
Are All Linear Regions Created Equal?

Matteo Gamba Adrian Chmielewski-Anders Josephine Sullivan Hossein Azizpour
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Abstract

The number of linear regions has been stud-
ied as a proxy of complexity for ReLU net-
works. However, the empirical success of
network compression techniques like prun-
ing and knowledge distillation, suggest that
in the overparameterized setting, linear re-
gions density might fail to capture the effec-
tive nonlinearity. In this work, we propose
an efficient algorithm for discovering linear
regions and use it to investigate the effective-
ness of density in capturing the nonlinearity
of trained VGGs and ResNets on CIFAR-10
and CIFAR-100. We contrast the results with
a more principled nonlinearity measure based
on function variation, highlighting the short-
comings of linear regions density. Further-
more, interestingly, our measure of nonlin-
earity clearly correlates with model-wise deep
double descent, connecting reduced test error
with reduced nonlinearity, and increased lo-
cal similarity of linear regions.

1 INTRODUCTION

Estimating the complexity of deep networks trained
in practice is an open research problem posing several
challenges (Kawaguchi et al., 2017; Neyshabur et al.,
2015). For a network equipped with piece-wise linear
activation functions – most prominently ReLU – one
avenue for studying complexity is through the lens of
linear regions, namely the connected components in-
duced on the input space by the piece-wise affine func-
tion parameterized by the network (Balestriero et al.,
2018; Montufar et al., 2014; Pascanu et al., 2013).

Early works on linear regions highlighted theoretical
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gains in model expressivity for deep networks, as op-
posed to wider and shallower ones (Cohen et al., 2016;
Telgarsky, 2016; H̊astad, 1986). Later studies mainly
focused on estimating the density of linear regions, i.e.
bounding and counting the number of affine compo-
nents realized by a given network architecture, pro-
posed as a measure for studying the complexity of hi-
erarchical representations (Xiong et al., 2020; Hanin
& Rolnick, 2019b; Novak et al., 2018; Serra et al.,
2018; Arora et al., 2018; Montufar et al., 2014; Pascanu
et al., 2013). Intuitively, the main rationale motivating
such studies is that, in order for a network to model
complex non-linear behaviour, the resulting piece-wise
affine function should count many affine components.

Currently, it is debated whether linear region density
is the most suited metric for capturing the complexity
of piece-wise affine functions parameterized by deep
networks (Trimmel et al., 2021; LeJeune et al., 2019;
Hanin & Rolnick, 2019a), but there is no systematic
study presenting evidence of where density fails.

Crucially, existing empirical studies of linear regions
are limited to small networks, and have thus not ex-
plored the relationship between model size – which
directly controls expressivity – and nonlinearity. In
fact, existing numerical methods for density estima-
tion (Novak et al., 2018) suffer from the limitations
of uniform sampling (Figure 1, top), while exact an-
alytic approaches are unable to scale to large net-
works (Zhang & Wu, 2020; Hanin & Rolnick, 2019a,b).

In this work, we systematically investigate whether all
linear regions equally contribute nonlinearity relevant
to learning for ReLU networks. We expose shortcom-
ings of estimating the complexity of piece-wise affine
functions exclusively by the number of their affine
components, by contrasting linear region density to
a more principled way of estimating nonlinearity. In-
triguingly, using our nonlinearity measure, we empir-
ically observe that for increasing model size, nonlin-
earity increases for overfitting networks and then de-
creases for large, generalizing ones (Figure 2); in line
with the recently observed deep double descent phe-
nomenon (Nakkiran et al., 2019; Belkin et al., 2019).
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Figure 1: General methodology: we quantify the non-
linearity of continuous piece-wise affine functions (blue
line) for ReLU networks, which implicitly partition the in-
put space into disjoint linear regions (bounded by blue tri-
angles). Prior work used density of such regions as a proxy
for nonlinearity. We note that 1) the slope and bias of
each affine component, as well as the size of each region,
affect nonlinearity, and 2) the same number of regions may
correspond to different levels of nonlinearity (top box of
the figure). Thus, we devise a novel measure based on
absolute deviation from affine interpolation (green line)
which better captures the non-linearity of learned func-
tions (green shaded area). Furthermore, existing numerical
methods measure density by sampling equidistant points
(red triangles) which can be either prohibitively expensive
or miss some regions depending on the granularity of sam-
pling. Here, we propose an adaptive numerical algorithm
for accurately counting all regions. Details of the proposed
counting algorithm, the novel measure, and corresponding
experiments are in sections 2.3, 2.4, and 3 respectively.

Our contributions 1 are summarized as follows.

• We propose an adaptive numerical algorithm for
discovering linear regions along directions in the
input space of trained deep networks (section 2.3).
To our knowledge, ours is the first study estimat-
ing accurate linear region density for architectures
such as ResNet (He et al., 2015). We present
our findings on the CIFAR-10 and CIFAR-100
datasets (Krizhevsky et al., 2009).

• We contrast linear region density to a more prin-
cipled way of estimating nonlinearity of piece-wise
affine functions expressed by ReLU networks (sec-
tion 2.4), accounting for the size of each linear
region, as well as nonlinearity expressed by the
respective affine components and their bias terms.

1Source code available at https://github.com/
magamba/linear-regions
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Figure 2: Absolute deviation closely follows the
test error past the interpolation threshold in a
model-wise double descent regime. At the same
time, linear region density grows monotonically with
model size rendering it unsuitable as a proxy for the
complexity of a trained ReLU network. Thus, while
larger models have in principle higher expressivity,
their effective nonlinearity decreases during the second
descent. (Top) Average median density and absolute
deviation (over 3 seeds) computed on the CIFAR-10
training set with 20% noisy labels, for ResNets18s of
increasing base width. (Bottom) Train and test error
(0/1 loss) as a function of ResNet18 base width. The
networks are trained with no explicit regularization
or data augmentation, using Adam with base learning
rate 1e− 4.

