junction tree technique (Koller
& Friedman, 2009, Chapter 10), and we will use this
representation to derive complexity bounds for general
graph-structured MOT problems. It should be noted
that in the case of a tree-structured MOT problem we
can without loss of generality consider the case, where
Γ is the set of leaves (Haasler et al., 2021a, Proposition
3.4).

3 Sinkhorn belief propagation
algorithm

In practical applications the MOT problem is often
prohibitively large for standard linear programming
solvers, and one therefore has to resort to numerical
methods to obtain an appropriate solution. A well-
known approach, based on the seminal work by Cuturi
(2013), is to regularize the objective in (2) with an
entropic barrier term (Benamou et al., 2015). In par-

ticular, we introduce the barrier term

H(B |M) = 〈B, log(B)− log(M)− 1nm〉,

where
M(x1, x2, . . . , xm) =

∏
k∈Γ

µk(xk).

The regularized MOT problem reads then

min
B∈Πm

Γ ((µk)k∈Γ)
〈C,B〉+ ηH(B |M), (7)

where η > 0 is a small regularization parameter.
Remark 1. Note that our choice of entropy reg-
ularizer is slightly different from the standard one
〈B, log(B) − 1nm〉 often used for the Sinkhorn algo-
rithm. The extra term −〈B, log(M)〉 turns out to sim-
plify the approximation procedure (there is no need to
alter the marginal distributions first to increase the
minimum value of their elements as in Dvurechensky
et al. (2018); Lin et al. (2019)) and the complexity
analysis (see, e.g., Lemma 1).

The optimal solution of the regularized multi-marginal
optimal transport problem (7) can be compactly ex-
pressed in terms of the optimal variables of the dual
problem. More precisely, the optimal transport tensor
is of the form

[B(Λ)](x1, . . . , xm) = exp (−C(x1, . . . , xm)/η)

·
∏
k∈Γ

(
exp
(λk(xk)

η

)
µk(xk)

)
, (8)

where Λ = {λk}k∈Γ is the optimal solution of the dual
of (7), which is given by (cf. Haasler et al. (2021a))

min
Λ
ψ(Λ) := ηP (B(Λ))−

∑
k∈Γ

µT
k λk. (9)

Here, P (B) =
∑

x B(x) ∈ R is the projection over all
marginals of B, i.e., the sum over all elements.

The optimal solution to (9) can be efficiently found by
the renowned Sinkhorn iterations (Benamou et al., 2015;
Haasler et al., 2021c). In particular, the multi-marginal
Sinkhorn algorithm is to find the scaled variables uk =
exp(λk/η), for k ∈ Γ, by iteratively updating them
according to

u
(t+1)
k ← u

(t)
k � µk./Pk(B(Λ(t))). (10)

There are several approaches to perform these updates:
At each iteration, the next marginal k ∈ Γ to be up-
dated can be picked in a random, cyclic, or greedy
fashion (Benamou et al., 2015; Lin et al., 2019). In
this paper we discuss the random updating rule. The
greedy update requires more operations for each iter-
ation as all the projections for k ∈ Γ are needed for
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an update. The traditional cyclic update introduces
strong couplings between updates which makes the
complexity analysis much more challenging.

For general MOT, computing the projections
Pk(B(Λ(t))) requires O(nm) operations, which creates
a large computational burden. However, in case the
MOT problem has a tree-structure, the projections
Pk(B(Λ(t))) can be computed by a message-passing al-
gorithm that utilizes the belief propagation algorithm
(Yedidia et al., 2003), as described in Haasler et al.
(2021c,a). This requires only matrix-vector multiplica-
tions of size n. In particular, the projections are of the
form

[Pk(B(Λ(t)))](xk) =
u

(t)
k (xk)µk(xk)m`k→k(xk), if k ∈ Γ∏

`∈N(k)

m`→k(xk), if k /∈ Γ, (11)

where the messages are computed as

m`→k(xk) =
∑
x`

K(k,`)(xk, x`)
∏

j∈N(`)\k

mj→`(x`), if ` /∈ Γ

∑
x`

K(k,`)(xk, x`)u
(t)
` (x`)µ`(x`), if ` ∈ Γ,

(12)

where K(k,`)(xk, x`) = exp(−C(k,`)(xk, x`)/η).

Since we can without loss of generality assume that Γ
is the set of leaves of the tree, each vertex k ∈ Γ has a
unique neighbour `k ∈ N(k). The Sinkhorn iterations
(10) with the projections (11) thus read

u
(t+1)
k (xk)← (m`k→k(xk))−1.

Note that when we update the scaling vectors u(t)

k(t)

and in the previous iteration updated u(t−1)

k(t−1) it is only
required to recompute the messages between k(t−1)

and k(t) (Haasler et al., 2021c; Singh et al., 2020). The
Sinkhorn method is summarized in Algorithm 1. Here,
we apply a random updating scheme, where the next
scaling vector to be updated is picked from a uniform
distribution of the remaining scaling vectors, except
the previous one. Other common update rules for the
Sinkhorn iterations, such as cyclic or greedy updates,
can be obtained by simply changing the selection of
k(t) in Algorithm 1.

From the scaling vectors {uk}k∈Γ that are returned
from Algorithm 1 we can construct the transport ten-
sor B̃ as in (8). However, this tensor is not guaran-
teed to lie in the feasible set Πm

Γ ((µk)k∈Γ), and thus a
rounding step is needed. Algorithm 2 describes a novel
rounding scheme for tree-structured MOT that is based

Algorithm 1 SINKHORN_BP(ε′, {µk}k∈Γ,C, η)

Initialization: u(0)
k = 1 ∈ Rn, for k ∈ Γ; t = 1;

k(0) ∈ Γ
while

∑
k∈Γ ‖Pk(B(Λ(t)))− µk‖1 ≥ ε′ do

1. Randomly pick k(t) ∈ Γ \ k(t−1)

2. Update messages mk1→k2
according to (12) on

the path from k(t−1) to k(t)

3. Update u(t+1)
k (xk) to be{

(m`k→k(xk))−1, for k = k(t), and `k ∈ N(k),

u
(t)
k (xk), for k ∈ Γ \ k(t),

4. t← t+ 1
end while
Output: u(t+1)

k , k ∈ Γ

Algorithm 2 ROUND (B, {µk}k∈Γ)

Initialization: Bk,`k = Pk,`k(B) ∈ Rn×n for all
k ∈ Γ and each `k ∈ N(k)
for k ∈ Γ do
Input (Bk,`k ;P`k(B), µk) into (Altschuler et al.,

2017, Algorithm 2) and get B̂k,`k such that B̂k,`k ∈
Π(P`k(B), µk)
end for

Output: B̂ = {B̂k,`k ; k ∈ Γ} ∪
{Pk1,k2

(B); (k1, k2) ∈ E, k1, k2 /∈ Γ}

on the rounding for bi-marginal optimal transport in
Altschuler et al. (2017, Algorithm 2).

