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Abstract

Given a graph, the densest subgraph prob-
lem asks for a set of vertices such that the
average degree among these vertices is max-
imized. Densest subgraph has numerous ap-
plications in learning, e.g., community de-
tection in social networks, link spam detec-
tion, correlation mining, bioinformatics, and
so on. Although there are efficient algorithms
that output either exact or approximate so-
lutions to the densest subgraph problem, ex-
isting algorithms may violate the privacy of
the individuals in the network, e.g., leaking
the existence/non-existence of edges.

In this paper, we study the densest subgraph
problem in the framework of differential pri-
vacy, and we derive upper and lower bounds
for this problem. We show that there exists a
linear-time ε-differentially private algorithm
that finds a 2-approximation of the densest
subgraph with an extra poly-logarithmic ad-
ditive error. Our algorithm not only reports
the approximate density of the densest sub-
graph, but also reports the vertices that form
the dense subgraph.

Our upper bound almost matches the famous
2-approximation by Charikar both in perfor-
mance and in approximation ratio, but we
additionally achieve differential privacy. In
comparison with Charikar’s algorithm, our
algorithm has an extra poly-logarithmic ad-
ditive error. We partly justify the additive
error with a new lower bound, showing that
for any differentially private algorithm that
provides a constant-factor approximation, a
sub-logarithmic additive error is inherent.

We also practically study our differentially
private algorithm on real-world graphs, and
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we show that in practice the algorithm finds
a solution which is very close to the optimal.

1 Introduction

The densest subgraph problem (DSP) [Gol84] is a fun-
damental tool to many graph mining applications.
Given an undirected graph G = (V,E), the den-
sity of an induced subgraph S ⊆ V is defined as
dG(S) = |E(S)|/|S|, where E(S) is the set of all
edges in the subgraph induced by the vertices S ⊆ V .
In the densest subgraph problem, the goal is to find
a subset of vertices S ⊆ V with the highest den-
sity dG(S). The densest subgraph problem (DSP)
is used as a crucial tool for community detection in
social network graphs. This problem also has no-
table applications in learning including link spam de-
tection [GKT05], correlation mining [RPGV20], story
identification [ASKS12] and bioinformatics [SHK+10]
– we refer the reader to the tutorial by Gionis and
Tsourakakis [GT] for more applications of DSP. Due
to its importance, the DSP problem has been stud-
ied extensively in the literature [Gol84, Cha00, KS09,
SLNT12, SW20, BGP+]: it is long known that effi-
cient, polynomial-time algorithms exist for finding the
exact solution of DSP [Gol84, Cha00, KS09].

In many applications of DSP, however, the underlying
graph is privacy sensitive (e.g., social network graphs).
Therefore, one might be concerned that the result out-
put by the DSP algorithm might breach the privacy
privacy of the individuals in the network, e.g., disclose
the (non)-existence of friendship between pairs of in-
dividuals. In this paper, we explore how to perform
community detection on sensitive graphs, while pro-
tecting individuals’ privacy. To this end, we ask the
following question,

Can we construct a differentially private algo-
rithm that computes a good approximation of
the densest subgraph of a given graph G?

We first help the reader recall the notion of differential
privacy [DMNS06] in a graph context. LetG andG′ be
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two graphs that are identical expect the existence/non-
existence of a single edge. Informally, the differential
privacy requires that the outputs of the (randomized)
algorithm on G and G′ are close in distribution. In
this way, the output of the algorithm does not reveal
meaningful information about the existence of an edge
in the graph. Henceforth, we say that two undirected
graphs G and G′ are neighboring if they differ in only
one edge. More formally, differential privacy (DP) is
defined as follows [DMNS06].

Definition 1.1 ((ε, δ)-Differential Privacy (DP)). Let
ε > 0 and δ ∈ [0, 1]. We say that a randomized algo-
rithm Alg achieves (ε, δ)-differential privacy or (ε, δ)-
DP for short, if for any two neighboring graphs G and
G′, for any subset U of the output space,

Pr[Alg(G) ∈ U ] ≤ eε · Pr[Alg(G′) ∈ U ] + δ

Whenever δ = 0, we also say that the algorithm satis-
fies ε-DP.

For the densest subgraph problem, we assume that the
output contains 1) a dense subset of vertices S ⊆ V ;
and 2) an estimate of the density of S. Had we
required the algorithm to output only an estimate
of maxS⊆V dG(S), i.e., an estimated density of the
densest subgraph, then it would have been easy to
devise a DP algorithm: observe that the quantity
maxS⊆V dG(S) has small global sensitivity, that is, if
we flip the existence of a single edge in G, the quan-
tity maxS⊆V dG(S) changes by at most 1. As a re-
sult, we can just use the standard Laplacian mecha-
nism [DMNS06] to output a DP estimate with good
accuracy. However, we stress that most interesting
applications would also want to know the dense com-
munity S — simply knowing an estimate of its density
would not be too useful.

The requirement to also report a dense vertex set
S ⊆ V makes it much more challenging to devise
a DP algorithm. In our case, none of the off-the-
shelf DP mechanisms would directly work to the best
of our knowledge. First, observe that the output is
high-dimensional, and has high global sensitivity as
we explain in Appendix A. Therefore, the standard
Laplacian mechanism [DMNS06, Vah17, DR14] (also
called output perturbation) completely fails. Another
näıve approach is randomized response [War65, Vah17,
DR14] (also called input perturbation), i.e., adding
some noise to obfuscate the existence of each edge.
Unfortunately, as we argue in Appendix A, the ran-
domized response approach gives poor utility. Finally,
the exponential mechanism [MT07, Vah17, DR14] also
fails — not only is it not polynomial-time, the stan-
dard analysis gives an error bound as large as O(n)
which makes the result meaningless.

1.1 Our Results and Contributions

We present new upper- and lower-bounds for the dif-
ferentially private, densest subgraph problem. First,
we give a linear-time DP approximation algorithm
for the densest subgraph problem. The runtime
and accuracy of our algorithm are roughly compet-
itive to the state-of-the-art non-private approxima-
tion algorithm by Charikar [Cha00]. Specifically, let
n denote the number of vertices. Our algorithm is
linear-time, and achieves ε-DP and (2, O( 1

ε log2.5 n))-
approximation — here we have two approximation
parameters: the first parameter 2 is the multiplica-
tive approximation ratio, and the second parame-
ter O( 1

ε log2.5 n) is an additive error. In compari-
son, Charikar’s famous (non-private) linear-time al-
gorithm achieves (2, 0)-approximation where the ad-
ditive error is 0. We justify the extra additive er-
ror with a new lower bound, showing that to achieve
any constant-multiplicative approximation, some sub-
logarithmic additive error is unavoidable. Our upper-
and lower-bound results are stated in the following the-
orems:

Theorem 1.2 (DP approximation of densest sub-
graph). Given a graph G, and parameters ε > 0 and
σ ∈ [0, 1], there exists a linear-time ε-DP algorithm
that succeeds with the probability of 1− σ and outputs
S ⊆ V and an estimate d∗ such that

OPT/2−O(
1

ε
· log2.5 n · log

1

σ
) ≤ dG(S) ≤ OPT,

and |d∗ − dG(S)| ≤ O(
1

ε
· log2.5 n · log

1

σ
)

where OPT is the true density of the densest subgraph.

Theorem 1.3 (Lower bound on additive error for
DP densest subgraph). Let α > 1, ε > 0 be ar-
bitrary constants, exp(−n0.49) < σ < 0.000001 ·
min(1, ε, exp(−ε)), and 0 ≤ δ ≤ σε

log 1
4σ

. Then, there

exists a sufficiently small β = Θ
(

1
α

√
1
ε log 1

σ

)
such

that there does not exist an (ε, δ)-DP mechanism that
achieves (α, β)-approximation with 1− σ probability.

Note that our upper bound achieves ε-DP, and our
lower bound works even for (ε, δ)-DP. This makes both
our upper- and lower-bounds stronger. The proof of
Theorem 1.3 is available in Appendix E. Finally, we
conclude the paper in Section 5 by demonstrating the
performance of our algorithm on real-world datasets.
We show that in practice, our algorithm achieves a
very accurate solution, even for small choices of the
privacy parameter ε.
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1.2 Technical Highlight

To see the intuition behind our final algorithm, it helps
to break it down into several intermediate steps, to
see how the various techniques are eventually woven
together.