• Building on previous work (Novak et al., 2018), we
study directions in the input space that meaning-
fully capture nonlinearity, but along which linear
region density is unsuited for discerning general-
izing networks from memorizing ones (section 3).

• We establish an empirical connection among test
error, overparameterization, and nonlinearity, for
which large models that harmlessly interpolate
noise show lower nonlinearity as well as test er-
ror than models that harmfully overfit noise (sec-
tion 3.6).

2 METHODOLOGY

We fix notation and describe existing approaches for
estimating density of linear regions respectively in sec-
tions 2.1 and 2.2. In section 2.3, we present our lin-
ear region discovery algorithm. Finally, we introduce
a simple measure of nonlinearity of continuous piece-
wise affine functions in section 2.4.

https://github.com/magamba/linear-regions
https://github.com/magamba/linear-regions


2.1 Notation

We consider ReLU networks as functions f : Rd →
RK , obtained by composing L affine layers, each with
parameter matrix W` ∈ Rd`×d`−1 and bias vector
b` ∈ Rd` , for ` = 1, . . . , L, with the continuous
piece-wise affine activation function ϕ(x) = max(0, x),
where d0 = d, dL = K, and ϕ is applied element-
wise. The resulting function, f(x) = WLxL−1 +
bL = WLϕ(. . . ϕ(W1x + b1)) + bL, is itself contin-
uous piece-wise affine, and implicitly induces a parti-
tion P of the input space Rd into disjoint convex cells
Aε ∈ P – generally referred to as linear regions – on
which the network computes a single affine function
f(x) = Wεx + bε, ∀x ∈ Aε, for Wε ∈ RK×d,bε ∈
RK (Balestriero et al., 2018; Montufar et al., 2014).

For an input x ∈ Aε, the parameters of the correspond-
ing affine component Wεx + bε, can be obtained by
computing the product of matrices Wε =

∏L
`=1 W`

ε, as
follows. For ` = 1, . . . , L, each matrix W`

ε = W`�M`
x

is obtained by multiplying element-wise the weight
matrix W` of layer ` with the binary mask M`

x =
M`(x`−1) = (Mij) ∈ {0, 1}d`×d`−1 , representing the
activation pattern of ReLU at layer ` when x is input
to the network, i.e. Mi,: = 1 if (W`x`−1 + b`)i > 0,
and Mi,: = 0 otherwise. A similar procedure can be
used for the bias parameter bε =

∑
ε b`ε.

Then, using the indicator function, f can be decom-
posed as the sum over all linear regions of its affine
components (Rahaman et al., 2019), yielding

f(x) =
∑
ε

1Aε
(x)(Wεx + bε) ∀x ∈ Rd (1)

and making the locally affine behaviour of f explicit.

Next, we summarize prior work for estimating linear
region density and highlight their limitations.

2.2 Empirical Estimates of Linear Region
Density

Computational Complexity. The density of lin-
ear regions, defined as the size of the partition P, has
been used as a way to quantify nonlinearity of ReLU
networks. In practice, exact calculation of P involves
traversing the network sequentially, neuron by neuron,
and computing how the hyperplanes defined by each
neuron intersect with those at earlier layers (Zhang
& Wu, 2020; Hanin & Rolnick, 2019a; Novak et al.,
2018). Hence, estimating global density of overparam-
eterized networks is prohibitively expensive in practice
for high-dimensional input domains. Furthermore, the
computational cost increases for convolutional layers
whose weight tensors need unfolding into sparse weight
matrices (Zhang & Wu, 2020).

Analytical Methods. To mitigate such computa-
tional challenges, prior work have resorted to calculat-
ing density of regions on 1-D and 2-D compact subsets
B ⊂ Rd of the input space, thus estimating the size
of the restriction of P to B. Exact analytical meth-
ods have so far been bound to small networks (Zhang
& Wu, 2020; Hanin & Rolnick, 2019b,a) and simple
datasets Hanin & Rolnick (2019b,b), making numeri-
cal approaches appealing.

Numerical Methods. Numerical methods have
focused on bounded 1-dimensional trajectories in
the input space, obtained by sampling equally-
spaced points {x0, . . . ,xn}, with a fixed step size
λ = ‖xi+1 − xi‖, and exploiting the binary activation
pattern

[
vec(M1

x), . . . , vec(ML
x )
]

of each sample x as a
signature for each region Aεi , thus estimating density
by the number of unique such patterns (Novak et al.,
2018; Raghu et al., 2017).

Shortcomings. Both analytical and numerical
strategies attempt to capture nonlinearity of piece-
wise affine functions by enumerating regions. On
the one hand, the sequential nature of analytic ap-
proaches makes them unable to scale to realistic net-
works. On the other hand, numerical methods based
on uniform sampling can only provide estimates on
the number of regions by comparing activation pat-
terns, without capturing the geometry of the under-
lying partition P. Importantly, numerical approaches
might potentially miss small regions when the step size
λ is too large, or become prohibitively expensive for
fine-grained sampling. Crucially, all existing strate-
gies based on linear region density intrinsically assume
all regions to equally contribute nonlinearity, indepen-
dently of other properties of the corresponding affine
function, as highlighted in Figure 1.

In the next section, we remove the dependency of nu-
merical counting on a uniform step size λ, and instead
provide a linear region discovery method that captures
the size of linear regions along a given direction in the
input space. Finally, in section 2.4, we introduce a
simple measure that ties linear regions to nonlinearity
of the corresponding piece-wise affine function.

2.3 Adaptive Linear Region Discovery

In this section, we present an adaptive numerical algo-
rithm for discovering linear regions along a direction
d in the input space, starting from an input point x0.

