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Abstract

Natural policy gradient has emerged as one
of the most successful algorithms for com-
puting optimal policies in challenging Rein-
forcement Learning (RL) tasks, but very lit-
tle was known about its convergence prop-
erties until recently. The picture becomes
more blurry when it comes to multi-agent RL
(MARL), where only few works have theoreti-
cal guarantees for convergence to Nash poli-
cies. In this paper, we focus on a particular
class of multi-agent stochastic games called
Markov Potential Games and prove that In-
dependent Natural Policy Gradient always
converges using constant learning rates. The
proof deviates from existing approaches and
overcomes the challenge that Markov poten-
tial Games do not have unique optimal values
(as single-agent settings exhibit), leading dif-
ferent initializations to different limit point
values. We complement our theoretical results
with experiments that indicate that Natural
Policy Gradient outperforms Policy Gradient
in multi-state congestion games.

1 INTRODUCTION

Reinforcement learning has proven successful on a num-
ber of sequential decision making tasks (Mnih et al.,
2015; Akkaya et al., 2019; Arulkumaran et al., 2017).
However, much of this recent progress has been in single-
agent domains. In multi-agent reinforcement learning
domains, many of the assumptions that are useful for
understanding single agent reinforcement learning do
not hold. For example, from the perspective of a single
agent, the MDP is not stationary over time as other
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agents change their policies. The complications arising
in the multi-agent reinforcement learning setting make
it much less understood than the single-agent setting.

Despite the difficulty of multi-agent reinforcement learn-
ing (RL), recent RL algorithms have been developed
for the fully-competitive two-player setting (Lanctot
et al., 2017; Heinrich and Silver, 2016; Brown et al.,
2019; McAleer et al., 2020, 2021; Hennes et al., 2019;
Daskalakis et al., 2020), achieving superhuman per-
formance on StarCraft (Vinyals et al., 2019), Go and
Chess (Silver et al., 2017), and Poker (Brown and Sand-
holm, 2018; Moravč́ık et al., 2017). Recent multi-agent
RL algorithms have also achieved success on the multi-
agent fully cooperative reward setting (Foerster et al.,
2017; Lowe et al., 2017; Sunehag et al., 2017; Foer-
ster et al., 2018; OroojlooyJadid and Hajinezhad, 2019;
Kuba et al., 2021). Very recently, Markov Potential
Games (MPGs) have emerged as a generalization of
fully cooperative settings (Leonardos et al., 2021; Zhang
et al., 2021; Mguni et al., 2021). A Markov game is a
MPG if there exists a potential function such that if one
agent changes their policy, the difference in their value
function is the same as the difference in the potential
function in all states. MPGs generalize normal-form
potential games to multi-step Markov games and in-
clude many important examples such as routing games
(described below) and cooperative games.

In multi-agent games, the most common solution con-
cept is a Nash equilibrium policy (Nash et al., 1950).
All agents are said to be in a Nash policy if no agent
can improve their reward by deviating to another policy
provided that the other agents do not deviate. Since
Nash equilibria exist in every finite game, Nash equi-
libria serve as a desriptive solution concept, because if
rational agents are not in a Nash equilibrium, they will
change their policy. In two-player zero sum games and
cooperative games, Nash equilibria also serve as a pre-
scriptive solution concept, and are in a sense optimal.

Calculating Nash policies in MPGs is of interest for
a variety of reasons. First, Nash policy outcomes can
be compared with max-welfare outcomes to determine
the price of anarchy, a measure of the inefficiency of
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individual selfish behavior (Roughgarden, 2009). Sec-
ond, MPGs have the property that pure Nash policies
always exist, and can be found by locally maximizing
the potential function. Therefore, MPGs allow easier
analysis of equilibrium behaviour than is known for
generic general-sum Markov Games.

A natural question to ask in this setting is whether in-
dependent learners can converge to a Nash policy in the
last iterate. The only existing algorithm guaranteed to
converge in MPGs in the last iterate is independent pol-
icy gradient (Leonardos et al., 2021; Zhang et al., 2021).
Although independent policy gradient will converge to
a Nash policy, it can converge very slowly. This is a
common problem in single-agent policy gradient (PG)
as well, where policies can often be on the boundary of
the action-distribution simplex, giving a small gradient
signal.

Conversely, Natural Policy Gradient (NPG) has been
shown to converge much faster than PG in the single-
agent setting because NPG is able to modify the gradi-
ent to induce a large update even when the gradient is
very small (Agarwal et al., 2020). The main result of
this paper is to show that when n agents independently
run Natural Policy Gradient in a Markov Potential
Game they will converge asymptotically to a Nash equi-
librium. We also show experimentally that Independent
Natural Policy Gradient indeed converges faster than
Independent Policy Gradient in two separate settings.

If one is satisfied with time averaged convergence, then
it has been shown that O( 1

ε2 ) convergence to correlated
and coarse correlated equilibria can be achieved (Song
et al., 2021; Jin et al., 2021). Obtaining results for last
iterate convergence, which we do here, is a much more
challenging task.

