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Abstract

Online testing procedures aim to control the
extent of false discoveries over a sequence
of hypothesis tests, allowing for the possi-
bility that early-stage test results influence
the choice of hypotheses to be tested in later
stages. Typically, online methods assume
that a permanent decision regarding the cur-
rent test (reject or not reject) must be made
before advancing to the next test. We in-
stead assume that each hypothesis requires
an immediate preliminary decision, but also
allows us to update that decision until a pre-
set deadline. Roughly speaking, this lets us
apply a Benjamini-Hochberg-type procedure
over a moving window of hypotheses, where
the threshold parameters for upcoming tests
can be determined based on preliminary re-
sults. We show that our approach can con-
trol the false discovery rate (FDR) at every
stage of testing, even under arbitrary p-value
dependencies. That said, our approach of-
fers much greater flexibility if the p-values
exhibit a known independence structure. For
example, if the p-value sequence is finite and
all p-values are independent, then we can ad-
ditionally control FDR at adaptively chosen
stopping times.

Keywords: adaptive stopping time, batch test-
ing, data decay, decaying memory, quality preserving
database.
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1 INTRODUCTION

Scientific discoveries form an ongoing, ever-evolving
process. Each new experiment offers an opportunity
to suggest new hypotheses based on results that have
come before. Traditionally, the hypotheses researchers
plan to test in an experiment are prespecified before
any data from the experiment is visible, as this facil-
itates control of either the false discovery rate (FDR;
Benjamini and Hochberg, 1995) or the probability of
producing any false positives (the familywise error
rate, or FWER; see, for example Efron and Hastie,
2016) within that experiment.

In contrast to fully prespecified procedures, online pro-
cedures test hypotheses sequentially, and allow the re-
sults of preliminary tests to inform choices about which
hypotheses to focus on in future tests (Foster and
Stine, 2008). These procedures typically require that
error rates be controlled at every stage of the sequence
(e.g., Javanmard and Montanari, 2015; Ramdas et al.,
2017). The online setting is increasingly relevant to
large-scale experimentation, and to repeated analyses
of public datasets (Aharoni and Rosset, 2014). At a
high level, online testing can be seen as an abstraction
of the scientific process itself (Xu and Ramdas, 2020).

Online testing problems also arise when users must
quickly decide how to take action in response to a
stream of data. Applications range from monitoring
credit card transactions for instances of fraud (Zrnic
et al., 2020) to deciding how to assign treatments to
sequences of patients. Here, hypotheses quickly be-
come irrelevant, and so final decisions must be made
without delay. In other words, a discovery has little
value if the opportunity to act on it has passed.

On the other hand, streams of hypothesis tests do not
always require immediate, permanent decisions. In
particular, if our goal is to maintain a growing library
of scientific knowledge (Aharoni and Rosset, 2014),
then hypotheses can remain relevant long after they
are tested. Here, discoveries remain valuable even if
they are made retroactively.

With this mind, we study scenarios where limited
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forms of decision updating still add value. Specifically,
we consider the setting where each hypothesis requires
an immediate, preliminary decision (reject or not re-
ject), but also allows us to update that decision until
some preset deadline. To incorporate these “decision
deadlines,” we blend two existing procedures: the well-
known, offline Benjamini and Hochberg (BH, 1995)
procedure, and an online procedure known as signif-
icance levels based on number of discoveries (LOND;
Javanmard and Montanari 2015; see also Zrnic et al.,
2021). Our procedure can reduce to LOND if all deci-
sions must be made immediately, or to BH if all deci-
sions can be updated indefinitely. Because the option
for decision updates is limited to evolving subset of
“active” hypotheses, we refer to our approach as signif-
icance thresholds based on active discoveries (TOAD).

We show that our approach can provide online FDR
control under arbitrary p-value dependencies. That
said, our approach offers greater power and flexibility
when the p-values follow a known independence struc-
ture (e.g., independence across batches). In such cases,
we allow the parameters used in setting significance
thresholds to be determined based on preliminary re-
sults. This, in turn, lets us employ certain types of
adaptive stopping rules without sacrificing FDR con-
trol. As a simple example, if our p-value sequence
has finite length and follows independence, then we
can still control FDR even if analysts end their experi-
ments at any time due to especially strong preliminary
results.

1.1 Outline

The remained of our paper is organized as follows. Sec-
tion 1.2 discusses the advantages of our approach rel-
ative to other methods in the literature. Section 1.3
introduces relevant notation. Section 2 presents the
TOAD procedure along with its FDR guarantees. Sec-
tion 3 uses simulations to compare the power of TOAD
to the power of similar methods introduced by Zrnic
et al. (2020). We conclude with a discussion of how our
approach could be extended to incorporate the concept
of “decaying memory” (Ramdas et al., 2017).

All proofs are provided in the appendix. These proofs
use a combination of methods from Blanchard and
Roquain, 2008; Javanmard and Montanari, 2015; Ram-
das et al., 2017; and Zrnic et al., 2021. The appendix
also includes additional simulations, and an applied
analysis of fraud detection in credit card transactions
(as in Zrnic et al., 2020).

1.2 Related Literature

In recent work that most closely resembles our own,
Zrnic et al. (2020) propose two online methods for ap-

plying Benjamini-Hochberg procedures to batches of
hypotheses (referred to as BatchBH and BatchPRDS

BH ).
This batch testing framework forms a special case
of online testing under decision deadlines, where the
deadline for each test in a batch is the time of the last
test in that batch.

Our work differs from that of Zrnic et al. (2020) in
three substantial ways. First, our framing in terms of
“deadlines” is more flexible than the batch structure
used by Zrnic et al.. Second, we will show analyti-
cally that TOAD is at least as powerful as BatchPRDS

BH ,
and will show in simulations that it is typically more
powerful (see Sections 2 & 3, as well as the appendix).
Finally, certain versions of our approach control FDR
under arbitrary p-value dependencies, whereas Zrnic
et al. (2020) prove FDR control under an assumption
of independence across batches.

In another approach that is conceptually similar to
ours, Zrnic et al. (2021) suggest “revisiting” hypothe-
ses by allowing duplicated test statistics in later stages
(see their Section 3). We differ from Zrnic et al. (2021)
in that we simultaneously update all active hypotheses
at every stage rather than updating hypotheses indi-
vidually.

