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Abstract

Our work focuses on extra gradient learning
algorithms for finding Nash equilibria in bilin-
ear zero-sum games. The proposed method,
which can be formally considered as a variant
of Optimistic Mirror Descent (Mertikopou-
los et al., 2019), uses a large learning rate
for the intermediate gradient step which es-
sentially leads to computing (approximate)
best response strategies against the profile
of the previous iteration. Although counter-
intuitive at first sight due to the irrationally
large, for an iterative algorithm, intermedi-
ate learning step, we prove that the method
guarantees last-iterate convergence to an equi-
librium. Particularly, we show that the algo-
rithm reaches first an η1/ρ-approximate Nash
equilibrium, with ρ > 1, by decreasing the
Kullback-Leibler divergence of each iterate

by at least Ω(η1+ 1
ρ ), for sufficiently small

learning rate η, until the method becomes
a contracting map, and converges to the ex-
act equilibrium. Furthermore, we perform
experimental comparisons with the optimistic
variant of the multiplicative weights update
method, by (Daskalakis and Panageas, 2019)
and show that our algorithm has significant
practical potential since it offers substantial
gains in terms of accelerated convergence.

1 INTRODUCTION

Our work focuses on the problem of designing learn-
ing algorithms for finding Nash equilibria in zero-sum
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games. Zero-sum games form a fundamental class of
bimatrix games, where the two players need to solve
a max-min and a min-max optimization problem re-
spectively, with a bilinear objective function. It is well
known by von Neumann’s minmax theorem, that these
two problems have the same optimum. Apart from
their role in the development of game theory, zero-sum
games also have a prominent role in optimization, as
any linear program can be recast to solving such a
game (Adler, 2013). More recently, there has also been
a renewed interest in the learning theory community for
zero-sum games, given their applications on boosting
and reinforcement learning (see (Dai et al., 2018)), and
their relevance in formulating GANs in deep learning
(as they capture the interaction between the Generator
and the Discriminator, see (Goodfellow et al., 2014)).

Although one can solve a zero-sum game by centralized
linear programming algorithms, the application areas
above highlight the importance of developing fast, it-
erative learning algorithms. Several approaches have
been proposed throughout the past decades starting
with fictitious play (Robinson, 1951). Recently, some
of the more standard methodologies include the fam-
ily of no-regret algorithms as well as several classes
of first-order methods. To mention a few examples,
the important class of Multiplicative Weights Update
(MWU) algorithms (Littlestone and Warmuth, 1994;
Freund and Schapire, 1999), together with Gradient
Descent, Mirror Descent, and Extra Gradient methods
(for a survey see (Bubeck, 2015)), all fall within the
above approaches.

In this work, we are interested in methods that exhibit
last-iterate convergence, a property most desirable from
an application point of view, meaning that the strategy
profile (xt, yt), reached at iteration t of an iterative
algorithm, converges to the actual equilibrium as t→
∞. Unfortunately, many of the methods mentioned
above do not satisfy this. No-regret algorithms, like
the MWU method, are known to converge only in
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an average sense, resulting in an ε-Nash equilibrium
in expectation (see (Arora et al., 2012)) for ε > 0.
In fact, it was shown in (Bailey and Piliouras, 2018)
that several MWU variants do not satisfy last-iterate
convergence. Similarly, the same can be shown for
many descent-based methods (see e.g., (Mertikopoulos
et al., 2019)).

Driven by these negative results, recent works have
focused on certain optimistic variations of well known
optimization methods. In particular, (Daskalakis and
Panageas, 2019) studied a variant of MWU, referred
to as the Optimistic Multiplicative Weights Update
method (OMWU), where an extra negative momen-
tum term is added to correct the dynamics behavior.
Their main result is that for zero-sum games with a
unique Nash equilibrium, OMWU exhibits last-iterate
convergence. Even further, (Mertikopoulos et al., 2019)
considered an extra gradient method, named Optimistic
Mirror Descent (OMD), where last-iterate convergence
for a more general class of min-max optimization prob-
lems is established. These positive results have gen-
erated more interest on the behavior and limitations
of such approaches, which is not yet fully understood.
Namely, they give rise to further questions, such as: (i)
can we prove last-iterate convergence for other related
dynamics, and (ii) can we establish faster convergence
rates? These questions are the main focus of our work.

1.1 Our Contribution

We introduce a simple yet substantially different vari-
ant of Optimistic Mirror Descent method with entropy
regularization (Mertikopoulos et al., 2019), for the case
of zero-sum games. OMD is an extra gradient method,
i.e., it contains an intermediate gradient step before the
final update step, and each iteration is characterized
by its learning rate parameter, which is the same for
both steps (and often the same across all iterations).
Our tweak is that the intermediate step uses a different
learning rate parameter from the update step in each
iteration. In fact, we set this to be sufficiently large,
which yields a game-theoretic interpretation, namely
that we compute (approximate) best response strate-
gies against the profile of the previous iteration, as a
look ahead move. Then, during the final update step,
we apply multiplicative weights updates by rewarding
more the pure strategies that perform better against
the best responses that we found in the intermediate
step. Consequently, we refer to this OMD variant
as Forward-Looking Best-Response - Multiplicative
Weights Update (FLBR-MWU) method.

At first sight, this may look counter-intuitive, since
learning rates are usually kept small in classic MWU
algorithms and, more generally, in any kind of itera-
tive gradient-type optimization algorithms (apart from

the notable exception of (Bailey and Piliouras, 2019)).
However, our theoretical and experimental study reveal
the following promising findings:

• In Section 3, we investigate theoretically the con-
vergence properties of FLBR-MWU. If η is the
standard learning rate parameter used in the up-
date step, and ξ is the corresponding parameter
in the intermediate step, then FLBR-MWU ex-
hibits last-iterate convergence for games with a
unique equilibrium, when ξ is sufficiently large and
ηξ < 1. Our proof employs a similar methodol-
ogy to (Daskalakis and Panageas, 2019), adapting
convergence tools from the field of dynamical sys-
tems. Our method also appears to attain faster
convergence, quantified in terms of η, compared
to OMD and OMWU. In particular, we prove that
the decrease in the divergence from the equilib-
rium is at least Ω(η1+1/ρ) per iteration, for any
ρ > 1, until we reach an approximate O(η1/ρ)-
equilibrium, by which time, our rule becomes a
contraction map (see also Figure 1). This im-
proves on the Ω(η3) bound established for OMWU
in (Daskalakis and Panageas, 2019). Although our
bounds do not translate into bounds with respect
to time, we suspect a linear convergence rate is
highly likely (supported also by our experiments).
This has been recently established for OMWU in
(Wei et al., 2021), and is left as an open problem
for FLBR-MWU.

• In Section 4, we perform numerical experiments,
using randomly generated data, comparing FLBR-
MWU with OMWU1. Our experiments reveal
that in practice our method achieves indeed a
much faster convergence rate, showing an average
speedup by a factor of 10 for small size games and
up to hundreds, or even higher, for larger games
compared to OMWU.

1.2 A Revealing Example

The upper plot in Figure 1 attempts to demonstrate
in a qualitative manner the differences we observed
in convergence between the proposed FLBR-MWU
and the OMWU dynamics. The two phases of the
learning dynamics (decrease of divergence, followed by
contraction), are highlighted along with the regions of
convergence. A quantitative presentation is shown in
the lower plots of Figure 1 which depict the convergence
behavior of MWU (blue lines), OMWU (red lines) and
FLBR-MWU (black lines) for a random realization of
a 10× 10 payoff matrix with learning rate η = 0.1. We

1We note that for the case of zero-sum games, it has
been shown in (Wei et al., 2021) that OMWU can be seen
as a variant of OMD with entropy regularization.
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Figure 1: Upper plot: Schematic representation of the convergence path of OMWU (red) and FLBR-MWU
(black). Lower plots: A random realization of the learning dynamics for three variants of MWU. The convergence
rate for the proposed algorithm (FLBR-MWU) is significantly faster than the existing state-of-the-art algorithms.

provide two measures of convergence, the Kullback-
Leibler Divergence (DKL) from the Nash equilibrium
(lower left panel), and the respective l1 norm difference
(lower right panel), which reveal different aspects of
the dynamics.