Our results. Our main technical result is summa-
rized by the following informal statement of Theo-
rem 3.1:

Theorem 1.1 (Informal). Consider a Markov Poten-
tial Game in which all agents are updating their policies
according to Independent Natural Policy Gradient. For
small enough stepsize η, Independent Natural Policy
Gradient exhibits last-iterate (asymptotic) convergence
to Nash-equilibrium policies.

Remark 1 (Stepsize needs to be small). The stepsize
cannot be arbitrarily large, as it has been shown that
the Multiplicative Weights Update Algorithm in po-
tential games (non-sequential MPGs) exhibits chaotic
behavior for large stepsizes (Palaiopanos et al., 2017).
Please see Remark 2 that argues that Multiplicative
Weights Update is effectively Natural Policy Gradient
on the policy space.

Technical Overview. Our main technical result is to
show that Indepedent Natural Policy Gradient (INPG)
globally converges to equilibrium policies for a fixed
stepsize in Markov Potential Games. The proof can be
broken down into three main steps. The first step is to
show that INPG is equivalent to Natural Gradient As-
cent on the potential function Φ induced by the Markov
Potential Game. Having shown this fact, in the second
step we show that Φ is non-decreasing in each INPG
iteration. This step is rather technical as it involves
showing that the gradient of Φ is locally Lipschitz in
the softmax parametrization, with respect to a Maha-
lanobis norm1 with a positive diagonal conditioning
matrix induced by the Fisher information matrix. The
last step is to show that the limit points of Independent
Natural Policy Gradient are indeed equilibrium policies.
Note that in the softmax parametrization this does not
follow immediately from the monotonic non-decrease
of the potential. We prove this step by exploiting the
structure of the Multiplicative Weights Update Algo-
rithm, which is essentially the same as Natural Policy
Gradient on the policy space (see Agarwal et al. (2020)
and Remark 2).

2 PRELIMINARIES

Markov Decision Process (MDP). The nota-
tion we use is standard and largely follows Agarwal
et al. (2020) and Leonardos et al. (2021). We con-
sider a setting with n agents who select actions in a
Markov Decision Process (MDP). A MDP is a tuple
(S, N, {Ai, ri}i∈N , P, γ, µ) in which:

• S is a finite state space. We write ∆(S) to denote
the set of all probability distributions over the set S
and |S| for its cardinality.

• N = {1, 2, . . . , n} is the set of agents in the game.

• Ai denotes a finite set of actions for agent i. Us-
ing common conventions in Game Theory, we write
A = ×i∈NAi and A−i = ×j ̸=iAj to denote the joint
action space of all agents and of all agents but i,
respectively. We also have that a = (ai,a−i) ∈ A in
which ai ∈ Ai and a−i ∈ A−i.

• ri : S ×A → [0, 1] is the individual reward function
of agent i ∈ N , i.e., ri(s, ai, a−i) is the instantaneous
reward of agent i when agent i takes action ai and
the other agents choose a−i at state s ∈ S.

• P is the transition probability matrix, for which
P (s′ | s, a) is the probability of transitioning from s
to s′ given that agents choose joint action a ∈ A.

1For a positive definite matrix A, the Mahalanobis norm

is ∥x∥A =
√
x⊤Ax.
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• γ ∈ [0, 1) is a discount factor, same for all agents.
For finite-horizon MDPs we take γ = 1 and in the
proofs we substitute 1

1−γ with the horizon.

• µ ∈ ∆(S) is the distribution of the initial state.

Policies and Value Functions. For each agent
i ∈ N , a deterministic, stationary policy πi : S → Ai

specifies the action of agent i at each state s ∈ S. A
stochastic policy πi : S → ∆(Ai) denotes a probability
distribution over the actions of agent i for each state
s ∈ S. We denote by ∆(Ai)

|S|, ∆(A)|S|, and ∆(A−i)
|S|

the set of all stochastic policies for agent i, the set of
all joint (product distribution) stochastic policies for
all agents, and for all agents but i, respectively. A
joint policy π induces a distribution over trajectories
τ = (st,at, rt)t≥0, where s0 is drawn from the initial
state distribution µ, ai,t is drawn from πi(· | st) for all
agents i ∈ N and rt depends on st,at.

In the multi-agent setting, each agent is aiming to
maximize her respective value function. The value
function V π

i (s) : ∆(A)|S| → R gives the expected
reward of agent i ∈ N when the MDP starts from
s0 = s and the agents use joint policy π

V π
i (s) := E

[ ∞∑
t=0

γtri(st,at)

∣∣∣∣∣ s0 = s

]
. (1)

We also denote V π
i (µ) = Es∼µ [V

π
i (s)] if the ini-

tial state follows distribution is µ. Analogously,
one can define for each agent i the Q-function
Qπ

i (s,a) = ri(s,a) + γEs′∼P (.|s,a)[V
π
i (s′)] and advan-

tage function Aπ
i (s, a) = Qi(s, a)−V π

i (s). The solution
concept that we will be focusing on in this paper is the
Nash equilibrium joint policy.