The fact that TOAD can provide online FDR con-
trol under arbitrary p-value dependencies is nontriv-
ial in the literature. Typically, online bounds on the
FDR require either an independence condition on the
p-values (Ramdas et al., 2017, 2018; Tian and Ram-
das, 2019; Zrnic et al., 2020, 2021), or a positive depen-
dence condition (Fisher, 2021). Three notable excep-
tions include the (reshaped) LOND method (Javan-
mard and Montanari, 2015; Zrnic et al., 2021), upon
which TOAD is based; certain forms of generalized al-
pha investing rules (Javanmard and Montanari, 2018,
see their Theorem 3.6); and the SupLORD method
(Xu and Ramdas, 2020), which controls FDR under
a dependence condition known as conditional super-
uniformity. We will employ this same condition in
the next section, in order to improve the flexibility
of TOAD. As an alternative to the traditional FDR,
many online testing methods instead focus on con-
trolling either the “modified” FDR or the marginal
FDR (Foster and Stine 2008; Aharoni and Rosset 2014;
Ramdas et al. 2017, 2018; Tian and Ramdas 2019; Zr-
nic et al. 2021).

1.3 Notation

Let H1, H2 . . . be a possibly infinite sequence of hy-
potheses, and let P1, P2, . . . be p-values associated
with each hypothesis. Such a sequence can result ei-
ther from a growing (streaming) dataset with an in-
creasing number of subgroups, or from a series of dis-
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tinct questions applied to a fixed dataset. As we dis-
cuss in the appendix, many forms of online decision
making can be captured by this framework.

We consider the setting where, at each stage t of test-
ing, we observe the next p-value Pt and must make
an immediate, preliminary decision to reject or not re-
ject Ht. However, we are also permitted to update
our decision up until a preset deadline dt ≥ t (i.e., the
decision for Ht cannot be altered after stage dt). We
use Ct to denote the set of “active” candidate hypothe-
ses for which decisions can still be updated at stage
t, i.e., Ct = {i ≤ t : di ≥ t}. For example, if we al-
low rejection decisions to be updated indefinitely, then
dt =∞ and Ct = {1, . . . , t} for all t. If we require final
decisions instantaneously, then Ct = {dt} = {t}.

LetRt ⊆ {1, . . . , t} denote the indices for the hypothe-
ses that we reject at stage t. Again, any differences in
the sets of hypotheses rejected at consecutive stages
must be limited to the hypotheses whose deadlines
have not yet passed (i.e., {Rt \ Ct} = {Rt−1 \ Ct}).

We define H0 ⊆ N to be the indices corresponding to
true null hypotheses, and define the FDR at time t to
be

FDR(t) = E
[
|H0 ∩Rt|
1 ∨ |Rt|

]
,

where a∨ b denotes the maximum over {a, b}. We use
α to denote a desired level at which to control FDR(t).

2 THRESHOLDS BASED ON
ACTIVE DISCOVERIES (TOAD)

We first describe the original LOND procedure (Ja-
vanmard and Montanari, 2015), as this method forms
the original inspiration for our proposed method. As
input, LOND requires a sequence of nonnegative tun-
ing parameters a1, a2, . . . satisfying

∑∞
i=1 ai = 1. At

each stage t, LOND rejects Ht if

Pt ≤ (|Rt−1|+ 1)atα. (1)

Once a hypothesis is rejected, it remains rejected in
all future stages. Javanmard and Montanari (2015)
show that, under a condition on the joint distribution
of p-values, LOND controls FDR at every stage.

Building on this method, Zrnic et al. (2021) propose
a “reshaped” version of LOND that controls FDR un-
der any p-value dependency structure (see also The-
orem 2.7 of Javanmard and Montanari, 2015). This
version additionally takes as input a sequence of so-
called shape functions {βi}∞i=1. Following Blanchard
and Roquain (2008), we say that β is a shape function
if there exists a probability distribution ν on R>0 such
that

β(r) = EX∼ν [X × 1(X ≤ r)] . (2)

For example, when the number of stages (tmax) is fi-
nite, Blanchard and Roquain consider setting ν to
be the distribution satisfying PX∼ν(X = x) ∝ 1/x
for each x ∈ {1, . . . , tmax}. This produces the shape

function β(r) = r
(∑tmax

i′=1 1/i′
)−1

, which mimics the
transformation employed by Benjamini and Yekutieli
(2001). To incorporate these shape functions {βi}∞i=1,
Zrnic et al. define the reshaped version of LOND to
reject each Ht whenever Pt ≤ βt(|Rt−1| ∨ 1)atα.

Our proposed procedure differs from (reshaped)
LOND in three key ways. The first is a restriction,
which is that we require users to select a common func-
tion β to be used at all stages. More specifically, users
can set β to be either the identity function or a shape
function. Setting β to be the identity function is the
simplest and most powerful option, but setting β to
be a shape function will improve our FDR guarantee
(see details in Section 2.1).

The second two differences are expansions. Rather
than prespecifying all parameters {ai}∞i=1, we re-
place them with random nonnegative random variables
{Ai}∞i=1 satisfying

∑∞
i=1Ai = 1, where each Ai can de-

pend on the previously observed p-values. We define
τi ≤ i− 1 to be the stage by which the ith parameter
Ai must be selected. That is, we require Ai to be a de-
terministic function of the first τi p-values {Pi′}i′≤τi .

In practice, we will see in the next section that our
ability to choose τi while still controlling FDR will
depend on our knowledge of the p-value dependence
structure. For example, if the p-values are known to
be independent, we can set τi = i− 1. However, if no
assumptions can be confidently made of the p-value
dependence structure, then we are typically limited to
setting each τi = 0, as in the original LOND procedure.

We also expand on LOND by allowing users to up-
date rejection decisions for hypotheses whose dead-
lines have not yet passed. At each stage t, our goal
will be to find the largest set of rejected indices Rt ⊆
{1, . . . , t} that satisfies the following two properties:
(1) decisions for nonactive hypotheses are not updated
({Rt \ Ct} = {Rt−1 \ Ct}), and (2) for all i ∈ Rt, we
have Pi ≤ β(1 ∨ |Rt|)Aiα. The second property mim-
ics the LOND condition (Eq (1)), and will be used to
show FDR control. We achieve these two properties
as follows.
Algorithm 1. (TOAD) Take as input a function β (ei-
ther the identity function or a shape function), and a
value for A1.

1. (Initialize) Set R0 = ∅. For any i ∈ N such that
τi = 0, determine the value for Ai.

2. For each stage t:
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(a) (Save past rejections) DefineRold
t = Rt−1\Ct

to be the set of previously rejected indices
that are no longer being actively updated.

(b) (Order test statistics) Let Wi = Pi/Ai, and
let W(j,t) be the jth lowest value from the set
{Wi}i∈Ct , such that W(1,t) ≤ · · · ≤W(|Ct|,t).

(c) (Define current rejections) Reject the set of
indices Rt = Rold

t ∪ {i ∈ Ct : Wi ≤ W(St,t)},
where

St = max{j ≤ |Ct| : W(j,t) ≤ αβ(j + |Rold
t |)}.