As anticipated, MWU fails to converge and a smaller
learning rate η would not fix this issue. OMWU does
converge but in a very slow pace requiring an enor-
mous number of steps, whereas OMD behaves almost
in the same manner as OMWU as expected by (Wei
et al., 2021) (OMD is not explicitly shown here nor in
Section 4; see Section C in the supplementary material
for longer, and more detailed simulations). On the
other hand, FLBR-MWU converges up to machine pre-
cision, as revealed by both DKL and l1 metrics. Indeed,
FLBR-MWU is able to escape from the DKL plateau
(seen in the lower left panel), where the dynamics are
moving towards a direction with slow DKL decline,
and ultimately converges to the equilibrium in an os-
cillatory manner with decreasing amplitude (damped
oscillations), as is evident from the l1-norm difference
(lower right panel). Overall, FLBR-MWU has more
than one order of magnitude faster convergence rate
relative to OMWU and furthermore tolerates larger val-
ues for the learning rate, thus the speed of equilibrium
computation is significantly accelerated.

1.3 Related Work

To position our paper within the existing literature,
the works most related to ours are (Daskalakis and
Panageas, 2019) and (Mertikopoulos et al., 2019), re-
garding the OMWU and the OMD methods, respec-
tively. Conceptually, the definition of our method is
closer to (Mertikopoulos et al., 2019) since it uses an ex-
tra gradient step. Technically, however, our analysis is
based on the mathematical arsenal used in (Daskalakis
and Panageas, 2019).

We also overview other relevant works on optimiza-
tion methods for learning problems. It is well known
that most of the standard no-regret algorithms ex-
hibit convergence only in an average sense. Hence,
the solution at iteration t, as t→∞, may diverge or
enter a limit cycle. Such behaviors can be observed,
among others, for Gradient Descent/Ascent (GDA)
in unconstrained optimization, as well as for MWU
methods for constrained problems, see e.g., (Bailey and
Piliouras, 2018). Given the importance of achieving
last-iterate convergence for applications on learning,
such as training GANs, (Daskalakis et al., 2018) and
(Liang and Stokes, 2019) studied an optimistic variant
of GDA, referred to as OGDA, which has also been
considered in previous works, e.g., (Rakhlin and Srid-
haran, 2013). Their main result states that OGDA
exhibits last-iterate convergence for the unconstrained
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minmax problem with bilinear functions.

Driven by this, (Daskalakis and Panageas, 2019) pro-
posed to study the constrained version of minmax prob-
lems, that corresponds to finding equilibria in zero-sum
games. They proposed an optimistic variant of MWU,
termed OMWU, and proved that for games with a
unique Nash equilibrium, it converges in the last-iterate
sense. The sequence of approximations in OMWU uses
two previous steps in order to compute the next up-
date, where the extra term corrects the behaviour of
the MWU dynamics. Moreover, the performance of
OMWU provides a strengthening to the supporting
experimental evidence in (Syrgkanis et al., 2015). Very
recently, an analysis on the number of required steps,
both for OMWU and OGDA, was provided in (Wei
et al., 2021), establishing a linear rate of convergence.
Finally, an alternative view on the behavior of OMWU
by studying volume contraction is given in (Cheung
and Piliouras, 2020), and further generalizations have
been obtained in (Lei et al., 2021) for convex-concave
landscapes.

In parallel to the study of OMWU, the work of (Mer-
tikopoulos et al., 2019) considered a method, where
they agglomerate an intermediate approximation with
the former state in order to compute the next state.
This method is known as Optimistic Mirror Descent
(OMD) (Chiang et al., 2012; Rakhlin and Sridharan,
2013), or Mirror-Prox (Nemirovski, 2004). The main
result of (Mertikopoulos et al., 2019) is that OMD at-
tains last-iterate convergence for a quite general class of
problems that encompasses zero-sum games. A similar
approach was introduced by (Gidel et al., 2019) to cope
with computational issues. All these techniques fall
under the umbrella of extra-gradient methods, whose
origins date back to (Korpelevich, 1976) (for more de-
tails see (Facchinei and Pang, 2003; Bubeck, 2015)).

Several other streams of works have also focused on
convergence properties of extra-gradient methods. In
(Liang and Stokes, 2019), a linear convergence rate
was proved for OMD under the assumption that the
game matrix is square and full rank. Under the same
assumption, the work of (Mokhtari et al., 2020) con-
sidered more general forms of saddle-point problems.
Recently, in a different direction, (Cen et al., 2021) de-
veloped extra-gradient methods for Quantal Response
equilibria, which can be used also for finding an approx-
imate Nash equilibrium. Furthermore, (Hsieh et al.,
2019) investigated asymptotic last-iterate convergence
for variants of extra-gradient algorithms.

To our knowledge, the idea of using different rates in
the intermediate and the update steps of extra gradient
methods, has also been used in (Azizian et al., 2020).
There are however substantial differences with our work.

Most importantly, (Azizian et al., 2020) involves the
unconstrained bilinear case. Even further, their result
holds under certain spectral assumptions, and shows
only local convergence (starting from a point near the
fixed point), whereas we do not need such a condition.

2 BASIC DEFINITIONS

2.1 Zero-sum Games and Approximate
Equilibria

We consider finite 2-player zero-sum games, defined by a
matrix2 R ∈ (0, 1]n×n, where without loss of generality,
we assume both players have n pure strategies. We refer
to the two players as the row player and the column
player respectively. If the row player plays the i-th row
and the column player plays the j-th column, then the
payoff of the row player is Rij , and the payoff of the
column player is −Rij . We also allow mixed strategies
as probability distributions (column vectors) on the
pure strategies. E.g., a mixed strategy for the row
player will be denoted as x = (x1, . . . , xn), where xi is
the probability of playing the i-th row. For convenience,
we will denote the i-th pure strategy of a player by
the unit vector ei, which has probability one in its i-th
coordinate and 0 elsewhere.

A pair (x, y), where x, y are mixed strategies for the row
and the column player respectively, is called a strategy
profile. Given such a profile, the expected payoff of the
row player is xTRy, whereas for the column player, it
is −xTRy. This is obviously a bilinear function, since
it is equivalent to

∑
i,j Rijxiyj .

The fundamental solution concept in game theory is
that of Nash equilibrium, stating that no player has an
incentive to deviate to another strategy.

Definition 1. A strategy profile (x∗, y∗) is a Nash
equilibrium in the zero-sum game defined by matrix R,
if and only if, for any i, j ∈ [n],

(x∗)TRy∗ ≥ eTi Ry∗ and (x∗)TRej ≥ (x∗)TRy∗,

The payoff of the row player at an equilibrium,
v = (x∗)TRy∗, is referred to as the value of the
game. It is well known that the value of a game
and its equilibrium strategies are given by the solu-
tion of the following max-min (saddle-point) prob-
lem, over the n-dimensional simplex ∆n: v =
maxx∈∆n

miny∈∆n
xTRy = miny∈∆n

maxx∈∆n
xTRy.

A useful concept in the analysis of games is the support
of a mixed strategy x, which is the set of pure strategies
that have a positive probability under x, i.e., supp(x) =

2We can always scale appropriately so that the entries
are in (0, 1], without affecting the equilibrium strategies.
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{i : xi > 0}. It is easy to see that at an equilibrium
(x∗, y∗), any pure strategy ei, with i ∈ supp(x∗), is a
best response against y∗ (resp. for any j ∈ supp(y∗),
ej is a best response to x∗).

In our work, we will also need to argue about approxi-
mate equilibria to establish convergence. We start with
defining approximate best responses. Given a profile
(x, y), we say that a strategy x′ is an ε-best-response
strategy to y with ε ∈ [0, 1], if it yields a payoff that
is at most ε less than the best-response payoff. We
can define now an approximate equilibrium, as a pro-
file (x, y) where x and y are both approximate best
responses to each other. This is precisely the standard
notion of additive, approximate equilibria (Nisan et al.,
2007).

Definition 2. A strategy profile (x∗, y∗) is an ε-Nash
equilibrium in the zero-sum game defined by matrix R,
if and only if, for any i, j

(x∗)TRy∗ ≥ eTi Ry∗−ε and (x∗)TRy∗ ≤ (x∗)TRej+ε

2.2 Relevant MWU Variants

One of the standard versions of multiplicative weights
update methods results from the FTRL dynamics
(Follow-The-Regularized-Leader), when the regularizer
is the negative entropy function, (see e.g., (Hoi et al.,
2018)). MWU rewards better the pure strategies that
perform well against the previous iteration. In particu-
lar, if (xt−1, yt−1) is the profile at the end of iteration
t − 1, and η is the learning rate parameter, then for

i ∈ [n], xti is set to be analogous to xt−1
i · eηeTi Ryt−1

(with appropriate normalization).