We begin by recalling that, for each affine layer ` with
parameters W`,b`, each neuron j induces a hyper-

plane H`j : w`
j
T
x + b`j = 0 in the preactivation space

Rd`−1 of the layer, with w`
j := W`

j,: and b`j := b`j .
In principle, given an input x0, belonging to linear
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Figure 3: Empirical cumulative distribution functions for absolute deviation along data-driven paths sampled
from the CIFAR-10 training set, for several training settings. From the left, a) VGG8, and b) ResNet18,
each trained with and without data augmentation. c) VGG8, and d) ResNet18 each trained on CIFAR-10
with increasingly noisy training labels. Absolute deviation captures increased smoothness for networks trained
with data augmentation, as well as nonlinearity expressed by networks fitting increasingly harder tasks, thus
constituting a principled baseline for studying linear region density in practical settings.

region Aε, the boundaries of Aε can be analytically
determined as summarized in section 2.2. Here, we in-
stead propose a faster numerical algorithm finding the
closest linear region boundary of Aε to x0, along d.

Let x`−1 = ϕ(W`−1x`−2 + b`−1) denote the output
of layer ` − 1. Then, for each hyperplane H`j induced
by layer `, we solve the linear problem specified by
Equation 3, to determine the closest boundary to x`−1

at layer ` in the direction d. Assuming that x`−1 lies
on the negative side of H`j 2, the smallest displacement

λ`j to cross H`j along d is computed by solving

λ`j = min
λ∈R
|λ|>τ

w`
j

T
(x`−1 + λd`) + b`j > 0 (2)

= min
λ∈R
|λ|>τ

λ >
−w`

j
T
x`−1 − b`j

w`
j
T
d`

(3)

where d` represents the direction d in the preactiva-
tion space Rd`−1 of layer `, and is obtained as the prod-

uct
`−1∏
p=1

Wp
ε ·d, where the matrices Wp

ε depend on the

activation pattern of linear region Aε. To control nu-
merical stability and guarantee that the nearest linear
region boundary is always crossed, the solution is com-
puted for |λ| > τ , with τ � 1, acting as a sensitivity
parameter, ensuring that a minimal step along d is
taken at each iteration of the algorithm. 3. Moreover,

2If instead x`−1 lies on the positive side of H`
j , the in-

equality is flipped, as well as the sign of λ`
j .

3If the size of a linear region along d is lower than τ ,
then τ effectively acts as a step size. In practice, choosing

the linear problem has no solution if d = 0, or d lies
on H`j , in which case the inequality is discarded.

Given a starting point x0 ∈ Rd, and a direction vector
d, the smallest displacement λ = min

1≤j≤d`−1,1≤`≤L
λ`j is

computed by a single forward pass of x0 and d, solving
the linear problem 3 iteratively for each layer.

Pseudocode for our algorithm is included in section C.

Density of Compact 1-D Domains Iterating the
procedure, starting from x0, it is possible to find all lin-
ear regions along a direction d, which we parameterize
as a line path π : I = [0, 1]→ Rd, with π(t) = x0+td,
for 0 ≤ t ≤ 1. Crucially, by convexity of linear regions,
P induces a partition PI = {tε ∈ I : 0 = t0 < . . . <
tD = 1} of I, dividing I into intervals Jε = [tε, tε+1],
with |Jε| = λε corresponding to the length of region
Aε along d.

Importantly, this method allows us to compute the en-
try and exit point of π into each linear region along
d, and returns exactly all linear regions of size greater
than τ . In the following, we use such quantities to in-
troduce a simple measure of nonlinearity of a network.

2.4 Quantifying Nonlinearity

In principle, as illustrated in Figure 1, nonlinearity of
continuous piece-wise affine functions is controlled by
the slope and bias of each component, as well as the
volume of the corresponding linear region. Crucially,

τ = 1e − 6 with double precision computation resulted in
2% of linear regions being found with size lower or equal
than τ , negligibly affecting our comparisons.



for overparameterized networks, several neighbouring
regions could encode approximately the same affine
function, making density unsuited for capturing non-
linearity, interpreted as effective complexity.

To investigate the effectiveness of density at captur-
ing nonlinearity of ReLU networks, we hereby intro-
duce a simple notion of nonlinearity along a direction
– called absolute deviation – measuring the deviation
of a ReLU network f from a simple function a interpo-
lating the affine components respectively applied by f
at the endpoints of a line path π in the input space.

For two distinct inputs x0,x1 ∈ Rd, respectively falling
into linear regions A0 and A1, with corresponding
affine transformations f0(x) = W0x + b0, and f1(x) =
W1x+b1, we define the affine function a(x) obtained
by linearly interpolating the functions f0 and f1, so
that, along a line path π parameterizing d = x1 − x0,
it holds a(x) = f(x0) + t(f(x1) − f(x0)). That is, we
only specify a so that it interpolates f(x0) and f(x1)
along d. Importantly, the difference f(x1)− f(x0) is in
general a nonlinear affine function, i.e. with non-zero
bias term.

Then, for each output dimension fk of the network,
for k = 1, . . . ,K, we can measure the nonlinearity of
fk along a line path π by computing∫

π

|fk(x)− ak(x)|dx

=

D−1∑
ε=0

∫ tε+1

tε

|fk(π(t))− ak(π(t))| · ‖π̇(t)‖dt

=

D−1∑
ε=0

∫ tε+1

tε

|fk(x0 + td)− ak(x0 + td)| · ‖d‖dt

=‖d‖ ·
D−1∑
ε=0

∫ tε+1

tε

(
|fkε (x0)− fk0 (x0) +

t
(
fkε (x1)− fkε (x0)− fk1 (x1) + fk0 (x0)

)
|
)
dt

(4)

where fkε (xi) := (Wε)k,: xi+(bε)k, i.e. the k-th output
logit of the affine component ε of f , evaluated at xi.
A full derivation is presented in section D.