Background on Charikar’s famous algo-
rithm. Our algorithm is inspired by a work of
Charikar [Cha00]. Charikar [Cha00] shows that a
simple greedy algorithm can achieve a multiplicative
approximation ratio of 2 for DSP. The greedy algo-
rithm is as follows. Let G = (V,E) be an undirected
graph. Initially, let S := V , i.e., S is initalized
to the set of all vertices. At each iteration, the
algorithm finds a vertex vmin ∈ S with the minimum
degree in the graph induced by the vertices of S, and
removes vmin from S. Consider an algorithm that
repeats the aforementioned procedure until the set S
becomes empty. From all of the sets S encountered
during the execution of the algorithm, the algorithm
returns the one with the highest density. Charikar
proved that this simple greedy algorithm achieves an
approximation ratio of 2.

Warmup idea: a quadratic-time DP algorithm.
Our first idea is as follows. In Charikar’s algorithm, in
each iteration, all residual vertices v ∈ S examine their
degree within the subgraph induced by S — henceforth
we call the the degree of v in the subgraph induced by
S the residual degree of v. Charikar’s algorithm picks
the v with the minimum residual degree and removes
it from S. Our idea is to replace the residual degree
with a noisy, DP counterpart. Unfortunately, näıvely
adding independent noise to the true residual degree
in each of the n iterations would result in an n-fold
loss in error given a fixed privacy budget ε (however
the loss can be reduced to

√
n if we allowed (ε, δ)-DP

rather than ε-DP and used the advanced composition
theorem [DRV10, Vah17, DR14]).

Our idea is to rely on the elegant DP prefix sum mech-
anism by Dwork et al. [DNPR10] and Chan, Shi, and
Song [CSS10, CSS11]. Specifically, we can think of the
problem as follows.

• Initially, every vertex computes its noisy total de-
gree using the standard Laplacian mechanism. Al-
though there are n vertices, we only need to add
noise of constant average magnitude by using par-
allel composition.

• Next, every vertex u still remaining in S maintains
a noisy counter to keep track of roughly how many
of its direct neighbors have departed (i.e., have
been removed from S). If we subtract this value

from the vertex’s noisy total degree, we get an esti-
mate of its residual degree in the subgraph induced
by S.

Therefore, the problem boils down to how to have ev-
ery residual vertex v maintain a noisy counter of how
many of its neighbors have departed. Imagine that ev-
ery time a neighbor of v departs, a value of 1 is accu-
mulated to v’s counter; and every time a non-neighbor
of u departs, 0 is accumulated to v’s counter. Using
the elegant DP prefix sum mechanism by Dwork et
al. [DNPR10] and Chan et al. [CSS10, CSS11], we can
report v’s noisy counter value at any time step, incur-
ring only O( 1

ε · poly log n) error with all but negligible
probability. The noisy counter values and the vertices’
noisy degrees are then used to determine which ver-
tex is to depart next. Further, although it seems like
there are n counters, using parallel composition, we
need not incur extra loss in the privacy budget due to
the n counters.

By extending Charikar’s proof (which we omit in
this short roadmap), we can prove that this warmup
algorithm achieves the desired (2, 1

ε · poly log n)-
approximation. In particular, the error of the prefix
sum mechanism directly contributes to the additive er-
ror term. Unfortunately, the warmup algorithm incurs
Θ(n2) runtime, since we need to update O(n) noisy
counters in each of the n iterations.

Making it quasilinear time. Our final goal is to
get an O(m+ n)-time algorithm where m denotes the
number of edges and n denotes the number of vertices.
However, as an important stepping stone, let us first
consider how to make it quasilinear time in m + n.
The key observation is that when the graph is sparse,
updates to the vertices’ noisy counters (realized by the
prefix sum mechanisms) are also sparse. Most of the
n2 updates come with an input 0, and only m of them
come with an input of 1. Our idea is therefore to avoid
triggering updates when the input is 0.

While the intuition seems simple, realizing this idea
differentially privately is actually tricky since we need
to avoid consuming too much privacy budget. At a
very high level, each vertex v ∈ S keeps track of a noisy
outstanding counter Cnt(v) of the number of its neigh-
bors that departed recently, but have not been accu-
mulated into the prefix sum mechanism yet. When a
vertex u gets removed from S, it informs its neighbor-
ing vertices to update their noisy outstanding coun-
ters. At this moment, each vertex v also checks if its
noisy outstanding counter Cnt(v) has exceeded some
predetermined polylogarithmic noisy threshold — if
so, it accumulates the current outstanding counter into
its prefix sum mechanism, and resets Cnt(v) to 0.
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The key technical challenge here is that we would be
invoking with high probability the total of O(m) up-
dates to the vertices’ noisy outstanding counters, but
we cannot afford an O(m)-fold loss in the privacy bud-
get (or equivalently, an O(m)-fold loss in error when
the privacy budget is fixed). To resolve this problem,
our idea is in spirit reminiscent of the sparse-vector
technique [DNR+09, RR10, HR10].We show that we
can reduce the privacy analysis of our algorithm to
the standard sparse-vector technique. See the subse-
quent “proof techniques” paragraph regarding the
technical challenges in the analysis and proof.

Final touches: making it linear time. The above
algorithm can be implemented in O(m+ n) log n time
if we use a Fibonacci heap to store the residual ver-
tices based on their residual degree (i.e., degree in the
graph induced by S). To make the algorithm linear
time, we discretize vertices residual degree into poly-
logarithmically sized regions, and place each vertex in
a corresponding bucket based on its residual degree.

Using an idea inspired by Charikar [Cha00], one can
show that if a vertex is removed from the k-th bucket
in the current iteration, then, in the next iteration,
we only need to sequentially look at the (k − 1)-th,
k-th, and (k + 1)-th, ... buckets. Moreover, within
each bucket, all vertices are treated as having roughly
the same degree, and we do not further differentiate
them in picking the next vertex to remove from S.
Using appropriate data structures to store the buckets
and the vertices within the buckets, we can eventually
obtain a DP-algorithm that completes in O(m + n)
runtime. Here, the discretization due to bucketing
introduces some additive polylogarithmic error, but
asymptotically we still preserve the (2, O( 1

ε log2.5 n))-
approximation as before. We defer the detailed algo-
rithm and analysis to Section 4.

Proof techniques. Proving our algorithm DP turns
out to be rather non-trivial. Specifically, our algo-
rithm is not a simple sequential composition of the var-
ious underlying building blocks (e.g., prefix sum mech-
anism, and outstanding counter threshold queries).
Therefore, we cannot simply analyze each building
block separately and then use standard composition
theorems to get the desired DP guarantees. The prob-
lem is that the building blocks are interleaved in an
adaptive way: the outcome of one step of the prefix
sum mechanism corresponding to some vertex will af-
fect the input to the next step of some outstanding
counter query, which will then affect the input to the
next step of prefix sum mechanism. Despite the com-
plex and adaptive nature of our algorithm, we show
that the privacy analysis of our algorithm can be re-
duced the privacy bounds of sparse-vector-technique.

The actual proof is involved and we defer the detailed
exposition to Appendix C.1, Appendix C.2, and Ap-
pendix D. All the missing proofs are available in the
appendices with the same Theorem number.

1.3 Additional Related Work

Differentially private algorithms for graphs.
Early works on differentially private graph algorithms
focused on computing simple statistics from graphs.
The elegant work by Nissim et al. [NRS07] was the
first to apply the DP notion to graph computations.
Specifically, they showed how to release the cost of
minimum spanning tree and the number of triangles
in a graph. The work by Karwa et al. [KRSY14] ex-
tended triangle counting to counting other subgraph
structures differentially privately. The work by Hay
et al. [HLMJ09] considered how to release degree dis-
tribution while preserving DP. Other works consider
how to release the answers to all queries belonging ot
some class on a given graph. For example, Gupta,
Roth, and Ullman [GRU12] consider how to compute
a private synthetic data structure for answering all
cut queries with O(n1.5) error where n denotes the
number of vertices. Gupta, Hardt, Roth, and Ull-
man show how to release the cut function on arbitrary
graphs [GHRU11].