Definition 1 (Equilibrium Joint Policy). A joint pol-
icy, π∗ = (π∗

i )i∈N ∈ ∆(A)|S|, is an equilibrium policy
if for each agent i,

V
(π∗

i ,π
∗
−i)

i (s) ≥ V
(πi,π

∗
−i)

i (s),

for all πi ∈ ∆(Ai)
|S|, and all s ∈ S, i.e., if agent i’s

policy π∗
i maximizes her value function for each starting

state s ∈ S given the joint policy of the other agents
π∗
−i, and this is true for all agents i. Similarly, a joint

policy π∗ = (π∗
i )i∈N is an ϵ-equilibrium policy if there

exists an ϵ > 0 so that for each agent i

V
(π∗

i ,π
∗
−i)

i (s) ≥ V
(πi,π

∗
−i)

i (s)− ϵ,

for all πi ∈ ∆(Ai)
|S| and all s ∈ S.

Markov Potential Games. For the rest of the paper
we will focus on a particular class of multi-agent MDPs
called Markov Potential Games.

Definition 2 (Markov Potential Game (Mguni, 2020;
Mguni et al., 2021; Leonardos et al., 2021; Zhang
et al., 2021)). A Markov Decision Process is called
a Markov Potential Game (MPG) if there exists a
(state-dependent) function Φπ(s) : ∆(A)|S| → R so
that

Φ(πi,π−i)(s)−Φ(π′
i,π−i)(s) = V

(πi,π−i)
i (s)−V

(π′
i,π−i)

i (s),
(2)

for all agents i ∈ N , all states s ∈ S and all policies
πi, π

′
i ∈ ∆(Ai)

|S| and π−i ∈ ∆(A−i)
|S|. By linearity of

expectation, the same is true if s ∼ µ

Φ(πi,π−i)(µ)−Φ(π′
i,π−i)(µ) = V

(πi,π−i)
i (µ)−V

(π′
i,π−i)

i (µ),

where Φπ(µ) := Es∼µ [Φ
π(s)] .

We conclude this subsection with the definition of the
mismatch coefficient.

Discounted State Distribution. It is useful to
define the discounted state visitation distribution dπs0(s)
for s ∈ S that is induced by a policy π

dπs0(s) := (1−γ)

∞∑
t=0

γtPrπ(st = s | s0), for all s ∈ S.

(3)
We write dπµ(s) = Es0∼µ[d

π
s0(s)] to denote the dis-

counted state visitation distribution when the initial
state distribution is µ.

Definition 3 (Distribution Mismatch coefficient (Agar-
wal et al., 2020)). Let µ be any distribution in ∆(S)
and let O be the set of policies π ∈ ∆(A)S . We call

M := max
π,π̃∈O

∥∥∥∥dπµdπ̃µ
∥∥∥∥
∞

the distribution mismatch coefficient, where dπµ is the
discounted state distribution (3).

Example 1 (Stochastic Congestion Games). We
are given a directed acyclic graphG, with a source s and
a destination node t and N agents (Figure 1). Every
state of the finite-horizon MDP consists of the positions
of all agents on the graph. The MDP terminates when
they all reach t. Each agent chooses an action (an
edge e which is the node to go next) and the cost he
experiences is a function of the load le of the edge e that
he chooses ce(le), where the load is the total number of
agents choosing the same edge. This setting is a MPG
with the following potential function. Suppose we are
at state s and let π := (π1, ..., πN ), then we have

Φπ(s) =
∑

e reachable from s

Eπ

[
le∑

k=1

ce(k)

]
.
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Figure 1: Two different configurations of the stochastic congestion game on 6 vertices. These correspond to two
different states in the associated MDP. Arrows in the right figure show the actions chosen by the 3 agents to
move from the MDP state on the left to MDP state on the right.

Consider any player i. With l−i
e the number of agents

other than i choosing edge e, we have that

Φ(πi,π−i)(s) =
∑

e reachable from s

πi(e|s)Eπ−i

l−i
e +1∑
k=1

ce(k)


+ (1− πi(e|s))Eπ−i

 l−i
e∑

k=1

ce(k)


=

∑
e reachable from s

πi(e|s)Eπ−i [ce(le + 1)]

+
∑

e reachable from s

Eπ−i

[
le∑

k=1

ce(k)

]
.

So if player i deviates from πi then the change in the
potential will equal the change in their individual utility
since the common term in the second sum cancels as
it does not depend on πi. We refer to this illustrative
class of MPGs zas stochastic congestion games.

2.1 Natural Policy Gradient

Softmax parametrization. We assume that each
agent i is represented by its logits — a vector θi of size
S ×Ai such that the policy is given by

πθi(a|s) =
exp(θi,s,a)∑

a′∈Ai
exp(θi,s,a′)

for all a ∈ Ai, s ∈ S.

(4)

Independent Natural Policy Gradient (INPG).
Given the softmax parametrization, we can define In-
dependent Natural Policy Gradient:

θ
(t+1)
i = θ

(t)
i + ηF+

i,µ(θ
(t))∇θiV

π
θ(t)

i for each agent i,
(5)

where F+
i,µ(θ) is the pseudo-inverse of the Fischer ma-

trix

Fi,µ(θ) = Es∼d
πθ
µ
Eai∼πθi

(.|s)[
∇θi log πθi(a|s)∇θi log πθi(a|s)⊤

]
and η is the step-size.

