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Abstract

The problem of low-rank matrix completion
with heterogeneous and sub-exponential (as
opposed to homogeneous and Gaussian) noise
is particularly relevant to a number of ap-
plications in modern commerce. Examples
include panel sales data and data collected
from web-commerce systems such as recom-
mendation engines. An important unresolved
question for this problem is characterizing
the distribution of estimated matrix entries
under common low-rank estimators. Such
a characterization is essential to any appli-
cation that requires quantification of uncer-
tainty in these estimates and has heretofore
only been available under the assumption of
homogenous Gaussian noise. Here we char-
acterize the distribution of estimated matrix
entries when the observation noise is hetero-
geneous sub-exponential and provide, as an
application, explicit formulas for this distri-
bution when observed entries are Poisson or
Binary distributed.

1. Introduction

Consider the problem of low-rank matrix completion:
there exists a low-rank matrix that we seek to re-
cover, having observed only a subset of its entries,
each perturbed by additive noise. A rich stream of
research over the past two decades has essentially
solved this problem – there exist efficient algorithms
which achieve order-optimal recovery guarantees un-
der provably-minimal assumptions (Candès and Recht
2009, Candes and Plan 2010, Keshavan et al. 2010).
Further advances have yielded (and continue to yield)
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algorithmic improvements (Mazumder et al. 2010, Jain
et al. 2013, Tanner and Wei 2016, Dong et al. 2021),
and a deeper understanding of the optimization land-
scape itself (Ge et al. 2016, Zhu et al. 2017).

Naturally, these algorithms have been applied in a vast
array of applications, including recommendation sys-
tems, bioinformatics, network localization, and mod-
ern commerce (Su and Khoshgoftaar 2009, Natarajan
and Dhillon 2014, So and Ye 2007, Amjad and Shah
2017, Farias et al. 2021a), just to name a few. Now
many of these applications require, in addition to scal-
ability and accuracy, the ability to quantify the un-
certainty of an estimator – for example, something
as seemingly-straightforward as confidence intervals on
the estimated entries of a matrix.

Such an uncertainty quantification procedure, analo-
gous to existing procedures for problems like linear re-
gression, would ideally (a) apply to a commonly-used
estimator, (b) require no more additional computa-
tion than the estimator itself, and (c) be justified by
a (limiting) distributional characterization. Given the
volume and success of the research just described, it is
perhaps surprising that this problem has been largely
unsolved (see the Related Work for past progress).

Fortunately, there was a recent “breakthrough.” Ap-
plying newer techniques such as the leave-one-out tech-
nique and fine-grained entry-wise analysis (Ma et al.
2018, Ding and Chen 2020, Abbe et al. 2020), Chen
et al. (2019, 2020) proposed an uncertainty quantifica-
tion technique for matrix completion, which satisfies
the three “ideal” conditions above, in the case of ho-
mogeneous Gaussian noise. Further progress in Xia
and Yuan (2021) extended this to homogeneous sub-
Gaussian noise.

Toward “Realistic” Noise: A gap still exists when
we seek to apply these inferential results in practice,
since many applications have more sophisticated noise
models (namely, heterogeneous and sub-exponential
noise). For example, in discrete panel sales data, the
observation for sales at a location during a period of
time is commonly modeled as Poisson with a certain
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Noise Model Entry-wise Uncertainty
Gaussian σ2(u∗2i + v∗2j )/p
Poisson M∗ij(u∗i ‖u∗‖33 + v∗j ‖v∗‖33)/p
Binary M∗ij(u∗i ‖u∗‖33 + v∗j ‖v∗‖33 −M∗ij‖u∗‖44 −M∗ij‖v∗‖44)/p

Table 1: A comparison of uncertainty formulas for different noise models when r = 1, i.e., M∗ = σ1u
∗v∗>. See

details in Section 4.

expected sales rate (Amjad and Shah 2017, Shi et al.
2014). Similarly in web-commerce systems, data indi-
cating clicks or purchases is often binary and modeled
as Bernoulli random variables (Ansari and Mela 2003,
Grover and Srinivasan 1987).

Thus motivated, in this work we establish the first
uncertainty quantification results for matrix comple-
tion with heterogenous and sub-exponential noise. Pre-
cisely, we characterize the distribution of recovered
matrix entries from common estimators. An applica-
tion of our results can already be seen in Table 1, where
we have derived explicit formulas under Poisson and
Binary noise, which are distinctive from the homoge-
neous Gaussian noise case already existing in the liter-
ature. In addition, we demonstrate the quality of our
procedure through experiments on real sales data. The
proof of our main result generalizes the proof frame-
work in (Chen et al. 2019), leveraging recent results for
sub-exponential matrix completion from McRae and
Davenport (2019), and a new high-dimension concen-
tration bound (Lemma 1), which may be of indepen-
dent interest.