Closely related work. Our DSP problem can be
viewed as a combinatorial optimization problem. To
the best of our knowledge, there exist few works that
consider how to solve combinatorial optimization prob-
lems differentially privately in graphs. The first such
work was the elegant work by Gupta et al. [GLM+10].
They showed polynomial-time DP algorithms for ap-
proximating the min-cut and vertex cover problem.
For min-cut, their solution can report the vertices on
both sides of the cut. However, for vertex cover, their
algorithm cannot report the exact set of vertices in
the vertex cover — instead, it outputs a permutation
of vertices, and if one knows the set of edges, one can
recover a good vertex cover from this permutation.

Other notions of privacy. In this paper, we con-
sider the notion of edge differential privacy in graphs,
which was a standard notion adopted in various prior
works [GLM+10, GHRU11, GRU12, NRS07, KRSY14,
HLMJ09]. Some works study stronger notions. For ex-
ample, Kasiviswanathan et al. [KNRS13] and Blocki et
al. [BBDS13] investigate the notion of node differential
privacy, where neighboring graphs are defined as two
graphs that differ in one node rather than one edge.
Gehrke et al. [GLP11] explore a different strengthen-
ing of differential privacy for social network graphs.
An interesting future work direction is to understand
whether we can design accurate DSP algorithms that
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satisfy these strengthened notions of privacy.

Concurrent work of Nguyen and Vullikanti
[NV21]. In the independent and concurrent work,
Nguyen and Vullikanti designed a (ε, δ)-DP algorithm
for the densest subgraph. Their (ε, δ)-DP algorithm
is less secure than our ε-DP algorithm since for our
algorithm we have δ = 0. We also show in section 5
that in practice, our algorithm achieves a significantly
more accurate solution in comparison to Nguyen and
Vullikanti. It is also worth mentioning that while our
algorithm runs in a linear-time, it is not clear whether
the algorithm proposed by Nguyen and Vullikanti can
be realized in a linear work. In fact, the algorithm
SEQDENSEDP introduced in their paper [NV21] has
a quadratic running time. Nguyen and Vullikanti also
provide a similar sub-logarithmic lower bound on the
additive error of any differentially private algorithm.
They also consider a PRAM version of their algorithm,
while our algorithm is in the RAM model.

2 Preliminaries

2.1 Densest Subgraph

We define the densest subgraph problem [Gol84,
Cha00]. Let G = (V,E) be an undirected graph and
S ⊆ V . We define E(S) to be the edges induced by S,
i.e., E(S) := {(i, j) ∈ E : i, j ∈ S}.
Definition 2.1. Let S ⊆ V . We define the density

d(S) of the subset S to be d(S) := |E(S)|
|S| . We define

the density d(G) of the undirected graph G(V,E) to
be d(G) := maxS⊆V d(S).

Observe that 2d(S) is simply the average degree of the
subgraph induced by S.

We next define the notion of approximation we use to
measure the algorithm’s utility.

Definition 2.2 (Approximation algorithm for densest
subgraph). Given an undirected graph G = (V,E), we
want to design a randomized algorithm Alg that out-
puts 1) a subset of vertices S∗ ⊆ V which is an esti-
mate of the densest subgraph; and 2) a noisy density
d∗, which is an estimate of d(G). Let α ≥ 1, β > 0,
and σ ∈ (0, 1]. Such an algorithm Alg is said to achieve
(α, β)-approximation with 1 − σ probability, iff with
1− σ probability, the following hold:

1. d(S∗) ≥ d(G)/α − β, i.e., the algorithm outputs a
dense set S∗ whose (true) density is close to d(G);
and

2. |d∗ − d(S∗)| ≤ β, i.e., the estimated density d∗ is
close to the true density of the reported subgraph
S∗.

As mentioned in Section 1, we consider edge differen-
tial privacy in this paper. We say that two undirected
graphs G and G′ are neighboring if the adjacency ma-
trix of G and G′ differ in only one entry (i.e., G and
G′ are the same except for the existence/non-existence
of a single edge). The notion of (ε, δ)-differential pri-
vacy and ε-differential privacy were formally defined in
Section 1.

2.2 Mathematical Tools

We define the symmetric geometric distribu-
tion [BV18, SCR+11] which can be viewed as a
discrete version of the standard Laplacian distrub-
tion [DMNS06].

Definition 2.3 (Symmetric geometric distribution).
Let γ > 1. The symmetric geometric distribution
Geom(γ) takes integer values such that the probability
mass function at k is γ−1

γ+1 · γ
−|k|.

We shall assume that sampling from the symmetric
geometric distribution takes constant time. How to
sample such noises was discussed in detail in earlier
works on differential privacy [BV18].

The global sensitivity of a function f(I), denoted ∆f ,
is defined as follows:

∆f := max
I,I′neighboring

|f(I)− f(I′)|1

The following fact about the geometric mecha-
nism (which is equivalent to a discrete version of
the Laplacian mechanism) was shown in previous
works [DMNS06, DNPR10, CSS10, CSS11, BV18].

Fact 1 (Geometric mechanism). The geometric mech-
anism f ′(I) := f(I) +Geom(exp(ε/∆f )) satisfies ε-DP.
Moreover, for σ ∈ (0, 1), for any input I, the error

|f ′(I)− f(I)| is upper bounded by O(
∆f

ε · log 1
σ ) with

probability 1− σ.

2.3 Building Block: Differentially Private
Prefix Sum Mechanism

Dwork et al. [DNPR10] as well as Chan, Shi, and
Song [CSS10, CSS11] suggest a DP prefix sum mech-
anism. Initially, the mechanism is initialized with N ,
which is an upper bound on the total number of val-
ues that will arrive, and at the time of initialization,
the mechanism’s output is defined to be 0. Next, a se-
quence of at most N integer values arrive one by one,
and the value that arrives at time t ∈ [N ] is denoted
xt. In every time step t, the mechanism outputs an
estimate PSumt of the prefix sum

∑
t′≤t xt′ . The term

errt := |PSumt −
∑
t′≤t xt′ | measures the error of the

estimate at time t. We refer the reader to Appendix B
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Network Nodes Edges Baseline Solution Description
ca-Astro [LK14] 18771 198050 29.554 Collaboration net. arXiv Astro Phy.
ca-GrQc [LK14] 5241 14484 22.3913 Collaboration net. arXiv General Rel.
musae DE [LK14] 9498 153138 39.0157 Social net. of Twitch (DE)
musae ENGB [LK14] 7126 35324 11.9295 Social net. of Twitch (GB)
socfb-Amherst41 [RA15] 2235 90954 54.5489 Social net. of Facebook (Amherst)
socfb-Auburn71 [RA15] 18448 973918 84.9551 Social net. of Facebook (Auburn)

Table 1: General statistics of 6 networks used in our
experiments.

Network Our work Nguyen and Vullikanti
ca-Astro 0.069 12.48
ca-GrQc 0.003 0.96
musae DE 0.034 3.36
musae ENGB 0.007 1.8
socfb-Amherst41 <0.001 0.21
socfb-Auburn71 0.137 12.24

Table 2: Running time of DP algorithms. All running
times are reported in seconds.

for more information about the prefix sum mechanism.
The earlier works prove the following theorem about
such a DP prefix-sum mechanism:

Theorem 2.4 (DP prefix-sum mechanism [DNPR10,
CSS10, CSS11]). There is an ε-adaptive-DP prefix-
sum mechanism satisfying the above syntax, and more-
over,

1. for any fixed t ∈ [N ] and σ ∈ (0, 1), with proba-
bility 1− σ, errt < O( 1

ε · log1.5N · log 1
σ ).

2. making n updates to the prefix-sum mechanism
takes total time O(n), that is, the average time
per update is O(1).

3 A Quasilinear-Time Scheme

3.1 Detailed Construction

We first describe an algorithm that runs in time quasi-
linear in m+ n where m denotes the number of edges
and n denotes the number of vertices. The intu-
ition behind our algorithm has been explained in Sec-
tion 1.2. Later in Section 4, we describe how to im-
prove the algorithm’s runtime to O(m+ n).

Running it in quasilinear time. In the above al-
gorithm, if we run Line (4e) näıvely as is, it will re-
quire Ω(n2) time. However, with an additional data
structure trick, we can run the above algorithm in time
O(m + n log n). Recall that every time a vertex u’s
outstanding counter Cnt(u) is reset to 0, we also sam-
ple a fresh E(u), and subsequently until Cnt(u) is re-
set to 0 again, in every time step, we will check if
Cnt(u) + E(u) +N > T where N is freshly sampled in
the respective time step — and if so, PSum(u) must be
updated. Equivalently, we can change the sampling as

Algorithm 1: Differentially Private Densest Sub-
graph - Quasilinear-Time Variant.