NPG equations can be simplified using the advantage
function:

Lemma 2.1 (Simplified equations of INPG (Agarwal
et al., 2020)). For each agent i, state s, and action a,
we have that

θ
(t+1)
i,s,a = θ

(t)
i,s,a +

η

1− γ
A

(t)
i (s, a), (INPG)

where Aθ
i (s, a) = Ea−i∼πθ−i

[Aπθ
i (s, a, a−i)] is the expec-

tation of the advantage function of i over the actions

of all agents but i who use joint policy πθ−i
, and A

(t)
i

is shorthand for Aθ(t)

i .

Remark 2. If we make a change of variables from θ to
probabilities π, the equations of INPG become the stan-
dard Multiplicative Weights Update algorithm (MWU),
that is

π
(t+1)
i (a|s) = π

(t)
i (a|s)

exp( η
1−γA

π
i (s, a))

Z
(t)
i,s

, (MWU)

where Z
(t)
i,s is the renormalization term. Observe that

the fixed points π of (MWU) satisfy either πi(a|s) = 0
or Aπ

i (s, a) = 0 for all a ∈ Ai, s ∈ S and agents i.

3 CONVERGENCE RESULTS

In this section we prove that INPG converges. The
main theorem is stated formally as follows:
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Theorem 3.1. Given a Markov Potential Game, as-
sume that all the agents use Independent Natural Policy

Gradient (INPG) with stepsize η < (1−γ)3

27n2A2
maxM

and that

the fixed points of (MWU) are isolated. It holds that
the dynamics (INPG) converge pointwise (last iterate
convergence) to equilibrium policies.

The first step towards our result is to show that INPG
is equivalent to running Natural Policy Gradient (NPG)
on the potential function.

Lemma 3.2. We consider Natural Policy Gradient
dynamics on function Φπθ , that gives

θ(t+1) = θ(t) + ηF+
µ (θ(t))∇θΦ

π
θ(t) (6)

where F+
µ (θ) is the pseudo-inverse of the Fischer matrix

Fµ(θ) = Es∼d
πθ
µ
Ea∼πθ(.|s)[
∇θ log πθ(a|s)∇θ log πθ(a|s)⊤

]
.

It is true that (INPG) is the same dynamics as (6).

Proof. The first fact we are going to use is that

∇θiΦ
πθ = ∇θiV

πθ
i . (7)

This is true since ∇πθi
Φπθ = ∇πθi

V πθ
i (Proposition B.1

in Leonardos et al. (2021)) and by applying the chain
rule. Moreover, since πθ is a product distribution, we
have

log πθ(a|s) =
∑
i

log πθi(ai|s), (8)

where a = (a1, ..., an). Assuming i ̸= j, we have

Ea∼πθ
[∇θπθi(ai|s)∇θπθj (aj |s)⊤] =

Ea∼πθ
[∇θiπθi(ai|s)]Ea∼πθ

[
∇θπθj (aj |s)

]⊤
= 0,
(9)

where the first equality comes from independence and
the last equality from the fact that the expectation of
the derivative of the log-likelihood is zero. We conclude
that

Fµ(θ) = Es∼d
πθ
µ
Ea∼πθ(.|s)[

∇θ log πθ(a|s)∇θ log πθ(a|s)⊤
]

(8),(9)
=

∑
i∈N

Es∼d
πθ
µ
Ea∼πθ(.|s)[

∇θ log πθi(ai|s)∇θ log πθi(ai|s)⊤
]

prod.distr.
=

∑
i∈N

Es∼d
πθ
µ
Eai∼πθi

(.|s)[
∇θ log πθi(ai|s)∇θ log πθi(ai|s)⊤

]
,

i.e., the Fisher matrix Fµ(θ) is block-diagonal with
each block being the Fisher matrix of each individual

player. Finally, from Lemma 5.1 in (Agarwal et al.,
2020) it holds that

F+
i,µ(θ)∇θiV

πθ
i =

1

1− γ
Ea−i∼πθ−i

Aπθ
i (s, a,a−i). (10)

The proof is now concluded by (7), (10), and the fact
that the pseudo-inverse of a block-diagonal matrix is
block-diagonal with blocks that are the pseudo-inverse
of each block of the original matrix.

With Lemma 3.2 established, we next show that the
potential function is non-decreasing along the dynamics
(INPG). This requires the following proposition, the
proof of which can be found in the appendix:

Proposition 3.3 (Smoothness — Mahalanobis). Let

θ, θ̃ be such that
∥∥∥θ − θ̃

∥∥∥
∞

≤ η
1−γ . There exists a con-

stant L =
27n2A2

maxM
(1−γ)3 so that

−Φπθ̃ (µ) ≤ −Φπθ (µ) + ⟨−∇θΦ
πθ (µ), θ̃ − θ⟩+

L

2

∥∥∥θ̃ − θ
∥∥∥2
Dθ

,

where Dθ is a diagonal matrix of size (
∑

i |S| · |Ai|)×
(
∑

i |S| · |Ai|) with diagonal entry (i, s, a), (i, s, a) to be
dπθ
µ (s)πθi(a|s) and Amax = maxi∈N |Ai|.