Related Work: This paper is related to at least
three streams of work. The first is, naturally, un-
certainty quantification in matrix completion. Besides
the works described above, prior approaches to this
were based on either (a) converting recovery guaran-
tees on matrix norms to confidence regions (Carpentier
et al. 2015, 2018), (b) the Bayesian formulation of ma-
trix completion (Salakhutdinov and Mnih 2008, Faza-
yeli et al. 2014, Tanaka 2021, Alquier et al. 2015), or
(c) deep-learning-bsaed methods (Lakshminarayanan
et al. 2016, Zeldes et al. 2017). The second stream
relates to sub-exponential matrix completion. McRae
and Davenport (2019) established guarantees on the
Frobenius error ‖M̂ − M∗‖F; Farias et al. (2021b)
established entry-wise error guarantees. This work
makes takes one step further with an entry-wise dis-
tributional characterization of the error. Finally, there
is a line of work, in multi-variate linear regression or
PCA, advocating the use of heteroskedasticity-robust
variance estimators instead of homoskedasticity esti-
mators, since the former are more robust to heteroge-
neous noise (Long and Ervin 2000, Hayes and Cai 2007,

Imbens and Kolesar 2016, Cribari-Neto and Maria da
Glória 2014, Zhang et al. 2018). Our work is in the
same spirit, but in the context of matrix completion.

Notation: The sub-exponential norm of a random
variable X is defined as ‖X‖ψ1

:= inf{t > 0 :
E (exp(|X|/t)) ≤ 2}. For a matrix A ∈ Rm×n,
we abbreviate

∑
(i,j)∈[m]×[n]Aij as

∑
ij Aij when no

ambiguity exists. We require a few matrix norms:
‖A‖22,∞ := maxi

∑
j A

2
ij , ‖A‖max = maxij |Aij |, and

‖A‖2F =
∑
ij A

2
ij . The spectral norm is denoted ‖A‖2 .

2. Model

Let M∗ ∈ Rm×n be a rank-r matrix, where m ≤ n
without loss of generality. Let O = M∗+E be the real-
ization of M∗ corrupted by a noise matrix E ∈ Rm×n.
We observe PΩ(O), which is the subset of entries of O
restricted to an observation set Ω ⊂ [m]× [n]:

PΩ(O)ij =
{
Oij (i, j) ∈ Ω
0 (i, j) /∈ Ω

.

The matrix completion problem is to recover M∗ from
this noisy and partial observation PΩ(O).

Let M∗ = U∗Σ∗V ∗> be the SVD of M∗. Here, Σ∗ ∈
Rr×r is a diagonal matrix with singular values σmax =
σ∗1 ≥ σ∗2 ≥ . . . ≥ σ∗r = σmin; and U∗ ∈ Rm×r, V ∗ ∈
Rn×r contain the left and right-singular vectors. Let
κ = σmax/σmin be the condition number of M∗.

We will make three assumptions. The first two are, by
this point, canonical in the matrix completion litera-
ture (Candes and Plan 2010, Keshavan et al. 2010, Ma
et al. 2018, Abbe et al. 2020, Chen et al. 2019):
Assumption 1 (Uniform Sampling). Each element
of [m] × [n] is included in Ω independently, and with
probability p.
Assumption 2 (Incoherence).

‖U∗‖2,∞ ≤
√
µr

m
and ‖V ∗‖2,∞ ≤

√
µr

n
(1)

Finally, our third assumption is a generalization of the
independent (and often homogeneous), sub-Gaussian
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noise that is typically assumed in the literature (Chen
et al. 2019, Xia and Yuan 2021). As described above,
this generalization enables a host of practical applica-
tions, such as those arising in counting data and panel
sales data (Amjad and Shah 2017, Ansari and Mela
2003).
Assumption 3 (Independent Sub-exponential Noise).
The entries of E are independent, mean-zero random
variables with variances σ2

ij, and are also independent
from Ω. Furthermore, ‖Eij‖ψ1

≤ L for every (i, j),
where ‖ · ‖ψ1 is the sub-exponential norm.

3. Algorithm

In this section, we describe a “de-biased” estimatorMd

for M∗. This was originally proposed in (Chen et al.
2019), where the uncertainty quantification for Md

is characterized under homogeneous, Gaussian noise.
Motivated by practical applications, we study new un-
certainty quantification formulas for Md under het-
erogenous sub-exponential noise.

To begin, consider a natural least-square estimator for
M∗

M̂ , arg min
M ′∈Rm×n,rank(M ′)=r

1
2p ‖PΩ(O −M ′)‖2F (2)

Here, M̂ is the projection of M into the set of rank-r
matrices in regard to Euclidean distance (restricted on
the set Ω).

Directly solving Eq. (2) turns out to be a challenge
task. A popular method is to represent M ′ = XY >

where X ∈ Rm×r, Y ∈ Rn×r are low-rank factors, and
solve the following non-convex regularized optimiza-
tion problem

minimize
X∈Rn1×r,Y ∈Rn2×r

f(X,Y ) (3)

where

f(X,Y ) := 1
2p
∥∥PΩ(XY T −O)

∥∥2
F

+ λ

2p ‖X‖
2
F + λ

2p ‖Y ‖
2
F .