Remark: Below is the meta-algorithm.
Immediately after the meta-algorithm
description, we describe additional data
structure tricks to run it in quasilinear
time.

Data : Let G := (V,E) be the input graph.
Let ε0 = ε1 = ε2 = ε′ = ε/4. Let
T := C

ε log n log 1
σ for a suitably large

constant C.
1: Every vertex v ∈ V computes its noisy degree
D(v) = deg(v) + Geom(eε0/2) where deg(v)
denotes v’s true degree.

2: Every vertex v ∈ V initializes an ε1-DP
prefix-sum algorithm. Henceforth we use
PSum(v) denote the DP-prefix-sum instance for
the vertex v; moreover, the notation PSum(v)
also denotes the current outcome of the algorithm
PSum(v).

3: Every vertex v ∈ V initializes a counter, denoted
Cnt(v) := 0. Additionally, initialize a fresh noise
E(u) := Geom(eε2).

4: Let S := V and dmax := 0. Repeat the following
until S is empty:

(a) Find the vertex v ∈ S whose D(v)− PSum(v)
is the smallest.

(b) If dmax < D(v)− PSum(v), then update
dmax := D(v)− PSum(v) and let S∗ := S.

(c) Remove v from S.

(d) For each u ∈ S such that (u, v) ∈ E: let
Cnt(u) := Cnt(u) + 1.

(e) For each u ∈ S:

• Let N := Geom(eε2) be a fresh noise.

• If Cnt(u) + E(u) +N > T: input Cnt(u) to
PSum(u), reset Cnt(u) := 0 and initialize a
fresh noise E(u) := Geom(eε2).

5: return S∗ and
d∗ := min

(
|E(S∗)|+Geom(exp(ε′))

|S∗| , |S∗|
)

.

follows: any time Cnt(u) gets updated (i.e., either re-
set to 0 or incremented), we sample a random variable
τ (u), which means the following: if Cnt(u) does not get
updated, when is the next time step in which the event
Cnt(u)+E(u)+N > T happens. Note that if τ (u) > n,
we can simply treat τ (u) = ∞. We may assume that
τ (u) can be sampled in constant time, since it follows
a geometric distribution (see earlier works [BV18] on
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how to do this). Therefore, we can maintain a table
L[1..n] where L[t′] stores a linked list of vertices that
want their PSum updated in time step t′. If vertex u’s
τ (u) value changes from t1 to t2 before time step t1,
then we remove u from L[t1] and add u to L[t2] — this
can be accomplished in constant time if in the table
τ (u) that stores the next PSum update time for u, we
also store a pointer to u’s position in the table L. In-
stead of executing Line 4(e) in a brute-force way, we
can simply read L[t] in each time step t to look for the
vertices that want their PSum updated in time step t.

Moreover, we will also use a Fibonnaci heap to main-
tain the residual noisy degree (i.e., D(v)−PSum(v)) of
every vertex. Due to the way T is chosen, for a proper
constant C, one can show through a standard Chernoff
bound that with the probability of 1−σ, there cannot
be more than 3m PSum updates in which the true in-
crement input to the PSum instance is 0. This means
that there cannot be more than O(m) PSum updates
in total except with σ probability. Summarizing the
above, the above algorithm can be executed in time
O(m+ n log n) with 1− σ probability.

3.2 Differential Privacy and Utility
Guarantees

We now formally state the algorithm’s differential pri-
vacy guarantees as well as utility.

Theorem 3.1 (Differential privacy of the output).
The algorithm in Section 3.1 satisfies (ε0 +ε1 +ε2 +ε′)-
DP.

Our algorithm’s utility is stated in the following theo-
rem:

Theorem 3.2 (Utility of our algorithm). Our algo-
rithm in Section 3.1 achieves (2, O( 1

ε · log2.5 n · log 1
σ ))-

approximation with probability 1− σ.

4 A Linear-Time Algorithm

As mentioned, the algorithm in Section 3.1 takes
O(m+ n log n) time. We suggest an improved version
that runs in linear time, inspired by a trick suggested
by Charikar [Cha00].

Observe that
∣∣minv∈St+1

|E(v, St+1)| −
minv∈St |E(v, St)|

∣∣ ≤ 1. Our algorithm is maintaining
a noisy estimate D(v) − PSum(v) of |E(v, St)| for all
residual vertices v. As we discussed, all estimates have
at most O( 1

ε log2.5 n log 1
σ ) error with 1−σ probability.

Henceforth let C be a sufficiently large constant, and
let err := C

ε log2.5 n log 1
σ . We can discretize the value

of D(v) − PSum(v) into B := dn/err + 1e buckets.
The i-th bucket will contain values from the range
[(i − 1) · err − err/2, (i − 1) · err + err/2]. We can now
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Figure 1: Accuracy of our linear-time algorithm as well
as the accuracy of the Nguyen and Vullikanti [NV21]
on different networks. The orange line shows the ac-
curacy of our proposed algorithm, and the blue line
shows the accuracy of Nguyen and Vullikanti.

maintain a data structure such that each vertex is
placed in the right bucket depending on the current
estimate D(v) − PSum(v). Inside each bucket, we
maintain a linked list of vertices. We also maintain
an array such that each vertex stores the bucket it
currently belongs to, as well as its pointer in the
corresponding linked list.

With this idea, we can modify the algorithm in Sec-
tion 3.1 into a variant that runs in linear time.

Theorem 4.1 (Linear-time variant). The above algo-
rithm satisfies ε-DP and moreover, it achieves (2, O( 1

ε ·
log2.5 n · log 1

σ ))-approximation with probability 1− σ.
The algorithm completes in time O(n + m) with 1 −
exp(−Ω(m)) probability where n = |V | and m = |E|.

5 Empirical Results

In this section, we analyze our differential private
algorithm experimentally on real-world datasets and
compare it to Charikar’s algorithm and other DP al-
gorithms for the densest subgraph problem. In our
experiments, We use Charikar’s algorithm as a non-
differential private baseline. Table 1 shows the 6 dif-
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Algorithm 2: Differentially Private Densest Sub-
graph - Linear-Time Variant.

Data : Let G := (V,E) be the input
graph. Let
ε0 = ε1 = ε2 = ε′ = ε/4. Let
T := C

ε log n log 1
σ for a suitably

large constant C.
Initialization: Run the initialization steps of

Algorithm 1 in Section 3.1, and
moreover, place all vertices in the
right bucket. Recall that each
vertex stores a pointer to where it
resides in the linked list of its
bucket. Initially, let idx = 1. We
may assume that the (imaginary)
0-th bucket is always empty.

1: Let S := V and dmax := 0. Repeat the following
until S is empty:

(a) Let idx ′ be the bucket from which a vertex is
removed in the previous time step. Check
whether each bucket idx ′ − 1, idx ′, · · · is
non-empty, and let idx be the smallest
non-empty bucket among these. Let v be an
arbitrary vertex from this bucket idx . Remove
v from the bucket.

(b) If dmax < D(v)− PSum(v), then update
dmax := D(v)− PSum(v) and let S∗ := S.

(c) Remove v from S.

(d) For each u ∈ S such that (u, v) ∈ E: let
Cnt(u) := Cnt(u) + 1.

(e) For each u ∈ S, if Cnt(u) + E(u) +N > T
where N := Geom(eε2) denotes a fresh noise:
// This line is executed efficiently as
mentioned in Section 3.1.

• Input Cnt(u) to PSum(u);

• Based on the updated value
D(u)− PSum(u), relocate u to a new
bucket if necessary;

• Reset Cnt(u) := 0, and resample a fresh
E(u) := Geom(eε2).

2: return S∗ and
d∗ := min

(
|E(S∗)|+Geom(exp(ε′))

|S∗| , |S∗|
)

.

ferent networks that we used to evaluate the perfor-
mance of our algorithm. For a graph G, let Sc be
the subgraph returned by Charikar’s algorithm. We

measure the accuracy of a DP algorithm as dG(S∗)
dG(Sc)

where S∗ is the subgraph returned by the DP algo-
rithm. In other words, we measure the accuracy of
the algorithms based on their relative performance in
comparison to Charikar’s algorithm.