Lemma 3.4 (Φ(t) is non-decreasing). Assume that the
agents use the dynamics (INPG). It holds that

Φ(t+1)(µ) ≥ Φ(t)(µ) for all t. (11)

Proof. Using Lemma 3.2, it suffices to focus on the dy-
namics (6), i.e., we will analyze Natural Policy Gradient
on the potential function Φπθ(µ). Using Proposition
B1 of (Leonardos et al., 2021), it holds for agent i that,

∂Φπθ

∂θi,s,a
=

∂V πθ
i

∂θi,s,a

= dπθ
µ (s)πθi(a|s)Ea−i∼πθ−i

Aπθ
i (s, a,a−i),

hence by defining D(t) to be a diagonal matrix of size
(
∑

i |S| × |Ai|)2 with diagonal entry (i, s, ai), (i, s, ai)

to be d
π
θ(t)

µ (s)π
θ
(t)
i
(ai|s) we have that NPG on Φ is the

same as

θ(t+1) = θ(t) + η
(
D(t)

)−1

∇θΦ
(t)(µ). (12)

Since all rewards are in [0, 1] it follows that∥∥θ(t+1) − θ(t)
∥∥
∞ ≤ η

1−γ . Given Proposition 3.3, it fol-
lows that

−Φ(t+1)(µ) ≤ −Φ(t)(µ) + ⟨−∇θΦ
(t)(µ), θ(t+1) − θ(t)⟩+

L

2

∥∥∥θ(t+1) − θ(t)
∥∥∥2
D(t)

= −Φ(t)(µ)− η
∥∥∥∇θΦ

(t)(µ)
∥∥∥2
(D(t))

−1
+

η2L

2

∥∥∥∇θΦ
(t)(µ)

∥∥∥2
(D(t))

−1
.
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Therefore, by choosing η < 1
L we have that

Φ(t+1) ≥ Φ(t) +
1

2L

∥∥∥∇θΦ
(t)(µ)

∥∥∥2
(D(t))

−1
> Φ(t), (13)

and the proof is complete.

From Lemma 3.4 and the fact that Φ is defined on a
compact domain and is continuous (hence attains a

maximum) we conclude that if η < (1−γ)3

27n2A2
maxM

then

Φ(t) converges to a limit Φ(∞). We shall show that the
corresponding policies are indeed equilibrium policies.
First, we prove that the limit Φ(∞) is a fixed point of
the Independent Natural Policy Gradient dynamics.

Lemma 3.5 (Convergence to fixed points). INPG
dynamics (INPG) converges to fixed points.

Proof. Let Ω ⊂ ∆(A)|S| be the set of limit points of
πθ(t) . Φ(t) is increasing with respect to time t by Lemma
3.4 and so, because Φ is bounded on ∆(A)|S|, Φ(t) con-
verges as t → ∞ to Φ(∞) = inft{Φ(t)}. By continuity of
Φ we get that Φq = limt→∞ Φq

θ(t) = Φ(∞) for all q ∈ Ω.
So Φ is constant on Ω. Also q(t) = limn→∞ q(tn+t) as
n → ∞ for some sequence of times {ti} and so q(t)

lies in Ω, i.e. Ω is invariant. Thus, if q ≡ q(0) ∈ Ω

the trajectory q(t) lies in Ω and so Φq(t) = Φ∞ on the
trajectory. But Φ is strictly increasing except on fixed
points and so Ω consists entirely of fixed points.

We conclude the section by showing that if π(0) is in the
interior of ∆(A)|S| (all θ are bounded at initialization)
then we have convergence to equilibrium policies.

Lemma 3.6 (Convergence to equilibrium policies).
Assume that the fixed points of (INPG) are isolated.
Let π(0) be a point in the interior of ∆(A)|S|. It follows
that limt→∞ π(t) = π(∞) is an equilibirum policy.

Proof. We showed in Lemma 3.5 that INPG dynamics
(INPG) converges, hence limt→∞ π(t) exists (under the
assumption that the fixed points are isolated) and is
equal to a fixed point of the dynamics π(∞). Also it
is clear from the dynamics that ∆(A)|S| is invariant,

i.e., for all t ≥ 0, we have
∑

a∈Ai
π
(t)
i (a|s) = 1 for all

s ∈ S, i ∈ N and π
(t)
i (a|s) > 0 for all a ∈ Ai, s ∈ S,

and i ∈ N (since π(0) is in the interior of ∆(A)|S|).

Assume that π(∞) is not an equilibrium policy, then
there exists an agent i, a state s and an action a ∈
Ai so that Aπ(∞)

i (s, a) > 0 and π
(∞)
i (a|s) = 0. Fix a

ζ > 0 and let Uζ = {π :
ηAπ

i (s,a)
1−γ > ζ + logZπ

i,s}. By
continuity we have that Uζ is open. It is also true that

π(∞) ∈ Uζ for ζ small enough since Zπ(∞)

i,s = 1.

Since π(t) converges to π(∞) as t → ∞, there exists a
time t0 so that for all t′ ≥ t0 we have that π(t′) ∈ Uζ .