With proper initializations, simple first-order methods
are often sufficient to solve Eq. (3) (Sun and Luo 2016).
The regularizer λ > 0 here is used to promote addi-
tional structure properties. For example, when gra-
dient descent is performed, a positive λ is critical for
analyzing the convergence properties and also helps to
achieve a balance between X and Y (Chen et al. 2020).

However, the use of λ also introduces additional bias
to the estimator in Eq. (3), which has been a major ob-
stacle to analyze the uncertainty quantification prop-
erties. (Chen et al. 2019) proposes a de-bias procedure

to remove the bias brought by λ, based on the solution
of Eq. (3). The algorithm is summarized below1.

Algorithm 1 Gradient Descent with De-bias
Input: PΩ(O)
1: Spectral initialization: X0 = U

√
Σ, Y 0 =

V
√

Σ where UΣV > is the top-r partial SVD de-
composition of 1

pPΩ(O).
2: Gradient updates: for t = 0, 1, . . . , t? − 1 do

Xt+1 =Xt − η

p
[PΩ(XtY t> −O)Y t + λXt];

Y t+1 =Y t − η

p
[PΩ(XtY t> −O)TXt + λY t]

where η determines the learning rate.
3: De-bias:

Xd = Xt?

(
Ir + λ

p

(
Xt?>Xt?

)−1
)1/2

(5)

Y d = Y t?
(
Ir + λ

p

(
Y t?>Y t?

)−1
)1/2

(6)

Output: Md = XdY d>

Steps 1 and 2 in Algorithm 1 form a typical gradient
descent procedure for solving Eq. (3). The de-biasing
step, i.e. Eqs. (5) and (6) in Algorithm 1, is critical
for enabling the uncertainty quantification analysis.

We will use the remainder of this section (which can
be skipped without loss of continuity) to provide some
intuition for the peculiar form of Eqs. (5) and (6) based
on first-order conditions. Consider an example with
p = 1 (no entry is missing). Since O is fully observed,
let O = UrΣrV >r + Un−rΣn−rV >n−r be the SVD of O,
where Σr corresponds to the largest r singular values
and Σn−r corresponds to the remaining one. Then it
follows that the optimal solution of Eq. (2) is M̂ =
UrΣrV >r (Eckart and Young 1936).

Next, consider the regularized objective Eq. (3). We
can derive that the optimal solution (X,Y ) for Eq. (3)
has the form

X = Ur(Σr − λIr)1/2, Y = Vr(Σr − λIr)1/2.

In fact, this can be verified from the first-order condi-

1We assume λ � L log(n)√np, t? � n23, η �
1/(n6κ3σmax) throughout the paper, if not specified ex-
plicitly.
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tions,
∂f(X,Y )
∂X

= (XY > −O)Y + λX

= (Ur(Σr − λI)V >r −O)Y + λX

= (Un−rΣn−rV >n−r − λUrV >r )Y + λX

(i)= −λUrV >r Vr(Σr − λIr)1/2 + λX

(ii)= 0,

where in (i) we use that V >n−rY = V >n−rVr(Σr −
λIr)1/2 = 0, and in (ii) we use that V >r Vr = Ir. Simi-
larly ∂f(X,Y )

∂Y = 0 also vanishes.

Then, this justifies the particular de-biased form in
Eqs. (5) and (6):

Xd = X(Ir + λ(Σr − λIr)−1)1/2

= X(Σr(Σr − λIr)−1)1/2

= Ur(Σr − λIr)1/2(Σr − λIr)−1/2Σ1/2
r

= UrΣ1/2
r .

Similarly, Y d = VrΣ1/2
r . Thus XdY d> = UrΣrV >r is

the desired optimal solution of Eq. (2).

4. Results

We can now state our main result: an uncer-
tainty quantification forMd under heterogeneous, sub-
exponential noise.
Theorem 1. Assume mp � κ4µ2r2 log3 n and
L log(n)

√
n/p � σmin/

√
κ4µr logn. Then for every

(i, j) ∈ [m]× [n], we have

sup
t∈R

∣∣∣∣∣P
{
Md
ij −M∗ij
sij

≤ t

}
− Φ(t)

∣∣∣∣∣ . s−3
ij

L2µ3r3

m2p
+

s−1
ij

(
L2 log3(n)µrκ5

pσmin
+ Lµ2r2 log2(n)κ4

pm

)
+ 1
m10 ,

where Φ(·) is the CDF of the standard Gaussian, and
sij > 0 is given by

s2
ij :=

m∑
l=1

σ2
lj

(
r∑

k=1
U∗ikU

∗
lk

)2
+

n∑
l=1

σ2
il

(
r∑

k=1
V ∗lkV

∗
jk

)2

p
.