(3)
(d) (Set threshold parameters) For any i > t such

that τi = t, determine the value for Ai.

While TOAD can retroactively reject certain hypothe-
ses, we show in the appendix that TOAD never re-
verses a previous rejection (i.e., Rt ⊆ Rt′ for any
t < t′). This monotonicity property is not strictly
required by our framing, but may facilitate the pro-
cedure’s implementation. For example, the property
can prove useful if it is logistically straightforward to
announce a new discovery, but difficult to retract a
previously announced discovery.

We can think of TOAD as a generalization of both (re-
shaped) LOND and BH. In the special case where all
rejection decisions must be finalized immediately (i.e.,
Ct = {t}) and β is the identity function, our proce-
dure reduces to a version of LOND with dynamically
defined threshold parameters. If Ct = {t} and β is
a shape function, then TOAD recovers the reshaped
LOND method studied by Zrnic et al. (2021). At the
other extreme, if our hypothesis sequence contains a
finite number of elements (denoted by tmax), and if all
hypotheses remain active for the entire sequence (i.e.,
Ctmax = {1, . . . , tmax}), then we can recover the BH
algorithm setting Ai = 1/tmax for all i, setting β to
be the identity function, and applying TOAD at stage
tmax.

As an intermediate setting, if hypotheses remain active
according to a block structure then we can recover
a procedure that closely resembles the BatchBH and
BatchPRDS

BH algorithms described by Zrnic et al. (2020).
In fact, BatchPRDS

BH can also be seen as a generalization
of both BH and LOND (Zrnic et al., 2020).

However, we show in the appendix that any hypothe-
sis rejected by BatchPRDS

BH is also rejected by TOAD.
Our simulations in Section 3 show that the reverse
is not true, and that TOAD typically achieves higher
power than BatchPRDS

BH . One approximate explanation
for this power difference is that TOAD makes more
modifications to the underlying BH procedure than
BatchPRDS

BH does. BatchPRDS
BH can be implemented by

repeatedly applying BH to a sequence of batches, us-

ing the number of previous rejections to inform the
alpha-level used for the next application of BH. By
contrast, TOAD modifies the BH procedure itself by
adding the number of previous rejections (|Roldt |) in Eq
(3). More formally, for β equal to the identity function,
BatchPRDS

BH can be seen as replacing αβ(j + |Rold
t |) =

α×(j+ |Rold
t |) in our Eq (3) with the smaller quantity{

α
(
1 + |Rold

t |/|Ct|
)}
× j (see details in the appendix).

2.1 FDR Control

Next, we outline sufficient conditions for FDR control.
Our first assumption places restrictions on how the
thresholds can be selected. This assumption can be
ensured by design.
Assumption 1. (Threshold selection) For each i ∈ N,
Ai is a deterministic function of the first τi p-values,
denoted by Pτi = {P1, . . . , Pτi}.

Next, we assume that users have access to condition-
ally valid test statistics for each hypothesis. Specifi-
cally, we assume that the p-value Pi for any true null
Hi is conditionally (super)uniformly distributed, given
the information used to select Ai.
Assumption 2. (Conditional super-uniformity) For
any i ∈ H0, we have P(Pi ≤ u|Pτi) ≤ u for all u ∈ [0, 1]
and all realizations of Pτi .

This assumption is based on super-uniformity assump-
tions used by Foster and Stine (2008, see their Eq
(10)); Aharoni and Rosset (2014, see their Assump-
tion 1); Ramdas et al. (2017); Xu and Ramdas (2020)
and Zrnic et al. (2021). The assumption is also concep-
tually similar to a condition used by Javanmard and
Montanari (2015, see their Eq (8)).

In practice, Assumption 2 can often restrict us to
define parameters Ai only based on the previous p-
values that are independent of Pi, that is, setting τi
far enough in advance to ensure that {Pi′}i′≤τi ⊥
Pi. Zrnic et al. (2021) point out that such a strat-
egy is sufficient to ensure Assumption 2. Moreover,
Fisher (2021) show that if Pi is continuous and well-
calibrated, then the only way to satisfy Assumption
2 is if {Pi′}i′≤τi ⊥ Pi. Here, the term well-calibrated
means that there exists no alternative, more power-
ful p-value P ′i that can be defined as a deterministic
function of {P1, . . . , Pτi , Pi} such that P ′i also satisfies
Assumption 2, P ′i ≤ Pi, and P(P ′i 6= Pi) > 0. Zrnic
et al. also note that setting parameters in advance is
a natural way to capture the logistical delays that can
occur between test specification and test completion.

Next, we define a condition regarding positive depen-
dence of the p-values.
Assumption 3. (Conditional positive dependence) For
any set of positive integers {t, r, i} satisfying r, i ≤ t
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and Hi ∈ H0, the probability

P(1 ∨ |Rt| ≤ r|Pi ≤ u,Pτi)

is nondecreasing in u.

Roughly speaking, Assumption 3 says that higher p-
values imply a higher probability that |Rt| is small.
We show in the appendix that this condition holds
under a version of “positive regression dependence on
a subset” (PRDS; Benjamini and Yekutieli, 2001), as
well as a monotonicity assumption applied to the pa-
rametersAi. This monotonicity assumption is satisfied
if, for example, any adaptively defined parameter Ai is
monotonically decreasing in the p-values observed so
far.

We are now prepared to show FDR control for our
procedure.

Theorem 1. (FDR Control) Under Assumptions 1 &
2, TOAD satisfies FDR(t) ≤ α for any t ∈ N if either
of the following conditions hold:

1. (Positive dependence) Assumption 3 holds and β
is the identity function; or

2. (General dependence) β is a shape functions in
the form of Eq (2).

Theorem 1 carries immediate implications for control-
ling E[FDR(T )] at an adaptively determined stopping
time T . If our hypothesis sequence is finite, and if we
can define our parameters At adaptively while still sat-
isfying Assumption 2 (see discussion above), then we
can incorporate an adaptive stopping time T by sim-
ply setting At = 0 for all t > T , and completing the
test procedure up to and including the final stage.

That said, there are two important caveats to this way
of capturing adaptive stopping times. The first is that
certain adaptive stopping rules may lead to violations
of Assumption 3, requiring us to either carefully ver-
ify this assumption or to appeal to Part 2 of Theorem
1 instead. The second is that these forms of adaptive
stopping rules become limited when researchers set pa-
rameters Ai several stages in advance (τi < i− 1). By
specifying the parameter for a future test, a researcher
also implicitly commits to completing that future test.
Although they can adaptively choose to stop all testing
for stages where parameters have not yet been deter-
mined, they cannot choose to avoid tests that have
already been specified.

3 SIMULATIONS

In this section, we investigate the effect of the deadline
structure on TOAD’s power. We also compare TOAD

against two methods introduced by Zrnic et al. (2020),
and against a “naive” version of BH.