Note that a transport tensor that solves a graph-
structured MOT problem (2) or (7) has the same
tree-structure as C (or more precisely exp(−C/η), see
(8)) and is thus fully determined by the projections
Pk1,k2

(B) on the edges (k1, k2) ∈ E (Koller & Fried-
man, 2009), which are given by

[Pk1,k2
(B)](xk1

, xk2
) =

∑
x\{xk1

,xk2
}

B(x). (13)

It is therefore not necessary to construct the full tensor
B, which would be computationally and memory-wise
expensive. Instead it suffices to give the transport ma-
trices for the edges as input and output to the rounding
scheme Algorithm 2. By slight abuse of notation, we let
B((Bk1,k2)(k1,k2)∈E) denote this tensor that decouples
according to the tree structure G and satisfies the pro-
jections [Pk1,k2

(B)] = Bk1,k2
for (k1, k2) ∈ E (Koller &

Friedman, 2009). Note that the projections (13) can
be cheaply computed from the scaling vectors {uk}k∈Γ

as described in Haasler et al. (2021c, Theorem 4). The
full method for finding an ε-approximate solution to a
tree-structured MOT problem is summarized in Algo-
rithm 3.
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Algorithm 3 ε-approximation of tree-structured MOT

η ← ε
2m log(n) ; ε′ ← ε

8RΓ
C

.
{uk}k∈Γ ← SINKHORN_BP(ε′, {µk}k∈Γ,C, η).

(Algorithm 1)
Construct B̃((Bk1,k2)(k1,k2)∈E) from {uk}k∈Γ.
B̂← ROUND(B̃, {µk}k∈Γ). (Algorithm 2)
Output: B̂

4 Tree structured MOT analysis

In this section, we present a complexity bound for the
Sinkhorn belief propagation algorithm for solving MOT
problems with tree-structured costs. We first provide
a few technical lemmas that will be used in the proof.
The proofs of all the supporting lemmas are given in
the supplementary material. The first result provides
bounds for the scaling vector iterates.
Lemma 1. Let λk = η log(uk), where uk are generated
by Algorithm 1. Let Λ∗ = {λ∗k}k∈Γ be a solution of (9).
Then for each k ∈ Γ it holds

max
xk

λk(xk)−min
xk

λk(xk) ≤ RkC ,

max
xk

λ∗k(xk)−min
xk

λ∗k(xk) ≤ RkC ,

where
RkC := ‖C(k,`k)‖∞,

and where `k ∈ N(k) is the (unique) neighbour of k.

Note that we use a novel regularization that was sug-
gested in Marino & Gerolin (2020) and Carlier (2021),
see Remark 1. This yields the improvement of the result
in Lemma 1 compared to similar results in Dvurechen-
sky et al. (2018); Lin et al. (2019) and slightly simplifies
the following analysis.

The following Lemma relates the error in the dual
objective value to the stopping criterion of Algorithm 1.
Lemma 2. Let Λ = {λk}k∈Γ, where λk = η log(uk)
and uk are generated by Algorithm 1, and let Λ∗ =
{λ∗k}k∈Γ be a solution to (9). Then it holds

ψ(Λ)− ψ(Λ∗) ≤ RΓ
C

∑
k∈Γ

‖Pk(B(Λ))− µk‖1,

with RΓ
C = maxk∈ΓR

k
C , where RkC is defined as in

Lemma 1.

The increment between two sequential Sinkhorn iterates
is related to the stopping criterion of Algorithm 1 as
described in the following.
Lemma 3. For any Λ(t), let Λ(t+1) be the next iterate
of the algorithm in (10). Then,

E
[
ψ(Λ(t))− ψ(Λ(t+1))

]
≥ η

2|Γ|2
(et)

2

with
et :=

∑
k∈Γ

‖Pk(B(Λ(t)))− µk‖1.

The expectation is over the uniform distribution of
k(t+1) ∈ Γ \ k(t).

We are now ready to state our first main result, which
gives two probabilistic bounds on the required number
of iterations in Algorithm 1.

Theorem 1. For sufficiently small η, Algorithm 1
generates a tensor B(Λ(t)) satisfying∑

k∈Γ

‖Pk(B(Λ(t)))− µk‖1 ≤ ε′,

within τ iterations, where

E[τ ] ≤ 8|Γ|2RΓ
C

ηε′
.

Moreover, for any δ ∈ (0, 0.5), it holds that

P
(
τ ≤ 48|Γ|2RΓ

C

ηε′
log

1

δ

)
≥ 1− δ.

Proof sketch (see supplementary material for details).
Define the stopping time τ := min {t : et ≤ ε′}. Let
{Ft := σ

(
Λ(1), . . . ,Λ(t)

)
}t be the natural filtration.

By Lemma 2 and Lemma 3,

E
[
ψ(Λ(t))− ψ(Λ(t+1))|Ft, t < τ

]
≥ η

2|Γ|2

(
max

{
ψ(Λ(t))− ψ(Λ∗)

RΓ
C

, ε′
})2

,

Let τ1 be the first iteration when ψ(Λ(t)) − ψ(Λ∗) ≤
RΓ
Cε
′ and τ2 := τ − τ1 ≥ 0. We can bound τ1 and τ2 as

E[τ1] ≤ 6|Γ|2RΓ
C

ηε′
− 1, and E[τ2] ≤ 2|Γ|2RΓ

C

ηε′
+ 1.

Summing up the two bounds results in the bound for
E[τ ]. The bound in probability follows similarly.