(7)

To quickly parse this result, note that a typical scaling
of the parameters would see m = Θ(n), np & log6(n),
µ = r = κ = L = O(1), σmin = Ω(n), σij = Ω(1), and
‖V ∗j,·‖ = ‖U∗i,·‖ = Ω(

√
1/n). Theorem 1 would then

imply that

Md
ij −M∗ij
sij

d−→ N (0, 1) (8)

where sij is defined in Eq. (7). This is precisely the
type of characterization we sought at the outset. The
form of sij , as defined in Eq. (7), is of course critical
to the characterization, and probably best understood
via a few examples2:

1. Homogeneous Gaussian Noise. First as a sanity
check, when Eij ∼ N (0, σ2), Theorem 1 reduces to the
same variance formula as Theorem 2 in (Chen et al.
2019):

s2
ij =

σ2(‖U∗i,·‖2 + ‖V ∗j,·‖2)
p

. (9)

2. Poisson Noise. When the observations are Pois-
son, i.e. Oij ∼ Poisson(M∗ij), the variance of the noise
Eij is σ2

ij = Var(Oij −M∗ij) = M∗ij . Then applying
Theorem 1, we have that Md

ij−M∗ij ∼ N (0, s2
ij) where

s2
ij =

m∑
l=1

M∗lj

(
r∑

k=1
U∗ikU

∗
lk

)2
+

n∑
l=1

M∗il

(
r∑

k=1
V ∗lkV

∗
jk

)2

p
.

(10)

A special case is when r = 1 and M∗ = σ1u
∗v∗>, for

which we have

s2
ij =

∑m
l=1M

∗
lj (u∗l u∗i )

2 +
∑n
l=1M

∗
il

(
v∗l v
∗
j

)2
p

=
∑m
l=1 σ1u

∗
l v
∗
j (u∗l u∗i )

2 +
∑n
l=1 σ1u

∗
i v
∗
l

(
v∗l v
∗
j

)2
p

=
σ1v
∗
ju
∗2
i

∑m
l=1 u

∗3
l + σ1u

∗
i v
∗2
j

∑n
l=1 v

∗3
l

p

=
M∗ij(u∗i ‖u∗‖33 + v∗j ‖v∗‖33)

p
,

which corresponds to the formula in Table 1.

3. Binary Noise. Finally, binary observations occur
frequently in applications. For example, in a recom-
mender system or e-commerce platform, Oij ∈ {0, 1}
can represent whether the ith user viewed (or pur-
chased) the jth item (or product) (Ansari and Mela
2003, Grover and Srinivasan 1987, Farias and Li 2019).
A common noise model for such observations is to
assume the Oij are Bernoulli random variables with
mean M∗ij , i.e., Oij ∼ Ber(M∗ij).

With such binary observations, the variance of the
noise Eij is σ2

ij = Var(Oij − M∗ij) = M∗ij(1 − M∗ij).

2See more discussion for the form of sij in Section 5.
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Then sij takes the form

s2
ij =

∑m
l=1M

∗
lj(1−M∗lj) (

∑r
k=1 U

∗
ikU
∗
lk)2

p

+

∑n
l=1M

∗
il(1−M∗il)

(∑r
k=1 V

∗
lkV
∗
jk

)2

p
.

When r = 1 and M∗ = σ1u
∗v∗>, we have

s2
ij =

∑m
l=1 σ1u

∗
l v
∗
j (1− σ1u

∗
l v
∗
j ) (u∗l u∗i )

2

p

+
∑n
l=1 σ1u

∗
i v
∗
l (1− σ1u

∗
i v
∗
l )
(
v∗l v
∗
j

)2
p

=
M∗ij(u∗i ‖u∗‖33 + v∗j ‖v∗‖33 −M∗ij(‖u∗‖44 + ‖v∗‖44))

p
.

Empirical Inference: In practice, the underlying U∗
and V ∗ are not known, and thus sij cannot be com-
puted exactly. We propose the use of the correspond-
ing empirical estimators to estimate sij for the pur-
poses of inference. Let Md = UdΣdV d> be the SVD
of Md. For example, in the Poisson noise scenario, we
would use the following empirical estimator for sij :

ŝ2
ij =

m∑
l=1

Md
lj

(
r∑

k=1
Ud
ikU

d
lk

)2
+

n∑
l=1

Md
il

(
r∑

k=1
V d
lkV

d
jk

)2

p
.

In cases where σkl is also unknown, we let Êij = Oij−
Md
ij be the empirical estimator for the noise. This

procedure (i.e. the use of empirical estimators) can be
justified via the following result:
Corollary 1. Follow the settings in Theorem 1. As-
sume that ∀(i, l), σil = Θ(L) and

sij & L2µ2r2κ5 log4(n)
(

1
σminp

+ 1
mp

+ 1
m2/3p1/3

)
.