Referring again to Figure 1, we observe that, 1) since
tε+1 − tε = λε, absolute deviation (shaded green area)
precisely follows the piece-wise affine structure of f ,
taking into account the length of linear regions Aε
along d, as well as the slope of f ; 2) absolute deviation
takes into account all linear regions along a trajectory
π, providing an accurate benchmark of expressivity
against linear region density; 3) in contrast to total
variation measures (Novak et al., 2018), the integrand
depends on the bias of f , providing a more precise ap-
proach than solely estimating any Wε through gradi-
ent information ∇xf , as nonlinearity arising from bias

terms is otherwise lost; 4) the integrand smoothly in-
terpolates between the affine function fk0 and fk1 such
that, if f computes affine functions that are approxi-
mately similar to f(x0) or f(x1) along π, then the re-
sulting absolute deviation will be low; 5) if x0,x1 are
training or validation points, then π anchors a to the
support of the data-generating distribution at x0 and
x1, and allows for computing nonlinearity in proximity
of the where the data lies in the input space.

Lastly, we note that absolute deviation is a one-
dimensional estimate of nonlinearity, meant to con-
trast density of linear regions, rather than to stand as
a novel generalization measure. In particular, its effec-
tiveness at capturing nonlinearity expressed by learn-
ing is bound to evaluating the measure along mean-
ingful directions d in the input space. In section 3, we
exploit data-driven trajectories introduced in (Novak
et al., 2018), which were shown to capture sensitivity
of f to input perturbations.

3 EXPERIMENTS

In this section, we empirically investigate practical
training settings in which density of linear regions is
an unreliable estimator of nonlinearity. We apply our
linear region discovery algorithm to N = 1024 closed
paths πn in the input space of trained networks, con-
structed by connecting a training sample x0

n, with aug-
mented versions obtained by deterministically trans-
lating x0

n along a circular trajectory (Novak et al.,
2018), which we define of radius 4 to reflect common
data-augmentation strategies. Details on the construc-
tion are presented in section E. Each closed path is
defined using A = 8 augmented samples, each con-
nected to the next one along the circular trajectory,

by straight lines dan := x
(a+1)%A
n −xan, for a = 0, . . . A.

Each point xan anchors the path to the support of the
data distribution, ensuring that density and deviation
along each line dan are evaluated in proximity of the
data manifold in pixel space. Starting from a base
point x0

n for each path πn, we compute the entry and
exit point of πn for each linear region it crosses, and
compute linear region density as well as absolute de-
viation, for several trained networks.

We perform our experiments on the CIFAR-10 and
CIFAR-100 datasets (Krizhevsky et al., 2009), using a
VGG-like network (Simonyan & Zisserman, 2015) with
8 layers, and a ResNet18 (He et al., 2015) with base
width 16. All measures are computed on the training
split of the dataset considered. All networks fitting
noisy labels are trained until 100% training accuracy
is reached. Our experimental setup and network ar-
chitectures are detailed in sections A and B.



(a) (b)

Figure 4: ECDF of density along data-driven paths
on CIFAR-10 samples, for increasingly noisy labels.
Importantly, it can be observed that a fixed density
value can realize functions of different nonlinearity. a)
VGG8. b) ResNet18.

Finally, we recall that, for a network with K-
dimensional output, absolute deviation produces K
scalar scores – one per logit. Throughout our ex-
periments, we interpret such scores together as a K-
dimensional vector, of which we take the `2 norm to
produce a single scalar measure per path, which can
be contrasted to linear region density along the same
path. We keep the set of paths fixed throughout our
experiments, in order to study how our measures vary
when the training setup is changed.

3.1 Absolute Deviation Captures Complexity
of Trained Networks

We begin by evaluating whether absolute deviation is
a suitable measure of nonlinearity, by studying net-
works trained on learning tasks with increasingly noisy
training labels, pushing each network towards learning
increasingly nonlinear decision functions. In Figure 3,
we compare the functions parameterized by VGG8 and
ResNet18 on CIFAR-10 for each training setting, by
studying the Empirical Cumulative Distribution Func-
tion (ECDF) of absolute deviation evaluated on the N
paths. Furthermore, we evaluate whether absolute de-
viation is able of capturing smoothness of networks in
the input variable x, as promoted by data augmen-
tation. For both VGG and ResNet, in the noisy la-
bels setting, we observe that absolute deviation is con-
centrated towards relatively low values for networks
trained on clean labels, while higher deviation is real-
ized by networks fitting harder tasks, with the 100%
noisy labels setting realizing highest deviation. Fur-
thermore absolute deviation clearly separates piece-
wise affine functions regularized with data augmen-
tation from those trained in vanilla settings with no
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Figure 5: Median density and absolute deviation for
increasingly noisy learning tasks, averaged over three
independent runs. While absolute deviation almost
always increases for harder problems, density decreases
for ResNet18 and increases for VGG8, thus providing
a noisy predictor of nonlinearity.

augmentation. Therefore, we conclude that our novel
metric is a suitable candidate for assessing the abil-
ity of linear region density to capture nonlinearity for
networks trained in practice.

For comparison, Figure 4 shows the ECDF for den-
sity along the same paths and training settings. Ab-
solute deviation better separates noisy labels training
settings for clean labels, by concentrating probability
mass towards low values for less-noisy datasets. Fur-
thermore, while VGG8 realizes higher density for clean
labels than for any noisy setting, ResNet18 expresses
more regions for noisy labels, showing that density is
an unreliable predictor of expressivity.

3.2 Absolute Deviation Better Ranks
Nonlinearity

Next, we investigate how absolute deviation and den-
sity fare at ranking learning tasks of increasing com-
plexity, represented by increasing fraction of noisy
training labels on CIFAR-10. Figure 5 shows the
average median density and median absolute devia-
tion, as a function of the fraction of noisy labels, with
each median averaged over three independent train-
ing runs. Absolute deviation correctly separates net-
works trained on clean labels from all noisy labels set-
ting, and correctly ranks networks trained on 80% and
100% noisy labels as the most nonlinear, while at the
same time fails to separate between 40% and 60% noise
for VGG, and 60% and 80% for ResNet. Strikingly,
density increases with task complexity for ResNet18,
but decreases for VGG8, showing that, along the data-
driven directions considered, density is a fragile esti-



Table 1: Spearman rank correlation between density
and absolute deviation along data-driven paths. Con-
sistently, density poorly correlates with absolute devi-
ation, sometimes anticorrelating.