Remark 2. Many Sinkhorn methods for MOT use a
greedy update rule. In principle, such an update rule
could be applied to our method to get a determinis-
tic complexity bound. However, this would increase
the complexity of our method by the factor |Γ|. High
probability bounds are often used in machine learning
algorithms when randomness is involved. Due to the
logarithmic dependence log(1/δ) in terms of the prob-
ability 1 − δ, the high probability bound can safely be
used as a surrogate of the deterministic bound. We can
claim that τ ≤ O(|Γ|2RΓ

C(ηε′)−1) with arbitrarily high
probability.
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In order to provide the complexity on the full method in
Algorithm 3 we need the following two lemmas, which
deal with the rounding method in Algorithm 2.
Lemma 4. Let B ∈ Rnm

, where m ≥ 3, be a non-
negative m-mode tensor and {µk}k∈Γ be a sequence of
probability vectors, Algorithm 2 returns B̂ satisfying
Pk(B) = Pk(B̂), for k ∈ Γ, and Pk(B̂) = µk, for k ∈ Γ.
Moreover, it holds that

〈C,B〉 − 〈C, B̂〉 ≤ 2
∑
k∈Γ

‖C(k,`k)‖∞‖µk − Pk(B)‖1,

where `k is the unique neighbour of k, for each k ∈ Γ.
Lemma 5. Let B̃ be the output of Algorithm 1, let B̂
be the output of Algorithm 2 with input (B̃, {µk}), and
let B∗ denote the optimal solution to the unregularized
MOT problem (2). Then it holds that

〈C, B̂〉 − 〈C,B∗〉 ≤ mη log(n)

+ 4
∑
k∈Γ

‖C(k,`k)‖∞‖µk − Pk(B̃)‖1.

We now have the tools to state our new complex-
ity bound for finding ε-approximate solutions to tree-
structured MOT problems. Denote by d(G) the maxi-
mum distance of two nodes in the graph G.
Theorem 2. Algorithm 3 finds an ε-approximate so-
lution to the tree-structured MOT problem (2) in T
arithmetic operations, where

E[T ] = O
(
d(G)m|Γ|2n2(RΓ

C)2 log(n)

ε2

)
.

Moreover, for all δ ∈ (0, 0.5) it holds that

P
(
T ≤ cd(G)m|Γ|2n2(RΓ

C)2 log(n) log(1/δ)

ε2

)
≥ 1− δ

where c is a universal constant.

Proof. With the specific choices η = ε
2m log(n) and ε′ =

ε
8RΓ

C

we get 〈C, B̂〉 − 〈C,B∗〉 ≤ ε. By Theorem 1, the
stopping time τ satisfies

E[τ ] =
8|Γ|2RΓ

C

ηε′
= O

(
m|Γ|2(RΓ

C)2 log(n)

ε2

)
.

Since in each iteration of Algorithm 1 the messages
between two leave nodes of the tree are updated, and
each message update is of complexity O(n2), one iter-
ation takes at most O(d(G)n2) operations. Thus, in
expectation, a solution is achieved in

O
(
d(G)n2m|Γ|2(RΓ

C)2 log(n)

ε2

)
operations. Algorithm 2 takes O(|Γ|n2) (see Lemma 7
in Altschuler et al. (2017)). Hence, the bound on E[T ]
follows. The bound in probability follows similarly.

5 Extension to general graphs

For a general graph, we cannot directly apply the belief
propagation algorithm. One way to tackle this is to
construct a tree factorization over the graph. A junc-
tion tree (also called tree decomposition) describes a
partitioning of a graph, where several nodes are clus-
tered together, such that the interactions between the
clusters can be described by a tree (Koller & Friedman,
2009, Chapter 10). A cluster c is a collection of nodes,
and we write xc = {xk, k ∈ c}. Moreover, the matrices
K(k1,k2) = exp(−C(k1,k2)/η), for (k1, k2) ∈ E, can be
understood as pair-wise potentials. A junction tree is
then defined as follows.

Definition 1. A junction tree T = (C, E) over a graph
G = (V,E) is a tree whose nodes c ∈ C are associated
with subsets xc ⊂ V , and that satisfies the following
properties:

• Family preservation: For each potential K there
is a cluster c such that domain(K) ⊂ xc.

• Running intersection: For every pair of clusters
ci, cj ∈ C, every cluster on the path between ci and
cj contains xci ∩ xcj .

For two adjoining clusters ci and cj, we define the
separation set Sij = {v ∈ V : v ∈ ci ∩ cj}.

A graph can be clustered into many different junction
trees. It is often practical to find a junction tree that
is as similar to a tree as possible. A measure of this is
given by the following definition.

Definition 2. For a junction tree T = (C, E), we
define its width as

width(T ) = max
c∈C
|c| − 1.

For a graph G, we define its tree-width as

w(G) = min{width(T ) | T is a junction tree for G}.

In order to extend Algorithm 1 to junction trees, the
constraints need to be given on the leaf nodes of the
tree. Thus, we need to define the junction tree such
that all leaves are clusters containing only one vertex
and correspond to the set Γ.

Example 3. A junction tree with minimal tree-width
for the Wasserstein least squares problem is illustrated
in Figure 3. The graph in Figure 2 thus has tree-width
2.

The problem of finding a minimal junction tree for
a given graph is very challenging in itself (Koller &
Friedman, 2009, Chapter 10). In this work we assume
that a junction tree decomposition is known. Based on
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x0, x1,
xN+1

x0, x2,
xN+1

x0,
xN−1,
xN+1

x0, xN,
xN+1

x1 x2 xN−1 xN

Figure 3: Junction tree for the graph in Figure 2 rep-
resenting the Wasserstein least squares problem (5).

the junction tree partitioning, we achieve the following
complexity bound for general graph-structured MOT
problems. The derivation of the modified algorithm is
deferred to Section C in the supplementary material.

Theorem 3. Let R = maxk∈ΓR
k
C, where RkC =

‖Cc`k
(xc`k )‖∞, and c`k is the neighbouring clique to ck.

A generalization of Algorithm 3 finds an ε-approximate
solution to the general graph structured MOT problem
(2) in T arithmetic operations, where

E[T ] = O
(
d(T )m|Γ|2nw(G)+1R2 log(n)

ε2

)
.

Moreover, for all δ ∈ (0, 0.5) there exists a universal
constant c such that

P
(
T ≤ cd(T )m|Γ|2nw(G)+1R2 log(n) log(1/δ)

ε2

)
≥ 1− δ.