In the remaining paper, we often make comparisons
or references to the optimistic variant proposed by
(Daskalakis and Panageas, 2019), referred to as OMWU.
The idea of ”optimism” here is to take into account
two previous iterations in order to compute the next
update, where the extra term can be seen as a negative
momentum, correcting the behaviour of MWU dynam-
ics. The dynamics of OMWU are described below for
all i, j ∈ [n].

xti = xt−1
i · e2ηeTi Ry

t−1−ηeTi Ry
t−2∑n

j=1 x
t−1
j e2ηeTj Ry

t−1−ηeTj Ryt−2
,

ytj = yt−1
j · e−2ηeTj R

T xt−1+ηeTj R
T xt−2∑n

i=1 y
t−1
i e−2ηeTi R

T xt−1+ηeTi R
T xt−2

.

(1)

3 FORWARD LOOKING BEST
RESPONSE MULTIPLICATIVE
WEIGHTS UPDATE METHOD
(FLBR-MWU)

3.1 Definition of the Dynamics

We now present the method studied in this work, which
we refer to as Forward Looking Best-Response Multi-
plicative Weights Update method (FLBR-MWU). We
provide first a short description of the main idea behind
the dynamics. This is an extra gradient method and
each iteration has an intermediate and a final step. Sup-
pose that starting from some initial profile, we reach
the profile (xt−1, yt−1) by the end of iteration t − 1.
In the intermediate step of iteration t, we compute a
strategy x̂t for the row player (resp. ŷt for the column
player), which is an approximate best-response strategy
to yt−1 (resp. to xt−1). This serves as a look ahead
step of what would be the currently optimal choices.
In the final step of iteration t, we compute the new
mixed strategy xt for the row player, by performing
multiplicative weights updates, but after assuming that
the opponent was playing ŷt.

Formally, the first step of the dynamics, denoted as the
intermediate best response (IBR) step, is defined below,
at iteration t, and for all i, j ∈ [n], given a non-negative
parameter ξ ∈ R+ (ξ will be chosen sufficiently large,
as will become clear from Lemma 1).

x̂ti = xt−1
i · eξe

T
i Ry

t−1∑n
j=1 x

t−1
j eξe

T
j Ry

t−1
,

ŷtj = yt−1
j · e−ξe

T
j R

T xt−1∑n
i=1 y

t−1
i e−ξe

T
i R

T xt−1
.

(2)

The second step, which updates the profile (xt−1, yt−1)
to (xt, yt) is below, given the learning rate parameter
η ∈ (0, 1). We assume that we use the same fixed
constants η and ξ in all iterations3.

xti = xt−1
i · eηe

T
i Rŷ

t∑n
j=1 x

t−1
j eηe

T
j Rŷ

t
,

ytj = yt−1
j · e−ηe

T
j R

T x̂t∑n
i=1 y

t−1
i e−ηe

T
i R

T x̂t
.

(3)

Remark 1. By setting ξ = η in Equation (2) above,
the proposed method becomes the same as OMD with
entropic regularization (Mertikopoulos et al., 2019),
which can also be viewed as OMWU (Wei et al., 2021).
In our method however, η and ξ differ substantially
across both our theoretical and experimental results.

3It is an interesting topic for future work, to examine
adaptive schemes for ξ and η throughout the iterations.
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3.2 Main Results

We consider games with a unique Nash equilibrium, as
in (Daskalakis and Panageas, 2019), since it has been
argued that the set of zero-sum games with non-unique
equilibrium has Lebesgue measure equal to zero (van
Damme, 1991). For convenience, we also assume that
the initial strategy profile consists of the uniform dis-
tribution for each player. However, our results hold for
any fully-mixed initial profile, with a non-zero proba-
bility to all pure strategies.

The main result of our work is the following theorem.

Theorem 1. Consider a zero-sum game with a unique
Nash equilibrium (x∗, y∗). Starting with the uniform
distribution for each player, the FLBR-MWU dynamics
attain last-iterate convergence to the Nash equilibrium,
i.e., limt→∞(xt, yt) = (x∗, y∗), when η is chosen suffi-
ciently small, and for big enough ξ, so that ηξ < 1.

The goal of the remaining section is to establish the
proof of Theorem 1. Towards this, we start with the
choice of ξ. The next lemma provides the important
observation, that as ξ →∞, the strategy x̂t, computed
in the first step of iteration t, becomes a best response
against yt−1 (analogously for ŷt).

Lemma 1. Given any t > 0, let x̂t, ŷt, be the strategies
produced by the first step of iteration t. As ξ → +∞,
then x̂t converges to a best-response strategy against
yt−1 (similarly for ŷt against xt−1).

The proof of the lemma can be found in the supple-
mentary material. In the sequel, we assume that ξ has
been chosen sufficiently large, so that x̂t is an ε-best
response with ε → 0. For appropriate choices of ξ in
practice, we refer to the discussion in Section 4.

The proof of Theorem 1 is split into 3 parts. The first
part establishes that after a certain number of itera-
tions, the dynamics reach a profile (xt, yt), that is an
O(η1/ρ)-Nash equilibrium with ρ > 1. The second part
shows that the profile (xt, yt) lies within a neighbor-
hood of the actual equilibrium (x∗, y∗). Finally, the
last part shows that the update rule of FLBR-MWU is
a contracting map, i.e., once we are within a neighbor-
hood of (x∗, y∗), the dynamics converge to their fixed
point, which directly implies last-iterate convergence.
These three parts are established in Theorems 2, 3 and
5 respectively. The structure of the proof is similar to
the convergence proof of OMWU in (Daskalakis and
Panageas, 2019). There are however differences in var-
ious parts of the analysis. Most importantly, in the
first part, we are able to establish a better convergence
rate to an approximate equilibrium, whereas OMWU
achieves an Ω(η3) decrease rate. Furthermore, in the
third part, the analysis of our Jacobian matrix (proof
of Theorem 5) is also different since we are analyzing

sufficiently different dynamics.

To proceed with the first part of the proof, we will use
the Kullback-Leibler (KL) divergence as a measure of
progress. The KL divergence quantifies the similarity
between two distributions, and here we will consider the
divergence between a profile (xt, yt) and the equilibrium
(x∗, y∗), which equals:

DKL((x∗, y∗)||(xt, yt)) =∑n

i=1
x∗i ln(x∗i /x

t
i) +

∑n

j=1
y∗j ln(y∗j /y

t
j).

(4)

Note that by the initialization and the definition of the
dynamics, xti > 0, ytj > 0 for any given t, and any i, j,
so that the logarithmic terms above are well-defined.

Theorem 2. Consider a zero-sum game with a unique
Nash equilibrium (x∗, y∗). Assume that we run the
FLBR-MWU dynamics with the uniform distribution
as the initial strategy for both players, and using a suffi-
ciently small η and a big enough ξ. Then, for any ρ > 1,
the KL divergence DKL((x∗, y∗)||(xt, yt)) decreases at
every iteration with a rate of at least Ω(η1+1/ρ), until
we reach an O(η1/ρ)-Nash equilibrium of the game.

Proof. Let (x∗, y∗) be the Nash equilibrium of the game,
and let v be the value of the game, v = (x∗)TRy∗. We
take the difference of the KL divergence between two
consecutive iterations:

DKL((x∗, y∗)||(xt, yt))−DKL((x∗, y∗)||(xt−1, yt−1))

= −
(∑n

i=1
x∗i ln(xti/x

t−1
i ) +

∑n

j=1
y∗j ln(ytj/y

t−1
j )

)
.