CIFAR-10 CIFAR-100

VGG8 ResNet18 VGG8
vanilla -0.15 ± 0.00 0.05 ± 0.03 0.00 ± 0.02
augment. -0.08 ± 0.02 0.17 ± 0.06 0.11 ± 0.08
noise 0.2 0.04 ± 0.02 0.21 ± 0.02
noise 0.4 0.11 ± 0.02 0.21 ± 0.04
noise 0.6 0.18 ± 0.07 0.25 ± 0.03
noise 0.8 0.26 ± 0.04 0.22 ± 0.02
noise 1.0 0.14 ± 0.04 0.27 ± 0.04

mator of nonlinearity, and that a more precise measure
of variation of the piece-wise affine function itself offers
a more robust measure.

3.3 Density Poorly Correlates with Absolute
Deviation

Recalling that absolute deviation is expressed as a sum
of non-negative terms over linear regions (Equation 4),
we investigate whether it can simply be explained by
density. For ResNet18 and VGG8 trained on CIFAR-
10 and CIFAR-100, we compute the Spearman rank
correlation coefficient between density and deviation,
across N fixed data-driven paths. Table 1 reports the
average correlation coefficients with one standard devi-
ation, computed over three independent training runs
for each network and training setting. Consistently,
density correlates poorly with absolute deviation, pre-
senting negative correlations for VGG trained without
data augmentation on both datasets.

3.4 Density May Fail to Detect Increased
Nonlinearity

We now move from a distribution-level study to an
instance-based analysis, investigating how density and
absolute deviation change at the level of individual
data-driven paths, when comparing pairs of training
settings. Specifically, for a set of N paths {πn}Nn=1,
and a pair of training settings (T1, T2), we collect
corresponding measures of deviation {devin}Nn=1 and
density {denin}Nn=1, for i = 1, 2, and compute paired
differences dev2

n−dev1
n, den2

n−den1
n, for each n =

1, . . . , N . The, for pairs of training settings (T1, T2)
sorted so that T2 entails learning a function with
higher nonlinearity than T1, the ability of density
and absolute deviation of capturing nonlinearity at
the level of individual paths can be measured by the
fraction of positive paired differences observed, i.e.
|{dev2

n−dev1
n > 0 for n = 1, . . . , N}|. Table 2 col-

lects our experimental findings, averaged over three
independent training runs for each setting.

First, we observe that deviation is able to reliably and
consistently detect increased nonlinearity at the level
of individual paths, capturing additional nonlinearity
expressed by networks when going from no noisy labels
to any amount of noisy labels, as well as when dis-
abling data augmentation. In contrast, density fails to
do the same, in the same settings, on both CIFAR-
10 and CIFAR-100. Second, when comparing each
trained network to the same network at initialization,
across all training settings, both deviation and density
are able to capture nonlinearity arising from learning,
showing that the density of linear regions is on aver-
age higher for trained networks. However, even in this
setting, density fails to capture nonlinearity for up to
20% paths, proving to be a fragile measure in practice.

3.5 Density Fails to Distinguish Piece-Wise
Affine Functions

Next, we investigate whether density and absolute de-
viation, measured on training data, can predict the
network’s test error. In Figure 6, we begin by col-
lecting the test error for all networks, datasets, and
training configurations considered in this study. In
line with what reported by Novak et al. (2018), ex-
tending their result to convolutional and residual net-
works, we observe that measures of variation, like ab-
solute deviation, can better predict test error, here
measured using the 0/1 loss. Importantly, we observe
how any fixed value of density can result in networks of
vastly different test performance, showing how merely
counting the number of affine components is unable to
measure effective complexity of continuous piece-wise
affine functions parameterized by ReLU networks.

3.6 Overparameterization Reduces Effective
Nonlinearity

To further explore the connection between nonlinear-
ity and test error, we note that on the one hand, higher
expressivity is in principle afforded by increased model
size (Telgarsky, 2016; Montufar et al., 2014), while on
the other hand overparameterization can promote reg-
ularization, observed in the form of reduced test error,
in model-wise deep double descent regimes (Nakkiran
et al., 2019; Belkin et al., 2019).

We reproduce the experimental setting of Nakkiran
et al. (2019) (cfr. Figure 4b), and study ResNet18s
of increasing base widths w up to w = 64 (standard
ResNet18), on CIFAR-10 with 20% noisy training la-
bels. All networks are trained for 400 epochs, using
Adam with base learning rate 1e− 4, without any ex-
plicit regularization or any data augmentation. We re-



Table 2: Paired differences for several training settings, averaged over three independent training runs for each
training setting.

CIFAR-10 CIFAR-100

VGG8 ResNet18 VGG8
Abs deviation Density Abs deviation Density Abs deviation Density

vanilla vs augment. 0.98 ± 0.01 0.66 ± 0.40 1.00 ± 0.00 0.03 ± 0.04 1.00 ± 0.00 0.38 ± 0.24
noise 0.2 vs no noise 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.95 ± 0.02
noise 0.4 vs no noise 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 0.78 ± 0.02
noise 0.6 vs no noise 1.00 ± 0.00 0.00 ± 0.01 1.00 ± 0.00 0.86 ± 0.03
noise 0.8 vs no noise 1.00 ± 0.00 0.00 ± 0.00 0.99 ± 0.00 0.91 ± 0.02
noise 1.0 vs no noise 1.00 ± 0.00 0.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00
vanilla trained vs init. 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.79 ± 0.05 1.00 ± 0.00 1.00 ± 0.00
augment. trained vs init. 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 1.00 ± 0.00
noise 0.2 trained vs init. 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.82 ± 0.04
noise 0.4 trained vs init. 1.00 ± 0.00 1.00 ± 0.00 1.00 ± 0.00 0.96 ± 0.01
noise 0.6 trained vs init. 1.00 ± 0.00 0.99 ± 0.01 1.00 ± 0.00 0.99 ± 0.01
noise 0.8 trained vs init. 1.00 ± 0.00 0.96 ± 0.03 1.00 ± 0.00 1.00 ± 0.00
noise 1.0 trained vs init. 1.00 ± 0.00 0.96 ± 0.01 1.00 ± 0.00 0.94 ± 0.01

port absolute deviation and density in Figure 2 (top)
as a function of model size, as well as the train and
test error (bottom), measured with the 0/1 loss.

