
Predictive variational Bayesian inference as risk-seeking optimization

Futoshi Futami1 Tomoharu Iwata1 Naonori Ueda1 Issei Sato2 Masashi Sugiyama2

1NTT Communication Science Laboratories 2The University of Tokyo

Abstract

Since the Bayesian inference works poorly
under model misspecification, various solu-
tions have been explored to counteract the
shortcomings. Recently proposed predictive
Bayes (PB) that directly optimizes the Kull-
back Leibler divergence between the empirical
distribution and the approximate predictive
distribution shows excellent performances not
only under model misspecification but also for
over-parametrized models. However, its be-
havior and superiority are still unclear, which
limits the applications of PB. Specifically, the
superiority of PB has been shown only in
terms of the predictive test log-likelihood and
the performance in the sense of parameter esti-
mation has not been investigated yet. Also, it
is not clear why PB is superior with misspeci-
fied and over-parameterized models. In this
paper, we clarify these ambiguities by study-
ing PB in the framework of risk-seeking opti-
mization. To achieve this, first, we provide a
consistency theory for PB and then present
intuition of robustness of PB to model mis-
specification using a response function theory.
Thereafter, we theoretically and numerically
show that PB has an implicit regularization
effect that leads to flat local minima in over-
parametrized models.

1 INTRODUCTION

Bayesian inference is a popular choice in statistics and
machine learning as a stochastic modeling tool (Murphy,
2012). In Bayesian inference, we update a prior distri-
bution that represent our assumptions to a Bayesian
posterior distribution and obtain a predictive distribu-
tion with Bayesian model averaging. However, it has
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been theoretically and experimentally reported that
the Bayesian framework has sub-optimal performance
under some conditions.

For example, it is widely known that Bayesian inference
works poorly when the model is misspecified (Grün-
wald, 2012; Masegosa, 2020). Nevertheless, many mis-
specified models are still useful for understanding the
mechanism of the data (Wang et al., 2017). To per-
form inference in a Bayesian framework even with mis-
specified models, various methods have been proposed,
including the tempered posterior (Grünwald, 2012; van
Erven et al., 2015; Heide et al., 2020), which assigns
a small weight to the likelihood function, and using
maximum mean discrepancy (MMD) instead of the like-
lihood function (Chérief-Abdellatif and Alquier, 2020).
These methods are a kind of “pseudo Bayes” (Bissiri
et al., 2016) that aims to resolve the difficulty of model
misspecification by changing the likelihood function in
some way.

While these methods focus on parameter estimation,
a method called predictive Bayes (PB), which focuses
on the prediction performance, has been attracting
much attention in recent years to address the model
misspecification (Masegosa, 2020; Futami et al., 2021;
Morningstar et al., 2020). PB minimizes the Kullback
Leibler (KL) divergence between the approximate pre-
dictive distribution and true data generating distribu-
tion based on the PAC Bayesian theory (Germain et al.,
2016). The likelihood function in standard Bayesian
inference is replaced by the KL divergence between the
empirical distribution and the approximate predictive
distribution.

Masegosa (2020), Futami et al. (2021), and Morningstar
et al. (2020) have theoretically shown that when a
model is misspecified, PB shows a better predictive
test log-likelihood than the exact Bayesian predictive
distribution. In addition, unlike the tempered posterior,
PB has shown superior empirical performance to stan-
dard Bayesian inference even with over-parametrized
models, such as Bayesian neural networks (Masegosa,
2020; Futami et al., 2021).

However, despite these excellent properties, theoretical
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and practical ambiguities remain in PB, and thus, its
application to a wider range of fields is still limited.
Following ambiguities remain: i) Although existing
work assured a superior performance in terms of the
predictive test log-likelihood, the performance in the
sense of parameter estimation has not been investigated
yet. ii) Although existing work showed that the PB’s
predictive distribution has a larger variance than the
standard Bayesian predictive distribution, this does not
explain why PB is robust under model misspecification.

These two understandings are vital in practical applica-
tions. As we discuss in Section 3, when the target task
is regression, we are interested not only in the predic-
tive test log-likelihood but also the mean squared error
(MSE). In this scenario, when a model is misspecified,
the predictive test log-likelihood can be maximized by
increasing the variance of the predictive distribution, al-
though the MSE remains significantly large. Therefore,
applying the solution of PB can be counterproductive
in these cases.

As for over-parameterized models, it is unclear why
PB outperforms standard Bayesian inference. This
question is an important since deep learning has been
widely used in modern probabilistic modeling (Johnson
et al., 2016). Another limitation of existing work is that
applying PB is difficult to such latent variable mod-
els as variational autoencoders (Kingma and Welling,
2013), since those models are optimized by maximizing
the marginal likelihood, which is different from the
objective of PB.

In this paper, to clarify these ambiguities, we ana-
lyze PB by comparing its distorted loss function to
a standard Bayesian inference. Note that distorted
loss functions have been discussed in the field of risk-
seeking optimization (Lee et al., 2020), which provides
an elaborate analysis to reflect the variability of the
loss functions in the problem. By focusing on PB’s risk-
seeking property, we present its theoretical properties
in model misspecified and over-parameterized settings.

First, we show a parameter estimation property of
PB by providing a frequentist consistency when the
model is both well-specified and misspecified. We show
that PB converges to the closest model to the true
data generating distribution in the Hellinger distance.
Next, we describe our intuition of PB’s robustness
to model misspecification using a response function
theory (Lindsay, 1994). Then we numerically validate
the superior performance of PB for regression tasks
where standard Bayesian inference fails.

For over-parameterized models, we numerically and
theoretically demonstrate that PB has an implicit reg-
ularization effect that guides the solution to a flat
minimum, which is considered to have a higher general-

ization ability (Keskar et al., 2016). Finally, we extend
PB to latent variable models by providing a novel lower
bound of the marginal likelihood, which incorporates
its risk-seeking property.

2 RELATED WORK
The tempered posterior has been studied theoretically
and numerically as the “safe inference” under model mis-
specification. Heide et al. (2020) and Alquier and Ridg-
way (2020) proved its concentration and consistency
properties, which are closely related to the parameter
estimation performance. The most significant difference
between PB and the tempered posterior is the implicit
regularization effect, which is useful when the model
is over-parametrized as shown in Section 4.5. Unlike
the tempered posterior, the cold posterior, which down-
weights the prior distribution, empirically improves
the performance in over-parametrized models (Wenzel
et al., 2020).

Several existing works proposed to replace the like-
lihood in Bayesian inference with different loss func-
tions. Futami et al. (2018) proposed robust variational
inference that uses β- and γ-divergences to enhance
robustness to the outliers in training data. Chérief-
Abdellatif and Alquier (2020) used MMD as a loss
function and showed the consistency property, which
leads to robustness to model misspecification. We
found that entropy-stochastic gradient descent (SGD)
(Chaudhari et al., 2019, 2018) is a particular case of PB
where a mean-field (MF) Gaussian distribution is used
for variational posteriors. Then the loss is equivalent
to the convolution of the original log-likelihood with
Gaussian distribution. Thus, the surface of the loss
function becomes smoother and leads to flat minima in
over-parameterized models. They proposed a two-time
scale approximation for the optimization and manually
tuned the variance of the MF Gaussian distribution.
On the other hand, PB uses a multi-sample bound and
does not need to manually tune the variance parameter.

Existing risk-seeking methods in machine learning (Lee
et al., 2020; Chow et al., 2015) tried to find a high
variability solution concerning the training dataset,
and their theoretical analysis considered a deterministic
hypothesis. On the other hand, PB seeks a solution
with high variability concerning the randomness of the
posterior distribution.

3 PRELIMINARIES
Here we introduce this paper’s notations and settings
and briefly describe PB.

3.1 Notations and settings

Assume that a training dataset consists of N identi-
cally independently distributed (i.i.d) random variables
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(x1, . . . , xN ) := xN according to unknown data gen-
erating density ν(x) on X ⊂ RdX . Our goal is to
model ν(x) using a parameterized statistical model
p(x|θ), where θ ∈ Θ ⊆ Rd. If there exists parameter
θ∗ ∈ Θ such that ν(x) = p(x|θ∗), then our model
is well-specified. If such a θ∗ does not exist, the
model is misspecified (Alquier and Ridgway, 2020).
We express the log-loss as ln(θ) := − ln p(xn|θ) and
LN (θ) =

∑N
n=1 ln(θ). In Bayesian inference, we incor-

porate our prior knowledge into a prior distribution
π(θ), which is updated to the Bayesian posterior dis-
tribution as p(θ|xN )∝exp(−LN (θ))π(θ). Since calcu-
lating the exact posterior is computationally infeasible
for many practical models, we need to rely on approx-
imation methods. Variational inference (VI) (Attias,
1999; Beal, 2003), which approximates the exact poste-
rior by a predefined parametric distribution, has been
widely used for this purpose because of its computa-
tional efficiency. We express the approximate posterior
distribution as q(θ;φ), where φ is called a variational
parameter. The standard VI optimizes φ by minimizing
the objective:

ObjVI(φ) :=
1

N
Eq(θ;φ)[LN (θ)] +

KL(q | π)

αN
. (1)

Here KL(q|π) is the KL divergence and α is the tem-
perature. When α = 1, −ObjVI(φ) is a lower bound
of marginal likelihood ln p(xN ) ≥ −ObjVI(φ). When
α < 1, the solution is called a tempered posterior
distribution. We obtain the variational parameter:

φ∗VI = argminφObjVI(φ). (2)

Then the predictive distribution is given by p(x;φ∗VI)=
Eq(θ;φ∗VI)

p(x|θ). Note that in the objective function of
VI, Eq.(1) is decomposed to loss function Eq[LN (θ)]
and regularization term KL(q|π). The loss function
in VI corresponds to KL(ν̂(x)|p(x|θ)), where ν̂(x) :=
1
N

∑N
n=1 δxn(x) and δxn(x) is the Dirac mass at xn.

The theoretical property of q(θ;φ∗VI) has widely been
investigated. For example, Alquier and Ridgway (2020)
clarified that the variational posterior distribution can
concentrate on true parameter θ∗ in the well-specified
case. Thus, when we use the variational posterior as
an estimator of the parameter, our statistical model
can converge to true model p(x|θ∗). When the model
is misspecified, they also proved that the tempered
posterior converges to the parameter that minimizes
KL(ν(x)|p(x|θ)). In this sense, parameter estimation
performance in VI is well understood.

3.2 Predictive Bayes

Masegosa (2020), Futami et al. (2021), and Morningstar
et al. (2020) directly minimized the KL divergence

between the approximate predictive distribution and
data generating distribution:

KL(ν(x)|Eq(θ;φ)p(x|θ))=Eν(x)[− lnEq(θ;φ)p(x|θ)]+Const.

Since the data generating distribution is unknown, we
approximate it with a training dataset. Motivated by
the PAC Bayesian theory (Germain et al., 2016), they
added regularization term KL(q|π). The final objective
function is

ObjPB(φ) :=
1

N

N∑
n=1

[−lnEq(θ;φ)p(xn|θ)]+
KL(q | π)

αN
. (3)

We refer to this approach as predictive variational
Bayesian inference (PB-VI). Note that by using the
Jensen inequality, we have

Eν(x)[− lnEq(θ)p(x|θ)] ≤ Eν(x),q(θ)[− ln p(x|θ)]. (4)

Thus the objective Eq.(3) is a tighter bound than
Eq.(1). Masegosa (2020), Futami et al. (2021), and
Morningstar et al. (2020) claimed that this tightness
improves the performance, especially when the model
is misspecified. Moreover, Masegosa (2020) and Fu-
tami et al. (2021) argued that the tight bound creates
the diversity-enhancing term in ensemble learning and
particle VI (Wang et al., 2019). To optimize Eq.(3),
previous works used a multi-sample bound. Morn-
ingstar et al. (2020) directly optimized it by relying
on a biased Monte Carlo objective like the importance
weighted autoencoder (IWAE) (Burda et al., 2015):

− lnEq(θ)p(x|θ)≤−Eθ1...θm∼q(θ)
1

m

m∑
m′=1

ln p(x|θm′). (5)

On the other hand, Masegosa (2020) and Futami et al.
(2021) considered the upper bound of Eq.(3) using the
second-order Jensen inequality:

ObjMV(φ) :=
1

N
EqLN (θ)− c

N

N∑
n=1

Varq(ln(θ))+
KL(q|π)

αN
, (6)

where Varq(ln(θ)) is the variance of ln(θ) with respect
to q and c is a coefficient of the variance. See Ap-
pendix B.1 for the details. We refer to this approach
as mean-variance VI (MV-VI).

Masegosa (2020), Futami et al. (2021), and Morningstar
et al. (2020) proposed a PAC Bayes generalization
error bound for KL(ν|Eqp(x|θ)) and also demonstrated
promising numerical performances of PB-VI not only
in misspecified settings but also for over-parametrized
models as discussed in Section 1.