However, from INPG dynamics (INPG) we get that if

π(t′) ∈ Uζ then e
ηA

(t′)
i

(s,a)

1−γ ≥ eζZ
(t′)
i,s ≥ Z

(t′)
i,s . Hence

π
(t′+1)
i (a|s) = π

(t′)
i (a|s)

exp(
ηA

(t)
i (s,a)

1−γ )

Z
(t′)
i,s

≥ π
(t′)
i (a|s) > 0,

i.e., π
(t′)
i (a|s) is positive and increasing with

t′ ≥ t0. We reached a contradiction since
π
(t)
i (a|s) → π

(∞)
i (a|s) = 0, thus π(∞) is an equi-

librium policy.

The proof of Theorem 3.1 follows by Lemmas 3.5 and
3.6.

4 EXPERIMENTS

In this section we compare the empirical performance
of Independent Natural Policy Gradient (INPG) to In-
dependent Policy Gradient (IPG) in both the Stochas-
tic Congestion Game (SCG) environment described in
section 2 and the environment introduced by Leonar-
dos et al. (2021), which we will call the distancing
game. We compare INPG to IPG in the distancing
game setting to show empirical improvement over pre-
vious results, but also include this new SCG setting
for several reasons. The distancing game considered
in Leonardos et al. (2021) had only 2 states and the
required number of iterations for the experiments to
empirically converge (for policies to not change by more
than 1e− 16 between iterates) was far less than theo-
retically guaranteed. The SCG setting we use, which
has more states yet less agents, required many more
iterations of IPG, demonstrating a significant gap in
the empirically observed convergence rates of IPG and
INPG. Experiments were run on a 2021 MacBook Air.

4.1 Distancing Game

For completeness, we briefly reproduce the description
of the distancing game as given in Leonardos et al.
(2021).

Experimental setup: We consider a MDP in which
every state is a congestion game (Rosenthal, 1973).
There are 8 agents, 4 facilities that the agents can se-
lect from and 2 states: a safe state and a spread state.
In both states, the agents prefer to share their facility
with as many other agents as possible. Specifically,
the reward of each agent for choosing the action cor-
responding to facility k is equal to a positive weight
wsafe

k times the number of agents at k = A,B,C,D.
The weights satisfy wsafe

D > wsafe
C > wsafe

B > wsafe
A , i.e.,

facility D is the most preferred facility by all agents.
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However, if more than 4 agents choose the same facility,
then the MDP transitions to the spread state. The
weight function is the same for all agents at the spread
state as well, but the reward is reduced by a large
constant amount c > 0. To return to the safe state,
the agents need to maximally spread out amongst the
facilities, that is, no more than 2 agents may be in the
same facility.

Independent Policy Gradient Parameters: We
perform episodic updates with T = 20 steps. At each
iteration, we estimate the Q-functions, the value func-
tion, the discounted visitation distributions and, hence,
the policy gradients using the average of mini-batches of
size 20. We use discount factor γ = 0.99 and learning
rate η = 0.0001. Empirical convergence was deter-
mined to have occurred if the L1 distance between
the consecutive policies of each agent was less than
10e− 16.

Independent Natural Policy Gradient Param-
eters: We use the same parameters for the INPG
implementation as the IPG implementation. Specifi-
cally, we perform episodic updates with T = 20 steps.
We estimate the Q-functions and and value function
at each iteration, which allows us to obtain an esti-
mate for the advantage function that is used in the
INPG update. This is done using mini-batches of size
20. Again the discount factor is γ = 0.99 and the
learning rate is η = 0.0001. Empirical convergence was
determined to have occurred if the L1 distance between
the consecutive policies of each agent was less than
10e− 16.

Results: Figure 2 and Figure 3 depict the
L1-accuracy in the policy space at each itera-
tion, i.e., L1-accuracy = 1

N

∑
i∈N |πi − πfinal

i | =
1
N

∑
i∈N

∑
s

∑
a |πi(a | s) − πfinal

i (a | s)|. This is the
average distance between the current policy and the
final policy of all agents.

We can see from Figure 2 and Figure 3 that on average
and in almost every run, Independent Natural Pol-
icy Gradient converges faster than Independent Policy
Gradient. This matches our intuitive expectation that
NPG methods should require fewer iterations than PG
methods to achieve convergence (Agarwal et al., 2020).

4.2 Stochastic Congestion Game

We now compare Independent Policy Gradient and In-
dependent Natural Policy Gradient for the environment
described in Example 1.

Experimental setup: We consider a MDP where
each state corresponds to a configuration of n agents

Figure 2: Trajectories of the L1-accuracy for 10 runs
each of Independent Policy Gradient and Independent
Natural Policy Gradient in the distancing game envi-
ronment with 8 agents and learning rate of η = .0001.

Figure 3: Mean L1-accuracy with shaded region of one
standard deviation for the trajectories of Figure 2.

on a graph such as in Figure 1, except that the internal
layers are fully connected.The graph is directed and
the edges only move from left to right. It is important
to note that the states of the MDP are not the vertices
of this graph but the entire configuration, which is
captured by the location of each agent. Thus there
are |V |n possible states in the MDP where |V | is the
number of vertices in the DAG.