We adopt a simulation setup based the one used
by Zrnic et al. (2020; differences are noted below).
We define a sequence of tmax = 3000 test statistics
(Z1, . . . Ztmax) ∼ N(µ,Σ), where µ = (µ1, . . . , µtmax) is
a sequence of mean parameters and Σ is a covariance
matrix defined in detail below. For each test statistic
Zi, our null hypothesis Hi is that E(Zi) = 0, and our
alternative hypothesis is that E(Zi) = 3. We use π1
to denote the proportion of null hypotheses that are
false. In each simulation iteration, we select a random
subset of d(1−π1)tmaxe indices for which we set µi = 0
(i.e., we simulate Zi from the null distribution). We
set the remaining mean parameters equal to 3.

To define deadline parameters, we will say that hy-
potheses remain active within “batches” of tests, and
use nbatch to denote the batch size. For each i ∈
{1, . . . , tmax}, we set the deadline di to be the small-
est multiple of nbatch that is no less than i, that is,
di = min{knbatch : k ∈ N and i ≤ knbatch}. For ex-
ample, if nbatch = 100, then di = 100 for i ∈ [1, 100];
di = 200 for i ∈ [101, 200]; and so on. We define Σ so
that V ar(Zi) = 1 for all i; Cov(Zi, Zj) = ρ if i 6= j,
but i and j are in the same batch; and Cov(Zi, Zj) = 0
if i and j are not in the same batch

We simulate all combinations of ρ ∈ {0, 0.5}; nbatch ∈
{10, 100, 1000}; and

π1 ∈ {0.01, 0.02, . . . , 0.09, 0.1, 0.2, 0.3, 0.4, 0.5}.

For each combination, we simulate 500 iterations.

Our simulation setup differs from that of Zrnic et al.
(2020) in two ways. Most notably, Zrnic et al. only
simulate the case where ρ = 0, as most of the methods
they develop are designed for the case of independent
test statistics. Zrnic et al. also use a Bernoulli dis-
tribution to determine whether each test statistic Zi
is generated from a null distribution or an alternative
distribution, meaning that the realized proportion of
truly null hypotheses varies slightly across simulation
iterations.

3.1 Comparator Methods

As comparators for TOAD, we primarily consider
the BatchBH and BatchPRDS

BH algorithms (Zrnic et al.,
2020). The first method, BatchBH, is proven to control
FDR under an independence assumption. The sec-
ond method, BatchPRDS

BH , is proven to control FDR if
test statistics are independent across batches and pos-
itively dependent within each batch. Thus, we expect
BatchBH to achieve higher power than BatchPRDS

BH , po-
tentially at the cost of FDR control.
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For the tuning parameters of TOAD, we set β equal to
the identity function, and set τi = 0 and Ai = 1/tmax
for all i. Similarly, for BatchPRDS

BH , we use the im-
plementation defined in Zrnic et al.’s appendix, and
use tuning parameters that place equal weight on each
batch. For BatchBH, we use the implementation and
tuning parameters described in Zrnic et al.’s simula-
tions.

We also compare against the “naive” approach of run-
ning BH separately in each batch at an alpha level of
α(tmax/nbatch)−1, where tmax/nbatch is the number of
batches. We refer to this last method as “Naive-BH.”
For completeness, we briefly show in the appendix that
Naive-BH also controls the false discovery rate when-
ever the p-values are positively dependent.

For all of the above methods, we set Pi = Φ(−Zi),
where Φ is the CDF of a standard normal distribution.
That is, we define each p-value to be the result of a
one-sided test of Hi.

3.2 Simulation Results

Figure 1 shows the simulated power for each method
tested, where power is defined as the expected pro-
portion of alternative hypotheses that are rejected in
any one experiment. Figure 2 shows the FDR for each
procedure.

BatchBH consistently generates the highest power,
with TOAD generating the second highest. The one
exception comes when batches sizes are large (b =
1000), in which case TOAD and BatchBH have com-
parable power. To some extent, this is to be ex-
pected, as TOAD provides stronger FDR guarantees
than BatchBH does. Indeed, we see that when the
assumptions of BatchBH are violated due to within-
batch correlation, BatchBH produces an inflated FDR
(see Figure 2).

On the other hand, BatchPRDS
BH offers FDR guaran-

tees that are more comparable to those of TOAD.
Thus, BatchPRDS

BH forms an especially informative com-
parator. We see that TOAD has higher power than
BatchPRDS

BH across all scenarios, as we would expect
from our analytical result in the appendix.

In addition to these experiments, we simulated cases
where the test statistics follow a first order autoregres-
sive process, as well as cases where each mean param-
eter µi corresponding to an alternative distribution is
randomly generated (as in Zrnic et al., 2020). Neither
variation led to a substantial change in results (see
details in the appendix).
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Figure 1: Simulated power for each method – We simu-
late test statistics under a “batch” structure, where all
hypotheses in a batch share a common deadline. The
test statistics are normally distributed with possible
within-batch correlation (denoted by columns). For
each null hypothesis Hi : E(Zi) = 0, we generate one-
sided p-values as Φ(−Zi), where Φ is the cumulative
distribution function for a standard normal distribu-
tion. Shaded ribbons show a range of ± two Monte
Carlo standard errors (

√
1

500Var
(
|Rtmax ∩ H̄0|/|H̄0|

)
,

where 500 is the number of simulation iterations and
H̄0 is the set of false nulls), although these errors are
negligible in many cases. The BatchBH method gener-
ates the highest power, but also requires the strongest
assumptions in order to guarantee control of the FDR.
Of the methods that ensure FDR control for positively
dependent test statistics, TOAD achieves the highest
power.
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Figure 2: Simulated FDR for each method
– Again, shaded ribbons show a range
of ± two Monte Carlo standard errors
(
√

1
500Var (|H0 ∩Rtmax |/ (1 ∨ |Rtmax |)), where 500 is

the number of simulation iterations). The dashed line
shows our desired FDR level. We see that the power
of BatchBH can come at the cost of inflated FDR in
the face of within-batch correlation (right column).

4 DISCUSSION

We have proposed an online version of the Benjamini
and Hochberg (1995) method that allows for limited
forms of decision updating. Our procedure controls
the FDR under arbitrary p-value dependence struc-
tures. If partial knowledge of the p-value dependence
structure is available, we can additionally control FDR
under certain forms of adaptive stopping rules. Com-
pared to similar procedures with comparable FDR
guarantees, we find that our approach also provides
superior power.