We show that this difference is negative and we quantify
the decrease in the KL divergence, until we reach an
O(η1/ρ)-Nash equilibrium. Analytically, we have that

DKL((x∗, y∗)||(xt, yt))−DKL((x∗, y∗)||(xt−1, yt−1))

= −
n∑
i=1

x∗i ln eηe
T
i Rŷ

t

+ ln
( n∑
i=1

xt−1
i eηe

T
i Rŷ

t
)

−
n∑
j=1

y∗j ln e−ηe
T
j R

T x̂t + ln
( n∑
j=1

yt−1
j e−ηe

T
j R

T x̂t
)

= −η(x∗)TRŷt + η(y∗)TRT x̂t

+ η(xt−1)TRyt−1 − η(yt−1)TRTxt−1

+ ln
( n∑
i=1

xt−1
i eηe

T
i Rŷ

t−η(xt−1)TRyt−1
)

+ ln
( n∑
j=1

yt−1
j e−ηe

T
j R

T x̂t+η(yt−1)TRT xt−1
)
.

Notice that in the last expression above, the third
term, η(xt−1)TRyt−1, cancels out with the fourth term.
Also, since (x∗, y∗) is an equilibrium, it holds that
x∗TRŷt ≥ v and (y∗)TRT x̂t ≤ v. Therefore, the first
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and second terms also cancel out and yield an upper
bound with the two logarithmic terms.

We now apply the Taylor expansion of ex. For conve-
nience, let also pi(η) = η(eTi Rŷ

t − (xt−1)TRyt−1), and
let qj(η) = η(−eTj RT x̂t + (xt−1)TRyt−1). Using these
abbreviations, the difference of the KL divergences is
upper bounded by

ln
(

1 + η((xt−1)TRŷt − (xt−1)TRyt−1)

+

n∑
i=1

xt−1
i

∞∑
k=2

(pi(η))k

k!

)
+ ln

(
1 + η(−(yt−1)TRT x̂t

+ (yt−1)TRTxt−1) +

n∑
j=1

yt−1
j

∞∑
k=2

(qj(η))k

k!

)
.

It is easy to see that |pi(η)| ≤ η and |qj(η)| ≤ η. This
means that for any k ≥ 2 (i.e., for both odd and even
values of k), (pi(η))k ≤ ηk and (qj(η))k ≤ ηk. By

using the geometric series, we have that
∞∑
k=2

(pi(η))k

k! ≤

η2/(1−η), and similarly for the series concerning qj(η).
If we also use the inequality ln(x) ≤ x− 1, we obtain
the following sequence of steps.

DKL((x∗, y∗)||(xt, yt))−DKL((x∗, y∗)||(xt−1, yt−1))

≤ ln
(

1 + η((xt−1)TRŷt − (xt−1)TRyt−1) +
η2

(1− η)

)
+ ln

(
1 + η(−(yt−1)TRT x̂t + (yt−1)TRTxt−1)

+
η2

(1− η)

)
≤ η((xt−1)TRŷt − (xt−1)TRyt−1

+ (xt−1)TRyt−1 − (x̂t)TRyt−1) + 2
η2

(1− η)

= −η(ε1 + ε2) + 4η2 ≤ −η(max{ε1, ε2}) + 4η2,

(5)

where ε1 = (x̂t)TRyt−1 − (xt−1)TRyt−1, ε2 =
(xt−1)TRŷt − (xt−1)TRyt−1, and the last inequality
holds because η ≤ 1/2. Let us look now more carefully
at ε1 (an analogous argument holds for ε2). The term
ε1 expresses the additional benefit for the row player,
if at the profile (xt−1, yt−1), she deviates to x̂t. By
Lemma 1, we know that as ξ → ∞, then x̂t tends to
her best response against yt−1. Hence when we select ξ
sufficiently large, ε1 tends to the best possible deviation
gain of the row player at the profile (xt−1, yt−1) (resp.
for ε2 and the column player).

To finish the proof, suppose that the profile (xt−1, yt−1)
is not an O(η1/ρ)-Nash equilibrium. Then there exists
a deviation that provides additional gain of Ω(η1/ρ) to
one of the players. This implies that max{ε1, ε2} =
Ω(η1/ρ). Hence, by (5), and since η < 1, we can see
that as long as we have not reached an O(η1/ρ)-Nash

equilibrium, the KL divergence will keep decreasing by
at least ηΩ(η1/ρ)− 4η2 = Ω(η1+1/ρ). As the KL diver-
gence cannot decrease forever, eventually, our dynamics
will reach an O(η1/ρ)-Nash equilibrium.

Consider now the first iteration t of the dynamics,
where (xt, yt) forms an O(η1/ρ)-Nash equilibrium for
some fixed ρ > 1. The next step is to show that if
we make η small enough, this profile falls within a
neighborhood of the equilibrium (x∗, y∗).

Theorem 3. Let (x∗, y∗) be the unique Nash equilib-
rium of the zero-sum game, and let (xt, yt) be the first
profile reached by the dynamics that forms an O(η1/ρ)-
Nash equilibrium for some ρ > 1. Then

lim
η→0
||(x∗, y∗)− (xt, yt)||1 = 0,

The proof of Theorem 3 can be found at the supple-
mentary material, Section A.

The next and final step of our proof is to show that
our dynamics induce a contracting map. An update
rule with a fixed point x is called a contraction, if
there exists a region U around x, such that for any
starting point in U , the rule converges to its fixed
point as t → ∞. In our case, the Nash equilibrium
(x∗, y∗) of the game is a fixed point of the FLBR-MWU
dynamics and Theorem 3 guarantees that we can reach
a neighborhood around (x∗, y∗). To proceed, we state a
sufficient condition for a dynamical system to converge
to its fixed point.

Theorem 4 (see (Galor, 2007)). Let x∗ be a fixed point
for the dynamical system x(t+1) = g(x(t)). If all eigen-
values of the Jacobian matrix of g at x∗ have absolute
value less than one, then there exists a neighborhood
U of x∗ such that for all x ∈ U , g converges to x∗,
starting from x.

Using Theorem 4, we show the following theorem,
whose proof can be found at the supplementary mate-
rial, Section A.

Theorem 5. The update rule of FLBR-MWU is a
contraction, as long as ηξ < 1, i.e. limt→∞(xt, yt) =
(x∗, y∗).

4 NUMERICAL EXPERIMENTS

We note that additional supporting figures and elabo-
ration on our experiments can be found in the supple-
mentary material (Section C).

Nash equilibrium estimation. In order to make
comparisons, we need first to compute the equilib-
ria of the generated instances. Instead of using a
linear programming solver, the equilibrium computa-
tion is performed using the proposed FLBR-MWU
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algorithm with η = 0.05. FLBR-MWU is an itera-
tive approach thus a convergence criterion to ensure
that the Nash equilibrium has been reached is re-
quired. We propose as a convergence criterion the
DKL between the update step and the IBR step of
our dynamics: DKL((xt, yt)||(x̂t, ŷt)). This metric is
sufficient because the best response strategy at Nash
equilibrium is exactly the equilibrium strategy, thus
limt→∞DKL((xt, yt)||(x̂t, ŷt)) = 0 (for small enough
η). We return the solution when the convergence cri-
terion becomes 10−15, which is approximately the ma-
chine’s arithmetic precision, or when the maximum
number of steps, denoted by tmax, –typically millions
of steps– has been reached. In the infrequent latter
case (it happened in less than 0.1% of the instances),
we discard the returned solution.

Effect of the intermediate rate (ξ). In our learn-
ing dynamics, the best response strategy is approxi-
mated by the softmax function (a.k.a. the normalized
exponential function or the Gibbs measure in statis-
tical physics). Sending ξ to infinity, one out of the
potentially many best response strategies is obtained
as intermediate dynamics by Equation (2). However, ξ
should be finite from a practical point of view. Since it
appears at the exponentials’ argument, very high values
of ξ may result in arithmetic imprecision. Therefore,
we conducted a numerical study to assess the effect of ξ
on the convergence of the algorithm. Table 1 presents
various statistics about the number of steps required
for several values of ξ and for two values of the size of
the payoff matrix R, with η = 0.1. We average over
103 repetitions using random payoff matrices, whose
elements are iid sampled from U([0, 1]). Evidently, as
ξ increases, the FLBR-MWU dynamics require fewer
steps in order to reach a specific threshold of accuracy
(set to 10−10 for the DKL between the Nash equilibrium
and the FLBR-MWU dynamics). However, the solu-
tion occasionally produces ‘NaN’ for values of ξ above
200, due to overflow in the exponentials4. Overall, val-
ues between 50 and 100 are a sufficient compromise
between the best response approximation and machine
precision trade-off. We also note that even when we
select values that violate the condition ηξ < 1 (which
we needed for our theoretical results), we still attain
convergence in most cases. In the remaining exper-
iments of this section, we set ξ = 100, even though
larger values can be tolerated especially when both
n� 1 and x∗i , y

∗
j � 1 hold.