6 Discussion of results

In Algorithm 1, the per iteration complexity is not inde-
pendent of the random choice of the update, and thus
not independent of the number of iterations. The re-
sults in Theorem 2 and 3 thus depend on the maximum
iteration complexity, and can be improved by utilizing
the expected (average) iteration complexity. Therefore,
let d̄(G) denote the average distance between any two
nodes in Γ.

Theorem 4. A generalization of Algorithm 3 finds an
ε-approximate solution to the graph-structured MOT
problem (2) in T arithmetic operations, where

E[T ] = O
(
d̄(T )m|Γ|2nw(G)+1R2 log(n)

ε2

)
.

If the underlying graph is fully connected, the junction
tree contains one "big" cluster that includes all the
nodes. Then we have d̄(T ) = 2, w(G) = m − 1 and
R = ‖C‖∞ in Theorem 4. In fact, in this case our
algorithm does not exploit any graph structures, and
thus the complexity is the same for general cost tensors
that do not decouple into pairwise terms as in (6).

Thus, the complexity of Algorithm 3 for general MOT
problems matches the bound for general MOT problems
in Lin et al. (2019).

We consider a class of tree-structured MOT problems,
which contains many MOT applications of interest.
Definition 3. Given a sequence of tree-structured
MOT problems, where the number of nodes go to infin-
ity, we call the sequence of such problems balanced if
there is a constant c such that |Γ|RΓ

C ≤ c‖C‖∞.

Many MOT problems that arise in practice are bal-
anced, see Section D.1 in the supplementary material
for a number of examples. From Theorem 2 it follows
that Algorithm 3 finds an ε-approximate solution to
balanced MOT problem (2) in T operations, where

E[T ] = O
(
d̄(G)mn2‖C‖2∞ log(n)

ε2

)
.

This lets us compare our result with the bound for gen-
eral MOT problems in Lin et al. (2019) without accel-
eration, which is given by O

(
m3nm‖C‖2∞ log(n)ε−2

)
.

Moreover, when the MOT problem on the junction tree
is balanced, by a similar argumentation the expectation
bound in Theorem 4 can be given by

E[T ] = O
(
d̄(T )mnw(G)+1‖C‖2∞ log(n)

ε2

)
.

Consider the barycenter problem introduced in Ex-
ample 1. This problem is a MOT problem (2) with
underlying graph as illustrated in Figure 1. Here,
d(G) = 2, |Γ| = L, and m = L + 1. Moreover, by
(4), we have RΓ

C = 1
L‖C‖∞. Thus, Algorithm 3 is ex-

pected to return an ε−approximate solution to problem
3 in O(Ln2‖C‖2∞ log(n)ε−2). This coincides with the
best known bound for the barycenter problem (Krosh-
nin et al., 2019; Lin et al., 2020) without acceleration.
In fact, the argument can be extended to the case of
non-uniform weights in the barycenter problem (3),
see Section D.2 in the supplementary material. We
also point out that the regularizer used in the Wasser-
stein barycenter literature is pairwise, whereas ours
regularizes the full tensor B. For more details on this
comparison, see Haasler et al. (2021a, Section 5).

7 Experiments

We show numerical results for three types of MOT
problems. We consider the barycenter problem in Ex-
ample 1, which is structured according to the graph in
Figure 1, and the Hidden Markov Model example in
Haasler et al. (2021c, Section V.B), which is structured
according to the graph in Figure 4. In particular, these
two types of problems are tree-structured. The third ex-
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Figure 4: Graph associated with a Hidden Markov
Model.

ample is the Wasserstein least square problem (Karimi
et al., 2020), which is associated with the graph in
Figure 2. Note that this is a graph with tree-width two.
In all the above graphs, gray nodes correspond to fixed
marginals {µi}k∈Γ, and white nodes are estimated in
the problem.

The cost matrices C(k1,k2) in (6) are set to be the
squared Euclidean distance. The constrained marginal
distributions {µk}k∈Γ are supported on a uniform grid
with n points between 0 and 1, where the values are
generated from the log-normal distribution and normal-
ized to sum to one. We choose the accuracy ε = 0.2 in
Algorithm 3. As a comparison, we implemented a brute
force Sinkhorn method, which computes the projections
Pk(B(Λ(t))) in the Sinkhorn iterates (10) by directly
summing over the elements of the tensor B(Λ(t)) as in
(1). We use a random update rule for both methods.
The number of iterations of both brute force Sinkhorn
and Sinkhorn belief propagation are nearly the same.
For brute force Sinkhorn and Sinkhorn BP, we use the
code given by https://github.com/qshzh/cbp and
make necessary modifications, such as random update
rules. We repeat every experiment 5 times with dif-
ferent random seeds and report the total run time in
Figure 5. The theoretical complexity bound is also
presented as dashed lines. The run time of brute force
Sinkhorn grows in a higher polynomial of n and grows
exponentially with respect to m. This coincides with
the general MOT bound and our bounds in Table 1.
We can also tell our bound is a bit pessimistic about
the dependence over n.

8 Conclusion

In this work we considered a class of multi-marginal
optimal transport problems where the cost functions
can be decomposed according to a graph. It turns
out that the computational complexity of MOT can
be significantly reduced by exploiting graphical struc-
tures. More specifically, without any structure, the
complexity grows exponentially as the number of
marginals increases. With graphical structure, the
dependence becomes polynomial. We provide a com-
plexity bound Õ(d(T )mnw(G)+1ε−2) for solving graph-
structured MOT problems based on the Sinkhorn belief
propagation algorithm (Haasler et al., 2021c; Singh

(a) Barycenter

(b) Hidden Markov Model

(c) Wasserstein least square

Figure 5: Logarithm of total run time in seconds for
brute force Sinkhorn and Sinkhorn belief propagation.
The left column shows the run time as a function of
n when m is fixed (m = 4 in (a) and (b); m = 5 in
(c)), and the right column vice versa with n = 10. We
choose α = 10 in the Wasserstein least square example.

et al., 2020) with the random updating rule. One limi-
tation of the present work is that the proof techniques
do not seem to be applicable to Sinkhorn iterations
with cyclic updating rule, which is the most popular
strategy used in practice. This will be a future research
direction. We also plan to accelerate the Sinkhorn be-
lief propagation algorithm using ideas from Lin et al.
(2019); Kroshnin et al. (2019).
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A Tensor operations

In this section we briefly introduce notations that are used for tensors. The inner product between two m-mode
tensors B and C is defined as

〈C,B〉 =
∑

x1,...,xm

C(x1, . . . , xm)B(x1, . . . , xm).