One major drawback of PB is that its generalization
performance is only assured for the predictive test log-
likelihood. As mentioned in Section 1, this is problem-
atic for regression tasks under the misspecified setting.
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For example, consider (x, y) ∈ X × Y ⊂ RdX × R.
Assume that the true data generating distribution is
ν(x, y) = N (y|R(x), ρ2)ν(x), where N (y|R(x), ρ2) is
the Gaussian distribution with mean R(x) : X → R
and variance ρ2 ∈ R. Assume that our model is
p(y|x, θ) = N (y|rθ(x), σ2). We predict y given x with
y = Eq(θ;φ)[rθ(x)]. Under this setting, Watanabe (2009)
showed that

EνKL(ν(y|x)|Eqp(y|x, θ))=
Eν‖R(x)−Eq[rθ(x)]‖2

2σ2
+

1

2
ln
σ2

ρ2

+Eν
σ2 − ρ2

2σ4
(Varq[rθ(x)]−1)− 1

2σ4
Varq[rθ(x)G(x)+‖rθ∗−rθ‖2],

where G(x) := (R(x) − rθ∗(x))2. Note that the first
term in the right-hand side corresponds to the MSE.
When the model is misspecified, e.g., ρ2 6= σ2 or
R(x) 6= rθ∗(x), we can increase the test log-likelihood
by increasing the variance of the predictive distribution,
which corresponds to the third and fourth terms in the
right-hand side while the MSE is not changed. Since
a large variance in PB was numerically reported in
Masegosa (2020) and Futami et al. (2021), there is a
possibility that PB achieves a high test log likelihood
with the large MSE, which is unsuitable for prediction.
Thus, it is unclear whether PB really works well in
regression tasks.

To guarantee the MSE of PB under model misspefica-
tion, the consistency property, which is closely related
to parameter estimation performance, should be as-
sured. However, existing work only clarified the PB’s
performance in the predictive distribution, which is
averaged over the approximate posterior distributions.

4 METHOD

Here we present our main theory. First, we point
out the relation of PB-VI to risk-seeking optimization
(RSO) in Section 4.1 and present the theory for PB-
VI in model misspecification in Sections 4.2 and 4.3.
Finally, we present the results for over-parameterized
settings in Sections 4.5 and 4.6.

4.1 Risk-seeking objective function

When focusing on the loss function, the loss function
of VI corresponds to

∑
n Eqln(θ). On the other hand,

the loss function of PB-VI is
∑
n− lnEqe−ln(θ). This

observation indicates that original loss ln in VI is ex-
ponentially distorted in PB-VI. The idea of distorting
the objective function is extensively studied in RSO
(Lee et al., 2020). The exponentially distorted loss is
known as an entropic-risk in RSO, which is defined as
− 1
γ lnEq(θ;φ)e

−γln(θ), where γ ∈ R+. We propose us-
ing entropic-risk as a loss function in VI for theoretical

analysis:

ObjEnt(φ) :=
1

N

N∑
n=1

[− 1

γ
lnEq(θ;φ)e

−γln(θ)]+
KL(q|π)

αN
. (7)

We refer to this as entropic-risk VI (Ent-VI), which is
equivalent to PB-VI in Eq.(3) when γ = 1. We denote
the the solution of Ent-VI as

φ∗Ent = argminφObjEnt(φ) (8)

and we express the optimized variational posterior dis-
tribution as qEnt(θ) := q(θ;φ∗Ent).

Interpreting PB as RSO has the intuitive and theoreti-
cal advantages. We describe the intuition in Section 4.4
later. As for the theoretical advantages, we can eas-
ily analyze PB by utilizing techniques in the field of
RSO. In particular, we utilize the fact that objective
functions of RSO have dual forms, which are easier
to analyze theoretically. Another motivation is that,
we can analyze not only Ent-VI but also MV-VI in a
unified manner. In particular, the loss in MV-VI in
Eq.(6) has also been widely used in RSO and is often
called a mean-variance (MV) loss. The MV loss is par-
ticularly important in RSO since various risk-seeking
objective functions can be upper or lower bounded by it
(Lee et al., 2020). Due to page limitations, we analyze
MV-VI in Appendix I.

We analyze PB-VI based on its variational dual form
(Ben-Tal et al., 1991). For an entropic-risk, we have

− 1

γ
lnEq(θ)e−γln(θ)=inf

q′
Eq′(θ)[ln(θ)]+

1

γ
KL(q′(θ)|q(θ;φ)), (9)

where the infimum is taken for all the probability mea-
sures that are absolutely continuous regarding q. Thus,
the Ent-VI problem can be expressed in a dual from

inf
φ

inf
q′

1

N

N∑
n=1

[Eq′(θ)[ln(θ)]+
1

γ
KL(q′|q)]+ KL(q|π)

αN
. (10)

This is a double-loop optimization, where the inner op-
timization addresses the variational problem of Eq.(9)
and the outer loop is the optimization concerning vari-
ational parameter φ. We used Eq.(10) to analyze the
convergence properties of Ent-VI in the misspecified
model and its implicit regularization effect in the over-
parameterized model in Sections 4.2 and 4.5.

4.2 Convergence property of Ent-VI

Here, we analyze the parameter estimation property of
PB-VI and the guarantee for the MSE loss as discussed
in Section 3.2. First, we study the consistency of the
posterior distribution since it provides the frequentist
guarantee for the approximate posteriors.
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We define the discrepancy of the misspecification
using the KL divergence. We define θ∗ :=
argminθ∈ΘKL(ν(x)|p(x|θ)) and write:

KL(ν(x)|p(x|θ))=KL(ν(x)|p(x|θ∗))+E ln
p(x|θ∗)
p(x|θ) . (11)

The first term corresponds to the error caused by the
misspecification. Then, we introduce the following
assumptions.

Assumption 1. Assume there exists εN > 0 for which
there is a variational distribution q(θ;φN ) such that:∫

Eν(x) ln
p(x|θ∗)
p(x|θ) q(θ;φN )dθ ≤ εN , (12)

KL(q(θ;φN )|π) ≤ NεN . (13)

These assumptions, Eqs.(12) and (13) are the same as a
previous work (Alquier and Ridgway, 2020). Intuitively,
this assumption implies that a prior gives sufficient
mass near the true parameter, and a family of q(θ;φN )
contains distributions that are concentrated near the
true parameter. We also introduce assumptions about
qEnt(θ), which is required to control the dual problem:

Assumption 2. i) The entropy of qEnt(θ)
is upper-bounded by a positive constant H0,
EqEnt(θ)[− ln qEnt(θ)] ≤ H0. ii) There exist a
positive constant λ0, σ̃

2 such that for all 0 < λ < λ0,
EqEnt(θ)e

λ lnπ ≤ eλ2σ̃2

.

Assumption 2 are satisfied when we choose q and π
appropriately. For example, when q and π are both
Gaussian distributions, Assumption 2 holds. We fur-
ther discuss assumptions in Appendix F. With this
assumption, we first present the consistency property
of Ent-VI for a misspecified setting:

Theorem 1. For a given α ∈ (0, 1) and γ ∈
(0, 2N/(4N + α)), under Assumption 1 and 2,
qEnt(θ) := q(θ;φ∗Ent) satisfies

Eν(x)

∫
Hel2(ν(x), p(x|θ))qEnt(θ)dθ

≤ KL(ν(x)|p(x|θ∗))+
1+α

α
εN +

2σ̃2 +H2
0

Nα2
, (14)

where Hel2 is the Hellinger distance defined in Ap-
pendix A.

The proof is shown in Appendix E. When the model
is well-specified, the first term disappears. If εN → 0
as N →∞, the Ent-VI is consistent.

Here we cite an example of εN from Alquier and
Ridgway (2020). Assume that q is MF Gaussian
q(θ;φ) = N(θ;µ, σ2Id) and π(θ) = N(θ; 0, σ2

0Id), where
Id is the d-dimensional identity matrix. Moreover, we

assume that there exists a measurable function M(x)
for p(x|θ) that satisfies

| ln p(x|θ)− ln p(x|θ′)| ≤M(x)‖θ − θ′‖ (15)

and furthermore we assume that EνM(x) := L < ∞,
then we have

εN = L
N ∨

{
d
N

[
1
2 ln(σ2

0N
2d1/2) + 1

Nσ2
0

]
+ ‖θ∗‖

Nσ2
0
− d

2N

}
.

(16)

This holds for a linear and logistic regression model,
see Alquier and Ridgway (2020) for details. Thus,
substituting this εN , the convergence rate is O(lnN/N)
for the Ent-VI, which shows the same convergence rate
as tempered posteriors. This rate is a minmax optimal
within a log-factor. See Appendix H for a detailed
comparison.

Using this consistency property, we provide a guarantee
in the MSE as discussed in Section 3. Our statistical
model is p(y|x, θ) = N(y|rθ0(x), σ2), where θ = (θ0, σ

2)
and rθ0(x) is linear in parameters. We define θ∗ as
θ∗ := argminθ∈ΘEν(x)KL(ν(y|x)|p(y|x, θ)). We do not
assume that ν(y|x) is a Gaussian distribution. Instead,
we introduce the assumptions below:

Corollary 1. Assume Θ and X are compact, and there
exists a constant η such that supx∈X Eν(y|x)e

η|y| <∞,
and Eν(y|x)[y] = rθ∗0 (x). Then, under the assumptions
in Theorem 1, there exist constants c1, c2 > 0, which
only depends on the parameters of the problem

Eν(x,y)

∫ (Eν(x)‖rθ∗0 (x)−rθ0(x)‖2
2σ2

+
1

2
ln

σ2

σ2∗

)
qEnt(θ)dθ

≤ (c1 + c2 lnN)

(
1+α

α
εN +

2σ̃2 +H2
0

Nα2

)
. (17)

This is the direct consequence of Heide et al. (2020),
see Appendix G. We remark that this corollary is not
restricted to when p(y|x, θ) is a Gaussian distribution.
The similar statement also holds for a generalized linear
model, see Appendix G for details. Note that the as-
sumption requires Eν(y|x)[y] = rθ∗0 (x). Intuitively, this
corollary provides the guarantee even when the noise
function is misspecified. In Section 5, we confirm this by
considering a Bernoulli heteroscedastic noise for ν(y|x)
and a Gaussian homoscedastic noise for p(y|x, θ). With
this corollary, we can upper-bound the MSE. Note that
if εN → 0 as N →∞, the estimated regression model
converges to the optimal model in the MSE. When us-
ing Eq.(16), we obtain an O((lnN)2/N) bound, which
is only a log factor worse than Theorem 1.

In the previous work, e.g, Masegosa (2020),
the performance of PB-VI is guaranteed in
KL(ν(x)|EqEnt(θ)p(x|θ)), where the model is av-
eraged inside the KL divergence. On the other
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hand, our Theorem 1 and Corollary 1 guarantee the
performance when the expectation with respect to
qEnt(θ) is outside the Hellinger distance or the MSE.
Using the convexity of f -divergences and the MSE,
we can move the expectation inside the Hellinger
distance and the MSE. Then our theoretical guarantee
about the consistency and the MSE holds for the
approximate predictive distribution EqEnt(θ)p(x|θ)
similarly.

4.3 Analysis based on response theory

Here we study Ent-VI’s the robustness to model mis-
specification using the associated residuals and the
response function (Lindsay, 1994). These concepts are
utilized to investigate the robustness of the Hellinger
distance, which is appeared in the consistency propo-
erty of Ent-VI in Theorem 1. First, we define the
Pearson residual (PR) at x:

δ(x, θ) := (ν(x)− p(x|θ))p(x|θ)−1. (18)

Lindsay (1994) clarified that the maximum likelihood
(ML) estimator of minθ KL(ν(x)|p(x|θ)) can be ex-
pressed as ∇θKL(ν(x)|p(x|θ)) =

∫
δ(x, θ)∇p(x|θ)dx+

Const. The coefficient of ∇p(x|θ) is called the residual
adjustment function (RAF), which is defined as a func-
tion of δ. Thus, the RAF of ML is δ(x, θ) and shows
a linear response to PR. The intuition of RAF is that
since δ is the relative deviation, model misspecification
implies a large δ. Thus, robustness to model misspeci-
fication requires a damped response as an increasing
δ. Lindsay (1994) argued that since the RAF of the
Hellinger distance minimization shows

√
δ + 1− 1, it

is more robust than the KL divergence. Thus, to inves-
tigate the robustness, our goal is comparing the RAFs
of the Ent-VI and the standard VI.