The actions of each agent at a given state of the MDP
are to choose the edge from their current, corresponding
vertex in the DAG that they want to move along. They
then receive a reward inversely proportional to the
number of agents who chose this edge and the MDP
transitions to the next configuration state. If the agents
reach t we can either send them along a constant reward
edge back to s or consider the episode to be terminated.

The specific DAG on which the experiments were run
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was with 2 internal fully-connected layers of 2 vertices
each, giving the graph 6 total vertices consisting of s, t,
and four internal vertices. Thus at each state each agent
has two possible actions to choose from, corresponding
to the two edges coming out of their vertex in the
DAG. The specific value of n chosen for comparing
independent policy gradient and independent natural
policy gradient was 4. This value was chosen due to
the fact that for n ≥ 5 agents, IPG required more
than 3000 iterations, each of which require a nontrivial
amount of time due to needing to make tabular updates
for each state-action pair.

Parameters: All parameters and methods were the
same as for IPG and INPG in the distancing game
setting of the previous subsection.

Results: Figure 4 and Figure 5 depict the
L1-accuracy in the policy space at each itera-
tion, i.e., L1-accuracy = 1

N

∑
i∈N |πi − πfinal

i | =
1
N

∑
i∈N

∑
s

∑
a |πi(a | s) − πfinal

i (a | s)|. This is the
average distance between the current policy and the
final policy of all agents.

Figure 4: Trajectories of the L1-accuracy for 10 runs
each of Independent Policy Gradient and Independent
Natural Policy Gradient in the stochastic congestion
game environment with 4 agents and learning rate of
η = .0001.

These results show a dramatic difference in performance
of IPG and INPG in the stochastic congestion game
environment. The agents running IPG took about
2000 iterations to converge, while the agents running
INPG took only about 50. This experiment also shows
that a key distinguishing aspect between single-agent
PG and NPG also can appear in the multi-agent case;
IPG suffers from a long flat region of little improvement
when far from a Nash policy, while INPG quickly moves
the agents towards a Nash policy. This is in line with
observed differences between single-agent PG and NPG

Figure 5: Mean L1-accuracy with shaded region of one
standard deviation for the trajectories of Figure 4.

moving towards optimal policies (Kakade, 2001).

Furthermore, as mentioned above, IPG was not able
to converge within 3000 iterations for n ≥ 5 agents in
the stochastic congestion game setting. In comparison,
as see in Figure 6, INPG was able to converge in less
than 100 iterations even with 8 agents.

Figure 6: Trajectories of the L1-accuracy for 10 runs
each of independent natural policy gradient in the
stochastic congestion game environment with 8 agents
and learning rate of η = .0001.

These experimental results highlight the key reason that
guarantees regarding the convergence of independent
natural policy gradient are necessary to obtain; INPG
generally outperforms IPG in all of our experiments, in
some cases by a significantly large margin. Again, this
is in line with expectations based on the performance
of single-agent policy gradient versus natural policy
gradient (Agarwal et al., 2020).
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5 CONCLUSION

In this paper we showed that independent Natural Pol-
icy Gradient will always converge to a Nash equilibrium
in Markov Potential Games under mild conditions. We
also show experimental results where NPG converges
much faster than independent policy gradients.

In future work, we will prove rates of convergence for
NPG in MPGs. We will also look into having each
learner estimate advantages instead of receiving ora-
cle advantages and will prove results with function
approximation. It is also unknown whether trust re-
gion methods like TRPO will converge in MPGs which
generalize cooperative games, for which TRPO conver-
gence has been established (Kuba et al., 2021). Going
beyond this work, a large open problem remain prov-
ing (or disproving) the convergence of independent RL
agents to correlated equilibrium in general-sum Markov
games.
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6 Proof of Proposition 3.3

Proof. Let
∥∥∥θ̃ − θ

∥∥∥
∞

≤ η
1−γ . We show that

1− 2η

1− γ
≤ πθi(a|s)

πθ̃i
(a|s)

≤ 1 +
4η

1− γ
(14)

for all agents i and a ∈ Ai. It holds that

πθi(a|s) =
eθi,s,a∑

a′∈Ai
eθi,s,a′

≤ eθ̃i,s,a+
η

1−γ∑
a′∈Ai

eθ̃i,s,a′− η
1−γ

= πθ̃i
(a|s)e

2η
1−γ ≤ πθ̃i

(a|s)
(
1 + 4

η

1− γ

)
,

where the last inequality works as ex ≤ 2x+ 1 for x ∈ [0, 1/2], i.e., we assume η ≤ (1−γ)
2 . Similarly,

πθi(a|s) =
eθi,s,a∑

a′∈Ai
eθi,s,a′

≥ eθ̃i,s,a−
η

1−γ∑
a′∈Ai

eθ̃i,s,a′+
η

1−γ

= πθ̃i
(a|s)e−

2η
1−γ ≥ πθ̃i

(a|s)
(
1− 2

η

1− γ

)
,

where the last inequality comes from the fact that ex ≥ x+1 for all x. We focus now on the Hessian of Φπθ (µ) with

respect to θ, that is ∇2Φπθ (µ). It suffices to show that the spectral norm of the matrix
(
Dθ

)− 1
2 ·∇2

θΦ
πθ̃ (µ)·

(
Dθ

)− 1
2

2 is bounded by L (notice that the Hessian is computed at θ̃ and the diagonal matrix Dθ is computed at θ with∥∥∥θ̃ − θ
∥∥∥
∞

≤ η
1−γ ).