Let

ŝ2
ij =

m∑
l=1,(l,j)∈Ω

1
p Ê

2
lj

(∑r
k=1 U

d
ikU

d
lk

)2
p

+

n∑
l=1,(i,l)∈Ω

1
p Ê

2
il

(∑r
k=1 V

d
lkV

d
jk

)2

p

be the empirical estimator of sij . Then under the same
assumptions made in Theorem 1, we have that

sup
t∈R

∣∣∣∣∣P
{
Md
ij −M∗ij
ŝij

≤ t

}
− Φ(t)

∣∣∣∣∣ = o(1).

Additional justification for this procedure is given as
experiments later on. Note that in the typical case,
m = Θ(n), np & log6(n), µ = r = κ = L = O(1),
σmin = Ω(n), σij = Ω(1), and ‖V ∗j,·‖ = ‖U∗i,·‖ =
Ω(
√

1/n) would then imply sij = Ω(1/√np), which
is sufficient to apply Corollary 1 since the lower bound
condition in Corollary 1,

sij = Ω̃
(

1
np

+ 1
n2/3p1/3

)
,

is well satisfied.

Aside: When sij ≈ 0. Curious readers may note that
sij may be too small for Theorem 1 and Corollary 1
to apply. In this case, although the Gaussian approx-
imation in Theorem 1 does not hold, an entry-wise
error bound still holds, and may be sufficient for many
applications (see the Appendix3 for details):

|Md
ij −M∗ij | = Õ

(
sij + 1

np

)
.

An uncertainty characterization when sij ≈ 0 involves
a second-order error analysis and remains an open
question.

5. Proof Overview

In this section, we present the proof framework of The-
orem 1 (see details in Appendix A). In order to extend
to heterogeneous sub-exponential noise from homoge-
neous Gaussian, we generalize the proof of (Chen et al.
2019) with the help of recent sub-exponential matrix
completion results (McRae and Davenport 2019) and a
sub-exponential variant of matrix Bernstein inequality
(Lemma 1).

Similar to Chen et al. (2019), our proof is based on the
leave-one-out technique that has been recently used for
providing breakthrough bounds for entry-wise analysis
in matrix completion problems (see (Ma et al. 2018) as
well as (Ding and Chen 2020, Abbe et al. 2020, Chen
et al. 2020)).

We establish the following key results to characterize
the decomposition of low-rank factors (Xd, Y d), as a
heterogeneous sub-exponential generalization of The-
orem 5 in Chen et al. (2019).

Theorem 2. Assume mp � κ4µ2r2 log3 n and
L log(n)

√
n
p �

σmin√
κ4µr logn

. There exists a rotation

matrix Hd ∈ Or×r and ΦX ∈ Rm×r,ΦY ∈ Rn×r such

3See Appendix in the online full version https://
arxiv.org/abs/2110.12046.

https://arxiv.org/abs/2110.12046
https://arxiv.org/abs/2110.12046
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that the following holds with probability 1−O(n−10),

XdHd −X∗ = 1
p
PΩ(E)Y ∗(Y ∗TY ∗)−1 + ΦX

Y dHd − Y ∗ = 1
p
PΩ(E)TX∗(X∗TX∗)−1 + ΦY

where

max
{
‖ΦX ‖2,∞ , ‖ΦY ‖2,∞

}
.

L logn
√
pσmin

L logn
σmin

√
κ9µrn logn

p
+

√
κ7µ3r3 log2 n

mp

 .

Proof. At a high level, the proof of Theorem 2 follows
a similar proof of Theorem 5 in (Chen et al. 2019),
but with replacements that employ more fine-grained
analyses of E for whenever the Gaussianity of E is used
in (Chen et al. 2019). These analyses aim to address
the sub-exponentiality and heterogeneity of E, with
the help of the following two lemmas.

Lemma 1. Given k independent random m1 × m2
matrices X1, X2, . . . , Xk with E[Xi] = 0. Let

V := max
(∥∥∥∥∥

k∑
i=1

E[XiX
T
i ]

∥∥∥∥∥ ,
∥∥∥∥∥

k∑
i=1

E[XT
i Xi]

∥∥∥∥∥
)
.

Suppose ‖‖Xi‖‖ψ1
≤ B for i ∈ [k]. Then,

‖X1 +X2 + . . .+Xk‖ .√
V log(k(m1 +m2)) +B log(k(m1 +m2)) log(k)

with probability 1−O(k−c) for any constant c.

Lemma 2. Suppose E ∈ Rm×n (m ≤ n) whose
entries are independent and centered. Suppose
‖Eij‖ψ1

≤ L for any (i, j) ∈ [m]×[n]. Let Ω ∈ [m]×[n]
be the subset of indices where each index (i, j) is in-
cluded in Ω independently with probability p. Suppose
np ≥ c0 log3 n for some sufficient large constant c0.
then, with probability 1−O(n−11),∥∥∥∥ 1

p
PΩ(E)

∥∥∥∥ ≤ CL√n

p
.