Since the loss of the standard VI is
Eq(θ;φ)[KL(ν(x)|p(x|θ))], we derive its RAF by
differentiating it with respect to φ. We use a repa-
rameterized gradient with θ ∼ T (θ0;φ), where T is a
translation, φ is a variational parameter, and θ0 obeys
a simple distribution p(θ0) like a Gaussian distribution.
More details are discussed in Appendix J. We use an
m-sample bound, and we draw θ1

0 . . . θ
m
0 from p(θ0)

and obtain θm′ = T (θm
′

0 ;φ). Then, we have

∇φEq(θ;φ)KL(ν(x)|p(x|θ))

=Eθ10 ...θm0 ∼p(θ0)

∫
1

m

m∑
m′=1

ν(x)

p(x|θm′)
G(θm

′

0 )dx, (19)

where G(θm
′

0 ) := ∇φT (θm
′

0 ;φ)∇θp(x|θm′). Since ∇φT
is determined by the choice of the variational distri-
bution, we define the RAF of the standard VI as
ν(x)

p(x|θm′ )
:= δ + 1. This shows a linear response like

ML estimation. As for Ent-VI, we use an m-sample
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Figure 1: RAF of different methods

bound as in Eq.(5). To eliminate the summation’s
non-linearity, we approximate the loss of Ent-VI:

ln
m∑

m′=1

eγ lnw(θm′ ) ≈ lnw(θ̃) +
m∑

m′=1

(
wθm′

w(θ̃)

)γ
,

where we define θ̃ := argmaxθm′ lnw(θm′) and w(θ) :=
p(x|θ)/ν(x). The derivative of loss function is

∇φEν(x)

(
−γ−1 lnEq(θ;φ)e

γ lnp(x|θ)
)

=Eθ10 ...θm0 ∼p(θ0)

∫
1

m

m∑
m′=1

R(x, θm′)G(θm
′

0 )dx, (20)

where an explicit form of R(x, θm′) is shown in Ap-
pendix J. When γ > 1, we can approximate it as
R(x, θm′) ≈ ν(x)/p(x|θ̃). Since θ̃ is a sample that fits
the model best among m drawn samples, the Ent-VI’s
RAF is much smaller than that of the standard VI,
although both show linear responses. In Figure 1, we
visualized RAF as a function of δ in the standard VI
and the Ent-VI using the model of the toy data exper-
iment in Section 5. The Ent-VI’s RAF shows a low
response compared to VI and we believe that this is
the key mechanism of Ent-VI for a robustness to model
misspecification. See Appendix J for the detailed set-
tings.

Response analysis fuels the intuition of Ent-VI as a
risk-seeking objective. If an approximate posterior has
a large variance, we might draw a sample that fits
better than a small variance approximate posterior.
Thus, this increases the variance of the approximate
posterior since the loss of the best fitting sample only
matters to the estimator as shown in Eq.(20) from the
response analysis. In this way, PB-VI and MV-VI show
large variance as reported in Futami et al. (2021) and
Morningstar et al. (2020).

4.4 Intuition of the risk seeking property

Following the response analysis in Section 4.3, here
we briefly describe the intuition of the risk-seeking
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property of PB. By interpreting PB as RSO, it becomes
clear why PB has a larger variance in the posterior
distribution than ordinary VI or Bayesian inference
since the standard VI corresponds to the risk-neutral
objective function. This intuition is difficult to obtain
from the original PB objective function in Eq. (3).

Moreover, this large PB variance may explain PB’s
good performance in over-parametrized models and
model misspecification. For over-parametrized mod-
els, the solution with the larger variance means the
flatter local minima, which gives an intuitive explana-
tion for PB’s good performance in such a model. We
present an analysis for this in Section 4.5. As for the
model misspecification setting, we describe its inuition
in Appendix K.

4.5 Implicit regularization of Ent-VI

In Section 4.2 and 4.3, we have focused on the parame-
ter estimation and robustness to model misspecification
of PB-VI, where we assume that models are rather
simple. On the other hand, recent Bayesian models
can successfully incorporate deep learning methods
(Johnson et al., 2016). In such a situation, we are
more interested in finding a local minimum that shows
a good generalization performance than finding the
global minimum.

It has been hypothesized that local minimums with
flat geometry show better generalization performance
than sharp local minimums (Keskar et al., 2016). Thus,
we hypothesize that the good performance of PB-VI
(Ent-VI) compared to the standard VI has a relation
to a flat minimum. Intuitively, since a flat minimum
can be specified with lower precision than a sharp
minimum (Keskar et al., 2016), a local minimum of
a large variance obtained by a risk-seeking objective
have some relation to a flat minimum.

We elaborate this intuition using the dual problem
in Eq.(10). The entire derivation is shown in Ap-
pendix L. We focus on a Bayesian neural network
(BNN) and consider the MF approximation with
q(θ;φ) := N(θ;µ1, σ

2Id). We restrict q′ in Eq.(10)
to parametric distributions and consider the MF Gaus-
sian distribution: q′(θ;φ′) := N(θ;µ2, σ

2Id). Here for
simplicity, we assume that the variances of q and q′

are identical. We express the difference of the mean
of q and q′ as s = µ2 − µ1. Then the samples from q′

can be written as s+ µ1 + σξ, where ξ is drawn from
N(ξ|0, Id). Then, Eq.(10) is approximated:

inf
µ,σ2,s

1

N

N∑
n=1

[
Eξ[ln(µ1+s+σξ)]+

‖s‖2
2γσ2

]
+

KL(q|π)

αN
. (21)

Since we restrict q′ to a specific parametric distribution,
the objective function of Eq.(10) is upper-bounded by

Eq.(21). We first solve the inner problem concerning
s and assume that s is small enough. Then using the
Taylor expansion, the inner problem can be solved:

inf
s
Eξ[ln(µ1 + s+ σξ)] + (2γσ2)−1‖s‖2

≈ ln(µ1)+Tr[∇2ln(µ1)]σ2/2−∇ln(µ1)>H∇ln(µ1), (22)

where s=H∇ln(µ1) andH :=[γ−1σ−2Id+∇2ln(µ1)]−1.
On the other hand, the loss of the standard VI can also
be expanded by the Taylor theorem:

Eq(θ;φ)[ln(θ)] ≈ ln(µ1) + Tr[∇2ln(µ1)]σ2/2. (23)

Comparing Eqs.(22) and (23), Eq.(22) of Ent-VI has
additional regularization term −∇ln(µ1)>H∇ln(µ1).
This implicit regularization pushes the solution to a flat
minimum as follows. Denote the eigenvalues and eigen-
vectors of H as (λi, vi). Then −∇ln(µ1)>H∇ln(µ1) =
−∑i(∇l>n vi)2λi and this is a weighted sum of the
eigenvalues of H. Thus the additional regulariza-
tion term in Ent-VI provides a solution such that the
weighted sum of λi increases. On the other hand, since
H := [σ−2Id + ∇2ln(µ1)]−1, increasing the weighted
sum corresponds to a decrease in the eigenvalues of
∇2ln(µ1), which is the Hessian of our loss function
when σ is fixed. Since low eigenvalues of H are related
to flat geometry, Ent-VI has implicit regularization that
leads to a flatter minimum than the standard VI. In
Section 5, we numerically compare the generalization
performance of the standard VI and Ent-VI.

4.6 Novel lower bounds of the marginal
likelihood

Based on the discussion about the implicit regulariza-
tion of PB-VI in Section 4.5, introducing those risk-
seeking property even when learning latent variable
models (LVMs) seems promising to improve the perfor-
mance. When learning LVMs, we are often interested
in maximizing a marginal likelihood, not the distorted
risks. For example, many deep latent models optimize
the lower bound of the marginal likelihood. There-
fore, we present a novel objective that is a valid lower
bound of the marginal likelihood and still incorpo-
rates the risk-seeking property. We use a multi-sample
bound and express zj as the j-th random variable
drawn from latent posterior distribution q(z). We de-
fine wj = p(x|zj)π(zj)/q(zj). We regard this lnw as a
risk function and apply an MV loss, as in Eq.(6). We
present two novel lower bounds. The first one is

ln p(x)≥Eq
1

J

J∑
j=1

(
logwj+ hwjx

(
lnwj−

J∑
j=1

lnwj
J

)2)
,

(24)

where hwx are the weights of the variances, which depend
on x and w, see Appendix M for the detailed expression
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and the proof. We refer to Eq.(24) as VI-VAR since the
first term corresponds to the objective of the standard
VI. Thus, thanks to the weighted variance term, VI-
VAR bound is tighter than the standard VI objective.

The second bound is

ln p(x)

≥ Eq
1

M

M∑
m=1

(
ln

J∑
j=1

wmj
J

+h
wmj
x

(
ln

J∑
j=1

wmj
J
− 1

M

M∑
m=1

ln

J∑
j=1

wmj
J

)2)
,

(25)

where wmj := p(x|zmj )π(zmj )/q(zmj ) and {zmj } are JM
samples drawn from q(z) and hwx are the weights of the
variances, which depend on x and w, see Appendix M
for the detailed expression and the proof. This bound
is tighter than the IWAE bound due to the weighted
variance term of the second term. We refer to this as
IWAE-VAR.

Thus, these bounds include the weighted variance term,
which induces a risk-seeking property like PB. They
are rigorous lower bounds of the marginal likelihood
and tighter than the standard VI and IWAE bounds.
In Section 5, we use them to optimize the variational
autoencoder models (VAEs).

5 NUMERICAL EXPERIMENTS

We numerically confirmed the Ent-VI properties in
model misspecified and over-parameterized settings.
See Appendix N for details of the experiments and
additional results.

5.1 Model misspecification

We addressed a toy data regression task and mea-
sured its performance in the MSE. Motivated by
Heide et al. (2020), we considered a task where the
standard VI completely fails. We generated toy-
data (xi, yi)

N
i=1 as follows: xi = ζ ′iui and yi = ζ ′iζi

where ui ∼ Uniform[−1, 1], ζi ∼ N(0, 1), and ζ ′i
follows a Bernoulli distribution, which takes 0 with
a probability 1/2. Thus, the true conditional ex-
pectation is E[Y |X] = 0. As our model, we used
N(y|f(x|w), σ2) with a linear model of Fourier basis
f(x|w) = 1

π

∑40
k=0 w

0
k cos(kx) + w1

k sin(kx). Follow-
ing the theory from Section 4.2, our model includes
E[Y |X] = 0, although the noise assumption is misspec-
ified. Prior distributions are imposed on w and σ2. For
π(w), we assumed a Laplace distribution, which induces
sparsity. We used the non-centered parameterization
and used MF Gaussian posteriors, see Appendix N for
details. For example, when N = 40, we visualized the
obtained functions in the upper row of Figure 2 and
found that VI showed severe over-fitting and Ent-VI
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Figure 2: Regression results with a misspecified model

(γ = 0.1) suffers less over-fitting. In the figure, VI-NN
is a result of a two-layer ReLU BNN and VI-NN fit the
true regression function well in-domain areas. Thus,
when a model is misspecified, standard VI fails in this
setting. Next, we studied the MSE changing N . The
results are shown in Figure 2 in the bottom row. Ent-
VI outperformed in the MSE compared to the VI. A
strange convergence behavior of VI was reported in a
previous work (Heide et al., 2020); Ent-VI converged
well. We show additional numerical experiments in-
cluding the real data experiments in the Appendix N.1.

5.2 Flat minimum in deep learning

We numerically validated the implicit regularization
of Ent-VI shown in Section 4.5 by following previous
work (Masegosa, 2020; Morningstar et al., 2020). We
considered a structured prediction task and trained a
BNN to predict the bottom half of an image using its
top half as input. We used a two-layer MLP with 20
hidden units with ReLU activation and considered an
MF Gaussian for the posterior. We used the Fashion
MNIST and the CIFAR10 datasets. To observe the
flatness of the obtained solutions, under different tem-
perature αs, we measured KL(q(θ;φ∗)|π) where φ∗ is a
solution of VI and Ent-VI and the sum of the squared
Frobenius norms of each weight matrix. We chose these
indicators since they show strong correlations to the
generalization performance (Tsuzuku et al., 2020; Jiang
et al., 2019). A small KL(q(θ;φ∗)|π) with a large test
log-likelihood means that an obtained model needs less
information in the posterior for a reasonable prediction.
This is closely related to the principle of the minimum
description length (MDL) theory, which states that a
statistical model that requires a fewer rate shows better
generalization, and thus, MDL is closely related to the
flat minimum. The results are shown in Figure 3. Ent-
VI requires a smaller KL divergence and a Frobenius
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Figure 3: Left column is the result of Fashion MNIST
and right column is CIFAR10. LL indicates the log-
likelihood. Horizontal line in upper row indicates
KL(q(θ;φ∗)|π). Low indicates squared sum of Frobe-
nius norm of weight matrices. Stars indicate α = 1.
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Figure 4: The same experiments as Figure 3 using
different PB-VI methods. Stars indicate α = 1.

norm to achieve the same test log-likelihood with VI.
Next, we compare the relation of the test log-likelihood
and KL(q(θ;φ∗)|π) using different PB-VI methods in
Figure 4. We used different γs for Ent-VI and used
the method of Masegosa (2020) as MV-VI, which is
denoted by PAC2E in Figure 4. We found that these
PB-VI methods consistently outperform the VI. These
numerical results support the theoretical findings that
Ent-VI has an implicit regularization effect for over-
parameterized models.