Figure 1 shows the accuracy of our linear-time algo-
rithm as well as the accuracy of the (ε, δ)-DP algo-
rithm proposed by Nguyen and Vullikanti [NV21]. In
our experiments, we have set the parameter σ equal
to 2−30 ≈ 10−9 for our algorithm. We have also
set δ = 10−9 for the (ε, δ)-DP algorithm proposed by
Nguyen and Vullikanti. As it is shown in the figure,
our proposed algorithm finds a much more accurate so-
lution when ε is small. However, it achieves almost the
same accuracy for large choices of ε. Note that we have
used SEQDENSEDP algorithm to measure the accu-
racy of the work of Nguyen and Vullikanti which has
better accuracy than their parallel algorithms [NV21].

We also study the running time of our linear time
algorithm and compare it with the running time of
SEQDENSEDP algorithm proposed by Nguyen and
Vullikanti. Table 2 shows the average running time of
the algorithms where the average is taken over 100 tri-
als. Our experimental results show that in the RAM
model, our linear time algorithm is much faster than
the SEQDENSEDP algorithm. In fact, our linear
time algorithm is around 100 times faster than the
(ε, δ)-DP algorithm of Nguyen and Vullikanti.
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A Failed Näıve Approaches

A standard technique for attaining differential privacy
is to add noise to the answer calibrated to the global
sensitivity of the function being computed [DMNS06].
We argue that this approach fails to give meaningful
utility since the densest subgraph problem has high
global sensitivity.

Reporting the densest subgraph has high global
sensitivity. The densest subgraph problem has high
global sensitivity if we require that the algorithm out-
puts the set of vertices that form a dense subgraph.
For example, one can easily construct a family of
graphs G with n vertices, and satisfying the follow-
ing properties:

• G contains two disjoint sets of vertices S and S′ of
densities d and d′ respectively. There are no edges
between S and S′.

• The densest subgraph of S is S itself; and the
densest subgraph of S′ is S′ itself. Furthermore,
d < d′ < d+ 1/|S′|.

This means that the densest subgraph of G is S′;
however, if we remove one edge from S′, the dens-
est subgraph of the resulting graph would become S.
Therefore, the ordinary approach of perturbing the
output with noise roughly proportional to global sen-
sitivity [DMNS06] does not apply.

Randomized response gives poor utility. A
näıve approach for solving the DP densest subgraph
problem is to rely on randomized response [War65,
DR14, Vah17] where we use G = (V,E) to denote the
original graph given as input:

1. First, generate a rerandomized graph G̃ as follows:
for each (i, j) ∈ V 2 and i < j, flip the existence
of the edge (i, j) with probability p := 1

1+eε .

2. Then, run an exact densest subgraph algorithm
on the rerandomized graph G̃. Output the densest
subgraph S∗ ⊆ V found.

3. Output d∗ := (|E(S∗)| + Geom(eε))/|S∗| as an
estimate of d(G).

It is not hard to show that the above algorithm satis-
fies 2ε-DP, However, the algorithm fails to give a good
approximation. To understand why, consider the fol-
lowing example — henceforth we will use dG(·) and

dG̃(·) to denote the density of a subset of vertices in

the original graph G and the rerandomized graph G̃,
respectively. Suppose that ε = 1 and thus p = Θ(1).

Consider some graph G = (V,E), in which the true
densest subgraph S is a clique of size

√
n, and therefore

d(G) = O
(√
n
)
. Moreover, suppose that all vertices

not in S do not have any edges in G. One can show
that for any fixed subset U ⊆ V of size at least n

log2 n
,

with 1− o(1) probability, dG̃(U) ∈ [p · |U |/2, 2p · |U |].
Thus with 1 − o(1) probability, the näıve algorithm
will report a large subgraph U∗ ≈ V containing al-
most all the vertices. However, when U∗ ≈ V , the
true density dG(U∗) = O(1) which is a O(

√
n) factor

smaller than the true answer d(G). In other words,
the reported set U∗ is not a good approximation of
the densest subgraph of G.

B Deferentially Private Prefix Sum
Mechanism

Dwork et al. [DNPR10] as well as Chan, Shi, and
Song [CSS10, CSS11] suggest a DP prefix sum mech-
anism. Initially, the mechanism is initialized with N ,
which is an upper bound on the total number of val-
ues that will arrive, and at the time of initialization,
the mechanism’s output is defined to be 0. Next, a se-
quence of at most N integer values arrive one by one,
and the value that arrives at time t ∈ [N ] is denoted
xt. In every time step t, the mechanism outputs an
estimate PSumt of the prefix sum

∑
t′≤t xt′ . The term

errt := |PSumt −
∑
t′≤t xt′ | measures the error of the

estimate at time t.

We say that two integer sequences x := (x1, . . . , xN )
and x′ := (x′1, . . . , x

′
N ) are neighboring, if the vec-

tor x − x′ has exactly one coordinate that is either
1 or −1, and all other coordinates are 0. A pre-
fix sum mechanism for length-N sequences is said to
satisfy ε-adaptive-DP, iff for any admissible (even un-
bounded) adversary A, for any set Γ, Pr[ExptA0 ∈ Γ] ≤
eε · Pr[ExptA1 ∈ Γ], where for b ∈ {0, 1}, ExptAb is de-
fined as follows:
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ExptAb :

• Initialize a prefix sum mechanism denoted
PSum.

• For t := 1, 2, . . . , N :

– A outputs the next values x
(0)
t and x

(1)
t ;

– Input x
(b)
t to PSum, and send PSum’s

new output to A.

• Output A’s view which includes the se-
quence of all outputs produced by PSum.

Admissible A. A is said to be admissible,
iff with probability 1, the two sequences it pro-

duces {x(0)
t }t∈[N ] and {x(1)

t }t∈[N ] are neighbor-
ing.

The earlier works [DNPR10, CSS10, CSS11] prove the
following theorem about such a DP prefix-sum mech-
anism:

Theorem B.1 (DP prefix-sum mechanism [DNPR10,
CSS10, CSS11]). There is an ε-adaptive-DP prefix-
sum mechanism satisfying the above syntax, and more-
over,

1. for any fixed t ∈ [N ] and σ ∈ (0, 1), with proba-
bility 1− σ, errt < O( 1

ε · log1.5N · log 1
σ ).

2. making n updates to the prefix-sum mechanism
takes total time O(n), that is, the average time
per update is O(1).

Note that although the earlier works [DNPR10,
CSS10, CSS11] stated only the non-adaptive version
of the above theorem where the sequence is not cho-
sen adaptively, it is not hard to see that their proofs
actually work for adaptive sequences too.

C Deferred Proofs for our
Quasilinear-Time Scheme

C.1 Deferred Proofs of Differential Privacy

Below, we prove Theorem 3.1.

Fix two arbitrary neighboring graphs G and G̃ that
differ in only one edge. In the proof below, we use the
notation Pr[·] to denote the probability when G is used

as the input, and we the notation P̃r[·] to denote the

probability when G̃ is used as input. In our algorithm,
every time a vertex is removed from the residual set
S, we call it a time step denoted t. Let Ut be the
set of vertices whose PSum instance is updated during
time step t. For a vertex u ∈ Ut, let Σt(u) be the new

output of PSum(u) after the update. Henceforth, we
use the notation preut to denote the time steps up to
t (inclusive) in which PSum(u) is updated, the incre-
ment passed as input to PSum(u) during each of these
updates, and the new outcome of PSum(u) after each
update. We use Iu to denote the time steps in which
u is updated.

For an execution of the algorithm, we define the trace
as {D(v)}v∈V , {Ut, {Σt(u)}u∈Ut}t, where t is differ-
ent time steps of the algorithm. Note that given
the trace, one can uniquely determine the sequence
of the vertices removed in the densest subgraph al-
gorithm. Throughout the proof, we fix an arbitrary
trace tr =

(
{D(v)}v∈V , {Ut, {Σt(u)}u∈Ut}t

)
, and we

show that e−ε · P̃r[tr] ≤ Pr[tr] ≤ eε · P̃r[tr], hence the
algorithm is ε-DP.