In line with Nakkiran et al. (2019), ResNets18s of in-
creasing width first realize decreasing train and test
error (w ≤ 4), then overfit the noisy training set in-
curring in increased test error (4 < w ≤ 16), up to an
interpolation threshold (w = 16), at which zero train
error is achieved, with highest test error. Then, a sec-
ond descent of the test error occurs (w > 16), while the
networks still perfectly interpolate the training data.
Intriguingly, absolute deviation is low for underfitting
networks (w ≤ 4, and train error > 30%), which fail
to interpolate noise; then the measure increases, peak-
ing at the interpolation threshold, to finally decrease
again following the second descent of the test error.

In stark contrast, density monotonically increases with
model size. Taken together with absolute deviation,
this finding shows that, while larger networks can af-
ford greatly many linear regions, overparameterization
past the interpolating threshold induces regularization
in the form of reduced nonlinearity, i.e. increased local
similarity of linear regions. To our knowledge, this is
the first experiment explicitly connecting reduced test
error in the model-wise double descent regime with
reduced nonlinearity of the learned function.

4 RELATED WORK

Density of Linear Regions Linear regions were in-
troduced by Pascanu et al. (2013) and Montufar et al.
(2014), to make sense of hierarchical representations in
ReLU networks, illustrating how they nonlinearly par-
tition the input space into disjoint cells, and providing
lower bounds on density realized by a given architec-

ture. Several works followed, proving refined bounds
on density (Xiong et al., 2020; Hanin & Rolnick, 2019a;
Arora et al., 2018; Serra et al., 2018; Raghu et al.,
2017). Hanin & Rolnick (2019b) formally study neu-
ral networks at initialization, providing average-case
bounds over the weight space of MLPs on the local
density of linear regions, computed on bounded vol-
umes. Beyond initialization, they hypothesize that
the implicit bias of SGD pushes learning towards func-
tions that realize relatively low density – expressed by
a polynomial bound in the number of neurons.

Novak et al. (2018) estimate sensitivity of dense ReLU
networks to input perturbations, as well as density of
linear regions, as two independent quantities, along
data-driven directions in the input space of trained
networks. They observe that while their measure of
sensitivity correlates with generalization, density does
so only weakly. Similarly, in this work we adopt the
same strategy for generating data-dependent direc-
tions in the input space, but use them to carry out
a systematic investigation of the relationship between
density of regions and the nonlinearity of the piece-
wise affine functions. Importantly, while Novak et al.
(2018) estimate density by sampling uniformly in the
input space, our work accounts for the anisotropic ge-
ometry of linear regions, by providing an adaptive al-
gorithm for region discovery, thus improving on the
tradeoff between analytical precision and scalability.

Density-agnostic Works on Bounded Variation
for Generalizing Networks Recent works deals
with measures of variation implicitly regularized by
optimization, by explicitly accounting for linear re-
gions, but not for their density. Rahaman et al.
(2019) identify an implicit bias of SGD, by comput-
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Figure 6: Mean test error against mean absolute de-
viation (left) and mean density (right), computed on
the training set, for all our experimental settings.
Means are computed over three independent runs (x-
axis shown in log-scale).

ing the Fourier transform of ReLU networks, and find
directions tied with slower spectral decay of ReLU net-
works. While their work directly exploits the piece-
wise linearity of ReLU networks, as well as the notion
of linear region, their effort is focused on establishing
the emergence of the spectral bias.

LeJeune et al. (2019) study the complexity of ReLU
networks, by introducing a rugosity measure based
on the tangent Hessian of the function. Their work
highlights how commonly used data augmentation im-
plicitly regularizes rugosity. While their work is not
directly concerned with the density of linear regions,
they identify as meaningful future work the study of
variation of piece-wise affine networks, and speculate
whether such notion would be more appropriate to
study the implicit bias of SGD, as opposed to directly
enumerating regions. Our work follows in spirit their
observation, and we are able to empirically identify di-
rections in the input space in which uniform density of
regions fails to correlate with variation of the underly-
ing function, which itself correlates with learning.

Importantly, existing function variation measures have
so far not been studied in the double descent regime,
in relation to test error and increased overparameter-
ization. Our work is the first to explicitly tie reduced
test error with reduced nonlinearity of ReLU networks.

Empirical Properties of Linear Regions Zhang
& Wu (2020) carry out an empirical study of linear
regions for small networks trained in practice, relating
statistics of linear regions with several neural network
hyperparameters. Furthermore, they study how ex-
plicit regularization affects similarity of neighbouring
linear regions using validation points, and observe that

neighbouring regions equally contribute to the predic-
tion of the network. Their study focuses on the ef-
fect of different explicit regularization techniques on
the statistics of linear regions, while we relate func-
tion variation with realized density of linear regions.

Trimmel et al. (2021) provide an algorithm for com-
pressing a trained network by using only non-empty
linear regions containing training data, which is able
to partly recover the performance of the uncompressed
network. The authors argue for their extraction
method to be better suited at capturing nonlinearity
underlying piece-wise affine functions in place of den-
sity of linear regions, but do not investigate where den-
sity fails in practice. Our work is complementary to
theirs in research question and methodology, as we sys-
tematically assess the fragility of linear region density
as an estimator of nonlinearity for trained networks.