We conclude by discussing an immediate extension
that incorporates the concept of “decaying memory.”
Ramdas et al. (2017) remark that, in short-term fore-
casting problems, hypotheses tested in the distant past
have little bearing on our decisions at present. With
this in mind, they propose a “decaying memory” varia-
tion of FDR that places more weight on recently tested
hypotheses. That is, they focus on multiplicity correc-
tions for the discoveries currently in use, rather than
for all discoveries made over the course of an experi-
ment.

In some ways, the idea that hypotheses from the dis-
tant past carry less importance at present is a natu-
ral complement to the idea that hypotheses eventually
pass a deadline beyond which any retroactive discov-
ery is irrelevant. Thus, one fruitful avenue of future
research could be to formally blend the ideas of decay-
ing memory and deadlines.

A simply way of doing this is to omit “outdated” or
“forgotten” hypotheses from the FDR computation, re-
sulting in

FDRrecent(t) = E
[
|H0 ∩Rt ∩ Ct|
1 ∨ |Rt ∩ Ct|

]
.

It is straightforward to show that TOAD controls
FDRrecent(t) if we (1) relax the requirement that∑∞
i=1Ai ≤ 1 to instead require that

∑
i∈Ct Ai ≤ 1

for all t, and (2) replace Rold
t with the empty set ∅

throughout the procedure (see the appendix). Under
such a procedure, the parameters Ai from outdated
hypotheses can be “recycled” towards future tests.

However, an important caveat is that FDRrecent(T )
is more difficult to control under adaptive stopping
times T . Before, we were able to control FDR(T )
simply by controlling FDR(tmax) (Section 2.1). Here
though, controlling FDRrecent(tmax) is not sufficient
for controlling FDRrecent(T ). Roughly speaking,
FDRrecent(tmax) “forgets” the information that would
have been necessary to control error rates at earlier
times.
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Appendix of Supplementary Materials

A Proofs

A.1 Proof of Monotonicity

In this section, we show that TOAD never reverses a previous rejection. This is formalized in the following
lemma.
Lemma 1. (No rejection reversals) The rejection sets produced by TOAD satisfy Rt ⊆ Rt′ for any 0 < t < t′ <
∞.

Proof. We will show the result by induction. We start by showing that any hypothesis index j that is rejected
at any stage t remains rejected at stage t+ 1 (i.e., if j ∈ Rt then j ∈ Rt+1).

Let At = Rt ∩Ct ∩Ct+1 be the subset of indices rejected at time t that are active candidates at both stage t and
t + 1. Let Nt = {Rt ∩ Ct}\Ct+1 be the subset of indices rejected at time t that are active candidates at time t,
but not at time t+ 1. Since St = |Ct∩Rt| is equal to the number of hypotheses that are both active and rejected
at stage t, we have St = |At|+ |Nt|.

Assume that j ∈ Rt. If j 6∈ Ct+1, then j ∈ Rold
t+1, and the fact that j ∈ Rt+1 holds automatically. Likewise if

j 6∈ Ct then j 6∈ Ct+1 (by definition) and the result again holds automatically. Otherwise, we must have j ∈ At.
So, hereafter, we assume that j ∈ At.

We now consider two cases, depending on and whether or not adding Wt+1 in stage t + 1 changes the ordering
of the test statistics {Wi}i∈At .

Case-1 Wt+1 ≥ maxi∈AtWi: Here, the test statistics {Wi}i∈At advance to become the lowest |At| values in the
new set of active statistics {Wi}i∈Ct+1

, meaning that W(|At|,t+1) = maxi∈AtWi. Applying this, we have

W(|At|,t+1) = max
i∈At

Wi ≤W(St,t) ≤αβ
(
St + |Rold

t |
)

=αβ
(
|At|+ |Nt|+ |Rold

t |
)

=αβ
(
|At|+ |Rold

t+1|
)
. (4)

Thus, from the definition of ST+1 (Eq (3)) we have |At| ≤ ST+1. Finally, since

Wj ≤ max
i∈At

Wi = W(|At|,t+1) ≤W(ST+1,t+1),

we see that j is rejected in stage t+ 1.

Case-2 Wt+1 < maxi∈AtWi: Here, the test statistics {Wi}i∈At ∪Wt+1 become the lowest (|At| + 1) values in
the new set of active statistics {Wi}i∈Ct+1

, and so maxi∈AtWi = W(|At|+1,t+1). Following the same steps as
above, we have

W(|At|+1,t+1) = max
i∈At

Wi ≤W(St,t) ≤αβ
(
St + |Rold

t |
)

=αβ
(
|At|+ |Nt|+ |Rold

t |
)

=αβ
(
|At|+ |Rold

t+1|
)

≤αβ
(
|At|+ 1 + |Rold

t+1|
)
,

where, in the last line, we use the fact that both shape functions and the identity function are nondecreasing.
From the definition of ST+1 we have |At|+ 1 ≤ ST+1. Finally, since

Wj ≤ max
i∈At

Wi = W(|At|+1,t+1) ≤W(ST+1,t+1),

we see that j is rejected in stage t+ 1.

Thus, for any j ∈ Rt, we know that j ∈ Rt+1. It now follows by induction that j ∈ Rt′ .
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A.2 Proof of Theorem 1

Part 1

Proof. Suppose the Hi is rejected at stage t, and let Ti ≤ t be the first stage at which Hi is rejected. We know
that

Wi ≤W(STi ,Ti)
≤αβ

(
STi + |Rold

Ti |
)

= αβ (|RTi |) ≤ αβ (1 ∨ |RTi |) .

From Lemma 1, and from the fact that β (the identity function) is nondecreasing, we have

Wi ≤ αβ (1 ∨ |RTi |) ≤ αβ (1 ∨ |Rt|) . (5)

Finally, plugging in Wi = Pi/Ai, we see that rejecting any hypothesis Hi by time t requires

Pi/Ai ≤ β (1 ∨ |Rt|)α
Pi ≤ β (1 ∨ |Rt|)Aiα.

We apply this fact in Line (6), below.

FDR(t) = E

[∑
{i≤t : i∈H0} 1 (i ∈ Rt)

1 ∨ |Rt|

]

≤ E

[∑
{i≤t : i∈H0} 1 (Pi ≤ β(1 ∨ |Rt|)Aiα)

1 ∨ |Rt|

]
(6)

=
∑

{i≤t : i∈H0}

E
[

1 (Pi ≤ β(1 ∨ |Rt|)Aiα)

1 ∨ |Rt|

]

=
∑

{i≤t : i∈H0}

EPτiE
[

1 (Pi ≤ β(1 ∨ |Rt|)Aiα)

1 ∨ |Rt|
|Pτi

]
. (7)

Within the inner expectation, Assumption 1 tells us that Ai is constant, and Assumption 2 tells us that Pi is
stochastically lower bounded by a uniform variable on [0,1] (i.e., it is super-uniform conditional on Pτi). Using
these facts along with Assumption 3, we can apply Lemma 3.2-ii from Blanchard and Roquain (2008) to see that
the inner expectation is less than or equal to Aiα.1 Plugging this in and recalling that Ai is a function of Pτi ,
we have

FDR(t) ≤
∑

{i≤t : i∈H0}

E [Aiα] = αE

 ∑
{i≤t : i∈H0}

Ai

 ≤ α,
where the last inequality follows from the definition of Ai.