Fix agent i, scalar t ≥ 0, and a vector u =
(
Dθ̃

)−1

v with v a unit vector. Moreover, let V (t) = V
πθ+tu

i (µ).

It holds that
V (t) =

∑
s∈S

µ(s)
∑
a∈A

πθ+tu(a|s)Q
πθ+tu

i (s,a).

2which has the same spectral norm with
(
Dθ

)−1 · ∇2
θΦ

π
θ̃ (µ)
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Hence taking the second derivative we have

d2V (0)

dt2
=
∑
s

µ(s)

d
πθ̃
µ (s)

∑
a∈A

πθ(a|s)
d2Q

πθ+tu

i (s,a)

dt2

∣∣∣
t=0

+
∑
s

µ(s)

d
πθ̃
µ (s)

∑
a∈A

d2πθ+tu(a|s)
dt2

∣∣∣
t=0

Qπθ
i (s,a)

+ 2
∑
s∈S

µ(s)

d
πθ̃
µ (s)

∑
a∈A

dπθ+tu(a|s)
dt

∣∣∣
t=0

dQ
πθ+tu

i (s,a)

dt

∣∣∣
t=0

.

(15)

The following calculations hold (see Agarwal et al. (2020), section D).

1. Let ai be the i-th coordinate of a and ui,s,bi the coordinate of u corresponding to agent i choosing action bi
at state s. We have
dπθ+tu(a|s)

dt

∣∣∣
t=0

= πθ(a|s)
∑

i∈N

∑
bi∈Ai

ui,s,bi · (1bi=ai
− πθi(bi|s)). We conclude that

∣∣∣∣dπθ+tu(a|s)
dt

∣∣∣
t=0

∣∣∣∣ ≤
∣∣∣∣∣∑
i∈N

∑
bi∈Ai

πθ(a|s) · (1bi=ai
− πθi(bi|s))

πθ̃i
(bi|s)

∣∣∣∣∣
(14)

≤
∑
i∈N

(
1 +

4η

1− γ

)
πθ−i

(a−i|s)(1− πθi(ai|s))

+

(
1− 2η

1− γ

)∑
i∈N

∑
bi ̸=ai

πθ(a|s) ≤
(
1 +

4η

1− γ

)
nAmax.

2. We also have d2πθ+tu(a|s)
dt2

∣∣∣
t=0

= πθ(a|s)
∑

i,j∈N

∑
bi∈Ai

∑
bj∈Aj

ui,s,biuj,s,bj (1bi=ai
− πθi(bi|s)) · (1bj=aj

−
πθj (bj |s))− πθ(a|s)

∑
i∈N

∑
bi,ci∈Ai

ui,s,biui,s,ciπθi(bi|s))(1bi=ci − πθi(ci|s)). Similarly, We conclude that∣∣∣∣d2πθ+tu(a|s)
dt2

∣∣∣
t=0

∣∣∣∣ ≤ (
1 +

4η

1− γ

)2

n2A2
max

To bound the derivative of the Q-function, observe that Q
πθ+tu

i (s,a) = e⊤s,a(I − γP (t))−1r, where r(s,a) is the
expected reward of agent i if agent choose action a at state s and P (t) is state-action transition matrix w.r.t the
joint distribution of all agents and the environment.

It was shown in Agarwal et al. (2020) and Leonardos et al. (2021) that∣∣∣∣dQπθ+tu
i (s,a)

dt

∣∣∣∣ = γ

∣∣∣∣e⊤s,a(I − γP (0))−1 dP (0)

dt
(I − γP (0))−1r

∣∣∣∣ ≤ γ
√
|Ai|

(1− γ)2
≤ γ

√
Amax

(1− γ)2
, (16)

and also ∣∣∣∣d2Qπθ+tu
i (s,a)

dt2

∣∣∣∣ = 2γ2

∣∣∣∣e⊤s0,a(I − γP (0))−1 dP (0)

dt
(I − γP (0))−1 dP (0)

dt
(I − γP (0))−1r

∣∣∣∣
≤ 2γ2|Ai|

(1− γ)3
≤ 2γAmax

(1− γ)3
,

(17)

Combining the above and assuming η ≤ 1−γ
2 we get∣∣∣∣d2V (0)

dt2

∣∣∣∣ = ∑
s

µ(s)

(
6γAmax

(1− γ)3
+ 9n2A2

max +
3nAmaxγ

√
Amax

(1− γ)2

)
≤ M

27n2A2
max

(1− γ)3
,

where M is the mismatch coefficient. We choose L =
27n2A2

maxM
(1−γ)3 . Since u is arbitrary, the proposition is proved.