It is worth noting that this can be seen as a generalization of the Frobenius inner product for matrices. The
projection on the k-th marginal of the tensor B is defined as

[Pk(B)](xk) =
∑

x1,...,xk−1,xk+1,...,xm

B(x1, . . . , xm),

see also (1). By summing out all indexes except for xk, we get a vector with elements in xk. This can be interpreted
as a marginalization of a probability measure. More precisely, if the tensor B describes am-dimensional probability
measure of the variables x1, . . . , xm, then Pk(B) describes the probability distribution for xk. Similarly, the
bi-marginal projection Pk1,k2

(B) defined in (13) describes the joint distribution of xk1
and xk2

.

B The dual of the regularized MOT problem and the Sinkhorn iterations

In this section we provide details to Section 3. In particular, we derive the dual of the regularized MOT problem
and the Sinkhorn belief propagation algorithm.

The Lagrangian function of problem (7) is

L(B,Λ) = 〈C,B〉+ ηH(B |M)−
∑
k∈Γ

λT
k (Pk(B)− µk) , (14)

where Λ = (λk)k∈Γ and λk ∈ Rn for k ∈ Γ. Minimizing the Lagrangian with respect to B gives the optimum

[B(Λ)](x1, . . . , xm) = exp (−C(x1, . . . , xm)/η)
∏
k∈Γ

(
exp (λk(xk)/η)µk(xk)

)
,

and plugging this into (14) yields

inf
B
L(B,Λ) = L(B(Λ),Λ) = −ηP (B(Λ)) +

∑
k∈Γ

µT
k λk.

Therefore, the dual problem (formulated as a minimization problem) is given by

min
Λ
ψ(Λ) := ηP (B(Λ))−

∑
k∈Γ

µT
k λk.

In each iteration the block coordinate descent algorithm picks some k ∈ Γ and minimizes ψ(Λ) over λk, while
keeping the other variables fixed. The minimum is achieved when the gradient of ψ with respect to λk vanishes,
i.e., when

eλk(xk)/ηµk(xk)

∑
x\xk

e−C(x1,...,xm)/η
∏
`∈Γ\k

(
eλ`(x`)/ηµ`(x`)

)− µk(xk) = 0.

In the scaled variables uk = exp(λk/η) this can be expressed as

u
(t+1)
k � µk �

(
Pk(B(Λ(t)))./

(
u

(t)
k � µk

))
− µk = 0.

This yields the Sinkhorn updates (10).
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C Algorithm for MOT with general graph structure

In order to apply Sinkhorn belief propagation, we first decompose the underlying graph into a tree with minimal
tree-width. Finding such a tree decomposition is a NP hard problem (Arnborg et al., 1987). Luckily, in many
applications of graph-structured MOT a tree decomposition is known. Thus, in the following we assume that the
cost tensor C decouples according to T = (C, E) into tensors Cc, for c ∈ C, such that

C =
∑
c∈C

Cc(xc).

The potential tensor K = exp(−C/η) is then factorized, into tensors Kc = exp(−Cc/η), for c ∈ C, and can be
written as

K(x) =
∏
c∈C

Kc(xc).

To apply Algorithm 1, the constraints have to be given on the leaf nodes of the tree. Thus, we define the junction
tree such that the all leaves are clusters containing only one vertex and correspond to the set Γ. We denote
this set of leaf cliques by ΓC. In particular, note that then S`kk = xk, if ck = {xk} ∈ ΓC , and c`k is its unique
neighbour clique. The Sinkhorn iterations are then of the form (10), where the projections on the marginals
ck ∈ ΓC , with neighbour clique c`k ∈ C, are computed as

[Pk(B(Λ(t)))](xk) = u
(t)
k (xk)µk(xk)m`k→k(xk). (15)

Here, the messages between clusters of the junction tree are given by

m`→k(S`k) =
∑

xc`
\S`k

Kc`(xc`)
∏

j∈N(`)\k

mj→`(Sj`), if c` /∈ ΓC (16a)

m`→k(x`) = u
(t)
` (x`)µ`(x`), if c` ∈ ΓC . (16b)

It follows that the Sinkhorn iterations (10) with the projections (15) read, as before,

u
(t+1)
k (xk)← (m`k→k(xk))−1.

Algorithm 1 can thus simply be modified to general graphs by replacing the messages (12) by the messages (16).
This lets us formulate the result in Theorem 3.

D Details on the discussion of results in Section 6

This Section provides details on the discussion of the results.

D.1 Balanced MOT problems

There are many structured MOT problems of interest that are balanced. In the following we check the condition
in Definition 3 for a few special cases.

Example 4. The Wasserstein barycenter problem discussed in Example 1 is balanced. With the barycenter cost
tensor C defined in (4) it holds ‖C‖∞ = ‖C‖∞, and thus |Γ|RΓ

C = L 1
L‖C‖∞ = ‖C‖∞.

Example 5. A tree-structured MOT problem where the costs on all edges are equal and symmetric is balanced.
Note that if C(k1,k2), for all (k1, k2) ∈ E, are equal and symmetric, then ‖C‖∞ = |E|RΓ

C . Thus, it holds

|Γ|RΓ
C =

|Γ|
|E|
‖C‖∞ ≤ ‖C‖∞.

The barycenter case in Example 1 is a special case of this.

Example 6. Consider a tree-structured MOT problem, where the shortest distance between any two leaf nodes is
3, and the maximum cost entries on the edges connecting to the leaf nodes are of the same order. Such a problem
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is balanced. Let ‖C(k,`k)‖∞ be of the same order for all k ∈ Γ, where `k is the neighbour of k. Then there is a
constant c such that

RΓ
C = max

k∈Γ
‖C(k,`k)‖∞ ≤

c

|Γ|
∑
k∈Γ

‖C(k,`k)‖∞.

If the shortest distance between any two leaf nodes is 3, there is no node that has two leaf nodes as neighbours.
Thus, it holds ∑

k∈Γ

‖C(k,`k)‖∞ ≤ ‖C‖∞.