Here, Lemma 1 is a generalization of matrix Bernstein
inequality in Theorem 6.1.1 of (Tropp et al. 2015).
Lemma 2 is an implication of Lemma 4 in (McRae
and Davenport 2019).

Equipped with Lemmas 1 and 2, the desired bounds
for sub-exponential E can be established. Following
we provide an example of using Lemma 1 to bound
‖X∗TPΩ(E)Y ∗‖, which is critical for obtaining the
bounds in Theorem 2.

To begin, note that

X∗TPΩ(E)Y ∗ =
m∑
k=1

n∑
l=1

X∗k,·Y
∗>
l,· δk,lEk,l

where δk,l ∼ Ber(p) indicates whether (k, l) ∈ Ω. Let
Ak,l := X∗k,·Y

∗>
l,· δk,lEk,l for k ∈ [m], l ∈ [n]. Then,

∥∥X∗TPΩ(E)Y ∗
∥∥ =

∥∥∥∥∥∥
∑
k,l

Ak,l

∥∥∥∥∥∥ .
Note that Ak,l ∈ Rr×r are independent zero-mean ran-
dom matrices and we aim to invoke Lemma 1 to bound
‖
∑
k,lAk,l‖. Let

V := max

∥∥∥∥∥∥
∑
k,l

E[Ak,lA>k,l]

∥∥∥∥∥∥ ,
∥∥∥∥∥∥
∑
k,l

E[A>k,lAk,l]

∥∥∥∥∥∥


B := max
k,l
‖‖Ak,l‖‖ψ1

.

Note that∥∥∥∥∥∥
∑
k,l

E[Ak,lA>k,l]

∥∥∥∥∥∥ ≤
∑
k,l

∥∥E[Ak,lA>k,l]
∥∥

=
∑
k,l

σ2
k,lp‖X∗k,·‖2‖Y ∗l,·‖2

(i)
≤ 2L2p‖X∗‖2F‖Y ∗‖2F

where in (i) we use the fact that E(x2) ≤ 2‖x‖2ψ1
for an sub-exponential zero-mean random variable
x. Similarly, the bounds can be established for
‖
∑
k,lE[A>k,lAk,l]‖. Hence V ≤ 2L2p‖X∗‖2F‖Y ∗‖2F.

Then, consider

B := max
k,l
‖‖Ak,l‖‖ψ1

≤ max
k,l
‖Ek,lδk,l‖ψ1

‖X∗‖2,∞ ‖Y
∗‖2,∞

(i)
≤ L ‖X∗‖2,∞ ‖Y

∗‖2,∞

where (i) we use that ‖Ek,lδk,l‖ψ1 ≤ ‖Ek,l‖ψ1 ≤ L.
Then apply Lemma 1, with probability 1 − O(n−11),
we obtain the desired bound for ‖X∗>PΩ(E)Y ∗‖∥∥∥∥∥∥
∑
k,l

Ak,l

∥∥∥∥∥∥ .
√
V log(n) +B log2(n)

(i)
.
√
pLσmaxr

√
log(n) + µr

n
Lσmax log2(n)

(ii)
.
√
pLσmaxr

√
log(n)
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where in (i) we use that ‖X∗‖2F = ‖Y ∗‖2F ≤ σmaxr and
the incoherence condition Eq. (1), in (ii) we use that
mp� κ4µ2r2 log3 n.

To establish a similar bound for ‖X∗>PΩ(E)Y ∗‖,
Chen et al. (2019) uses the Gaussianity of E, which
is not applicable here.

Similar to this example, we apply Lemma 1 and
Lemma 2 with more fine grained analyses to address
the sub-exponentiality and heterogeneity of E. See
Appendix A.3 for full details.

Note that the error of Md −M∗ is closely related to
the errors of low-rank factors XdHd−X∗, Y dHd−Y ∗
through the following

Md −M∗ = XdHdHd>Y d> −X∗Y ∗>

= (XdHd −X∗)Y ∗> +X∗(Y dHd − Y ∗)>

− (XdHd −X∗)(Y dHd − Y ∗)>

(i)
≈ (XdHd −X∗)Y ∗> +X∗(Y dHd − Y ∗)>

where in (i) we ignore the second-order error term
(XdHd − X∗)(Y dHd − Y ∗)>. Note that Theorem 2
implies that

XdHd −X∗ ≈ 1
p
PΩ(E)Y ∗(Y ∗TY ∗)−1

Y dHd − Y ∗ ≈ 1
p
PΩ(E)>X∗(X∗TX∗)−1

Plug this into the decomposition of Md−M∗, we have

Md −M∗ ≈ 1
p
PΩ(E)Y ∗(Y ∗TY ∗)−1Y ∗>

+ 1
p
X∗(X∗TX∗)−1X∗>PΩ(E)

= 1
p
PΩ(E)V ∗V ∗> + 1

p
U∗U∗>PΩ(E).