5 CONCLUSIONS

Our experimental investigation, contrasting density of
regions to a principled measure of nonlinearity, shows
that not all linear regions equally contribute to com-
plexity underlying learning in ReLU networks. Cru-
cially, following model-wise double descent, linear re-
gions increase in local similarity, with corresponding
reduction of both nonlinearity and harmful overfitting.
Existing density estimates, that equally weigh different
linear regions, provide a fragile measure in practice for
modern overparameterized networks. While density
still serves as an important tool to describe theoretical
expressivity of ReLU network architectures, our work
supports with empirical evidence the criticism of den-
sity as a complexity measure for trained networks. Im-
portantly, our work highlights that estimates of locally
linear behaviour for ReLU networks can correlate with
complexity and learning. Thus, implicit bias of SGD
should be sought in bounded variation of the learned
function, rather than by bounding uniform density of
regions. We leave to future work the question of fur-
ther biasing region-counting in the input space, so that
redundant regions are weighted less, potentially result-
ing in a more robust notion of density.
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Supplementary Material:
Are All Linear Regions Created Equal?

The following presents a detailed description of our methodology and experimental setting. Section A describes
our experimental setup, with training hyperparameters and hardware used. Section B describes the network
architectures used. Pseudocode for our linear region discovery algorithm is presented in section C, while section D
provides a full derivation of absolute deviation. Then, section E details the transformations used to generate
data-driven trajectories in the input space. Finally, section F presents additional experiments.

A Training Hyperparameters

With the exception of Figure 2, all networks are trained using SGD with momentum 0.9 and batch size 128, on the
CIFAR-10 and CIFAR-100 datasets. Pixel values are normalized using per-channel mean and standard deviation,
computed on the full training split of the corresponding dataset. For each dataset, training hyperparameters are
selected on a fixed validation split of size 1000, randomly sampled from the training set. All networks are trained
without any explicit regularization enabled (dropout, batch normalization, weight decay), save where specified.
For all training settings we run 3 random seeds, controlling random weight initialization and the ordering of
samples during training.

Vanilla and Augmentation Training Settings To ensure a fair computational budget across different
network architectures, convergence criteria are set on CIFAR-10 and CIFAR-100 respectively so that all networks
are trained until the training cross entropy loss falls below 0.19, and 0.25. For all networks, an initial learning
rate of 0.1 is decayed by a factor of 0.2 every 150 epochs. When data augmentation is enabled, training images
are randomly shifted by 4 pixels and randomly flipped horizontally. To avoid overfitting, all networks are trained
with weight decay 5e− 4.

Overfitting Noisy Labels On noisy labels, all networks are trained until 100% training accuracy is reached,
following the experimental setup of Zhang et al. (2018). Namely, an initial learning rate of 0.1 is decayed with
a multiplicative factor of 0.95 at every epoch. For this setting, no data augmentation is used.

Model-Wise Deep Double Descent Following the experimental setting of Nakkiran et al. (2019), we train
ResNets18 of increasing base width w ∈ {1, 2, 4, 8, 16, 24, 32, 64}, according to the ResNetv1 architecture (He
et al., 2015), consisting of residual blocks grouped in 4 stages, with respective width [w, 2w, 4w, 8w]. All networks
are trained for 400 epochs with Adam with base learning rate 1e− 4 on CIFAR-10 with 20% corrupted training
labels. We limit the number of training epochs to 400 to avoid incurring in epoch-wise double descent, and focus
on model-wise descent only. All networks are trained with no explicit regularization (especially without batch
normalization), nor data augmentation. To ensure stable training, FixUp initialization is used (Zhang et al.,
2019), without the affine rescaling transformations to avoid altering the ResNet architecture.

Hardware Infrastructure Our experiments on VGG8 are performed using 8 NVIDIA V100s with 32GB of
memory, while for ResNet18, linear region counting is performed using 8 A30s, each with 40GB of memory.

B Network Architectures

Table 3 lists all network architectures used. VGG is initialized following the He initialization scheme (He
et al., 2015), with bias parameters initialized to zero. ResNet is instead initialized using a modified version of
FixUp (Zhang et al., 2019), where in place of initializing some layers to zero, each component is sampled i.i.d.
from a Gaussian distribution of mean zero and standard deviation 1e− 6. To preserve piece-wise linearity of the
functions parameterized by the networks, average pooling was used in place of max pooling. We note that the



Table 3: Network architectures used in our experiments. Following the notation of Simonyan & Zisserman (2015),
Conv3-64 denotes a convolutional layer of kernel size 3× 3 learning 64 feature maps. Strides greater than 1 are
denoted by //s, e.g. //2 for stride 2. For both architectures, each layer save for the last linear one is followed by a
ReLU activation. For ResNet18, “downsample” convolutions denote residual connections with stride larger than
1. All trained layers learn bias parameters, save for the 1× 1 convolutions in the ResNet downsample blocks.

VGG8 ResNet18

Input size 32× 32× 3 32× 32× 3

Conv3-6
Conv3-6

AveragePool (2,2)
Conv3-16

Input size 16× 16× 6 32× 32× 16

Conv3-16
Conv3-16

AveragePool (2,2)

Conv3-16
Conv3-16

Conv3-16
Conv3-16

Input size 8× 8× 16 32× 32× 16

Conv3-64
Conv3-64

AveragePool (2,2)

Conv3-32 //2
Conv3-32

Downsample: Conv1-32 //2

Conv3-32
Conv3-32

Input size 4× 4× 64 16× 16× 32

Conv3-64 //2
Conv3-64

Downsample: Conv1-64 //2

Conv3-64
Conv3-64

Input size 8× 8× 64

Conv3-128 //2
Conv3-128

Downsample: Conv1-128 //2

Conv3-128
Conv3-128

Input size 4× 4× 64 4× 4× 128

Global Average Pooling (4, 4)

Input size 128 128

fc-1024, fc-120 fc-128

Depth 8 18

Number of parameters
174116 (CIFAR-10)
185006 (CIFAR-100)

700042 (CIFAR-10)



Algorithm 1 Find minimum displacement λ to cross into the next linear region.