Hence, it follows |Γ|RΓ
C ≤ c‖C‖∞.

Example 7. Consider a tree-structured MOT problem with cost tensor C. Let x̃ = (x̃1, . . . , x̃m) be a maximizer
of C(x), that is C(x̃) = ‖C‖∞, and assume that∣∣∣∣ maxk∈Γ ‖C(k,`k)‖∞

mink∈Γ C(k,`k)(x̃k1
, x̃k2

)

∣∣∣∣ ≤ c
for some constant c. Then the MOT problem is balanced. To see this note that

‖C‖∞ =
∑

(k1,k2)∈E

C(k1,k2)(x̃k1
, x̃k2

) ≥ |E| min
(k1,k2)∈E

C(k1,k2)(x̃k1
, x̃k2

).

Thus, it follows

|Γ|RΓ
C = |Γ|max

k∈Γ
‖C(k,`k)‖∞ ≤ c|Γ|min

k∈Γ
C(k,`k)(x̃k1

, x̃k2
) ≤ c |Γ|

|E|
‖C‖∞ ≤ c‖C‖∞.

D.2 Barycenter problem with nonuniform weights

We provide a complexity bound for the barycenter problem with nonuniform weights. Let w` be the weight and
C` be the cost matrix for the `-th term in the barycenter problem (3). Then the cost tensor in the corresponding
MOT problem is given by

C(x1, . . . , xL, xL+1) =

L∑
`=1

w`C`(xL+1, x`).

With this cost, the bound in Lemma 2 becomes

ψ(Λ)− ψ(Λ∗) ≤ R
∑
k

wk‖Pk(B(Λ))− µk‖1, where R = max
`
‖C`‖∞.

Now, if in Algorithm 1 we pick the next update according to the weight w1, w2, . . . , wL instead of a uniform
distribution, then the bound in Lemma 3 becomes

E
[
ψ(Λ(t))− ψ(Λ(t+1))

]
≥ η

2
(et)

2
, with et =

∑
k∈Γ

wk‖Pk(B(Λ(t)))− µk‖1.

The bound in Theorem 1 then becomes O( Rηε′ ). Putting everything together, the iteration complexity becomes

Õ(mR
2

ε2 ) and the arithmetic complexity becomes Õ(mn
2R2

ε2 ), which matches the result in Kroshnin et al. (2019).

E Deferred proofs

In this section we provide the proofs that are omitted in the main paper.

E.1 Proof of Lemma 1

Proof. Denote vk(x`) =
∏
j∈N(`)\kmj→`(x`), where ` ∈ N(k) is the unique neighbour of k, since k is a leaf of the

tree. Assume variable uk was updated in the previous step of the algorithm. Then it holds

uk(xk) = 1/m`→k(xk) = 1/
(

[K(k,`)vk](xk)
)
.
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Thus,
max
xk

λk(xk) ≤ −η log
(
e−‖C

(k,`)‖∞/ηvTk 1
)

= ‖C(k,`)‖∞ − η log
(
vTk 1

)
. (17)

Moreover,
min
xk

λk(xk) ≥ −η log
(
vTk 1

)
. (18)

Combining (17) and (18) it follows

max
xk

λk(xk)−min
xk

λk(xk) ≤ ‖C(k,`)‖∞.

Note that the gradient of ψ(·) vanishes in Λ∗, since it is optimal to (9). Thus, it holds Pk(B(Λ∗)) = µk for
k = 1, . . . ,m and the bound for λ∗k follows in the same way as before.

E.2 Proof of Lemma 2

Proof. Note that

ψ(Λ)− ψ(Λ∗) = ηP (B(Λ))−
∑
k∈Γ

µT
k λk − ηP (B(Λ∗)) +

∑
k∈Γ

µT
k λ
∗
k

= ηP (B(Λ))−
∑
k∈Γ

λT
k Pk(B(Λ))− ηP (B(Λ∗)) +

∑
k∈Γ

(λ∗k)TPk(B(Λ)) +
∑
k∈Γ

(λk − λ∗k)T (Pk(B(Λ))− µk) .
(19)

Consider the convex function of Λ̂ = {λ̂k}k∈Γ given by

h(Λ̂) = ηP (B(Λ̂))−
∑
k∈Γ

λ̂T
k Pk(B(Λ)).

Note that its gradient vanishes if and only if Λ̂ = Λ, since ∇λ̂k
h = Pk(B(Λ̂))− Pk(B(Λ)) = 0. Thus, Λ is the

minimizer of h, and it follows with (19) that

ψ(Λ)− ψ(Λ∗) ≤
∑
k∈Γ

(λk − λ∗k)T (Pk(B(Λ))− µk) . (20)

Define λ̄k = 1
2 (maxxk

λk(xk) + minxk
λk(xk)), and note that λ̄T

k (Pk(B(Λ))− µk) = 0. By Hölder’s inequality
and Lemma 1 , it holds

λT
k (Pk(B(Λ))− µk) =(λk − λ̄k)T (Pk(B(Λ))− µk)

≤‖λk − λ̄k)‖∞ ‖Pk(B(Λ))− µk‖1

=
1

2

(
max
xk

λk(xk)−min
xk

λk(xk)

)
‖Pk(B(Λ))− µk‖1

≤R
k
C

2
‖Pk(B(Λ))− µk‖1 . (21)

Similarly, defining λ̄∗k = 1
2 (maxxk

λ∗k(xk) + minxk
λ∗k(xk)), we derive the bound

−λ∗k
T (Pk(B(Λ))− µk) =(λ̄∗k − λ∗k)T (Pk(B(Λ))− µk) ≤ RkC

2
‖Pk(B(Λ))− µk‖1 . (22)

Summing (21) and (22) over k ∈ Γ yields∑
k∈Γ

(λk − λ∗k)T (Pk(B(Λ))− µk) ≤
∑
k∈Γ

RkC ‖Pk(B(Λ))− µk‖1 ≤ R
Γ
C

∑
k∈Γ

‖Pk(B(Λ))− µk‖1 .