The results of Theorem 1 then follow from the above
approximation and the use of Berry-Esseen type of in-
equalities.4 In particular,

s2
ij = V ar(Md

ij −M∗ij)
(i)
≈ 1
p
V ar(e>i PΩ(E)V ∗V ∗>ej)

+ 1
p
V ar(e>i U∗U∗>PΩ(E)ej)

=

m∑
l=1

σ2
lj

(
r∑

k=1
U∗ikU

∗
lk

)2
+

n∑
l=1

σ2
il

(
r∑

k=1
V ∗lkV

∗
jk

)2

p

4Note that this decomposition also can be interpreted
geometrically (to the first-order) as the projection of PΩ(E)
to the tangent space of M∗ in the rank-r manifold.

where (i) assumes the near-independence of the cor-
responding terms. See Appendix A.5 for full rigorous
details.

6. Experiments

We evaluate the results in Theorem 1 for synthetic
data under multiple settings. We then compare the
performances of various uncertainty quantification for-
mulas in real data.5

Synthetic Data. We generate an ensemble of in-
stances. Each instance consists of a few parameters:
(i) (m,n): the size of M∗; (ii) r: the rank of M∗;
(iii) p: the probability of an entry being observed; (iv)
M̄∗ : the entry-wise mean of M∗ (M̄∗ = 1

mn

∑
ijM

∗
ij).

Given (m,n, r, p, M̄∗), we follow the typical procedures
of generating random non-negative low-rank matrices
in (Cemgil 2008, Farias et al. 2021b). Each instance
is generated in two steps: (i) Generate M∗: let U∗ ∈
Rm×r, V ∗ ∈ Rn×r be random matrices with indepen-
dent entries from Gamma(2, 1). Set M∗ = kU∗V ∗>

where k ∈ R is picked such that 1
mn

∑
ijM

∗
ij = M̄∗.

(ii) Generate PΩ(O): then Oij = Poisson(M∗ij) and
entries in Ω is sampled independently with probability
p.6

We first verify the entry-wise distributional character-
ization Md

ij −M∗ij ∼ N (0, s2
ij) where sij is specified in

Eq. (7). See a demonstration of the Gaussian approx-
imality of the empirical distribution (Md

ij −M∗ij)/sij
in Fig. 1. Given an instance, we compute the cover-
age rate (the percentage of coverage of entries) that
correponds to the 95% confidence interval, where an
“coverage” of an entry (i, j) occurs if

Md
ij ∈ [M∗ij − 1.96sij ,M∗ij + 1.96sij ].

The average coverage rates under different settings are
shown in Table 2. The closeness of the results (ranging
from 91%−95%) to the “true” coverage rate 95% sug-
gests the applicability of inference based on our vari-
ance formula. The trends in Table 2 are also consistent
with the intuition: the performance starts to degrade
when r increases, p decreases, and the noise to signal
ratio increases (decrease of M̄∗).

Real Data. Next, we study a real dataset consisting
of daily sales for 1115 units with 942 days (Rossmann
2021). To compare different uncertainty quantification
formulas, we consider the coverage rate maximization

5The source code is provided in https://github.com/
TianyiPeng/Uncertainty-Quantification-For-Low-
Rank-Matrix-Completion.

6Here, we focus on the results of Poisson noise, where
the results under the binary noise are similar in the exper-
iments.

https://github.com/TianyiPeng/Uncertainty-Quantification-For-Low-Rank-Matrix-Completion
https://github.com/TianyiPeng/Uncertainty-Quantification-For-Low-Rank-Matrix-Completion
https://github.com/TianyiPeng/Uncertainty-Quantification-For-Low-Rank-Matrix-Completion
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Figure 1: Empirical distribution of (Md
11 −M∗11)/s11

with m = n = 300, r = 2, p = 0.6, and M̄∗ = 20.

(r, p, M̄∗) Coverage Rate
(3, 0.3, 5) 0.936 (± 0.003)
(3, 0.3, 20) 0.945 (± 0.004)
(3, 0.6, 5) 0.947 (± 0.003)
(3, 0.6, 20) 0.949 (± 0.003)
(6, 0.3, 5) 0.910 (± 0.002)
(6, 0.3, 20) 0.934 (± 0.002)
(6, 0.6, 5) 0.934 (± 0.003)
(6, 0.6, 20) 0.943 (± 0.003)

Table 2: Coverage rates for different (r, p, M̄∗) with
m = n = 500. The empirical mean and empirical stan-
dard deviation are reported over 100 instances.

task that aims to maximize the coverage rate given the
total interval length constraint.