Effect of the learning rate (η). The first row of
panels in Figure 2 shows the DKL between the Nash
equilibrium and the FLBR-MWU dynamics for the
same payoff matrix instance as in Figure 1 and for

4Overflow can be easily fixed by subtracting the maxi-
mum value but with an increased underflow risk.

Table 1: Statistics on the number of steps till conver-
gence for various values of ξ and n. The maximum
number of steps was set to tmax = 106.

Matrix size Statistic ξ = 20 ξ = 50 ξ = 100 ξ = 200

n = 10
Mean 85.9K 52.7K 41.6K 57.6K

Median 32.0K 22.3K 19.8K 18.0K
tmax was hit 0.9% 0.0% 0.0% 2.2%

n = 20
Mean 352.1K 233.3K 173.6K 141.4K

Median 225.0K 123.4K 82.2K 65.6K
tmax was hit 13.5% 5.9% 3.5% 2.5%

various values of the learning rate, η. The difference
between the left and right panels is that for the right
column of panels, the x-axis has been rescaled by mul-
tiplying each run with the respective learning rate. A
linear scaling is numerically observed showing that the
number of steps is effectively of order O(η−1) for a
fixed accuracy level. This inversely-proportional be-
havior is observed not only during the convergence to
the approximate Nash equilibrium, but also during the
contraction period. As a rule of thumb, we propose
to increase the rate η, because it accelerates the con-
vergence, but with caution since a very large η might
result in an oscillatory solution, thus failing to converge
(blue line in second row of panels).
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Figure 2: The DKL between the Nash equilibrium and
the FLBR-MWU dynamics for two instances, with no
rescaling of the x-axis (left panels) and with rescaling
(right panels). The relationship between the number
of steps and learning rate is inversely proportional.

Effect of the payoff matrix size (n). The rate of
convergence is sensitive to the size of the payoff matrix
and the number of steps is expected to substantially
increase on average as the size of the game increases.
We performed a numerical comparison between FLBR-
MWU and OMWU to evaluate the number of steps
required to achieve a predefined level of accuracy. Ta-
ble 2 presents statistics on the number of steps for
each learning algorithm computed on 100 repetitions
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using element-wise uniformly-sampled and iid random
payoff matrices. The learning rate was set to η = 0.1.
Given that FLBR-MWU requires almost twice as many
calculations per iteration, relative to OMWU, it is fair
to multiply the number of steps of FLBR-MWU with
two and then compare it with the number of steps
of OMWU. We observe that FLBR-MWU is approxi-
mately 15 times faster on average when n = 5. As the
size of the payoff matrix increases, the performance
gap in convergence rate as measured by the number of
steps also increases. Indeed, even for n = 10, OMWU
requires more than 4.2M steps in half of the runs,
while the respective number for FLBR-MWU is 16.3K,
implying that FLBR-MWU is 100 times faster than
OMWU in the median sense. Larger game sizes make
OMWU essentially impractical while FLBR-MWU is
still able to converge in less than 5M steps.

Table 2: Statistics on the number of steps till conver-
gence for various sizes of the game. The maximum
number of steps was set to tmax = 5× 106.

Learning alg. Statistic n = 5 n = 10 n = 50

FLBR-MWU
Mean 33.7K 103.3K 984.9K

Median 9.8K 16.3K 409.3K
tmax was hit 0.0% 0.0% 1.0%

OMWU
Mean 1088.8K 3323.2K 5000.0K

Median 353.8K 4208.1K 5000.0K
tmax was hit 9.0% 46.0% 100.0%

Acknowledgements

This work has been supported by the Hellenic Founda-
tion for Research and Innovation (H.F.R.I.) under the
”First Call for H.F.R.I. Research Projects to support
faculty members and researchers and the procurement
of high-cost research equipment” grant (Project Num-
ber: HFRI-FM17-3512). We are also grateful to the
anonymous reviewers of AISTATS 2022 for their im-
portant feedback on improving the presentation of our
work.

References

Ilan Adler. The equivalence of linear programs and
zero-sum games. Int. J. Game Theory, 42(1):165–177,
2013.

Sanjeev Arora, Elad Hazan, and Satyen Kale. The mul-
tiplicative weights update method: a meta-algorithm
and applications. Theory Comput., 8(1):121–164,
2012.
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Supplementary Material:
Forward Looking Best-Response Multiplicative Weights Update

Methods for Bilinear Zero-sum Games

A MISSING PROOFS

A.1 Proof of Lemma 1

Fix t and let us consider the formula that produces the coordinates of x̂t, given xt−1, yt−1. For simplicity in
writing, we drop the superscript t− 1 and refer to x, y as the strategies of the two players computed at the end of
iteration t− 1. Focusing on the row player (the same argument follows for the column player too), we know that
for every i ∈ [n],

x̂ti = xi ·
eξe

T
i Ry∑n

j=1 xje
ξeTj Ry

.

We want to compute for every i ∈ [n], the limit limξ→∞ x̂ti. We distinguish two cases, depending on whether ei is
a best-response strategy against y or not. Denote by B(y) the set of the pure best-response strategies of the row
player against y, i.e., B(y) = {i : ei is a best response against y}.

We start with the first case, where i ∈ B(y). This means that eTi Ry is a best-response payoff against y and

therefore eξe
T
i Ry = eξe

T
j Ry for any j ∈ B(y). Based on this, we can now write the limit as

lim
ξ→∞

x̂ti = xi ·
eξe

T
i Ry∑

j∈B(y) xje
ξeTj Ry +

∑
j /∈B(y) xje

ξeTj Ry
= xi ·

1∑
j∈B(y) xj +

∑
j /∈B(y) xje

ξ(eTj Ry−eTi Ry)
,

Obviously, we can see that (eTj Ry − eTi Ry) < 0 for any j /∈ B(y). Hence, as ξ goes to infinity, it holds that

limξ→∞ =
∑
j /∈B(y) xje

ξ(eTj Ry−e
T
i Ry) = 0. Thus, we have that

lim
ξ→∞

x̂ti =
xi∑

j∈B(y) xj
.

Consider now the second case where i 6∈ B(y). Let A(y) be the set of indices j, such that eξe
T
j Ry > eξe

T
i Ry. Since

i 6∈ B(y), we know that A(y) 6= ∅. Then, we have

lim
ξ→∞

x̂ti = xi ·
eξe

T
i Ry∑

j∈A(y) xje
ξeTj Ry +

∑
j /∈A(y) xje

ξeTj Ry
= xi ·

1∑
j∈A(y) xje

ξ(eTj Ry−eTi Ry) +
∑
j /∈A(y) xje

ξ(eTj Ry−eTi Ry)
.

As ξ goes to infinity, it holds that limξ→∞ =
∑
j∈A(y) xje

ξ(eTj Ry−e
T
i Ry) = +∞. For the second term of the

denominator, we can see that for the indices j 6∈ A(y), for which eξe
T
j Ry < eξe

T
i Ry, it holds that limξ→∞ =∑

j xje
ξ(eTj Ry−e

T
i Ry) = 0. For the remaining indices j, for which eξe

T
j Ry = eξe

T
i Ry, the limit is

∑
j xj ≤ 1. Thus,

in total, we have that

lim
ξ→∞

x̂ti = 0.

Hence, when ξ →∞, the strategy x̂ will eventually contain in its support only best responses to y, and therefore
x̂ will form a best response to y as well.
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A.2 Proof of Theorem 3

The proof is based on the following lemma, shown in (Etessami and Yannakakis, 2010), which we state here for
the case of zero-sum games:

Lemma 3. Consider a zero-sum game given by matrix R with a unique Nash equilibrium (x∗, y∗), and let |R| be
the number of bits needed for the representation of R. There exists a polynomial p such that for every δ > 0, every
ε-Nash equilibrium (x, y) satisfies that |x∗i − xi| < δ, as long as ε ≤ 1/2p(|R|+size(δ)), where size(δ) = O(log(1/δ))
is the number of bits needed for representing δ.