5.3 Application to variational autoencoder

We applied the bounds developed in Section 4.6 to
VAEs and described the detailed network architecture
in Appendix N. We used MNIST and the CelebA
datasets (Liu et al., 2015). For MNIST, we evaluated
the test log-likelihood. For the CelebA dataset, we
evaluated the FID score (Heusel et al., 2017) between
the real data and the randomly generated data from
the models. A smaller FID score means that the dis-

Table 1: MNIST VAE results

Method IWAE-VAR IWAE VI-VAR VI
Test LL -88.8 -89.0 -89.7 -89.9
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Figure 5: FID score results of CelebA dataset

tribution of the generated images is closer to the data.
The experimental settings, including the network archi-
tecture and hyperparameters, are the same as in Shi
et al. (2017).

We trained the VAEs using VI-VAR, IWAE, and a
standard VI with J = 10, and IWAE-VAR with
J = 2,M = 5. The MNIST results are shown in
Table 1, which shows that a tighter bound shows a bet-
ter test log-likelihood. The CelebA results are shown in
Figure 5 and the VI-VAR showed the best performance.
From these experiments, incorporating the risk-seeking
property to learn latent variable models seems promis-
ing. Perhaps the worse performance of IWAE-VAR was
caused by the larger variance of the gradient estimator.

6 CONCLUSION

We analyzed predictive Bayes under model misspecified
and over-parameterized settings from the viewpoint of
risk-seeking optimization. We provided the consistency
and a MSE performance guarantee for PB, both of
which are useful when studying parameter estimation.
We also clarified that PB has an implicit regularization
effect, which induces a better generalization perfor-
mance. Our future works will replace the loss function
in VI with a general risk-seeking objective function and
study its theoretical and practical benefits.
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Supplementary Material:
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Symbolslist

Sign Description
γ A temperature parameter in an entropic risk
N A number of training dataset
m The number of samples for the multi-sample bound
ν(x) True data generating distribution
xN = (x1, . . . , xN ) Training data drawn from ν(x)
p(x|θ) A model, also called as a likelihood function
ln(θ) A log loss, defined as ln(θ) := − ln p(xn|θ)
lN (θ) The sum of the log loss, defined as LN (θ) := −∑n ln(θ)
π(θ) A prior distribution
p(θ|xN ) Bayesian posterior distribution, p(θ|xN ) ∝ exp(−LN (θ))π(θ)
q(θ;φ) An approximate posterior distribution with a variational parameter φ
qEnt
θ A solution of Ent-VI

A DEFINITIONS OF DIVERGENCES

Here we introduce the definitions of divergences used in the paper. Consider probability distributions P and Q in
some measurable space. We define KL divergence between P and Q

KL(P |Q) :=

∫
ln
dP

dQ
dP, (26)

if Q dominates P , otherwise KL(P |Q) =∞. We also define α-divergence between p and q as

Dα(P |Q) :=
1

α− 1
ln

∫ (
dP

dQ

)α−1

dP, (27)

if Q dominates P , otherwise Dα(P |Q) =∞. When α = 1/2, Dα is closely related to the Hellinger divergence,

Hel2(P |Q) :=
1

2

∫
(
√
dP −

√
dQ)2. (28)

B FURTHER PRELIMINARY OF EXISTING WORK

Here we introduce additional results for PB and risk seeking optimization.

B.1 Predivtive bayes

As explained in the main paper, Masegosa (2020), Futami et al. (2021), and Morningstar et al. (2020) directly
minimized the KL divergence between the approximate predictive distribution and data generating distribution:

KL(ν(x)|Eq(θ;φ)p(x|θ)) :=Eν(x)[− lnEq(θ;φ)p(x|θ)]+Const (29)
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Table 3: Summary of loss functions

Name Loss g(t) dual divergence
VI Eqln t –
Ent-VI − lnEqe−γln 1

γ e
γt − 1

γ KL
MV-VI Eqln −Varq[ln] t+ ct2 χ2

and motivated by the PAC Bayesian theory (Germain et al., 2016), they added regularization term KL(q|π). The
final objective function is

ObjPB(φ) :=
1

N

N∑
n=1

[−lnEq(θ;φ).p(xn|θ)]+
KL(q|π)

αN
(30)

The exact integral is intractable when optimizing this objective function. Therefore, existing work considered
different approximations. As shown in the main paper, Morningstar et al. (2020) considered the multi-sample
bound like IWAE Eq.(5). On the other hand, Masegosa (2020) and Futami et al. (2021) applied the second-order
Jensen inequality. For simplicity, we only cite the result of Futami et al. (2021). They proved that

Eq(θ) ln p(x|θ) ≤ lnEq(θ)p(x|θ)− Eq(θ)
(

ln p(x|θ)− Eq(θ) ln p(x|θ)
2h(x, θ)

)2

︸ ︷︷ ︸
:= R(x, h)

, (31)

where

h(x, θ)−2 = exp

(
ln p(x|θ) + Eq(θ) ln p(x|θ)− 2 max

θ
ln p(x|θ)

)
. (32)

And then they proposed the objective function

ObjWMV(φ) :=
1

N
EqLN (θ)− Eq

1

N

N∑
n=1

R(xn, hm) +
KL(q|π)

αN
, (33)

where the second term is the weighted variance. Thus, this is the weighted mean-variance objective function.

B.2 Risk seeking optimization

First, we introduce the general risk-seeking objective function as follows. We define inverted optimized certainty
equivalents (I-OCEs)(Lee et al., 2020) as

OCE
g
(q(θ;φ),ln(θ)) :=sup

λ∈R

{
λ−Eq(θ;φ)[g(λ− ln(θ))]

}
, (34)

where g : R → R is a non-decreasing convex function that satisfies g(0) = 0 and 1 ∈ ∂g(0). This g express a
distortion of the original loss function ln. Important point is that many risk-seeking distorted functions can
be derived by choosing appropriate g function. Examples of g are shown in Table 3. For example, by setting
g(t) := 1

γ e
γt − 1

γ where γ ∈ R+, we get the entropic-risk.

I-OCE risk is called risk-seeking objective function because it tries to find the solution which is more dispersed
concerning the distribution used for the expectation in Eq.(34).

As written in the main paper, some OCE risk has dual forms and are discussed in various works (Ben-Tal et al.,
1991). For example, the duality of entropic risk is discussed in Föllmer and Knispel (2011). Relation to MV-loss
and χ square divergence is discussed in Gotoh et al. (2018):

Eq(θ)ln(θ)− γ

2
Varq(ln) =inf

q′
Eq′(θ)[ln(θ)]+

1

γ
χ2(q′(θ)|q(θ;φ)), (35)
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where χ2(q′|q) :=
∫

( q
′

p − 1)2pdθ is the χ square divergence.

As written in the main paper, MV-loss plays an important role in the I-OCE risk framework. Lee et al. (2020)
proved that I-OCE risk is upper and lower bounded by the risk functions as

ln −
Lipφ

2

√
Varq(ln) ≤ OCE

φ
(q, ln) ≤ ln − CφVarq(ln) (36)

where Lipφ is the lipscitz constant of φ and Cφ := inf0<|t|
φ(t)−t
t . Thus, studying the I-OCE risk is closely related

to studying MV-risk in a sense.

In the case of entropic risk, if a log-loss is bounded, then there exists a constant c such that

1

N

N∑
n=1

[− 1

λ
lnEq(θ;φ)e

−λln ] ≤ 1

N

N∑
n=1

ln − cVarq(ln). (37)

Thus, the risk functional of Ent-VB is upper bounded by MV-VI.

C RISK SEEKING OBJECTIVE IN VI

As we introduced in Section 1 and 3, PB uses the distorted loss functions. When focusing on loss function, VI
optimizes

∑
n Eqln(θ), on the other hand. PB-VI optimizes

∑
n− lnEqe−ln(θ). This observation indicates that

the original loss ln in VI is exponentially distorted in PB-VI. The idea of distorting the objective function is
known as risk-seeking objective (Lee et al., 2020). Motivated by this connection, we can consider a general
risk-seeking VI, of which loss functional is replaced with the risk-seeking objective as follows.

ObjRS(φ) :=
1

N

N∑
n=1

OCE
g
(q, ln(θ)) +

KL(q|π)

αN
. (38)

We refer to the VI, which uses Eq.(38) as risk-seeking VI (RS-VI). Significantly, by choosing the appropriate g
functions, we can recover VI, PB-VI, and MV-VI as shown in Table 3. For example, by setting φ(t) := 1

γ e
γt − 1

γ

where γ ∈ R+, get Ent-VI. Also, when we use MV-loss, we get the MV-VI. The intuition of the problem in Eq.(38)
is that we enhance the variation of loss function similar to Eq.(6).

We leave it a future work to analyze the theoretical properties of RS-VI and numerical performances.

D Discussion about MSE

Here, we discuss the behavior of MSE when using the standard VI and the PB-VI. First, as we introduced in
Section 3.2, the objective of PB-VI is given as

EνKL(ν(y|x)|Eqp(y|x, θ))

=
Eν‖R(x)−Eq[rθ(x)]‖2

2σ2
+

1

2
ln
σ2

ρ2
+ Eν

σ2 − ρ2

2σ4
(Varq[rθ(x)]−1)− 1

2σ4
Varq[rθ(x)I(x)+‖rθ∗−rθ‖2] (39)

where I(x) := (R(x)− rθ∗(x))2. When the model is misspecified, e.g., R(x) 6= rθ∗(x), we can make the objective
of PB-VI small by increasing Varqrθ(x). Even when R(x) 6= rθ∗(x), we can make the objective of PB-VI small by
increasing Varq[‖rθ∗ − rθ‖2]. This indicates that we can make the objective of PB-VI, EνKL(ν(y|x)|Eqp(y|x, θ)),
small, while the MSE Eν‖R(x)−Eq [rθ(x)]‖2

2σ2 is large by manipulating the dispersity of the function rθ.

Next, we consider the objective of the standard VI, which is given as

EνEq(θ)KL(ν(y|x)|p(y|x, θ)) =
EνEq(θ)‖R(x)− rθ(x)‖2

2σ2
+

1

2
ln
σ2

ρ2
. (40)

Note that when fixing q(θ), the optimal σ2 is

σ2 = EνEq(θ)‖R(x)− rθ(x)‖2, (41)



Futoshi Futami, Tomoharu Iwata, Naonori Ueda, Issei Sato, Masashi Sugiyama

which is pointed out in Grünwald and Van Ommen (2017).

On the other hand, the squared loss for prediction is given as Eν‖R(x)− Eq(θ)rθ(x)‖2 , which is upper-bounded
by

Eν‖R(x)− Eq(θ)rθ(x)‖2 ≤ EνEq(θ)‖R(x)− rθ(x)‖2. (42)

Thus, compared to PB-VI, the standard VI directly control the squared loss for prediction.

E PROOF OF THEOREM 1 (CONSISTENCY)

Proof. Following Alquier and Ridgway (2020), from the definition of the α-divergence, we obtain

Eν(X)⊗N e
−αrN (pθ,ν)+(1−α)NDα(pθ,ν) = 1, (43)

where

rN (pθ, ν) :=

N∑
n=1

ln
ν(Xn)

p(Xn|θ)
(44)

and expectation is taken with respect to the draw of the training dataset.