Together with (20) this completes the proof.
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E.3 Proof of Lemma 3

Proof. Since P (B(Λt)) = 1 for all t and u(t+1)

k(t+1) ./u
(t)

k(t+1) = µk(t+1) ./Pk(t+1)(B(Λ(t))),

ψ(Λ(t))− ψ(Λ(t+1)) =µT
k(t+1)

(
−λtk(t+1) + λt+1

k(t+1)

)
=ηµT

k(t+1) log
µk(t+1)

P`(B(Λ(t)))

=ηKL(µk(t+1) | Pk(t+1)(B(Λ(t)))).

where KL is the Kullback–Leibler divergence. By Pinsker’s inequality, we get

ψ(Λ(t))− ψ(Λ(t+1)) ≥ η

2
‖µk(t+1) − Pk(t+1)(B(Λ(t)))‖21. (23)

Since k(t+1) is randomly picked from a uniform distribution over Γ \ k(t) the expected value of (23) is

ψ(Λ(t))− Ek(t+1)

[
ψ(Λ(t+1))

]
≥ η

2(|Γ| − 1)

∑
k∈Γ

‖µk − Pk(B(Λ(t)))‖21.

By Cauchy–Schwarz inequality, it holds

Ek(t+1)

[
ψ(Λ(t))− ψ(Λ(t+1))

]
≥ η

2(|Γ| − 1)2

(∑
k∈Γ

‖µk − Pk(B(Λ(t)))‖1

)2

.

E.4 Proof of Theorem 1

We need the following lemma from Altschuler & Parrilo (2020) to connect the per-iteration expected improvement
and the number of iterations.

Lemma 6. (Altschuler & Parrilo, 2020, Lemma 5.3) Assume A > a, h > 0. Let (Yt)
∞
t=1 be a sequence of random

variables adapted to a filtration (Ft)∞t=0 such that (i) Y0 ≤ A almost surely, (ii) 0 ≤ Yt−1 − Yt ≤ 2(A− a) almost
surely, and

(iii) E [Yt − Yt+1|Ft, Yt ≥ a] ≥ h ∀t = 0, 1, 2, . . . .

Then the stopping time s = min{t : Yt ≤ a} satisfies 1) the expectation bound E[s] ≤ A−a
h + 1; and 2) ∀δ ∈ (0, 1/e),

the probability bound P(s ≤ 6(A−a)
h log 1

δ ) ≥ 1− δ holds.

Proof of Theorem 1. Define the stopping time τ := min {t : et ≤ ε′}. Let {Ft := σ
(
Λ(1), . . . ,Λ(t)

)
}t be the

natural filtration. By Lemma 2 and Lemma 3,

E
[
ψ(Λ(t))− ψ(Λ(t+1))|Ft, t < τ

]
≥ η

2|Γ|2

(
max

{
ψ(Λ(t))− ψ(Λ∗)

RΓ
C

, ε′
})2

,

For shorthand, denote ψ̃(Λ(t)) = ψ(Λ(t)) − ψ(Λ∗), and let τ1 be the first iteration when ψ̃(Λ(t)) ≤ RΓ
Cε
′ and

τ2 := τ − τ1 ≥ 0. Define

Zt =

{
ψ̃(Λ(t)) if t ≤ τ,
ψ̃(Λ(t))− (t− τ)η(ε′)2

2|Γ|2 if t > τ.

A direct observation is that Zt is monotonically decreasing. For t ∈ [τ1, τ ], let Yt−τ1 = Zt. Then the expected
improvement of Yt per iteration is at least η(ε′)2

2|Γ|2 , that is

E [Yt − Yt+1|Ft, Yt ≥ 0] ≥ η(ε′)2

2|Γ|2
.
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With choices A = RΓ
Cε
′, a = 0, and h = η(ε′)2

2|Γ|2 , clearly Yt ≤ A and 0 ≤ Yt − Yt+1 ≤ 2(A − a). Thus, Lemma 6
implies

E[τ ′2] ≤ 2|Γ|2RΓ
C

ηε′
+ 1 where τ ′2 = min{t : Yt ≤ 0}.

Whenever t ≤ τ, we have ψ̃(Λ(t)) ≥ 0 and as such Zt ≥ 0. So τ := min {t : et ≤ ε′} is achieved earlier than
min{t : Zt ≤ 0} and this implies

τ − τ1 = τ2 ≤ τ ′2 = min{t : Zt ≤ 0} − τ1 ⇒ E[τ2] ≤ E[τ ′2] ≤ 2|Γ|2RΓ
C

ηε′
+ 1. (24)

To bound τ1, we define D0 = RΓ
Ce0 and Di := Di−1/2 for i = 1, 2, . . . until DN ≤ RΓ

Cε
′. Let τ1,i be the number

of iterations when Di ≤ ψ̃(Λ(t)) ≤ Di−1. Let t1,i = min{t : ψ̃(Λ(t)) ≤ Di−1}. Consider A = Di−1, a = Di,
h = η

2|Γ|2RΓ
C

2D2
i , and Yt = Zt+t1,i . It holds

E [Yt − Yt+1|Ft, Yt ≥ Di] ≥
η

2|Γ|2RΓ
C

2 ψ̃(Λ(t))2 ≥ η

2|Γ|2RΓ
C

2D
2
i .

In addition Yt ≤ A and 0 ≤ Yt − Yt+1 ≤ Di−1 ≤ 2(A− a) by the nonnegativity and monotonicity of Yt. From
Lemma 6 and the definition of the sequence Di it follows that

E[τ1,i] ≤
Di−1 −Di

ηD2
i

2|Γ|2RΓ
C

2
+ 1 ≤ 2|Γ|2RΓ

C
2

ηDi
+ 1. (25)

Summing up Equation (25) for i = 1, 2, . . . , N and Equation (24) yields

E[τ ] ≤ 2|Γ|2RΓ
C

ηε′
+ 1 +

N∑
i=1

2|Γ|2RΓ
C

2

ηDi
+N ≤ 2|Γ|2RΓ

C

ηε′
+ 1 +

4|Γ|2RΓ
C

ηε′
+ log2

⌈e0

ε′

⌉
.

Since
e0 :=

∑
k∈Γ

‖Pk(B(Λ(t)))− µk‖1 ≤
∑
k∈Γ

‖Pk(B(Λ(t)))‖1 + ‖µk‖1 = 2|Γ|,

there is log2

(
e0
ε′

)
≤ e0

ε′ ≤
2|Γ|
ε′ . And the mild assumption η ≤ 0.5|Γ|RΓ

C implies that

1 + log2dae ≤ 1 + log2dbe ≤
b|Γ|RΓ

C

η
, ∀ b ≥ a > 0,

resulting in 1 + log2

⌈
e0
ε′

⌉
≤ 2|Γ|2RΓ

C

ηε′ . It further follows

E[τ ] ≤ 8|Γ|2RΓ
C

ηε′
.