By the assumptions in the statement of Theorem 3, we fix ε = c · η1/ρ, for some constant c, so that (xt, yt) is an
ε-Nash equilibrium. We claim that there exists δ(η) such that ε and δ(η) satisfy the inequality stated in Lemma 3.
In particular, by looking more carefully at the desired inequality and solving with respect to δ, one can construct
a function δ(η), such that for the given ε we have selected, it holds that

ε ≤ 1/2p(|R|+size(δ(η))) and limη→0 δ(η) = 0.

Hence, we can now apply Lemma 3 and obtain that for any ε-Nash equilibrium (x, y) we have that |x∗i −xi| ≤ δ(η)
and |y∗i − yi| ≤ δ(η). The proof now of Theorem 3 is immediate, since ||(x∗, y∗)− (xt, yt)||1 =

∑n
i=1 |x∗i − xi|+∑n

i=1 |y∗i − yi| ≤ 2n · δ(η), which goes to 0 as η → 0.

A.3 Proof of Theorem 5

To prove the theorem, we describe first a discrete dynamical system that captures the FLBR-MWU dynamics,
and we will prove that for an appropriate norm of the Jacobian matrix of the system, its value is less than one 5.
The update rule ϕ of FLBR-MWU is

ϕ(x, y) = (ϕ1(x, y), ϕ2(x, y)), where

ϕ1,i(x, y) = (ϕ1(x, y))i = xi
eηe

T
i Rf(x,y)∑

` x`e
ηeT
`
Rf(x,y)

,

ϕ2,i(x, y) = (ϕ2(x, y))i = yi
e−ηe

T
i R

T h(x,y)∑
` y`e

−ηeT
`
RT h(x,y)

,

(6)

where f(x, y) and h(x, y) are column vectors with (f(x, y))i = yi
e−ξe

T
i R

T x∑
` y`e

−ξeT
`
RT x

, and (h(x, y))i = xi
eξe

T
i Ry∑

` x`e
ξeT
`
Ry

,

for all i ∈ {1, . . . , n}.

Clearly, the dynamics of FLBR-MWU are captured by (xt+1, yt+1) = ϕ(xt, yt). The Jacobian of ϕ is a 2n× 2n
matrix, which can be written in the form of a 2× 2 block matrix, as follows:

J =

(
∂ϕ1

∂x
∂ϕ1

∂y
∂ϕ2

∂x
∂ϕ2

∂y

)
. (7)

In order to use Theorem 4 and prove that φ is a contraction, we need to argue about the eigenvalues of J at the
equilibrium (x∗, y∗). Towards this, in Section B, we provide the exact form of each entry of J at (x∗, y∗) (after
some simplification steps by exploiting the fact that (x∗, y∗) is an equilibrium).

We analyze first the eigenvalues that are derived by the rows of J that correspond to ϕ1,i for some i 6∈ supp(x∗)
and to ϕ2,i for some i 6∈ supp(y∗). Let x∗TRy∗ = v be the value of the game. By referring to Subsection B, we
have that for any i 6∈ supp(x∗):

∂ϕ1,i

∂xi
(x∗, y∗) =

eηe
T
i Ry

∗

eηv
,
∂ϕ1,i

∂xj
(x∗, y∗) = 0 for any i 6= j, and

∂ϕ1,i

∂yj
(x∗, y∗) = 0, for any j.

Hence, the i-th row of the upper block of J has only one non-zero entry, namely, the diagonal element, provided

that i 6∈ supp(x∗). Thus, e
ηeTi Ry

∗

eηv is an eigenvalue of J at (x∗, y∗). We note also that6 eTi Ry
∗ < v for i 6∈ supp(x∗),

5Besides (Galor, 2007), readers could also refer to Chapter 7 (Quarteroni et al., 2006).
6A unique Nash equilibrium of a zero-sum game is also a quasi-strict equilibrium (Theorem 1 in (Norde, 1999)), meaning

that strategies that are not in the support of the equilibrium have strictly less payoff than the best-response payoff.
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hence |∂ϕ1,i

∂xi
(x∗, y∗)| < 1. Analogously, for i 6∈ supp(y∗) we have that

∂ϕ2,i

∂yi
(x∗, y∗) = e−ηe

T
i R

T x∗

e−ηv , whereas all

other partial derivatives of ϕ2,i are zero. Thus, e
−ηeTi R

T x∗

e−ηv is also an eigenvalue of J , with | e
−ηeTi R

T x∗

e−ηv | < 1, since
eTi R

Tx∗ > v for i /∈ supp(y∗), by Footnote 2.

We now focus on the rows and columns that correspond to the support of x∗ and y∗. We denote this submatrix
as J̃ , with k1 = |supp(x∗)|, k2 = |supp(y∗)| and k = k1 + k2. Thus, J̃ ∈ Rk×k. It can been seen that J has
eigenvalues with absolute value less that one iff the same holds for J̃ as well.

Using equations (11) and computing ((1k1 ,0k2)T · J̃)j for an arbitrary coordinate j, we end up with the quantity∑
i x
∗
i

∑
k Riky

∗
kR

T
kj −

∑
i x
∗
i

∑
k x
∗
k

∑
lRkly

∗
l R

T
lj , that equals zero. Thus, (1k1 ,0k2) is a left eigenvector of J̃

corresponding to the zero eigenvalue. Using the same argumentation we have that (0k1 ,1k2) is also a left
eigevector of J̃ with eigenvalue zero.

We will make use of the following claim, regarding orthogonal pairs of eigenvectors.

Claim 1. Consider a matrix A ∈ Rn×n, an eigenvalue λ and a left eigenvector uT , corresponding to λ. Then for
every right eigenvector v that does not correspond to λ, it holds that uT v = 0.

The proof of the claim, which is a simple linear algebra exercise, is at the end of this section. From Claim 1, it
follows that for any right eigenvector (x̃, ỹ) corresponding to a nonzero eigenvalue, we have

x̃T1k1 = 0 and ỹT1k2 = 0. (8)

With that in hand, let us now rewrite J̃ , as J̃ = J ′ +A, where J ′ is produced by deleting the term −x∗i (resp.
−y∗i ) from every element of the upper left (resp. lower right) block of J̃ . I.e., A contains −x∗i in all entries of the
i-th row in the upper left block, and −y∗i in all entries of the (k1 + i)-th row in the bottom right block. The
other two blocks of A contain only zeros. Using (8), we can see that for every non-zero eigenvalue λ of J̃ , that
corresponds to a right eigenvector (x̃, ỹ), it holds that A · (x̃, ỹ) = 0, thus λ is also an eigenvalue of the matrix J ′.
By the equations in Subsection B, we can write J ′ as a 2× 2 block matrix, as follows.

J ′ =

(
Ik1×k1 + ηξDxx ηDxy

ηDyx Ik2×k2 + ηξDyy

)
,

with

Dxx
ij = −x∗i

(∑
k Riky

∗
kR

T
kj −

∑
k x
∗
k

∑
lRkly

∗
l R

T
lj

)
, with i, j ∈ [k1],

Dyy
ij = −y∗i

(∑
k RkjR

T
ikx
∗
k −

∑
k y
∗
k

∑
lR

T
klx
∗
lRlj

)
, with i, j ∈ [k2],

Dyx
ij = −y∗i

(
RTij − eTj Ry∗

)
e
ξeTj Ry

∗

eξv
, with i ∈ [k2], j ∈ [k1],

Dxy
ij = x∗i

(
Rij − eTj RTx∗

)
e
−ξeTj R

T x∗

e−ξv
, with i ∈ [k1], j ∈ [k2].

We observe that all the entries of the matrices Dxx, Dyy, Dyx, Dxy are within the interval [−1, 1]. Furthermore,
for the remainder of the proof, and without loss of generality, we assume that (x∗, y∗) is a mixed strategy profile,
i.e., both x∗ and y∗ are mixed.7

We now consider the diagonal elements of Dxx and Dyy. For Dxx, and for any i, its i-th element along the
diagonal is

−x∗i
(∑

l
R2
ily
∗
l −

∑
k
x∗k
∑

l
Rkly

∗
l R

T
li

)
We establish the following useful property.