Next, we take the expectation concerning a prior π and, using Fubini’s theorem, and we swap the expectation.
We obtain

E
[∫

e−αrN (pθ,ν)+(1−α)NDα(pθ,ν)dπ(θ)

]
= 1. (45)

Then by using the measure change formula in Lemma 2.2 in Alquier and Ridgway (2020), we obtain

E
[
exp

{
sup
ρ

{∫ (
−αrN (pθ, ν) + (1− α)NDα(pθ, ν)

)
dρ(θ)−KL(ρ|π)

}}]
= 1, (46)

where the supremum is taken over all the probability distributions on the given measurable space. For completeness,
we show the Lemma 2.2 in Alquier and Ridgway (2020)

Lemma 1 (Lemma2.2 in Alquier and Ridgway (2020)). Given a measurable space, for any probability π and any
measurable function h that takes real values such that

∫
ehdπ <∞, we have

ln

∫
ehdπ = sup

ρ

[∫
hdρ−KL(ρ|π)

]
. (47)

We take the log function on both hand-side in Eq.(46), and by applying the Jensen inequality. Then we have

E
[
sup
ρ

{∫ (
−αrN (pθ, ν) + (1− α)NDα(pθ, ν)

)
dρ(θ)−KL(ρ|π)

}]
≤ 0. (48)

Recall the dual form of the Ent-risk

− 1

γ
lnEqe−γln = inf

q′
{Eq′ [ln]+

1

γ
KL(q′(θ)|q(θ;φ))}, (49)

and we express the solution of this q′ as q∗. Then, we substitute ρ = q∗ in Eq.(48), we obtain

E
[∫ (

−αrN (pθ, ν) + (1− α)NDα(pθ, ν)
)
q∗dθ −KL(q∗|π)

]
≤ 0. (50)

Then by rearranging the above inequality, we have

Eν
∫
Dα(pθ, ν)q∗dθ ≤ Eν

[
α

N(1− α)

∫
rN (pθ, ν)q∗dθ +

KL(q∗|π)

N(1− α)

]
. (51)
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Next, we lower bound the left-hand side of Eq.(107) by the expectation of qEnt(θ). We use the following relation∫
Hel2(pθ, ν)qEnt(θ)dθ ≤

∫
D1/2(pθ, ν)q∗dθ + 2KL(q∗|qEnt) ≤ 1− α

α

∫
Dα(pθ, ν)q∗dθ + 2KL(q∗|qEnt). (52)

This can be derived using

D1/2(pθ, ν) ≤ 1− α
α

Dα(pθ, ν) (53)

and ∫
Hel2(pθ, ν)qEnt(θ)dθ ≤ −2 lnEqEnt(θ)e

−1/2D1/2(pθ,ν) ≤ Eq∗ [D1/2(pθ, ν)]+2KL(q∗|Ent
θ ). (54)

Thus, we have

Eν(x)

∫
Hel2(pθ, ν)qEnt(θ)dθ ≤ E

[
1

N

∫ N∑
i

ln
ν(xi)

pθ(xi)
q∗dθ +

2

N

N∑
i

KL(q∗|qEnt) + Ω(qEnt(θ), q∗) +
KL(qEnt(θ)|π)

Nα

]
,

(55)

where

Ω(qEnt(θ), q∗) : =
1

Nα

∫
ln
q∗

π
q∗dθ − 1

Nα

∫
ln
qEnt(θ)

π
qEnt(θ)dθ. (56)

We upper bound this term as follows. From Theorem 2 in Xu (2020), when the exponential integral condition
EqEnt(θ)e

γ lnπ ≤ eγ2σ̃ is satisfied for 0 < γ < γ0, we have

Eq∗ lnπ − EqEnt(θ) lnπ ≤
√

2σ̃2KL(q∗|qEnt). (57)

Using the above relation, we have

Ω(qEnt(θ), q∗) =
1

Nα

∫
ln
q∗

π
q∗dθ − 1

Nα

∫
ln
qEnt(θ)

π
qEnt(θ)dθ

≤ − 1

Nα

∫
lnπq∗dθ +

1

Nα

∫
lnπqEnt(θ)dθ +

1

Nα
H0

≤ 1

Nα

√
2σ̃2KL(q∗|qEnt) +

1

Nα
H0

≤ σ̃2

Nα2
+

α

2N
KL(q∗|qEnt) +

1

Nα
H0. (58)

where we also used the assumption that the entropy of variational posterior qEnt(θ) is upper bounded by H0,
EqEnt(θ)[− ln qEnt(θ)] ≤ H0. Then we have

Eν(x)

∫
Hel2(pθ, ν)qEnt(θ)dθ

≤ E

[
1

N

N∑
i

(∫
ln

ν(xi)

pθ(xi)
q∗dθ + (2 + α/(2N))KL(q∗|qEnt)

)
+

KL(qEnt(θ)|π)

Nα
+

σ̃2

Nα2
+

1

Nα
H0

]
. (59)

Then by using the definition of the dual form of Ent-risk,

Eν(x)

∫
Hel2(pθ, ν)qEnt(θ)dθ ≤ E

[
1

N

N∑
i=1

− 1

γ
lnEqEnt(θ)e

−γli +
KL(qEnt(θ)|π)

Nα
+

σ̃2

Nα2
+

1

Nα
H0

]
, (60)

where γ = 2N/(4N + α) Then, by definition qEnt(θ) is the solution of the problem, we can write above as

Eν(x)

∫
Hel2(pθ, ν)qEnt(θ)dθ ≤ E inf

ρ

[
1

N

N∑
i

− 1

γ
lnEqEnt(θ)e

−γli +
KL(ρ|π)

Nα
+

σ̃2

Nα2
+

1

Nα
H0

]
. (61)
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Then, applying the dual form of Ent-risk again, we obtain We substitute ρ = φn

Eν(x)

∫
Hel2(pθ, ν)qEnt(θ)dθ

≤ E inf
ρ,ρ′

[
1

N

N∑
i

(∫
ln

ν(xi)

pθ(xi)
ρ′dθ + (2 + α/(2N))KL(ρ′|ρ)

)
+

KL(ρ|π)

Nα
+

σ̃2

Nα2
+

1

Nα
H0

]
. (62)

Then from the assumption, we assumed that q(θ;φN ) such that∫
KL(ν(x)|p(x|θ))q(θ;φN )dθ ≤ εN , (63)

KL(q(θ;φN )|π) ≤ NεN . (64)

So, we substitute this to ρ′ = q(θ;φn) and ρ′ = ρ, we obtain

Eν(x)

∫
Hel2(pθ, ν)qEnt(θ)dθ ≤

[
1 + α

α
εN +

σ̃2

Nα2
+

1

Nα
H0

]
. (65)

So far we focused on model is well specified setting. As for the model misspecification, we just replace the log loss
in Eq.(107) by

KL(ν(x)|p(x|θ))=KL(ν(x)|p(x|θ∗))+E ln
p(Xn|θ∗)
p(Xn|θ)

. (66)

Then, the proof goes almost in the same way, and we add model misspecified termKL(ν(x)|p(x|θ∗)).

F DISCUSSION ABOUT THE ASSUMPTIONS

Recall the assumptions

H[qEnt(θ)] := −
∫

ln qEnt(θ)qEnt(θ)dθ ≤ H0, (67)

and there exists a γ0 and σ̃2 such that for all 0 < γ < γ0

EqEnt(θ)e
γ lnπ ≤ eγ2σ̃. (68)

Assume that an approximate posterior distribution is a Gaussian distribution. Then the entropy condition
is equivalent to the condition that the log determinant of the covariance matrix of the approximate posterior
distribution is finite. This condition will not be satisfied only when the covariance matrix has 0 or ∞ as an
eigenvalue. Thus, the finite entropy condition is satisfied when we restrict the domain of the variational parameter
φ.

The exponential integrable condition with respect to lnπ is satisfied because Gaussian distribution is subGaussian
distribution. Note that the exponential condition is closely related to subExponential condition of qEnt(θ).

G PROOF OF COLLORARY 1 (Excess risk bound)

G.1 The outline of the proof

To prove Collorary 1, we introduce two assumptions used in the previous work in Grünwald and Mehta (2020);
Heide et al. (2020). Here, we express lθ := − ln p(x|θ) and lθ∗ := − ln p(x|θ∗) and Lθ = lθ − lθ∗ . Here θ∗ indicates
the parameter that minimizes the KL divergence between ν(x) and p(x|θ). We introduce several definitions to
use the results of Grünwald and Mehta (2020); Heide et al. (2020).
Definition 1. Given η, we say that (ν(x), Lθ) satisfies the η-strong central condition if

Ee−ηLθ ≤ 1 (69)

is satisfied.
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The model that satisfies Assumption 1 is, for example, the generalized linear model, in which the linear regression
model is included (Grünwald and Mehta, 2020; Heide et al., 2020). Another assumption used in Grünwald and
Mehta (2020); Heide et al. (2020) is the witness condition

Definition 2. We say that (u, c) witness condition holds for a constant u > 0 and c ∈ (0, 1] if

Eν [Lθ · 1Lθ≤u] ≥ cEνLθ (70)

holds. We say that for a function τ : R+ → [1,∞) and constant c ∈ (0, 1], we say that (τ, c) witness condition
holds if ELθ <∞ and

Eν [Lθ · 1Lθ≤τ(EνLθ)] ≥ cEνLθ. (71)

Then, Lemma 13 in Grünwald and Mehta (2020) show that

Lemma 2 (Lemma 13 in Grünwald and Mehta (2020)). when η-strong central condition in Assumption 1 and
(τ, c) witness condition in Definition 2 are satisfied, then, for all λ > 0 we have,

EνLθ ≤ λ ∨
(
cτ(λ)

1

η′

(
1− Eνe−η

′Lθ
))

(72)

where

cτ(λ) :=
1

c

η′τ(λ) + 1

1− η′

η

. (73)

and η′ is a arbitrary constant such that 0 < η′ < η.

Our strategy is that:

1. we prove that PB-VI under our assumptions satisfies η-strong and (τ, c) witness conditions

2. We upper bound 1
η′

(
1− Eνe−η

′Lθ
)
in Eq.(72) of PB-VI.

3. Combine i) and ii) and using Eq.(72), we upper bound the RMSE.

G.2 Proof

First, we consider step 1) in the above. We check the η-strong and (τ, c) witness conditions. We use the following
lemma:

Lemma 3 (Lemma 16 in Grünwald and Mehta (2020)). If there exists a κ that satisfies

sup
θ

EνeκLθ <∞, (74)

then the (τ, c) witness condition holds under c = 1/2 and

τ(x) = 1 ∨ κ−1 ln
2Mκ

κx
, (75)

where

Mκ = sup
θ

EνeκLθ <∞. (76)

To analyze the condition of Eq.(74), we use Proposition 1 in Heide et al. (2020). They studied that under what
condition the generalized linear model (GLM) satisfies the condition of Eq.(74).

To state that condition, we introduce the definitions of a GLM:

p(y|x, θ) := exp
(
x>θy − F (θ) + r(y)

)
. (77)
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Here, given x ∈ X ⊂ Rd and the mean value parameter is given by g−1(x>θ) where g is the link function. F is
the normalizing constant and r is the reference measure. With this setting, Ep(y|x,θ)[y|x, θ] = g−1(x>θ).

Under this definition, Proposition 1 and lemma 1 in Heide et al. (2020) states that i) Θ and X is restricted on a
compact domain, ii) for some η supx∈X Eν(Y |X)[e

η|Y ||X = x] <∞, and iii) there exists a true mean parameter
Eν(Y |X)[Y |X] = g−1(x>θ∗), there exists η > 0 that only depending on the parameters of the problem and satisfies
η-strong central condition. Moreover the condition of Eq.(74) will be satisfied in GLM, which means (u, c) witness
condition is satisfied.

Since we assumed these conditions, η-strong and (τ, c) witness conditions are satisfied for our settings.

Next, we consider the step 2), that is derive the upper bound 1
η′

(
1− Eνe−η

′Lθ
)
. We use the following relation:

Using Proposition 1 in Grünwald and Mehta (2020), for all 0 < η′ < 1/2 we have

1

η′

(
1− Eνe−η

′Lθ
)
≤ 2

(
1− Eνe−

1
2Lθ
)
. (78)

Thus, we define the right hand side as

Hel2
′
(pθ, p

∗
θ) := 2

(
1− Eνe−

1
2 ln

p(x|θ∗)
p(x|θ)

)
, (79)

We need to bound this Hellinger like metric function.

For that purpose, we need to slightly change the result of in Theorem 1. Recall that Theorem 1 states that

Eν(x)

∫
Hel2(pθ, ν)qEnt(θ)dθ ≤

[
1 + α

α
εN +

σ̃2

Nα2
+

1

Nα
H0

]
. (80)

So when we want to use Lemma 13 in Grünwald and Mehta (2020), we need to change the Hellinger divergence
between ν and p(x|θ) to p(x|θ∗) and p(x|θ) given as Hel2

′
(pθ, p

∗
θ).

Corollary 2. Under the assumption as theorem 1, we have

Eν(x)

∫
Hel2

′
(pθ, p

∗
θ)q

Ent(θ)dθ ≤
[

1 + α

α
εN +

σ̃2

Nα2
+

1

Nα
H0

]
(81)

Proof. We proceed the proof in the same way as the Theorem 1 except for the beginning.

At the beginning of the proof of Theorem 1, we use the following results: From the definition of the Hellinger
divergence, setting α = 1/2, we have the relation,

Eν(X)⊗N e
−αrN (pθ,p

∗
θ)+(1−α)ND′α(pθ,p

∗
θ) = 1, (82)

where

rN (pθ, p
∗
θ) :=

N∑
n=1

ln
p(Xn|θ∗)
p(Xn|θ)

, (83)

and we define

D′α(pθ, p
∗
θ) :=

1

α− 1
ln

∫ (
p(x|θ∗)
p(x|θ)

)α−1

ν(x)dx. (84)

With these new notation, the proof is same as the Theorem 1.