As noted in Section G, below, all of these steps remain unchanged if we replace Pτi throughout with Pobs
τi .

Part 2

Proof. The proof is almost identical to the proof of Part 1. There are only two minor differences.

First, to show Eq (5), we must now cite the fact that shape functions are nondecreasing. The second difference
comes where we previously used Assumption 3 to apply Lemma 3.2-ii from Blanchard and Roquain (2008) in
order to show that the inner expectation in Eq (7) is less than or equal to Aiα. Now, we instead use the fact
that β is a shape function to apply Lemma 3.2-iii from Blanchard and Roquain (2008), which again shows that
the inner expectation in Eq (7) is no more than Aiα.

1In applying this lemma, we set V , U , and c in Blanchard and Roquain’s notation equal to (1 ∨ Rj), Pj , and Ajα in
our notation, respectively.
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B Power Comparison Between TOAD & BatchPRDS
BH

We start by reviewing the BatchPRDS
BH algorithm proposed in the appendix from Zrnic et al. (2020), and then

move on to compare TOAD against BatchPRDS
BH . As the name suggests, BatchPRDS

BH starts by breaking down the
sequence of p-values into “batches.” For each batch b, the authors apply BH to the bth batch at an alpha level of
α(b). Let n(b) denote the size of the bth batch, and let R(b) be the number of hypotheses rejected from batch b.
Here, we use superscript notation to help distinguish between batch indices and test indices. Zrnic et al. define
a BatchPRDS

BH procedure as any method of defining alpha levels {α(b)}∞b=1 that satisfies

∑
s≤b

α(s) n(s)

n(s) +
∑
r<sR

(r)
≤ α (8)

for all batches b, where α is the desired FDR control level. Additionally, Zrnic et al. require each α(s) to depend
only on the p-values from the preceding batches.

In order to compare TOAD and BatchPRDS
BH , we first need to translate the above “batch” notation into the more

general notation of “deadlines.” Given a sequence of p-values P1, P2, . . . , let g1, g2, . . . be “group” or “batch” labels
for each p-value. For example, if we observe two batches, each of size two, then (g1, g2, g3, g4) = (1, 1, 2, 2). Again,
we generally use subscript “stage indices” to refer to the indices of hypotheses and tests, and use superscript
“batch indices” to denote batch numbers. We define each deadline parameter di = max{i′ : gi = gi′} to be the
(stage) index of the last test that is in the same batch as Pi.

If batch b ends at stage t, then the following notational equivalencies can be made.

• gt = b is the batch label for stage t (i.e., for the tth hypothesis);

• Ct = {i ≤ t : gi = gt} is the set of stage indices in the bth batch; and

• n(b) = n(gt) = |Ct| is the size of batch b.

Equipped with this notation, we can formally compare TOAD and BatchPRDS
BH .

Remark 1. (Power comparison) Given a sequence of alpha levels {α(b)}∞b=1 used by the BatchPRDS
BH method, if we

set β to be the identity function and set

Ai =
α(gi)

α
(
n(gi) +

∑
s<gi

R(s)
) ,

for all i, then any hypothesis rejected by BatchPRDS
BH is also rejected by TOAD.

Proof of Remark 1

Proof. First, we note that this choice of Ai still satisfies our requirement that Ai is a function of the preceding
p-values. We also note that, for any stage t at which a batch ends, we have

t∑
i=1

Ai =

t∑
i=1

α(gi)

α
(
n(gi) +

∑
s<gi

R(s)
)

=

gt∑
b=1

n(b)
α(b)

α
(
n(b) +

∑
s<bR

(s)
)

=
1

α

gt∑
b=1

α(b) n(b)(
n(b) +

∑
s<bR

(s)
)

≤ 1,

where the last line comes from Eq (8).

Next, we write a more explicit version of the BatchPRDS
BH procedure that is closer in format to Algorithm 1.
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Algorithm 2. (Alternative description BatchPRDS
BH ) Take as input an alpha level for the first batch, denoted by

α(1).

For each stage t:

1. Let Rold
t be the set of hypotheses rejected in previous batches.

2. If the current batch does not end at stage t (i.e., if t < dt): reject Rt = Rold
t .

3. If the current batch ends at stage t (i.e., if t = dt):

(a) Recall that Ct = {i ≤ t : gi = gt} is the set of hypothesis indices in the same batch as Ht, so that
n(gt) = |Ct|.

(b) Let P(j,t) denote the jth highest p-value from the set {Pi}i∈Ct , that is, the jth highest p-value in the
current batch.

(c) Set S̃t = max
{
j ≤ |Ct| : P(j,t) ≤ j

|Ct|α
(gt)
}
.

(d) Reject Rt = Rold
t ∪ {i ∈ Ct : Pi ≤ P(S̃t,t)

}.
(e) Define the alpha level α(t+1) to be used in the next batch, in accordance with Eq (8).

Above, all we have done is changed the notation to define indices at the test level instead of the batch level, and
plugged in the steps of the BH procedure.

For all tests i, let Wi = Pi/Ai. Let W(j,t) to be the jth highest value in the set {Wi}i∈Ct . Since Ai is constant
within a batch Ct, we know that Wi is proportional to Pi among the indices i ∈ Ct. Thus, W(j,t) = P(j,t)/At.
This leads to an equivalent definition of S̃t:

S̃t = max

{
j ≤ |Ct| : P(j,t) ≤

j

|Ct|
α(gt)

}
= max

{
j ≤ |Ct| : P(j,t)/At ≤

jα(gt)

|Ct|
A−1t

}

= max

j ≤ |Ct| : W(j,t) ≤
jα(gt)

|Ct|
×
α
(
n(gt) +

∑
s<gt

R(s)
)

α(gt)


= max

{
j ≤ |Ct| : W(j,t) ≤

jα

|Ct|

(
n(gt) +

∑
s<gt

R(s)

)}

= max

{
j ≤ |Ct| : W(j,t) ≤

jα

|Ct|
(
|Ct|+ |Rold

t |
)}

= max

{
j ≤ |Ct| : W(j,t) ≤ α

(
j +

j

|Ct|
× |Rold

t |
)}

.

Thus, Step 3d is equivalent to rejecting Rold
t ∪ {i ∈ Ct : Wi ≤W(S̃t,t)

}. All that remains is to show that S̃t ≤ St,
where St is the value in Eq (3). This follows immediately from the fact that j/|Ct| ≤ 1.