7If exactly one of x∗, y∗ were mixed, this would also imply the existence of a pure equilibrium, contradicting our
uniqueness assumption. If (x∗, y∗) is a pure strategy profile, then J̃ is a 2 × 2 block matrix, where each block is a single

element. Using the equations of (11) in Section B, then the matrix J̃ only has the zero eigenvalue and the proof of Theorem
5 follows directly.
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Lemma 4. For any i ∈ [k1], Dxx
ii < 0, and for any j ∈ [k2], Dyy

jj < 0.

Proof of Lemma 4. We first prove that for any i, Dxx
ii ≤ 0. For the sake of contradiction, assume that there

exists an index i, such that Dxx
ii > 0. This means that∑

l
R2
ily
∗
l <

∑
k

x∗k
∑
l

Rkly
∗
l Ril.

To proceed, we claim that

v ≤
∑

l
Rilzl, (9)

where zl =
Rily

∗
l

v , and z = (zl)l∈[n]. To see this, it is crucial to notice first that both y∗ and z are probability
vectors and also that v =

∑
lRily

∗
l . Hence, the LHS and the RHS of Equation (9) are two different convex

combinations of the Ril values. To go from the LHS to the RHS, we simply replace y∗l by zl. For each Ril that is
itself less than v, the coefficient y∗l is replaced by a smaller coefficient, since zl < y∗l in this case (by the definition
of zl). On the contrary, for each Ril with Ril > v, it holds that zl > y∗l (and we also have zl = y∗l when Ril = v).
Hence, we can think of the move from the LHS to the RHS of (9), as transferring probability mass from the
lowest valued Ril’s to the highest ones. Let ∆ be the total amount of probability mass that was transferred.
Then ∆ =

∑
l:Ril<v

(y∗l − zl) ≥ 0. Note that it also holds that ∆ =
∑
l:Ril>v

(zl − y∗l ). If we compare now the LHS
with the RHS, the RHS has a deficit of a total value of at most ∆ · v from the terms with Ril < v, compared to
the corresponding terms of the LHS. At the same time, it has a surplus of at least ∆ · v from the terms with
Ril > v. Combining the deficit and the surplus, this proves Equation (9).

Using (9), we can now obtain the following contradiction:

v ≤
∑

l
Rilzl < x∗TRz = v,

where the strict inequality above follows by the condition stated just before Equation (9), and the final equality
holds since x∗TRej = v for any j ∈ supp(y∗) (and so for any j ∈ supp(z)).

Thus, we have reached a contradiction, which means that Dxx
ii ≤ 0 for every i ∈ [k1]. In addition, it is not difficult

to see that in case Dxx
ii = 0 for some i, the strategy profile (i, y∗) is also a Nash equilibrium. But this would

imply that there also exists a pure equilibrium formed by i and a pure best response (from the support of y∗),
contradicting the fact that we have a unique equilibrium. Hence, Dxx

ii is strictly negative for every i ∈ [k1].

Similarly, the same analysis holds for the matrix Dyy, completing the proof of the lemma. �

To finish the proof, we estimate an upper bound on the p-norm of J ′ for p ∈ N. We have that

‖J ′‖pp =
∑
j

(∑
i |J ′ij |p

)
≤ kmaxj

(∑
i |J ′ij |p

)
≤ k(|1 + ηξDxx

`` |p + ηpξp
∑k1
i=1,
i 6=`
|Dxx

i` |p + ηp
∑k2
i=1 |D

yx
i` |p)

≤ k(|1 + ηξDxx
`` |p + ηpξpk1 + ηpk2),

where ` is the column of J ′ that achieves the maximum sum, i.e., ` = arg maxj∈[k1+k2]

∑
i |J ′ij |p, and we assumed

without loss of generality that ` belongs to {1, . . . , k1}. We can now see that since Dxx
`` is negative, and both

|Dxx
i` |, |D

yx
i` | are at most equal to one, then if ηξ < 1, and η is sufficiently small, there exists an appropriate p

so that ‖J ′‖pp < 1. However, it is well known that the maximum absolute value of an eigenvalue of a matrix is
bounded by the induced matrix norms, therefore is suffices to check that ‖J ′‖ < 1 for some matrix norm, see
(Quarteroni et al., 2006). Thus, the absolute value of the maximum eigenvalue of J ′ is less than one, and this
concludes our proof.

Proof of Claim 1. Consider two distinct eigenvalues of A λ1 and λ2, such that v is the corresponding to
λ1 left eigenvector, while u is the corresponding to λ2 right eigenvector ((Strang, 2009)). In other words, v
is the corresponding to λ1 right eigenvector for AT . We observe that, vT (ATu) = (vTAT )u = (Av)Tu. So,
λ1v

Tu = (AT v)Tu = vT (Au) = vTλ2u = λ2v
Tu. Thus, vTu = 0. �



M. Fasoulakis, E. Markakis, Y. Pantazis, C. Varsos

B EQUATIONS OF THE JACOBIAN ENTRIES

Recall the form of the Jacobian of our dynamical system in Equation (7).

We compute the form of each entry of J at the point (x, y). Let Qx =
∑
` x`e

ηeT` Rf(x,y), Qy =
∑
` y`e

−ηeT` R
Th(x,y),

Sx =
∑
` x`e

ξeT` Ry, and Sy =
∑
` y`e

−ξeT` R
T x.

∂ϕ1,i

∂xi
= eηe

T
i Rf(x,y)

Qx

(
1+ηxi

∂
∂xi

(eTi Rf(x,y))

)
−xi

∂
∂xi

Qx

Q2
x

, i ∈ [n],

∂ϕ1,i

∂xj
= xie

ηeTi Rf(x,y)
ηQx

∂
∂xj

(eTi Rf(x,y))− ∂
∂xj

Qx

Q2
x

, i, j ∈ [n] and i 6= j,

∂ϕ1,i

∂yj
= xie

ηeTi Rf(x,y)
ηQx

∂
∂yj

(eTi Rf(x,y))− ∂
∂yj

Qx

Q2
x

, i, j ∈ [n],

∂ϕ2,i

∂xj
= yie

−ηeTi R
Th(x,y)

−ηQy
∂
∂xj

(eTi R
Th(x,y))− ∂

∂xj
Qy

Q2
y

, i, j ∈ [n],

∂ϕ2,i

∂yi
= e−ηe

T
i R

Th(x,y)
Qy

(
1−ηyi

∂
∂yi

(eTi R
Th(x,y))

)
−yi

∂
∂yi

Qy

Q2
y

, i ∈ [n],

∂ϕ2,i

∂yj
= yie

−ηeTi R
Th(x,y)

−ηQy
∂
∂yj

(eTi R
Th(x,y))− ∂

∂yj
Qy

Q2
y

, i, j ∈ [n] and i 6= j.

(10)

At the point (x∗, y∗), after exploiting the fact that this is an equilibrium profile, and simplifying some of the
calculations, we obtain the following forms.

∂ϕ1,i

∂xi
= 1− x∗i

(
ηξ
(∑

k
R2
iky
∗
k −

∑
k
x∗k
∑

l
Rkly

∗
l R

T
li

)
+ 1
)
, i ∈ supp(x∗),

∂ϕ1,i

∂xi
= eηe

T
i Ry

∗

eηv , i 6∈ supp(x∗),
∂ϕ1,i

∂xj
= −x∗i

(
ηξ
(∑

k
Riky

∗
kR

T
kj −

∑
k
x∗k
∑

l
Rkly

∗
l R

T
lj

)
+ 1
)
, i ∈ supp(x∗), i 6= j,

∂ϕ1,i

∂xj
= 0, i 6∈ supp(x∗) and i 6= j,

∂ϕ1,i

∂yj
= x∗i η(Rij − eTj RTx∗) e

−ξeTj R
T x∗

e−ξv
, for all i ∈ supp(x∗),

∂ϕ1,i

∂yj
= 0, i 6∈ supp(x∗),

∂ϕ2,i

∂xj
= −y∗i η(RTij − eTj Ry∗) e

ξeTj Ry
∗

eξv
, for all i ∈ supp(y∗),

∂ϕ2,i

∂xj
= 0, i 6∈ supp(y∗),

∂ϕ2,i

∂yi
= 1− y∗i

(
ηξ
(∑

k
(RTik)2x∗k −

∑
k
y∗k
∑

l
RTklx

∗
lRli

)
+ 1
)
, i ∈ supp(y∗),

∂ϕ2,i

∂yi
= e−ηe

T
i R

T x∗

e−ηv , i 6∈ supp(y∗),
∂ϕ2,i

∂yj
= −y∗i

(
ηξ
(∑

k
RkjR

T
ikx
∗
k −

∑
k

y∗k
∑
l

RTklx
∗
lRlj

)
+ 1
)
, i ∈ supp(y∗), i 6= j,

∂ϕ2,i

∂yj
= 0, i 6∈ supp(y∗) and i 6= j,

(11)

C ADDITIONAL EXPERIMENTS

In this section, we demonstrate the properties of the FLBR-MWU algorithm using additional metrics and perform
further comparisons.