Thus, for all 0 < η′ < 1/2 we have

1

η′

(
1− Eνe−η

′Lθ
)
≤
[

1 + α

α
εN +

σ̃2

Nα2
+

1

Nα
H0

]
. (85)
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From Lemma 13 in Grünwald and Mehta (2020) for all λ and for all 0 < η′ < η ∨ 1/2we have,

EνLθ ≤ λ ∨
(
cτ(λ)

[
1 + α

α
εN +

σ̃2

Nα2
+

1

Nα
H0

])
(86)

where

cτ(λ) :=
1

c

η′τ(λ) + 1

1− η′

η

. (87)

with c = 1/2.

Since λ can take an arbitrary positive value, we set λ = 1/N . Then we have

cτ(1/N) :=
1

c

ητ(1/N) + 1

1− 1−α
η

. (88)

and

τ(1/N) = 1 ∨ κ−1 ln
2MκN

κ
. (89)

Thus, in conclusion, we have

Eν(x)

∫
EνLθqEnt(θ)dθ ≤ cτ(1/N)

[
1 + α

α
εN +

σ̃2

Nα2
+

1

Nα
H0

]
. (90)

From the definition of cτ(1/N), there exists a constant c1 and c2, s.t.

cτ(1/N) = c1 + c2 lnN (91)

and c1 and c2 only depend on the parameters of the problem. Thus, we have

Eν(x)

∫
EνLθqEnt(θ)dθ ≤ (c1 + c2 lnN)

[
1 + α

α
εN +

σ̃2

Nα2
+

1

Nα
H0

]
. (92)

Then if we assume that the likelihood is the Gaussian distribution, we proved the corollary.
Remark 1. Note that Eq.(92) can be expressed as

Eν(y,x)

∫
Eν(x)KL(ν(y|x)|p(y|x, θ∗))qEnt

θ dθ

≤ Eν(x)KL(ν(y|x)|p(y|x, θ∗)) + (c1 + c2 lnN)

(
1+α

α
εN +

2˜̃σ2 +H2
0

Nα2

)
(93)

which is known as the excess risk bound. In Theorem 1, the metric is the Hellinger divergence. On the other hand,
above bound uses KL divergence, which is stronger than the Hellinger divergence. By controlling KL divergence,
we can bound other useful metrics, such as Wasserstein distances.
Remark 2. Here we discuss the condition ii) of Lemma 1 and Proposition 1 in Heide et al. (2020), that is,
ii) for some η supx∈X Eν(Y |X)[e

η|Y ||X = x] < ∞. For example, when the true data generating distribution is
Gaussian distribution used in Section 3 in the main paper, this holds since

Eν(Y |X)[e
η|Y ||X = x] = Eν(Y |X)[e

η|Y | · 1|Y |≤1|X = x] + Eν(Y |X)[e
η|Y | · 1|Y |>1|X = x]

≤ eη + Eν(Y |X)[e
η|Y |2 · 1|Y |>1|X = x]. (94)

Since the distribution of Y 2 is sub-exponential distribution (Wainwright, 2019), from the definition of sub-
exponential distribution, there exists a η such that E[eη|Y |

2

] <∞. Thus the condition is satisfied.

H FURTHER DISCUSSION ABOUT THE RELATED WORK

Here we discuss the relationship between our theoretical results with existing works in more detail.
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H.1 Comparison with tempered posterior

In the analysis of tempered posterior distributions Alquier and Ridgway (2020), we only need Assumption 1 to
get the consistency result. On the other hand, ours requires Assumption 2 in addition to Assumption 1 to control
the dual problem of Ent-VI. Replacing Assumption 2 with weaker ones should be addressed in the future work.

As for the convergence speed Alquier and Ridgway (2020) showed that

Eν(x)

∫
Dα(ν(x), p(x|θ))q(θ;φ∗VI)dθ ≤

α

1− αKL(ν(x)|p(x|θ∗)) +
1 + α

1− αεN , (95)

where Dα is the α-divergence. Compared to our result, the difference is twofold. First, ours has additional term
2σ̃2+H2

0

Nα2 in the right-hand side. This is the term to control the dual problem. If ε = O(1/N), ours show the same
order as the result of Alquier and Ridgway (2020). The second difference is that Alquier and Ridgway (2020)
showed the consistency in α-divergence for α < 1, on the other hand, we showed the consistency in the Hellinger
distance, which is the special case of the α-divergence when α = 1/2. It is widely known that for any distribution
P and Q, D1/2(p,Q) ≤ 1−α

α Dα(P,Q), we can transform the result of Alquier and Ridgway (2020) into a Hellinger
distance.

Grünwald and Mehta (2020); Heide et al. (2020) also worked on the tempered posterior distributions, and they
focused on the exact posterior distribution. On the other hand, ours and Alquier and Ridgway (2020) focused on
the variational posterior distributions. Alquier and Ridgway (2020) focused on the log-loss by considering the
standard variational inference, and we focused on the distorted log-loss by considering the risk-seeking objective
function. On the other hand, Grünwald and Mehta (2020) considered the more general risk function and derived
the excess risk bound in various assumptions.

H.2 Some examples of εN

In the main paper, we introduced the εN for logistic regression model. The result holds for more general lipschitz
log-loss models. From Alquier and Ridgway (2020), assume that q is MF Gaussian q(θ;φ) = N(θ|µ, σ2Id) and
π(θ) = N(θ|0, σ2

0Id), where Id is the d-dimensional identity matrix. Then we assume that for any θ, θ′ ∈ × there
exists a function M(x) where x ∈ X that satisfies

| ln p(x|θ)− ln p(x|θ′)| ≤M(x)‖θ − θ′‖2, (96)

and M(x) ≤ L. Then we have

εN =
L

N
∨
{
d

N

[
1

2
ln(σ2

0N
2d1/2) +

1

Nσ2
0

]
+
‖θ∗‖
Nσ2

0

− d

2N

}
. (97)

Other than this, Alquier and Ridgway (2020) provided examples of εN for a matrix completion problem and
non-parametric regression problem. In Chérief-Abdellatif and Alquier (2018), the examples of εN for various
mixture models are derived.

I THEORY FOR MV-VI

Here present the theory for MV-VI. Recall that the MV-VI is given as

ObjMV(φ) :=
1

N

(
EqLN (θ)−γ

N∑
n=1

Varq(ln(θ))+βKL(q|π)

)
, (98)

and we denote the solution of arg min
φ

ObjMV(φ) as φMV and qMV
θ := q(θ;φMV). Then we have the following

theorem,
Theorem 2. For a given α ∈ (0, 1) and γ ∈ (0, (2 + α/2)−1, under assumption 1 and 2, qMV

θ satisfies

Eν(x)

∫
Hel2(ν(x), p(x|θ))qMV

θ dθ ≤ KL(ν(x)|p(x|θ∗))+
1+α

α
εN +

2σ̃2 +H2
0

Nα2
, (99)

where Hel2 is the Hellinger distance defined in Appendix A.
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Proof. The proof goes almost same as the Ent-VI. From Eq. 59 and the dual form of MV risk T Following Alquier
and Ridgway (2020), from the definition of the α-divergence, we obtain

Eν(X)⊗N e
−αrN (pθ,ν)+(1−α)NDα(pθ,ν) = 1, (100)

where

rN (pθ, ν) :=

N∑
n=1

ln
ν(Xn)

p(Xn|θ)
(101)

and expectation is taken with respect to the draw of the training dataset.

Then we take the expectation with respect to a prior π and using Fubini’s theorem we swap the expectation, we
have

E
[∫

e−αrN (pθ,ν)+(1−α)NDα(pθ,ν)dπ(θ)

]
= 1. (102)

Then by using the measure change formula in Lemma 2.2 in Alquier and Ridgway (2020), we obtain

E
[
exp

{
sup
ρ

{∫ (
−αrN (pθ, ν) + (1− α)NDα(pθ, ν)

)
dρ(θ)−KL(ρ|π)

}}]
= 1, (103)

where the supremum is taken over all the probability distributions on the given measurable space. Then by
applying the Jensen inequality, we have

E
[
sup
ρ

{∫ (
−αrN (pθ, ν) + (1− α)NDα(pθ, ν)

)
dρ(θ)−KL(ρ|π)

}]
≤ 0. (104)

Recall the dual form of the MV-risk

Eq(θ)ln(θ)− γ

2
Varq(ln) =inf

q′
Eq′(θ)[ln(θ)]+

1

γ
χ2(q′(θ)|q(θ;φ)), (105)

and we express the solution of this q′ as q∗. Then, we substitute ρ = q∗ in Eq.(104), we obtain

E
[{∫ (

−αrN (pθ, ν) + (1− α)NDα(pθ, ν)
)
q∗dθ −KL(q∗|π)

}]
≤ 0. (106)

Then by rearranging the above inequality, we have

Eν
∫
Dα(pθ, ν)q∗dθ ≤ Eν

[
α

N(1− α)

∫
rN (pθ, ν)q∗dθ +

KL(q∗|π)

N(1− α)

]
. (107)

As for the left-hand side, we have∫
Hel2(pθ, ν)qMV

θ dθ ≤
∫
D1/2(pθ, ν)q∗dθ + 2KL(q∗|qMV

θ ) ≤ 1− α
α

∫
Dα(pθ, ν)q∗dθ + 2KL(q∗|qMV

θ ), (108)

where we used the relation

D1/2(pθ, ν) ≤ 1− α
α

Dα(pθ, ν) (109)

and ∫
Hel2(pθ, ν)qMV

θ dθ ≤ −2 lnEqMV
θ
e−1/2D1/2(pθ,ν) ≤ Eq∗ [D1/2(pθ, ν)]+2KL(q∗|MV

θ ). (110)

Thus, we have

Eν(x)

∫
Hel2(pθ, ν)qMV

θ dθ ≤ E

[
1

N

∫ N∑
i

ln
ν(xi)

pθ(xi)
q∗dθ +

2

N

N∑
i

KL(q∗|qMV
θ ) + Ω(qMV

θ , q∗) +
KL(qMV

θ |π)

Nα

]
,

(111)
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where

Ω(qMV
θ , q∗) : =

1

Nα

∫
ln
q∗

π
q∗dθ − 1

Nα

∫
ln
qEnt(θ)

π
qMV
θ dθ. (112)

We upper bound this term as follows. From Theorem 2 in Xu (2020), when the exponential interal condition
EqMV

θ
eγ lnπ ≤ eγ2σ̃ is satisfied we have

Eq∗ lnπ − EqMV
θ

lnπ ≤
√

2σ̃2KL(q∗|qMV
θ ). (113)

From the assumption of the upper bound of the entropy, we have

Ω(qMV
θ , q∗) =

1

Nα

∫
ln
q∗

π
q∗dθ − 1

Nα

∫
ln
qMV
θ

π
qMV
θ dθ

≤ − 1

Nα

∫
lnπq∗dθ +

1

Nα

∫
lnπqMV

θ dθ +
1

Nα
H0

≤ 1

Nα

√
2σ̃2KL(q∗|qMV

θ ) +
1

Nα
H0

≤ σ̃2

Nα2
+

α

2N
KL(q∗|qMV

θ ) +
1

Nα
H0. (114)

Then we have

Eν(x)

∫
Hel2(pθ, ν)qMV

θ dθ

≤ E

[
1

N

N∑
i

(∫
ln

ν(xi)

pθ(xi)
q∗dθ + (2 + α/(2N))KL(q∗|qMV

θ )

)
+

KL(qMV
θ |π)

Nα
+

σ̃2

Nα2
+

1

Nα
H0

]
. (115)

Since KL(q∗|qMV
θ ) ≤ χ2(q∗|qMV

θ ), and using the definition of the dual form of MV-risk,

Eν(x)

∫
Hel2(pθ, ν)qEnt(θ)dθ ≤ E

[
1

N

N∑
i=1

EqMV
θ
li(θ)− γVarqli(θ) +

KL(qEnt(θ)|π)

Nα
+

σ̃2

Nα2
+

1

Nα
H0

]
, (116)

where γ = 2N/(4N + α). Then, by definition qMV
θ is the solution of the problem, we can write above as

Eν(x)

∫
Hel2(pθ, ν)qMV

θ dθ ≤ E inf
ρ

[
1

N

N∑
i=1

Eρθ li(θ)− γVarρli(θ) +
KL(ρ|π)

Nα
+

σ̃2

Nα2
+

1

Nα
H0

]
. (117)

Then, applying the dual form of Ent-risk again, we obtain We substitute ρ = φn

Eν(x)

∫
Hel2(pθ, ν)qMV

θ dθ

≤ E inf
ρ,ρ′

[
1

N

N∑
i

(∫
ln

ν(xi)

pθ(xi)
ρ′dθ + (2 + α/(2N))χ2(ρ′|ρ)

)
+

KL(ρ|π)

Nα
+

σ̃2

Nα2
+

1

Nα
H0

]
. (118)

Then from the assumption, we assumed that q(θ;φN ) such that∫
KL(ν(x)|p(x|θ))q(θ;φN )dθ ≤ εN , (119)

KL(q(θ;φN )|π) ≤ NεN . (120)

So, we substitute this to ρ′ = q(θ;φn) and ρ′ = ρ, we obtain

Eν(x)

∫
Hel2(pθ, ν)qMV

θ dθ ≤
[

1 + α

α
εN +

σ2

Nα2
+

1

Nα
H0

]
. (121)
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So far we focused on model is well specified setting. As for the model misspecification, we just replace the log loss
in Eq.(107) by

KL(ν(x)|p(x|θ))=KL(ν(x)|p(x|θ∗))+E ln
p(Xn|θ∗)
p(Xn|θ)

. (122)

Then, the proof goes almost in the same way but we add model misspecified lossKL(ν(x)|p(x|θ∗)).