First, consider when G is the input. Let
pre0 := {D(v)}v∈V and for t > 0, let pret :=
(pret−1, Ut, {Σt(u)}u∈Ut). We have the following:

Pr[{D(v)}v∈V , {Ut, {Σt(u)}u∈Ut}t]

= Pr[pre0] ·
∏
t>0

(
Pr[Ut|pret−1]·

·
∏
u∈Ut

Pr[PSum(u) outputs Σt(u) on new input

CntGt (u)|(pret−1, Ut)]

)
= Pr[pre0] ·

∏
t>0

(
Pr[Ut|pret−1]

·
∏
u∈Ut

Pr[PSum(u) outputs Σt(u) on new input

CntGt (u)|preut−1]

)
= Pr[pre0] ·

∏
t>0

Pr[Ut|pret−1]

·
∏
u∈V

Pr[PSum(u) outputs {Σt(u)}t∈Iu on updates

{CntGt (u)}t∈Iu ]

Similarly, we have that

P̃r[{D(v)}v∈V , {Ut, {Σt(u)}u∈Ut}t]

=P̃r[pre0] ·
∏
t>0

P̃r[Ut|pret−1] ·
∏
u∈V

P̃r[PSum(u) outputs

{Σt(u)}t∈Iu on updates {CntG̃t (u)}t∈Iu ]

Claim C.1. e−ε0 · Pr[pre0] ≤ P̃r[pre0] ≤ eε0 · Pr[pre0]

Proof. Observe that G and G̃ differ in at most one
edge, and the (non)-existence of every edge affects the
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degree of at most two vertices. The claim therefore
follows from Fact 1.

Claim C.2.

e−ε2 ·
∏
t>0

Pr[Ut|pret−1]

≤
∏
t>0

P̃r[Ut|pret−1] ≤ eε2 ·
∏
t>0

Pr[Ut|pret−1]

Proof. Recall that two graphs G and G̃ differ in only
one edge. Let e = {i, j} be this edge, then we can as-

sume w.l.o.g. that e ∈ G and e /∈ G̃. Now consider the
trace {D(v)}v∈V , {Ut, {Σt(u)}u∈Ut}t. As we discussed
earlier given the trace, we can uniquely determine the
sequence of the vertices removed in Step 4 of the algo-
rithm. Let t′ be the first time step that the algorithm
removes one of the vertices i or j. By symmetry, we
can assume that this vertex is i, i.e., i ∈ Ut′ .

Assuming that the algorithm has the same set of noisy
degrees {D(v)}v∈V at the beginning for both graphs

G and G̃, the algorithm does not see any difference
between G and G̃ until it reaches time t′. This is
because for every vertex v that the algorithm removes
before time t′, this vertex has the same set of neighbors
in both G and G̃. Therefore,

∏
0<t<t′

Pr[Ut|pret−1] =
∏

0<t<t′

P̃r[Ut|pret−1] . (1)

Note that the equality above follows from the fact that
given pre0, the algorithm has the same set of noisy

degrees {D(v)}v∈V for both G and G̃.

Consider the time step t′ where the algorithm removes
i from S. When we run the algorithm on G, vertex j
is a neighbor of i. Thus, the algorithm increases the
Cnt(j) in this time step. However, this is not the case

in G̃, and the Cnt(j) remains the same when we run

the algorithm on G̃. We consider two cases for the rest
of the proof.

• Case 1: The first case is when j /∈ Ut for any t ≥
t′. This means that the algorithm never updates
the PSum(j) after the step t′. Let t′′ be the time
step where the algorithm removes j from S in Step
4 of the algorithm. It is easy to see that given the
trace of the algorithm, we can uniquely determine

t′′. We then have,∏
t′≤t≤t′′

Pr[Ut|pret−1] =

∏
t′≤t≤t′′

( ∏
u∈Ut

Pr[u ∈ Ut|pret−1]

·
∏
u/∈Ut

Pr[u /∈ Ut|pret−1]

)

=
∏
u∈V

( ∏
t∈[t′,t′′]∩Iu

Pr[u ∈ Ut|pret−1]

·
∏

t∈[t′,t′′]−Iu

Pr[u /∈ Ut|pret−1]

)
. (2)

Similarly, for the graph G̃, we have∏
t′≤t≤t′′

P̃r[Ut|pret−1] (3)

=
∏
u∈V

( ∏
t∈[t′,t′′]∩Iu

P̃r[u ∈ Ut|pret−1]

·
∏

t∈[t′,t′′]−Iu

P̃r[u /∈ Ut|pret−1]

)
.

In order to complete the proof of this case, we first
claim that for every vertex u 6= j, we have∏

t∈[t′,t′′]∩Iu

Pr[u ∈ Ut|pret−1]

·
∏

t∈[t′,t′′]−Iu

Pr[u /∈ Ut|pret−1]

=
∏

t∈[t′,t′′]∩Iu

P̃r[u ∈ Ut|pret−1]

·
∏

t∈[t′,t′′]−Iu

P̃r[u /∈ Ut|pret−1] . (4)

The claim clearly holds for every vertex u 6= i, j,
since u has exactly the same set of neighbors in
both G and G̃. Therefore, given pret−1 we have

CntGt (u) = CntG̃t (u), thus the claim holds. Also,
considering the vertex i, the algorithm removes i
from S at the time step t′, and it never updates
the prefix sum for i after that. Therefore Pr[i ∈
Ut|pret−1] = P̃r[i ∈ Ut|pret−1] = 0 for any t ≥
t′. Similarly, we have Pr[i /∈ Ut|pret−1] = P̃r[i /∈
Ut|pret−1] = 1 for any t ≥ t′ which implies our
claim for the vertex i. We now give the following
bound for vertex j.

Claim C.3. For Case 1, let p =∏
t∈[t′,t′′]∩Ij Pr[j ∈ Ut|pret−1] ·

∏
t∈[t′,t′′]−Ij Pr[j /∈

Ut|pret−1] and p̃ =
∏
t∈[t′,t′′]∩Ij P̃r[j ∈
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Ut|pret−1] ·
∏
t∈[t′,t′′]−Ij P̃r[j /∈ Ut|pret−1], we

then have e−ε2 p̃ ≤ p ≤ eε2 p̃.

Proof. Recall that we are assuming that j /∈ Ut
for any t ≥ t′. Therefore, [t′, t′′] ∩ Ij = ∅, and we
have ∏

t∈[t′,t′′]∩Ij

Pr[j ∈ Ut|pret−1]

·
∏

t∈[t′,t′′]−Ij

Pr[j /∈ Ut|pret−1]

= Pr[j /∈ ∪t′≤t≤t′′Ut|pret′−1] .

Similarly, we have∏
t∈[t′,t′′]∩Ij

P̃r[j ∈ Ut|pret−1]

·
∏

t∈[t′,t′′]−Ij

P̃r[j /∈ Ut|pret−1]

= P̃r[j /∈ ∪t′≤t≤t′′Ut|pret′−1] .

Now considering the vertex j, the expres-
sion Pr[j /∈ ∪t′≤t≤t′′Ut|pret′−1] (or P̃r[j /∈
∪t′≤t≤t′′Ut|pret′−1]) can be equivalently thought
as the following. For every time step t′ ≤ t ≤ t′′,
compute the noisy counter Cnt(j) +N and com-
pare it with the noisy threshold T − E(j), where
N is a fresh random noise, and E(j) was chosen
the last time Cnt(j) was reset to 0. We want
to know what is the probability that for all of
t′ ≤ t ≤ t′′, Cnt(j) +N never exceeds the thresh-
old T − E(j). This random process is identical
to the sparse vector algorithm (see page 57, Al-
gorithm 1 of [DR14]), applied to the following
database and sequence of queries, with the privacy
budget ε2. Specifically, the database here is a se-
quence of boolean values that represent whether j
is connected to the vertex being removed in steps
t ∈ [t′, t′′]. The sequence of queries is whether the
prefix sum of the database in each time step ex-
ceeds T. Note that for G and G̃ the two databases
defined above differ only in one position, i.e., the
bit in time step t′ when i is removed. Moreover,
all the prefix sums have sensitity 1. The proof of
the sparse vector technique immediately gives us
the following (see Theorem 3.23 of [DR14]):

e−ε2 · P̃r[j /∈ ∪t′≤t≤t′′Ut|pret′−1]

≤ Pr[j /∈ ∪t′≤t≤t′′Ut|pret′−1]

≤ eε2 · P̃r[j /∈ ∪t′≤t≤t′′Ut|pret′−1] .

Considering any time step t > t′′, the algorithm
has removed both vertices i and j, and it does not
see any difference between G and G̃. Thus,∏

t′′<t

Pr[Ut|pret−1] =
∏
t′′<t

P̃r[Ut|pret−1] .