Next we prove the high probability bound. By Lemma 6, ∀δ ∈ (0, 0.5),

P
(
τ2 >

12|Γ|2RΓ
C

ηε′
log

2

δ

)
<
δ

2
(26)

and with δi := δ/2N−i+2 for each i = 1, . . . , N ,

P

(
τ1,i >

12|Γ|2RΓ
C

2

ηDi
log

1

δi

)
< δi.

Given the series summation
∑∞
i=0 2−i =

∑∞
i=0 i · 2−i = 2 and the definition of δi and DN , we have

N∑
i=1

log 1
δi

Di
=

1

DN

N−1∑
i=0

2−i
(

log
4

δ
+ i log 2

)
≤ 2

DN

(
log

4

δ
+ log 2

)
≤ 3

RΓ
Cε
′ log

4

δ
.



On the complexity of the optimal transport problem with graph-structured cost

By taking the union over τ1,i it follows

P
(
τ1 >

36|Γ|2RΓ
C

ηε′
log

4

δ

)
≤

N∑
i=1

P

(
τ1,i >

12|Γ|2RΓ
C

2

ηDi
log

1

δ

)
<
δ

2
. (27)

Taking a union bound over Equation (26) and Equation (27), we conclude that

P
(
τ >

48|Γ|2RΓ
C

ηε′
log

4

δ

)
< δ.

E.5 Proof of Lemma 4

Proof. Due to the underlying tree structure of the problem it holds

〈C,B〉 − 〈C, B̂〉 =
∑

(k1,k2)∈E

〈C(k1,k2), Pk1,k2
(B)− Pk1,k2

(B̂)〉.

By Hölder’s inequality and (Altschuler et al., 2017, Lemma 7),

〈C,B〉 − 〈C, B̂〉 ≤
∑

(k1,k2)∈E

‖C(k1,k2)‖∞‖Pk1,k2
(B)− Pk1,k2

(B̂)‖1

≤ 2
∑
k∈Γ

‖C(k,`k)‖∞‖µk − Pk(B)‖1.

In the second step note that Pk1,k2
(B) = Pk1,k2

(B̂) by construction whenever k1, k2 /∈ Γ. Also, note that for
k ∈ Γ we can use the bound in (Altschuler et al., 2017, Lemma 7) to get

‖Pk,`k(B̂)− Pk,`k(B)‖1 ≤2
(
‖Pk(B̂)− Pk(B)‖1 + ‖P`k(B̂)− P`(B)‖1

)
=2‖Pk(B̂)− Pk(B)‖1
=2‖µk − Pk(B)‖1.

E.6 Proof of Lemma 5

Proof. Let Ỹ denote the tensor that is returned from Algorithm 2 with inputs B∗ and {Pk(B̃)}k∈Γ. Note that B̃
is the optimal solution to

min
B∈Πm

Γ ((Pk(B̃))k∈Γ)
〈C,B〉+ ηH(B|M),

which can easily be verified by checking the KKT conditions. Thus, it holds

〈C, B̃〉+ ηH(B̃|M) ≤ 〈C, Ỹ〉+ ηH(Ỹ|M).

Since 〈B̃, log(B̃)〉 ≥ −m log(n) and 〈Ỹ, log(Ỹ)〉 ≤ 0 it follows that

〈C, B̃〉 − 〈C, Ỹ〉 ≤ ηH(Ỹ|M)− ηH(B̃|M)

≤ −〈B̃, log(B̃)〉+ 〈B̃− Ỹ, logM〉

≤ ηm log(n) + η
∑
k∈Γ

〈Pk(B̃)− Pk(Ỹ), logµk〉

= ηm log(n).

(28)
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Lemma 4 gives

〈C, Ỹ〉 − 〈C,B∗〉 ≤ 2
∑
k∈Γ

‖C(k,`k)‖∞‖Pk(Ỹ)− µk‖1, (29)

〈C, B̂〉 − 〈C, B̃〉 ≤ 2
∑
k∈Γ

‖C(k,`k)‖∞‖Pk(B̃)− µk‖1. (30)

Since Pk(B̃) = Pk(Ỹ), summing up (28), (29), and (30) concludes the proof.

E.7 Proof of Theorem 3

Proof. In the case of a general graph, we factorize it according to a junction tree with minimal tree-width and
modify the messages in Algorithm 1 to the message passing scheme in (16). Note that each message update
requires at most O(nw(G)+1) operations. In order to perform one iteration of Algorithm 1 on a junction tree,
at most d(T ) messages have to be updated. Thus, each iteration of Algorithm 1 on a junction tree requires
O(d(T )nw(G)+1) operations. The results in Lemma 1-5 and and Theorem 1 can be applied to the junction tree
version of the presented methods. In particular, the constant in Lemma 1 is modified to RkC = ‖Cc`k

(xc`k )‖∞,
where c`k is the neighbouring clique to ck. Letting R = maxk∈ΓR

k
C, the proof follows as the proof of Theorem 2,

where the per-iteration complexity is now O(d(T )nw(G)+1).

E.8 Proof of Theorem 4

Proof. First, note that the expected time of one iteration is E[Tt] = O(d̄(G)nw(G)+1), for all t. The expectation
of the random variables Tt is thus bounded and equal for all t. We also note that

E[Tt1τ≥t] = E[Tt|τ ≥ t]P(τ ≥ t) = E[Tt]P(τ ≥ t).

Moreover,
∞∑
t=1

E[Tt1τ≥t] =

∞∑
t=1

E[Tt]P(τ ≥ t) = E[Tt]

∞∑
t=1

P(τ ≥ t) = E[Tt]E[τ ] <∞.

Thus, by the general Wald’s equation (Wald, 1945)(Altschuler & Parrilo, 2020, Lemma 5.6) it follows

E[T ] = E

[
τ∑
t=1

Tt

]
= E [τ ]E[T1] = O

(
d̄(G)mnw(G)+1|Γ|2R2 log(n)

ε2

)
.
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