J DISPARITIES AND ROBUSTNESS

The robustness of Hellinger distance has been analyzed by the disparity distance and associated residuals (Lindsay,
1994). Here we present the model misspecification property of Ent-VI from the disparity analysis similarly to
Hellinger distance.

We define the Pearson residual at x as

δ(x) =
ν(x)− p(x|θ)

p(x|θ) . (123)

We then define a disparity measure between ν(x) and p(x|θ) as

ρ(ν, pθ) :=

∫
G(δ(x))p(x|θ)dx, (124)

where G(δ(x)) is the strictly convex function. By choosing appropriate G, ρ corresponds to the family of power
density divergences

DPD(ν, p(θ)) :=

∫
(1 + δ)λ+1 − 1

λ(λ+ 1)
p(x|θ)dx, (125)

where λ = 0 correspodns to the KL divergence and λ = −1/2 corresponds to the Hellinger divergence. We
differentiate ρ concerning a parameter and obtain the estimating equation:

∇θρ =

∫
(G′(δ)(δ + 1)−G(δ))∇p(x|θ)dx = 0. (126)

We then define a response function as

R(δ(x)) := G′(δ)(δ + 1)−G(δ). (127)

This measures how much the estimating equation changes under the difference of the Pearson disparity function.
This response function is called the residual adjustment function (RAF). The intuition of RAF is that since δ(x)
is the relative deviation of the model and data generating distribution and model misspecification implies large
δ(x). Thus, robustness to model misspecification requires to have damped reponse as increase δ(x) and put small
R(δ(x)) for large δ For example, when ρ corresponds to the maximum likelihood estimation, R(δ) = δ, thus, this
is efficient but not robust to model misspecification. On the other hand, Hellinger distance shows

√
δ + 1− 1.

Thus it is robust compared to KL divergence.

We extend above concepts in a Bayesian way. Since a model p(x|θ) is generated from approximate posterior
q(θ;φ). We focus on the objective function of VI. We consider using multi-sample bound. We define a disparity
measure for each sample as

δ(x, θm′) =
ν(x)− p(x|θm′)

p(x|θm′)
. (128)

Since the loss function of the standard VI is written as Eq(θ;φ)[KL(ν(x)|p(x|θ))], we define it as the disparity
function:

ρ(ν, pθ, q) := Eq(θ;φ)KL(ν(x)|p(x|θ)). (129)
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Figure 6: The illustration of risk-seeking property under model misspecification. Under model misspecification,
the predictive distribution obtained from PB can get closer to the true distribution ν(x) than a single model
p(x∗).

We then differentiate the objective as follows. Assume that we use a reparametrized gradient where θ ∼ T (θ0;φ).
Here, T is a translation, φ is a variational parameter, and θ0 obeys some simple distribution. Then we calculate
the derivative by considering a multi-sample bound:

∇φEq(θ;φ)KL(ν(x)|p(x|θ)) = Eθ10 ...θm0 ∼p(θ0)

∫
1

m

m∑
m′=1

ν(x)

p(x|θm′)
∇φT (θm

′

0 ;φ)∇θp(x|θm′)dx. (130)

Next we consider the loss of Ent-VI. We upper bound the objective by using the Jensen inequality:

− 1

γ
lnE

θ
(1)
0 ...θ

(m)
0

1

m

m∑
m′=1

eγ lnw(θm′ ) ≤ −E
θ
(1)
0 ...θ

(m)
0

1

γ
ln

1

m

m∑
m′=1

eγ lnw(θm′ ). (131)

Then we calculate the gradient and we obtain

∇θ
1

γ
ln

1

m

m∑
m′=1

eγ lnw(θm′ ) =
eγ lnw(θm′ )∑m

m′=1 e
γ lnw(θm′ )

∇θ lnw(θ) =
eγ lnw(θm′ )−γ lnw(θm̃)∑m

m′=1 e
γ lnw(θm′ )−γ lnw(θm̃)

∇θ lnw(θ)

=
eγ lnw(θm′ )−γ lnw(θm̃)

1 +
∑m
m′=1,6=m̃ e

γ ln
w
θ′

w(θm̃)

∇θ lnw(θ) (132)

where we define θm̃ := argmaxθm′ lnw(θm′). With this expression, we have

∇φEν(x)

(
−γ−1 lnEq(θ;φ)e

γ ln
p(x|θ)
ν(x)

)
= E

θ
(1)
0 ...θ

(m)
0

∫  m∑
m′=1

∇φT (θm
′

0 ;φ)
eγ lnw(θm′ )−γ lnw(θm̃)

1 +
∑m
m′=1,6=m̃ e

γ ln
w
θ′

w(θm̃)

ν(x)

p(x|θm′)
∇θp(x|θ)|θm′=T (θm

′
0 ;φ)

 dx. (133)

Thus, when γ > 1, the weights of the gradient other than the maximum become very small. Thus the RAF is
given as

eγ lnw(θm′ )−γ lnw(θm̃)

1 +
∑m
m′=1,6=m̃ e

γ ln
w
θ′

w(θm̃)

ν(x)

p(x|θm′)
. (134)

This shows much smaller response than the RAF of the standard VI. We numerically check the RAF as shown in
the main paper, Section 4.3.

K INTUITION OF RISK SEEKING PROPERTY UNDER MODEL
MISSPECIFICATION

Here we discuss the intuition of risk-seeking property under model misspecification. Fig. 6 depicts the settings
under model misspecification. In the figure, the area below the curve is the set of parameterized models p(x|θ),
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and θ∗ is the closest point to true distribution ν(x) in KL divergence. The usual variational inference makes
the posterior distribution around θ∗. Under appropriate assumptions, the set of probability distributions p(x|θ)
may not be a convex set (Grünwald and Van Ommen, 2017). For example, the average of Gaussian distributions
results in a Gaussian mixture, which is outside the set of Gaussian distributions. Therefore, a mixture of models
p(x|θ) can be closer to ν(x) than p(x|θ∗). Thus, when an approximate posterior q(θ) which is the solution of PB
generates samples θ1 and θ2, the predictive distribution

∑
i=1,2 wip(x|θi) can be closer to ν(x) than the standard

Bayesian predictive distribution if the weights {wi} are appropriately chosen. RSO may provide such a dispersed
approximate posterior as a solution. Thus, PB might be more capable of dealing with model misspecification
since it uses risk-seeking optimization.

L DERIVATION OF THE TAYLOR EXPANSION OF PB

Here we present the derivation of Eqs.(21), (22), and (23) in the main paper.

Recall the definitions. We focus on deep Bayesian models and consider the MF approximation with q(θ;φ) :=
N(θ|µ1, σ

2Id). We restrict q′ in Eq.(10) to the parametric distributions, and consider the MF Gaussian distribution:
q′(θ;φ′) := N(θ|µ2, σ

2Id). Here for simplicity, we assume that the variances of q and q′ are the same. We express
the difference of the mean as s = µ2 − µ1. Then samples from q′ can be written as s+ µ1 + σξ, where ξ is drawn
from N(0, Id).

Then, first by using the formula of the KL divergence between Gaussian distributions, from Eq.(10), we obtain

inf
µ,σ2,s

1

N

N∑
n=1

[
Eξ[ln(µ1+s+σξ)]+

‖s‖2
2γσ2

]
+
βKL(q|π)

N
. (135)

Before solving the inner problem concerning s, we consider to expand the loss of the standard VI by the Taylor
theorem as

Eq(θ;φ)[ln(θ)] ≈ ln(µ1) + Tr[∇2ln(µ1)]σ2. (136)

This expansion was introduced Tsuzuku et al. (2020) and approximation error is discussed there. To derive the
above expansion, we assume that loss is twice differentiable, then by the taylor expnasion, we expand ln(θ′)
around θ1. Then there exists a constant t ∈ (0, 1] such that

ln(θ′) = ln(θ1) +∇θln(θ)|θ1(θ′ − θ1) +
1

2
(θ′ − θ1)>∇2

θln(θ)|α(θ′−θ1)+θ1(θ′ − θ1). (137)

Assume that the Hessian matrix satisfies M lipschitzness

‖∇2
θln(θ)|θ′ −∇2

θln(θ)|θ1‖2
‖θ′ − θ1‖2

≤M. (138)

Then we have

ln(θ′) ≤ ln(θ1) +∇θln(θ)|θ1(θ′ − θ1) +
1

2
(θ′ − θ1)>∇2

θln(θ)|θ1(θ′ − θ1) +
1

2
M‖θ′ − θ1‖32. (139)

Then we take the average and set θ1 = µ1, we obtain

Eq(θ;φ)[ln(θ)] ≤ ln(µ1) + Eq(θ;φ)[∇θln(θ)|θ1(θ − µ1)] +
1

2
Eq(θ;φ)(θ − µ1)>∇2

θln(θ)|µ1
(θ − θ1) +

1

2
MEq(θ;φ)‖θ − µ1‖32.

(140)

Then by using the trace and Gaussian relation, we obtain

Eq(θ;φ)[ln(θ)] ≤ ln(µ1) +
1

2
Tr[∇2ln(µ1)]σ2 +M

√
2Γ
(
n+3

2

)
Γ
(
n
2

) σ3. (141)

Thus, in the main paper, we drop the third term for simplicity.



Futoshi Futami, Tomoharu Iwata, Naonori Ueda, Issei Sato, Masashi Sugiyama

With this expansion, first, we solve the inner problem concerning s. We further assume that s is small. This is a
kind of parametric assumption on q′.

Then by using the Taylor expansion, we can expand the inner problem of Eq.(135) using Eq.(140), and by
dropping the third order term for simplicity, we obtain

inf
s
Eξ[ln(µ1 + s+ σξ)] +

‖s‖2
2γσ2

≈ inf
s
ln(µ1) +

1

2
Tr[∇2ln(µ1)]σ2 +∇θln(µ1)s+

1

2
s>∇2ln(µ1)s+

‖s‖2
2γσ2

= ln(µ1)+Tr[∇2ln(µ1)]σ2−∇ln(µ1)>H∇ln(µ1), (142)

Note that from the first line to the second line, since the objective function is the quadratic function of
∇θln(µ1)s+ 1

2s
>∇2ln(µ1)s+ ‖s‖2

2γσ2 with respect to s, we solved it analytically as follows:

inf
s
Eξ[ln(µ1 + s+ σξ)] +

‖s‖2
γσ2

≈ ln(µ1)+
1

2
Tr[∇2ln(µ1)]σ2−∇ln(µ1)>H∇ln(µ1), (143)

where s=H∇ln(µ1) and H :=[γ−1σ−2Id +∇2ln(µ1)]−1.

M DERIVATION OF THE LOWER BOUND OF THE MARGINAL
LIKELIHOOD

We use the second order Jensen inequality developed in Futami et al. (2021). We cite their theorem

Theorem 3. When p(x|θ) <∞ for all x and θ, we have

Eq(θ) ln p(x|θ) ≤ lnEq(θ)p(x|θ)− Eq(θ)
(

ln p(x|θ)− Eq(θ) ln p(x|θ)
2h(x, θ)

)2

, (144)

where
h(x, θ)−2 = exp

(
ln p(x|θ) + Eq(θ) ln p(x|θ)− 2max

θ
ln p(x|θ)

)
. (145)

They call this the loss function based second order Jensen inequality. We apply this to the marginal likelihood.