The equality above along with equalities (1), (4)
and also Claim C.3 implies Claim C.2 for this case.

• Case 2: The second case is when j ∈ Ut for some
t ≥ t′. Let t′′ ≥ t′ be the smallest index such that
j ∈ Ut′′ . It is easy to verify that equations (2) and
(3) still hold in Case 2. Also, Equation (4) holds
for every vertex u 6= j. We now give the following
bound for vertex j.

Claim C.4. For Case 2, let p =∏
t∈[t′,t′′]∩Ij Pr[j ∈ Ut|pret−1] ·

∏
t∈[t′,t′′]−Ij Pr[j /∈

Ut|pret−1] and p̃ =
∏
t∈[t′,t′′]∩Ij P̃r[j ∈

Ut|pret−1] ·
∏
t∈[t′,t′′]−Ij P̃r[j /∈ Ut|pret−1], we

then have e−ε2 p̃ ≤ p ≤ eε2 p̃.

Proof. Recall that we are assuming that j ∈ Ut′′
and j /∈ Ut for any t′ ≤ t < t′′. Therefore, [t′, t′′]∩
Ij = {t′′}, and we have∏
t∈[t′,t′′]∩Ij

Pr[j ∈ Ut|pret−1] ·
∏

t∈[t′,t′′]−Ij

Pr[j /∈ Ut|pret−1]

= Pr[j ∈ Ut′′ |pret′′−1]

· Pr[j /∈ ∪t′≤t<t′′Ut|pret′−1] (henceforth denoted p) .

Similarly, we have∏
t∈[t′,t′′]∩Ij

P̃r[j ∈ Ut|pret−1] ·
∏

t∈[t′,t′′]−Ij

P̃r[j /∈ Ut|pret−1]

= P̃r[j ∈ Ut′′ |pret′′−1]

· P̃r[j /∈ ∪t′≤t<t′′Ut|pret′−1] (henceforth denoted p̃) .

The expressions p or p̃ are equivalent to the fol-
lowing. For every time step t′ ≤ t ≤ t′′, the algo-
rithm computes the noisy counter Cnt(j)+N and
compares it to the noisy threshold T − E(j). We
want to know what is the probability that for all of
t′ ≤ t < t′′, Cnt(j) +N does not exceed threshold
T−E(j), but finally in time t′′, Cnt(j)+N indeed
exceeds threshold T − E(j). Similar to what we
discussed in Claim C.3, we can directly apply the
analysis of the sparse vector technique here, and
obtain that e−ε2 · p̃ ≤ p ≤ eε2 · p̃.

Considering any time step t > t′′, the algorithm
has removed vertices i and j, and the induced
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subgraph between the vertices in S is exactly the
same for both graphs G and G̃. The algorithm

also resets the counters CntG(j) and CntG̃(j) at
the time step t′′. Furthermore, the PSum values
are exactly the same for G and G̃ conditioning
on pret′′ . Thus, the algorithm does not see any

difference between G and G̃ after the time step t′′

and we have∏
t′′<t

Pr[Ut|pret−1] =
∏
t′′<t

P̃r[Ut|pret−1] .

The equality above along with equalities (1), (4)
and also Claim C.4 implies Claim C.2 for this case.

This completes the proof for both Case 1 and Case 2
and proves Claim C.2.

Claim C.5. Let

p :=
∏
u∈V

Pr[PSum(u) outputs

{Σt(u)}t∈Iu on updates {CntGt (u)}t∈Iu ]

and let

p̃ :=
∏
u∈V

P̃r[PSum(u) outputs

{Σt(u)}t∈Iu on updates {CntG̃t (u)}t∈Iu ]

It must be that e−ε1p ≤ p̃ ≤ eε1p.

Proof. Since G and G̃ are neighboring, there is at most

one (u, t) pair where t ∈ Iu such that CntG̃t (u) and
CntGt (u) differ by 1. For all other (u, t) pair where

t ∈ Iu, CntG̃t (u) and CntGt (u) must be the same. The
claim therefore follows from the ε1-DP of the prefix
sum mechanism.

Proof of Theorem 3.1. Let S∗ be the subgraph
output by the algorithm. Observe that S∗ is uniquely
determined by trace {D(v)}v∈V , {Ut, {Σt(u)}u∈Ut}t.
Therefore, given Claims C.1, C.2, and C.5, we con-
clude that for any S∗, e−(ε0+ε1+ε2) ·Pr[S∗] ≤ P̃r[S∗] ≤
eε0+ε1+ε2 ·Pr[S∗]. Besides S∗, the algorithm also needs

to output d∗. Since G and G̃ differ in at most one edge,
and due to the distribution of the noise in computing
d∗, it follows that for any d∗ and S∗,

e−ε
′
Pr[d∗|S∗] ≤ P̃r[d∗|S∗] ≤ eε

′
Pr[d∗|S∗]

Therefore, for any S∗ and d∗, we have that
e−(ε0+ε1+ε2+ε′) ·Pr[S∗, d∗] ≤ P̃r[S∗, d∗] ≤ eε0+ε1+ε2+ε′ ·
Pr[S∗, d∗].

C.2 Deferred Proofs of Utility

In this section, we prove Theorem 3.2.

To prove Theorem 3.2, we will need to use the following
lemma proven by Charikar [Cha00].

Lemma C.6 (Upper bound on d(G) [Cha00]). Let
G := (V,E) be an undirected graph, and suppose that
we arbitrarily assign an orientation to each edge. Let
dmax be the maximum number of edges oriented to-
wards any vertex. Then, it must be that d(G) ≤ dmax.

Proof. of Theorem 3.2

Claim C.7. With 1 − 0.1σ probability, the following
holds throughout the algorithm: at the beginning of ev-
ery time step, let S be the residual set, and let v ∈ S;
then,∣∣D(v)−PSum(v)−|E(v, S)|

∣∣ ≤ O(1

ε
· log2.5 n · log

1

σ

)
+T.

Proof. Recall that ε0 = ε1 = ε2 = ε′ = ε/4. For
a fixed v ∈ V , by the property of the Geom(eε0/2)
noise distribution in D(v), with probability 1 − 0.1σ

2n ,

|deg(v)−D(v)| < C
ε · log n · log 1

σ for some appropriate
constant C. Taking the union bound over all v ∈ V ,
with probability 1−0.1σ/2, it holds that for all v ∈ V ,
|deg(v)−D(v)| < C

ε · log n · log 1
σ .

By Theorem B.1, for any v ∈ V and any fixed time
step, with probability 1− 0.1σ

2n2 , the error of PSum(v) for

the fixed time step is upper bounded by O( 1
ε · log2.5 n ·

log 1
σ ). Taking a union bound over all time steps, it

must be that for any fixed v, with probability 1− 0.1σ
2n ,

the error of PSum(v) is upper bounded O( 1
ε · log2.5 n ·

log 1
σ ) in all time steps. Taking a union bound over all

vertices, it must be that with probability 1− 0.1σ
2 , the

above holds for all vertices.

Recall that we do not update PSum(v) in every time
step, only when Cnt(v) + E(v) + N has exceeded the
threshold T. Further, E(v, V \S) is equal to the true
sum of all increments input to PSum(v) so far, plus
Cnt(v). For any fixed E(v), with 1−0.1σ/n3 probabil-
ity, |E(v)| ≤ O( 1

ε log n log 1
σ ). The same holds for each

fixed N . Therefore, with 1− 0.1σ probability, it must
be that any noise E(v) or N generated throughout
the algorithm has magnitude at most O( 1

ε log n log 1
σ ).

This means with 1− 0.1σ probability, throughout the
algorithm and for any v, the outstanding counter value
Cnt(v) that has not been accumulated by PSum(v)
cannot exceed T +O( 1

ε log n log 1
σ ).