Convergence to the value of the game. Figure 3 shows the evolution of the current value of the game at
each iteration, with the same payoff matrix as that used in the example of Figure 1, in the main body of the
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paper. The current value of the game at iteration t is defined as vt = xtTRyt, and it serves as another convergence
measure to Nash equilibrium. MWU (blue) oscillates around the true value of the game (v = 0.529677) without
converging, while OMWU (red) oscillates with decreasing amplitude and eventually it converges to the true
value. The current game value for the FLBR-MWU dynamics (black) converges much faster requiring only a few
thousand steps.

No. Steps
×10

4
0 2 4 6 8 10

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6
                

MWU
OMWU
FLBR-MWU

Figure 3: The value of the game as a function of the number of steps for the three MWU variants.

Dynamics trajectories. Figures 4 and 5 show the trajectories of the row player (i.e., xti for i = 1, . . . , 10) in
linear and log scale, respectively. Similarly, Figures 6 and 7 show the trajectories of the column player (i.e., yti).
Again, the payoff matrix is the same as in Figure 1 from the main paper, and the Nash equilibrium is estimated
as: (

x∗T

y∗T

)
=

(
0.126766, 0.276988, 0, 0.22506, 0.081435, 0, 0.191705, 0, 0.098045, 0
0, 0.058227, 0, 0.298188, 0.213176, 0, 0, 0.283403, 0.000376, 0.146628

)
.

First, we note that for all pure strategies that do not belong to the support of x∗ or y∗, the corresponding
probabilities in xt and yt converge to 0 under FLBR-MWU, after a few thousand steps. Additionally, we observe
interesting patterns during the evolution of the learning dynamics in both scales which are intimately connected
with the KL divergence trajectory shown in Figure 1 of the main paper. Indeed, it is worth looking at yt9 (log
scale; Figure 7), which shows the most interesting pattern. Initially it seems that this is not a surviving strategy
of the dynamics and its probability decreases for the first 10K steps. However, and, despite its very low value,
it recovers to the actual Nash equilibrium value. Similarly, we observe that the non-zero elements of xt (linear
scale; Figure 4) are linearly evolving for several thousands of steps. Those changes in the dynamics correspond
to the plateau of the KL divergence observed in Figure 1 of the main text. Our explanation of the dynamics
trajectories is as follows: starting from the uniform state, the FLBR-MWU algorithm first finds an approximate
Nash equilibrium with a value close to the true value of the game but then escapes from it until it eventually
converges to the actual Nash equilibrium.

Another interesting observation is that the dynamics of the IBR step (recall Equation (3) in the main paper)
drive the FLBR-MWU dynamics in the sense that when the IBR dynamics are above the FLBR-MWU dynamics,
then the corresponding probabilities in the update step of FLBR-MWU increase, while the opposite is true when
the IBR dynamics are below the FLBR-MWU dynamics.
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Figure 4: The dynamics of the update step per coordinate (solid), as well as the IBR step (dashed) for the row
player. For the equilibrium strategy x∗, it holds that supp(x∗) = {1, 2, 4, 5, 7, 9}. Note that xt converges to the
same support.
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Figure 5: Same as Figure 4, but in logarithmic scale.
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Figure 6: The dynamics of the update step per coordinate (solid), as well as the IBR step (dashed) for the column
player. For the equilibrium strategy y∗, it holds that supp(y∗) = {2, 4, 5, 8, 9, 10}.

Effect of the intermediate rate (ξ). We present further statistical information on the effect of ξ. Figure 8
shows the distribution of the number of steps as a boxplot for n = 10 (left) and n = 20 (right). The red line in
the boxplot corresponds to the median value while the blue box corresponds to the area covered by the 2nd and
3rd quantiles. The distribution of the number of steps till convergence is positively (or right) skewed. Therefore
we also report the statistics of the right tail in Table 3. The presented results further validate the suggested
value for ξ in Section 4 of the main paper. We also remark that the product ηξ is not always less than 1 in our
experiments. Hence, although we needed the condition ηξ < 1 to prove our theoretical result in Section 3, the
numerical evidence shows that the product can take values greater than 1 and still attain convergence (however
ηξ should not become arbitrarily large).

Number of steps. Moving on, we present additional comparisons between FLBR-MWU and OMWU. Figure 9
demonstrates the distribution of the number of steps till convergence for FLBR-MWU (left) and OMWU (right).
Interestingly, the distribution for payoff matrix size n = 50 with the FLBR-MWU algorithm is similar to the
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Figure 7: Same as Figure 6, but in logarithmic scale.
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Figure 8: Boxplots for the number of steps until convergence for various values of ξ and two payoff matrix sizes.

Table 3: Quantile statistics on the number of steps till convergence for various values of ξ and n. The maximum
number of steps was set to tmax = 2× 106.

Matrix size Quantile ξ = 10 ξ = 20 ξ = 50 ξ = 100 ξ = 200

n = 10
75% 127.1K 83.3K 54.5K 44.1K 43.6K
90% 346.7K 209.1K 137.9K 111.3K 110.3K

97.5% 1035.2K 640.3K 322.1K 228.7K 372.8K

n = 20
75% 1957.2K 1127.2K 576.9K 441.3K 342.7K
90% 2000.0K 2000.0K 1644.8K 1076.0K 830.8K

97.5% 2000.0K 2000.0K 2000.0K 2000.0K 2000.0K

distribution for n = 5 with the OMWU algorithm. The computational gains are expected to be even more
dramatic for larger games.
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Figure 9: Boxplots for the number of steps until convergence for various payoff matrix sizes under FLBR-MWU
(left) and OMWU/OMD (right). The computational gains when FLBR-MWU is used are striking.

Comparisons between MWU, OMWU, and OMD. We also present a comparison among the MWU,
OMWU and OMD dynamics (where for OMD we implemented the version of (Mertikopoulos et al., 2019) with
entropy regularization). Figure 10 shows the evolution of a long run of 5 million steps and two values for the
learning rate, η. We use the same payoff matrix as in Figure 1 of the main text and recall that the proposed
FLBR-MWU method converged after only 100K steps (see Figure 1 in the main text). It is evident from the KL
divergence in Figure 10 (leftmost panels) that the OMWU and OMD algorithms have almost the same behavior,
as expected by (Wei et al., 2021), and they both converge, but in a very slow pace. The oscillatory behavior is
prominent even after a large number of steps, as quantified by the l1 norm difference (rightmost panels of Figure
10).
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Figure 10: KL divergence and l1 norm difference for tmax = 5× 106 and two values for the learning rate: η = 0.1
(upper row of panels) and η = 0.02 (lower row of panels).

Finally, we report in Table 4 several convergence statistics between OWMU, OMD and FLBR-MWU algorithms
with η = 0.1. This table is an extension of Table 2 from the main text (in Section 4). Once again, the proposed
FLBR-MWU algorithm is orders of magnitude faster while the closeness of the statistics between OWMU and
OMD reveals the (almost) equivalence between the two algorithms.

Table 4: Statistics on the number of steps till convergence for OWMU, OMD and FLBR-MWU and various payoff
matrix sizes. The maximum number of steps was set to tmax = 5× 106.

Matrix size Statistic n = 5 n = 10 n = 20 n = 50

OWMU
Mean 1287.3K 3280.9K 4997.8K 5000.0K

Median 631.9K 3697.8K 5000.0K 5000.0K
tmax 12.0 44.0 98.0 100.0

OMD
Mean 1287.6K 3292.9K 4997.8K 5000.0K

Median 631.9K 3629.1K 5000.0K 5000.0K
tmax 12.0 44.0 98.0 100.0

FLBR-MWU
Mean 18.8K 45.9K 267.1K 1130.8K

Median 8.0K 21.4K 64.0K 701.3K
tmax 0.0 0.0 0.0 2.0