C Sufficient Conditions for Assumption 3

First, we review the definition of positive regression dependence on a subset (PRDS; Benjamini and Yekutieli,
2001). Given a value t ∈ N, let P = (P1, . . . , Pt) (we suppress the dependence on t for brevity). We say that
a set of k-dimensional vectors D ∈ [0, 1]k is increasing if, for any vector x = (x1, . . . , xt) ∈ D and any vector
y = (y1, . . . , yt) satisfying xi ≤ yi for all i, it must also be that y ∈ D. Given a subset I0 ⊆ {1, . . . t}, the PRDS
condition states that, for any increasing set D and any j ∈ I0, the conditional probability P(P ∈ D|Pj = u) is
nondecreasing in u.

Following the argument of Blanchard and Roquain (2008; see Proposition 3.6 and citations therein), we outline
two sufficient conditions that imply Assumption 3.
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Condition 1. For any t ∈ N, increasing any of the first t p-values cannot increase the total number of discoveries
produced by time t.

Condition 2. For any j, t ∈ N such that j ≤ t and Hj ∈ H0, and for any increasing set D ∈ [0, 1]t, the conditional
probability P(P ∈ D|Pj = u,Pτj ) is nondecreasing in u.

Condition 1 holds, for example, if all parameters Ai are prespecified, or if they are monotonically decreasing
in the p-values observed so far. Alternatively, Condition 1 holds if we set A1, A2, . . . equal to a predetermined
sequence of constants a1, a2, . . . until a certain number of discoveries are found, and set At = 0 afterwards.
Condition 2 is a modified version of the PRDS requirement.

Remark 2. If Conditions 1 & 2 hold then Assumption 3 holds.

Proof of Remark 2

Proof. (Adapted from Blanchard and Roquain, 2008) For any 0 ≤ r ≤ t, let Dr ⊆ [0, 1]t be the set of all
possible p-values that produce no more than 1 ∨ r discoveries by stage t. Since increasing any p-value will
not increase the number of discoveries by stage t, we know that Dr is an increasing set. For any u < u′, let
γ = P (Pj ≤ u|Pj ≤ u′,Pτj ). Then

P(1 ∨ |Rt| ≤ r|Pj ≤ u′,Pτj )
= P(P ∈ Dr|Pj ≤ u′,Pτj ) (9)

= E
[
P(P ∈ Dr|Pj ,Pτj ) | Pj ≤ u′,Pτj

]
= E

[
P(P ∈ Dr|Pj ,Pτj ) | Pj ≤ u,Pτj

]
γ (10)

+ E
[
P(P ∈ Dr|Pj ,Pτj ) | u < Pj ≤ u′,Pτj

]
(1− γ). (11)

Under Condition 2, the expectation in Line (10) is smaller than the expectation in Line (11). Thus, if we were to
replace the expectation in Line (11) with the expectation in Line (10), the sum shown in Lines (10)-(11) would
be reduced. Making this substitution and combining terms gives

P(1 ∨ |Rt| ≤ r|Pj ≤ u′,Pτj ) ≥ E
[
P(P ∈ Dr|Pj ,Pτj ) | Pj ≤ u,Pτj

]
= P(P ∈ Dr|Pj ≤ u,Pτj )
= P(1 ∨ |Rt| ≤ r|Pj ≤ u,Pτj ).

This proves the result.

D FDR for Naive-BH

Here, we show that Naive-BH controls the FDR whenever the p-values are PRDS (see Section C of this appendix;
and Benjamini and Yekutieli, 2001) on the subset of test statistics corresponding to the true null hypotheses.

Let R(b) be the number of rejections from the bth batch and let V (b) denote the number of erroneous rejections
from the bth batch. Note that bt/nbatchc is the number of batches that have completed by stage t. Recall also
that Naive-BH uses an alpha level of α(tmax/nbatch)−1 for each batch. We have

FDR(t) = E

[ ∑
{b≤bt/nbatchc} V

(b)

1 ∨
∑
{b′≤bt/nbatchc}R

(b′)

]
=

∑
{b≤bt/nbatchc}

E

[
V (b)

1 ∨
∑
{b′≤bt/nbatchc}R

(b′)

]

≤
∑

{b≤bt/nbatchc}

E
[

V (b)

1 ∨R(b)

]
≤

∑
{b≤bt/nbatchc}

α
nbatch

tmax
(12)

≤ tmax

nbatch
× αnbatch

tmax

= α,
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Figure 3: Simulated power under AR1 correlation structure

where Line (12) comes from the well-known result that BH controls the (within batch) FDR under the PRDS
assumption (Theorem 1.2 from Benjamini and Yekutieli, 2001).

E Additional Simulations

To expand our simulations, we first consider the setting where test statistics follow a first order autoregressive
(AR1) structure within each batch. Namely, for any two indices (i, i′) within the same batch, we simulate the
test statistics Zi, Zi′ such that V ar(Zi) = V ar(Zi′) = 1, and Cov(Zi, Zi′) = 0.9

|i−i′|
2 .

Next, we consider the setting described by Zrnic et al. (2020) and Javanmard and Montanari (2018) in which
the amount of signal can vary drastically across test statistics. For each index i associated with an alternative
distribution, we draw µi from a random normal distribution with mean zero and variance 2 log(tmax) ≈ 16. Here,
we set Pi = 2Φ(−|Zi|) to be the p-value resulting from a two-sided test of Hi.

Figures 3, 4, 5 & 6 show the results of these simulations. Overall, the pattern resembles what we observe in
our main simulations. However, for the case of random mean parameters, both the differences in power and
the degree of FDR inflation are less pronounced. For the AR1 case, the FDR inflation of BatchBH is more
pronounced.
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Figure 4: Simulated FDR under AR1 correlation structure
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Figure 5: Simulated power under randomly selected values for the mean parameters
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Figure 7: FDR for credit card fraud dataset

F Example Analysis of Fraud Detection in Credit Card Transaction Data

Next, we study a dataset containing 48 hours of credit card transactions (Pozzolo et al., 2015),2 which was also
studied by Zrnic et al. (2020). Each transaction is time-stamped and labeled as either fraudulent or not. Rather
that including features such as price and location for each transaction, the dataset instead contains the first 28
principal components generated from such features, in order to preserve confidentiality.

In this setting, each transaction i is associated with a null hypothesisHi that the transaction is credible. Rejecting
this hypothesis amounts to flagging the transaction as fraudulent.