Define

wj =
p(x|zj)p(zj)

p(zj)
, (146)

where zj is the j-th drawn sample from the approximate posterior distribution. We also define a empirical
distribution of zj :

ρE(z) :=
1

J

J∑
j=1

δzj (z) (147)

Next, We express a marginal log likelihood by using the multi-sample of zj as

ln p(x) = ln

∫
p(x|z)p(z)dz = ln

[
E(z1,...,zJ )∼q(z)EρEwj

]
= ln

E(z1,...,zJ )∼q(z)
1

N

J∑
j=1

wj

 (148)

First, we derive a bound of IWAE-VAR. We apply the second order Jensen inequality assuming that q(θ) = q(z)
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and p(x|θ) = 1
J

∑J
j=1 wj in Theorem 3, and then we obtain

ln p(x)

= ln

E(z1,...,zJ )∼q(z)
1

J

J∑
j=1

wj


≥ E{(zm1 ,...,zmJ )}Mm=1∼q(z)

1

M

M∑
m=1

ln

 1

J

J∑
j=1

wmj


+ E{(zm1 ,...,zmJ )}Mm=1∼q(z)

1

M

M∑
m=1

 1

(2h(x, {zm}))2

ln
1

J

J∑
j=1

wmj −
1

M

M∑
m=1

ln
1

J

J∑
j=1

wmj
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where

h(x, {zm})−2 = exp

ln
1

J

J∑
j=1

wmj +
1

M

M∑
m=1

ln
1

J

J∑
j=1

wmj − 2 max
m

ln
1

J

J∑
j=1

wmj

 . (150)

Here we consider that we prepare M sets of empirical distribution {ρE(zm)}Mm=1 and applied the second order
Jensen inequality. Thus, this is the multi-sample bound that requires NM samples.

This bound is similar to the bound developed in Rainforth et al. (2018), when we dropped the weighted variance
term. The first term in

Next we derive VI-VAR bound. From a multi sample bound, we first apply a normal Jensen inequality with
respect to q(z) to Eq.(148), we obtain

ln p(x) ≥ E(z1,...,zJ )∼q(z) ln [EρEwj ] . (151)

We then apply the second order Jensen inequality with resepct to ρE , then obtain

ln p(x) ≥ E(z1,...,zJ )∼q(z)

 1

J

J∑
j=1

lnwj +
1

J

J∑
j=1

1

(2h(x, zj))2

lnwj −
1

J

J∑
j=1

lnwj

2
 , (152)

where

h(x, zj)
−2 = exp

lnwj +
1

J

J∑
j=1

lnwj − 2 max
j

lnwj

 . (153)

N EXPERIMENTAL SETTINGS AND ADDITIONAL EXPERIMENTAL
RESULTS

Here we present the detailed settings of the experiments in the main paper and present additional experimental
results.

N.1 Misspecified settings

In this section, we present the settings and additional results for the misspecified models.

N.1.1 Toy data experiments

The experimental settings are similar to Heide et al. (2020). The difference is that they used MCMC to approximate
the posterior distributions. We approximate the posterior by VI. As our model, we used N(y|f(x|w), σ2) with a
linear model of Fourier basis f(x|w) = 1

π

∑40
k=0 w

0
k cos(kx) + w1

k sin(kx).
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Figure 7: MSE using sparse priors under different γs
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Figure 8: MSE using Gaussian priors

Prior distributions are imposed on w and σ2. For σ2, we put on an inverse Gamma prior distribution. For w,
we considered using Gaussian and Laplace distribution priors. In the main paper, we only showed the result of
a Laplace distribution setting. By assuming a Laplace distribution, we expect that it induces a sparsity and
w become close to 0, which is the true model. We used the non-centered parameterization (Papaspiliopoulos
et al., 2007) to approximate the posterior distribution by mean-field VI. For example, Ingraham and Marks (2017)
proposed to approximate sparse priors using Gaussian MF posteriors using the on-centered parametrization.
We use their approach to parametrize the approximate posteriors. To draw a posterior sample of w, we draw
two Gaussians z1 and z2 from two different approximate posteriors of Gaussian distribution. Then we regard
w̃ = z1 � z2 as the sample of approximate posterior of w.

Under this setting, we trained the objective of Ent-VI using the multi-sample bound m = 1000 and γ = 0.1 in the
main paper. We also use 1000 samples for the standard VI.

Here, we show additional results for different γ.

Next, we present the result when the prior is Gaussian distribution. We trained the objective of Ent-VI using the
multi-sample bound m = 100. The results are shown in Fig.8. We found that using γ = 1. seems not enough to
enhance the robustness.
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Table 4: MSE real dataset using sparse prior
Dataset VI Ent-VI(γ = 0.1) Ent-VI(γ = 0.5) Ent-VI(γ = 1.0) Ent-VI(γ = 2.0)
Variable star 2.0± 0.9 2.0± 0.8 1.8± 0.6 1.9± 0.7 25.0± 12.9
(ppm)2 155± 20 153± 22 149± 21 129± 16 255± 23

N.1.2 Additional toy data experimetns

We addressed an additional toy data regression task and measured its performance in the MSE. We generated
toydata (xi, yi)

N
i=1 as follows: xi = ui and yi = −x+ 1 + ε+ 2 ∗ ε′ζ ′i where ui ∼ Uniform[−2, 2], ε, ε′ ∼ N(0, 1),

and ζ ′i follows a Bernoulli distribution, which takes 0 with a probability 1/2. Here ε and ε′ are independent.

Thus, the true conditional expectation is E[Y |X] = −x+ 1. As our model, we used p(y|x, θ) = N(y|f(x;w, b), σ2)
with f(x;w, b) = wx + b where θ = {w, b, σ} ∈ R. Following the theory from Section 4.2, our model includes
E[Y |X], although the noise assumption is misspecified. Prior distributions are imposed on w, b and σ2. For
π(w, b) = N(w|0, 1)N(b|0, 1).As for σ2, we put on a inverse Gamma distribution (InvGamma(1., 1.)). As for the
posterior distribution, q(w, b) = N(w|wµ, wσ)N(b|bµ, bσ) and q(σ2) = InvGamma(α, β).

We observed i) Excess risk, Eν,q ln p(y|x, θ), which is controlled by Corollary 1, ii) Test LL, Eν lnEqp(y|x, θ), iii)
MSE, Eν |E[Y |X]− f(x;w, b)|2, iv) variational parameters α, β, wµ, bµ, wσ, bσ, and v) the mean of the posterior
variance given as the mean of the InvGamma distribution, β/(α− 1).

We measured those values by changing the number of training datasets from 20 to 500. We optimized the objective
function by GD by approximating the posterior expectation using 3000 samples drawn from q. We compare the
standard VI and Ent-VI using different γs. The result is shown in Figure 9.

We found that MSEs are almost the same in Ent-VI and the standard VI methods, and wµ and bµ seem to
converge to optimal values, wµ = −1 and bµ = 1. On the other hand, the noise parameter σ, which is related to
the model misspecification, behaves differently in Ent-VI and the standard VI. Especially, α and β are significantly
different in all the methods. When comparing the mean of the InvGamma distribution, β/(α− 1), it is much
larger in the standard VI than in Ent-VI. Since β/(α− 1) corresponds to the mean of σ2, this means that the
standard VI method fails to estimate σ2 especially when the number of the training dataset is small. On the
other hand, Ent-VI methods estimate it appropriately. Thus, the better estimation of σ in Ent-VI results in
better performance in the test LL and the excess risk of Ent-VI methods.

N.1.3 Real data experiments

Next, following Heide et al. (2020), we consider a linear regression task on real datasets. The settings are almost
the same as the toy data experiments. We trained the objective of Ent-VI using the multi-sample bound m = 100
for all the experiments.

The first experiment is the variable star dataset. The data is available in R-package, asta. We consider a
one-dimensional input and one-dimensional output regression task similar to the toy dataset experiment. The
input is the time, and the output is the feature of stars in the dataset. We randomly select 500 data points as
training data and 100 data points as the test data. We used the 51 number Fourier basis.

The second experiment is the London air pollution dataset. This data is also available in R-package, openair.
We use the data from a monitoring station at London N. Kensington (code is KC1). Our task is that given
one-dimensional time data, we predict the concentration value of NO2. As the training dataset, we used the
time series air pollution data starting from Monday, January 7, 2013, at midnight until the final date of January
2013. We also have data from Monday, January 6, 2014, at midnight until the final date of January 2014. As the
test data, we predict the NO2 value starting from Monday, January 5, 2015, at midnight until the final date of
January 2015. We used the 201 number Fourier basis for the air pollution dataset. These results are shown in
Tables 4 and 5 under using sparse priors and Gaussian priors.

From these experiments, we found that using γ ≤ 1 seems promising for these simple tasks. On the other hand,
using γ ≥ 1 should be avoided.
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Figure 9: Comparison of Ent-VI using different γs and the standard VI

N.2 Flat minimam in deep learning

Experimental settings are almost the same as previous works (Masegosa, 2020; Morningstar et al., 2020). We set
m = 4 for the multi-sample bounds in the main paper.

Here we show additional numerical experiments. We changed the number of samples in Ent-VI. We measured at
m = 4, 8, 16. As for the standard VI, we used m = 4. The result is shown in Figure 10. We found that using
large m results in better generalization error behavior. Since when we increase m, the bound becomes tighter.
This indicates that using a tighter bound might be useful for obtaining better generalization ability.

N.3 Variational autoencoder

The experimental settings, including the network architecture and hyperparameters, are the same as in Shi
et al. (2017). As for the MNIST experiments, we used two hidden ReLU layers with 500 units, and the latent
space dimension is 8. We used J = 10 for VI-VAR and VI and IWAE. As for IWAE-VAR, we need to split the
multi-samples for J and M . We used J = 2 and M = 5. The test likelihood is calculated by using the annealed
importance sampling.

Next, we also present different results for changing the number of particles we use in the experiment. We used
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Table 5: MSE real dataset using Gaussian prior
Dataset VI Ent-VI(γ = 0.1) Ent-VI(γ = 0.5) Ent-VI(γ = 1.0) Ent-VI(γ = 2.0)
Variable star 5.5± 2.7 5.5± 3.1 4.4± 3.2 6.0± 3.2 18.0± 5.5
(ppm)2 129.72± 25 123± 30 130± 30 129.72± 29 260± 25
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Figure 10: The results of changing the number of samples in the multi-sample bound. LL indicates the
log-likelihood.

J = 20, 40 for VI-VAR and VI and IWAE. As for IWAE-VAR, we show the best result in the table from the
combination of (J,M) = (2, 10), (4, 5) for J = 20 and (J,M) = (4, 10), (4, 10), (2, 10) for J = 40.

Table 6: MNIST VAE results
Method IWAE-VAR IWAE VI-VAR VI
Test LL (J = 10) -88.8 -89.0 -89.7 -89.9
Test LL (J = 20) -88.0 -88.1 -89.6 -88.9
Test LL (J = 40) -87.9 -87.8 -88.6 -88.8

As for the CelebA experiments, we used DCGAN structure for the decoder, and the latent dimension is 32. As
for the encoder, we used the symmetric structure to decoder except for the final layer, which is flattened and
added Gaussian noise. We used J = 10 for VI-VAR and VI and IWAE. As for IWAE-VAR, we need to split the
multi-samples for J and M and used J = 2 and M = 5.

N.4 Contextual bandit

Motivated from the previous work of Futami et al. (2021), we applied Ent-VI and MV-VI methods to the
contextual bandit tasks. The experimental settings are precisely the same as the previous work of Futami et al.
(2021).

We place a prior for a reward depending on the context and action. This prior distribution is updated to a
posterior distribution. At each step, Thompson sampling selects the action, and then the corresponding posterior
is updated by the observed reward.
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We consider a neural network where the input is the context and the dimension of the output is the same as
the action space, and we assume a prior on parameters of the network. We approximate the posterior of the
neural network and express the uncertainty by the approximate posterior distribution. Following Futami et al.
(2021), we consider a ensemble framework to approximate posteriors and we tired PAC2

E in Masegosa (2020) and
VAR in Futami et al. (2021) as MV-VI. We consider Ent-VI with γ = 1 and approximate the objective using
the multi-sample bound in Eq.(5) with ensembles. We considered 20 ensembles for all experiments. The result
is shown in Table 7. We found that Ent-VI shows inferior performance in all the experiments. We conjectured
that since PAC2

E and VAR are MV-VI methods, thus there exist repulsion forces, which pushes away ensembles
with each other. This leads to better performance in ensemble learning. On the other hand, since Ent-VI with
Eq.(5) does not have such a diversity enhancing term in the objective function. Thus Ent-VI showed inferior
performance as ensemble learning.

Table 7: Results of contextual bandit
Dataset PAC2

E VAR Ent-VI
Mushroom 0.033±0.010 0.029±0.004 0.410±0.060
Financial 0.191±0.028 0.152±0.027 0.685±0.051
Statlog 0.032±0.0027 0.006±0.0005 0.397±0.040

CoverType 0.390±0.005 0.289±0.003 0.801±0.040