Therefore, with probability 1−0.1σ, it must be that at
the beginning of every time step, and for every v ∈ S
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where S is the current residual set — henceforth, we
use TruePSum(v) to mean the true prefix sum of all
inputs that have been sent to PSum(v):∣∣D(v)− PSum(v)− |E(v, S)|

∣∣
=
∣∣D(v)− PSum(v)− (deg(v)− |E(v, V \S|)

∣∣
≤
∣∣D(v)− deg(v)

∣∣+
∣∣|E(v, V \S|)− PSum(v)

∣∣
=
∣∣D(v)− deg(v)

∣∣+
∣∣Cnt(v) + TruePSum(v)− PSum(v)

∣∣
≤
∣∣D(v)− deg(v)

∣∣+
∣∣Cnt(v)

∣∣+
∣∣TruePSum(v)− PSum(v)

∣∣
≤O

(
1

ε
· log n · log

1

σ

)
+ T+

O

(
1

ε
· log n · log

1

σ

)
+O

(
1

ε
· log2.5 n · log

1

σ

)
≤O

(
1

ε
· log2.5 n · log

1

σ

)
+ T

Claim C.8. Consider some execution of our al-
gorithm, and let and let err := maxt,v∈St

∣∣D(v) −
PSumt(v) − |E(v, St)|

∣∣ where St denotes the residual
set at the beginning of time step t, and PSumt(v) de-
notes the output of PSum(v) at the beginning of time
step t. Then, d(S∗) ≥ (d(G)− 4 · err)/2.

Proof. Fix an arbitrary time step t, it holds that
minv∈St |E(v, St)| ≤ 2|E(St)|/|St|. Let vt ∈ St be
the actual vertex that is removed in time step t, i.e.,
vt := arg minv(D(v) − PSumt(v)). It therefore holds
that |E(vt, St)| −minv∈St |E(v, St)| ≤ 2 · err.

Now, suppose that as a vertex vt gets removed
from the residual graph St, all edges E(vt, St) are
oriented towards vt. Observe that the dmax :=
maxt(D(vt)−PSumt(vt)) value at the end of the algo-
rithm is a good estimate of maxt(E(vt, St)). Specifi-
cally, dmax ≥ maxt(E(vt, St)) − 2 · err. Henceforth let
t∗ := arg maxt(D(vt)−PSumt(vt)), and therefore, our
algorithm’s output S∗ := St∗ .

By Lemma C.6, it holds that d(G) ≤
maxt(E(vt, St)) ≤ dmax + 2 · err = D(vt∗) −
PSumt∗(vt∗) + 2 · err ≤ minv∈St∗ |E(v, St∗)|+ 2 · err +
2 · err = 2 · err ≤ 2|E(St∗)|/|St∗ | + 4 · err =
2|E(S∗)|/|S∗| + 4 · err. In other words,
d(S∗) ≥ (d(G)− 4 · err)/2.

Finally, observe that by the definition of d∗ and due
to Fact 1, with probability 1 − 0.1σ, |d∗ − d(S∗)| ≤
O( 1

ε log 1
σ ). Theorem 3.2 now follows from this fact,

as well as Claims C.7 and C.8, and the choice of T.

D Deferred Proofs for the
Linear-Time Algorithm

In this section, we prove Theorem 4.1. The DP proof
is the same as Theorem 3.1. For the utility analy-
sis, we may assume that whenever PSum(u) is up-
dated from Σ to Σ′ for any vertex u, it holds that
Σ′ − Σ < err/2 where err is the discretization param-
eter used in the bucketing — using the same type of
arguments as the proof of Claim C.7, one can show
that this indeed holds except with 0.1σ probability.
This means that no vertex v’s noisy residual degree
D(v)−PSum(v) should shrink by more than err/2 + 1
in two adjacent time steps, i.e., whenever a vertex v
moves buckets, it cannot move left by more than 1
bucket. Therefore, effectively, the only difference be-
tween this linear-time variant and the earlier algorithm
in Section 3.1 is the following: in this new variant, we
do not necessarily pick arg minv(v, St) in every time
step t. We could pick a vertex vt in time step t such
that |vt−arg minv(v, St)| ≤ err. This introduces an ad-
ditive err term in the proof of Theorem 3.2. Due to the
choice of err, and redoing Theorem 3.2 with the extra
additive err term, we conclude that the above algo-
rithm achieves (2, O( 1

ε · log2.5 n · log 1
σ ))-approximation

with probability 1− σ.

We now bound the algorithm’s runtime. First, not
counting the runtime associated with PSum updates,
the rest of the algorithm is easily seen to take only
O(n+m) time — specifically, the total work spent in
Line 1 is at most O(n) due to the same reason as
Charika’s non-DP, linear-time algorithm. Due to the
runtime of PSum stated in Theorem B.1, to prove the
statement about the runtime, it suffices to show that
the number of PSum updates is upper bounded by 4m
with probability exp(−Ω(m)). Consider running the
algorithm till it makes exactly 4m PSum updates — if
the algorithm ends before making 4m PSum updates,
we can simply pad it to exactly 4m number of PSum
updates by appending filler PSum updates at the end
of the algorithm which does not affect the outcome. In
this way, there is exactly one noise E associated with
each of the 4m PSum updates. Due to the choice of
T, the probability that each E is greater than T is at
most σ/n. Due to the Chernoff bound, the probability
that there exist 3m or more noises E that are greater
than T is exp(−Ω(m)). This means that for m of these
PSum updates, the true increment input to the PSum
instance must be at least 1, and thus one edge must
be consumed for each of these m PSum updates. In
other words, except with exp(−Ω(m)) probability, the
algorithm must have ended after having made 4m or
fewer PSum updates.
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E Lower Bound

Theorem 1.3. Let α > 1, ε > 0 be arbi-
trary constants, exp(−n0.49) < σ < 0.000001 ·
min(1, ε, exp(−ε)), and 0 ≤ δ ≤ σε

log 1
4σ

. Then, there

exists a sufficiently small β = Θ
(

1
α

√
1
ε log 1

σ

)
such

that there does not exist an (ε, δ)-DP mechanism that
achieves (α, β)-approximation with 1− σ probability.

Proof. Suppose there exists an (ε, δ)-DP mechanism
denoted M that achieves (α, β)-approximation with
1 − σ probability, for the parameters stated above.

Let β = 1
100α

√
1
ε log 1

4σ . We will reach a contradi-

tion below. Thus, no (ε, δ)-DP mechanism can achieve
a (α, β)-approximation.

Consider a graph over n vertices V := [n]. Suppose
that a subset A ⊆ V of size 4αβ+1 of the vertices form
a clique, and there are no other edges in G. Therefore,

the densest subgraph of G is A, and its density is |A|−1
2

which is 2αβ. Note that for our choices of parameters,
we always have αβ ≥ 1.

If we run the mechanism M over this graph G, we
know that with probability 1 − σ, the true density of
set of vertices output is at least β. This means that
with probability 1−σ, at most (4αβ)(4αβ+1)/(2β) ≤
16α2β vertices are output, since the graph G has
(4αβ)(4αβ + 1)/2 total number of edges. In other
words, the expected number of vertices output is upper
bounded by

(1− σ) · 16α2β + σ · n . (5)

We claim that there must exist a set B of size 4αβ+ 1
that is disjoint from A such that with probability at
least 1/2, no vertex in B is output. Suppose that this
is not the case, then, the expected number of vertices

contained in the output is at least s := n−(4αβ+1)
4αβ+1 · 1

2 .
For suitable choice of parameters as stated in the the-
orem statement, s would be greater than Equation (5)
for sufficiently large n, which leads to a contradiction.

Now, consider another graph G′ in which the set B of
vertices form a clique and there are no other edges
in G′. G′ can be obtained by making 2 · (4αβ +
1)(4αβ)/2 ≤ 32α2β2 edge modifications starting from
G.

We now use the group privacy theorem to derive a
lower bound on the probability that mechanism M
does not output any of the vertices in B if we run
it on G′.

Theorem E.1 (Group Privacy). Let M be a (ε, δ)-DP
mechanism, and G,G′ be two datasets. Then, for any

subset U of the output space,

Pr[Alg(G) ∈ U ] ≤ ekε · Pr[Alg(G′) ∈ U ] + δ · k · ekε ,

where k is the hamming distance between G and G′.

By (ε, δ)-DP and the group privacy theorem, it holds
that if we run the mechanism M on the graph G′, the
probability that none of B is selected is at least(

1

2
− 32α2β2δ exp(32α2β2ε)

)
· exp(−ε · 32α2β2)

=
1

2
exp(−32ε · α2β2)− 32α2β2δ

> 2σ − σ = σ ,

where the inequality above is because β ≤
1

100α

√
1
ε log 1

4σ , and δ ≤ σε
log 1

4σ

. Thus, with larger

than σ probability, the true density of the set of ver-
tices output is 0. Therefore, it is impossible that the
mechanism M gives (α, β)-approximation with 1 − σ
probability (over any graph).
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