To generate p-values for each hypothesis, we follow the same procedure as Zrnic et al., 2020. We first randomly
partition the dataset into three subsets. Using the first subset (60% of transactions), we train a logistic regression
model applied to all principle components and the time-stamp, with fraud status as the outcome. The output
of this model, the predicted probability of a transaction being fraudulent, will serve as our test statistic for
each hypothesis. Next, using the second subset (20% of transactions), we apply this model to all non-fraudulent
transactions to obtain a null distribution for our test statistic. Finally, for each of the remaining transactions, we
use our model to generate a test statistic, the estimated the probability of fraud, and compare this test statistic
against our null distribution to generate a p-value.

Given a series of tmax such p-values, we apply TOAD with constant tuning parameters A1 = A2 = · · · = Atmax =
1/tmax and an alpha level of 0.1. Let Ti be the time-stamp for the ith transaction (in seconds). We define nsec
to be a tuning parameter equal to the number seconds we have to make a decision about each transaction, and
define each decision deadline as di = max{i′ : |Ti′ − Ti| ≤ nsec}. That is, di is the index of the last hypothesis
that is tested within nsec seconds of Hi. We consider tuning parameter values nsec ∈ {10, 100, 1000, 1000}. In
order to estimate FDR and power for each setting, we repeat the procedure over 100 different, random training
partitions and average the results.

As comparator methods, we again consider the BatchBH and BatchPRDS
BH algorithms (Zrnic et al., 2020). We

define the “group” or “batch” label for H1 as g1 = 1, and define subsequent batch labels sequentially, as gi = gi−1
if Ti − min{i′≤i:gi′=gi} Ti′ ≤ nsec and gi = gi−1 + 1 otherwise. Thus, each batch lasts for no more than nsec
seconds, although there may be time gaps between batches. This ensures that, for any transaction, BatchBH and
BatchPRDS

BH both deliver a final decision within nsec seconds of that transaction.

Figures 7 and 8 show the results, which are comparable to those of our simulations. BatchBH typically produces
the highest power, but can inflate FDR by up to a factor of 2. Of the methods that control FDR at the desired
rate, TOAD produces the highest power.

2https://www.kaggle.com/mlg-ulb/creditcardfraud

https://www.kaggle.com/mlg-ulb/creditcardfraud
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Figure 8: Power for credit card fraud dataset

Table 1: Online Hypothesis Reordering

STAGE Ht OPTION 1 OPTION 2
(t) FOR At FOR At
1 H̃(1) 1/3 1/3
2 H̃(2) 1/3 0
3 H̃(3) 0 1/3
4 H̃(2) 0 1/3
5 H̃(3) 1/3 0

Table 1 Caption: The first column shows the stage index for a 5-stage experiment. The second column shows a
sequence of hypotheses, including duplicates, to be tested in an online fashion at each stage. The third and
fourth columns offer different choices for the tuning parameters A2, . . . , A5, where the choice between these
options can be made at the end of Stage 1 (i.e., after observing P1). Option 1 amounts to testing the hypotheses
in the order H̃(1), H̃(2), H̃(3), while Option 2 amounts to testing the hypotheses in the order H̃(1), H̃(3), H̃(2).

G Ignoring Hypotheses, and Adaptive Hypothesis Reordering

A central advantage of online procedures is their ability to selectively ignore hypotheses based on preliminary
results. Here, we say that a hypothesis Hi is “ignored” if Ai = 0 (see also Appendix B of Ramdas et al., 2017
for a similar discussion). Using the idea of ignoring hypotheses as a building block, we can quickly encompass
other types of online strategies. For example, if the hypothesis sequence H1, H2, . . . is sufficiently diverse, then
we can effectively define our hypotheses adaptively by ignoring those hypotheses that are no longer of interest.

Similarly, ignoring hypotheses effectively lets us adaptively reorder the available hypotheses. For example,
suppose that a researcher plans to test three unique hypotheses H̃(1), H̃(2), H̃(3), but wishes to test the last two
in an adaptive order. This can be achieved by defining the expanded, 5-stage hypothesis sequence

(H1, H2, H3, H4, H5) = (H̃(1), H̃(2), H̃(3), H̃(2), H̃(3)),

shown in Table 1. From here, depending on how the parameters (A2, A3, A4, A5) are selected, the researcher can
use the result of the first test to decide whether to test H̃(2) before H̃(3), or vice versa (see details in Table 1).
The same approach can be used to reorder arbitrarily large hypothesis sets.

In order to leverage the benefits of ignoring hypotheses, we will need restrict the information used to define up-
coming threshold parameters Ai. At present, our Assumption 2 requires that future test statistics be conditionally
uniform given the previous p-values, and such a condition can be impossible to satisfy if the hypothesis sequence
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contains repeats. For this reason, we suggest modifying Assumptions 1, 2 & 3 so that testing decisions depend
only on the previous “unignored” hypotheses. To formalize this, we define P obs

t = Pt × 1(At > 0)− 1(At = 0) to
be equal to −1 if Ht is ignored and equal to Pt otherwise. Thus, the sequence Pobs

τi = {P obs
i′ }i′≤τi contains the

information in the first τi p-values that is not ignored. Our Theorem 1 is unchanged if we replace Pτi with Pobs
τi

in Assumptions 1, 2 & 3 (see the proof of Theorem 1).

H Forgetting Antiquated Tests

Proof. Here, we show that Theorem 1 still holds if we replace FDR(t) with FDRrecent(t); replace Rold
t with the

empty set ∅ throughout the procedure; and relax the requirement that
∑∞
i=1Ai ≤ 1 to instead require that∑

i∈Ct Ai ≤ 1 for all t.

To show Part 1, suppose the Hi is rejected at stage t. We know that

Pi/Ai = Wi ≤W(St,t) ≤αβ (St) = αβ (|Rt|) ≤ αβ (1 ∨ |Rt|) .

Thus, rejecting any hypothesis Hi at time t requires that

Pi ≤ β (1 ∨ |Rt|)Aiα.

We applying this fact, we have

FDRrecent(t) = E

[∑
{i≤t : i∈H0∩Ct} 1 (i ∈ Rt)

1 ∨ |Rt ∩ Ct|

]

≤
∑

{i≤t : i∈H0∩Ct}

EPτiE
[

1 (Pi ≤ β(1 ∨Rt)Aiα)

1 ∨ |Rt ∩ Ct|
|Pτi

]
. (13)

As in Appendix A.2, we apply Lemma 3.2-ii from Blanchard and Roquain (2008) to see that the inner expectation
is no more than Aiα. Thus,

FDRrecent(t) ≤
∑

{i≤t : i∈H0∩Ct}

E [Aiα] = αE

 ∑
{i≤t : i∈H0∩Ct}

Ai

 ≤ α.
To show Part 2, we follow the same steps with the exception of applying Lemma 3.2-iii from Blanchard and
Roquain (2008) to Eq (13).