Coverage Rate Maximization. In particular, given a
uncertainty quantification formula, suppose one can
provide an interval predictor [aij , bij ] for each entry
(i, j) in a set Ω̃. The “coverage” of (i, j) occurs if
Mij ∈ [aij , bij ] where Mij is the true value of entry
(i, j). The task aims to maximize the coverage rate
given that the total length of intervals

∑
(i,j)∈Ω̃ bij−aij

is constrained by a budget threshold α:

maximize
∑

(i,j)∈Ω̃ 1(Mij ∈ [aij , bij ])
|Ω̃|

subject to
∑

(i,j)∈Ω̃

bij − aij ≤ α (11)

We are interested in comparing the performances of
the above task using different variance predictors sij ,
either provided by Eq. (9) with the homogeneous
Gaussian noise assumption (Theorem 2 in Chen et al.
(2019)), or by our Theorem 1, capable of addressing
the heterogeneous sub-exponential noise. Note that
both results in Chen et al. (2019) and our Theorem 1

predict that Md
ij ∼ N (M∗ij , s2

ij). With this distribu-
tional assumption, we tackle Eq. (11) by a greedy
algorithm that achieves the maximal expected cov-
erage rate with the budget constraint. Specifically,
with given {Md

ij , sij}, we provide the interval predic-
tors {[aij , bij ]} by solving the following problem:

maximize
aij ,bij

∑
(i,j)∈Ω̃

EMij∼N (Md
ij
,s2

ij
)(Mij ∈ [aij , bij ])

|Ω̃|
subject to

∑
(i,j)∈Ω̃

bij − aij ≤ α

Experiment Results. In the experiment, the low-
rankness of the dataset is verified and the “true” rank,
as well as the “true” underlying matrix M , is pre-
determined through the spectrum of singular value de-
composition.

We split the entries uniformly into a training set Ω
(with probability p) and a test set Ω̃. We use the
observations in Ω to learn Md with Algorithm 1. Let
Md = UdΣdV d> be the SVD of Md.

The empirical variance sGaussian
ij for homogeneous

Gaussian noise is computed by (Chen et al. 2019)

(sGaussian
ij )2 =

σ̂2(‖Ud
i,·‖2 + ‖V d

j,·‖2)
p

where σ̂2 :=
∑

(i,j)∈Ω(Oij −Md
ij)2/|Ω| is the empirical

estimator for the noise variance.

We then compute the empirical variance sPoisson
ij for

Poisson noise

(sPoisson
ij )2 =
m∑
l=1

Md
lj

(
r∑

k=1
Ud
ikU

d
lk

)2
+

n∑
l=1

Md
il

(
r∑

k=1
V d
lkV

d
jk

)2

p
.

Given Md, sPoisson
ij and sGaussian

ij , the coverage rate
maximization task is evaluated in the test set Ω̃. The
results for various budgets α are reported in Fig. 2.
The Poisson noise formula shows a higher coverage rate
than the homogeneous Gaussian formula, as the for-
mer is more robust to addressing heterogeneous noises
in sales data. This improvement tends to vanish with
more presences of missing entries, which might be due
to the degrading accuracy of matrix completion and
variance estimation when p decreases.

7. Conclusion

We solved the uncertainty quantification problem
for matrix completion with heterogeneous and sub-
exponential noise. The error variance of a common
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Figure 2: Coverage rates for difference variance formu-
las correspond to the total-interval-length budget.

estimator was determined and the asymptotical nor-
mality with inference results were established. The
explicit formulas for various scenarios such as Poisson
noise and Binary noise were analyzed. Experimental
results showed significant improvements of our new un-
certainty quantification formulas over existing ones.

One exciting direction for further work is in assuming
less restrictive Ω. As in most of the matrix completion
literature, we made the uniform sampling assumption
for Ω, which may not be applicable in some practical
applications. The study of uncertainty quantification
for matrix completion with non-uniform sampling pat-
terns is especially valuable, given the recent progress
on deterministic matrix completion, e.g., (Chatterjee
2020).

There are still many exciting questions awaiting for
exploration. To name a few,

• Generalization to different loss functions.
The current form of uncertainty is tailored to
the estimator under l2 loss, the generalization
to uncertainty quantification under different loss
functions is of great interest. This generalization
might require some non-trivial and more refined
extensions of the current framework (e.g. showing
an entry-wise guarantee for new types of estima-

tors). We also note that there is a concurrent work
Chen et al. (2021) tackling the statistical inference
for 1-bit matrix completion under a special linear
case M∗ij = ai + bj , which significantly simplifies
the problem but could provide useful insights.

• Dependence on κ. Optimizing the dependence
on κ is an interesting direction to study, particu-
larly given the recent progress on the noiseless ma-
trix completion problem (e.g., Tong et al. (2021)
proposed an alternating scaled gradient descent
method with the iteration steps independent of
κ).

• Less restrictive Ω. As most of the matrix com-
pletion literature, we made the uniform sampling
assumption for Ω, which may not be applicable in
some practical applications. We think the study
of uncertainty quantification for matrix comple-
tion with non-uniform sampling patterns is espe-
cially valuable, given the recent progress on de-
terministic matrix completion, e.g., (Chatterjee
2020).

• Correlated noise E. The generalization from
independent noises to scenarios that noises may
be correlated is also of practical interest. Since
leave-one-out techniques seemingly need the in-
dependence assumption, new techniques beyond
leave-one-out may need to be developed.
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