1: function Find-Lambda(f ,x,d)
2: λ←∞
3: for ` = 1, . . . , L do . Iterate sequentially through all layers.
4: lambdas ← ∅ . Set of candidate lambdas for layer `.

5: lambdas ← −b`−W`x
W`d

. Element-wise division, producing d` candidate lambdas.
6: lambdas[lambdas < τ ]←∞ . Filter out numerically unstable lambdas.
7: if min lambdas < λ then
8: λ← min lambdas
9: end if

10: x←W`
εx + b`ε . Forward pass through layer `.

11: d←W`
εd

12: end for
13: return λ
14: end function

goal of the paper is contrasting learned piece-wise affine functions, rather than optimizing networks for extreme
performance.

C Linear Region Discovery Algorithm

This section presents the pseudocode for the linear region discovery algorithm introduced in section 2.3, together
with a complexity analysis.

Linear Region Discovery on Compact 1-Dimensional Domains Let x0,x1 ∈ Rd be two distinct points
in the input space of a ReLU network f : Rd → RK , and let d = x1 − x0 be the corresponding direction vector.
Consider the line segment π(t) : I = [0, 1]→ Rd such that t 7→ x0 + td. As observed in section 2.3, f implicitly
induces a partition P of π ∈ Rd into disjoint linear regions, whose entry and exit points along π in turn induce a
partition PI of I, with PI = {tε ∈ I : 0 = t0 < . . . < tD = 1}. Algorithm 2 describes a procedure for numerically
determining PI .

Starting from x = x0 ∈ A0, our method travels along d by computing the smallest displacement λ0 to cross a
linear region boundary of A0 along d. Afterward, x is moved to the linear region boundary, x = x + λ0d, and
the procedure is repeated until x falls in the same linear region as x1.

For each linear region discovered, the smallest lambda to cross one of its boundaries is computed by solving
Equation 3, as detailed in Algorithm 1. For numerical stability, when solving for λ, all values below the sensitivity
threshold τ are discarded.

Linear region membership of x ∈ Aε is defined by using the corresponding activation pattern x[
vec(M1

x), . . . , vec(ML
x )
]
, obtained when forward-passing x through f .

Finally, the algorithm terminates under any of the following conditions. If the activation pattern of x is the
same as the one of x1, then all linear regions have been discovered and the procedure completes. Furthermore,
to ensure numerical stability, Algorithm 2 terminates also if no finite λ can be found, or if λ overshoots x1.
The former condition occurs only when — either exactly or approximately — d` is contained in all linear region
boundaries, for every neuron in the network. The latter occurs when, for every neuron in the network, d is
approximately parallel to each hyperplane. We didn’t observe any such case in practice.

In section 3, we run our algorithm on data-driven trajectories obtained by connecting multiple line-paths π to
form a closed loop in the input space. Throughout our experiments, computations are performed with double
precision, with sensitivity τ = 1e− 6, for normalized pixel values and unnormalized direction d4.

Complexity Analysis A näıve implementation of algorithms 1 and 2 entails multiple sequential bottlenecks.
For a set of N paths {πn}Nn=1, each consisting of A line segments, estimating the respective density Dn along

4In the scale of normalized directions d̂ = x1−x0
‖x1−x0‖2

, τ is approximately 1e− 9.



each πn, involves iterating through each path, line segment, layer ` of f , as well as neuron in each layer, for a

total run-time complexity of O(2 ·NALDV ), with D := maxnDn, V =
L∑̀
=1

d`, and the factor of 2 arising from

the need of forward-propagating both x and d in Algorithm 2. Specifically, such complexity is the same as for
analytical methods, as described by Zhang & Wu (2020); Hanin & Rolnick (2019b).

In our implementation, we collate all line segments into a single set of N · A line paths, and estimate den-
sity in parallel over batches of B = 1024 lines at a time, reducing the data-dependent complexity to O(NAB ).
Furthermore, for each layer, Algorithm 1 allows to parallelize computation across all neurons composing the
layer, bringing down the complexity to O(2NAB LD). Additionally, in our implementation, we batch x and d
together, so that each λ can be estimated by running a single forward pass 5, bringing down the complexity to
O(NAB LD). Finally, we note that sampling-based methods would require estimating D a priori, making counting
either imprecise or more expensive than needed. Our algorithm exactly recovers all linear regions.

We observe that the dependency on the depth L of f is intrinsic in the nature of forward passes in feed-forward
networks, and cannot currently be removed.

In conclusion, to quantify complexity in practice, we note that the run-time complexity of training the same
network f on a training set of size S, using SGD with batch size B, for E epochs, involves running

⌊
S
B

⌋
E forward

passes, with total6 complexity O( SBEL). In practice, for a network trained on the CIFAR-10 training split, of size
S = 50000 samples, for E = 200 epochs, the number of forward passes is approximately 78000. For VGG8 such
number is thus similar to the average observed density D (c.f. Figure 4), while it is 4 times lower for ResNet18.

Algorithm 2 Linear region discovery on compact 1-D domains.

1: function FindLinearRegions(f ,x0,x1, τ)
2: c← ActivationPattern(f ,x0)
3: c1 ← ActivationPattern(f ,x1)
4: d← x1−x0

‖x1−x0‖2
5: x← x0

6: PI ← ∅
7: while c 6= c1 do
8: λ← FindLambda(f ,x,d, τ)
9: PI ← PI ∪ {λ}

10: if λ =∞ then . Degenerate case. No finite lambda found.
11: break
12: end if
13: x← x + λd . Step until linear region boundary
14: if ‖x0 − x1‖2 < ‖x− x0‖2 then . Overshot x1

15: break
16: end if
17: c← ActivationPattern(f ,x)
18: end while
19: return |PI |,PI . Return density, as well as all boundary points.
20: end function

5In our code this is achieved by exploiting Pytorch’s forward-hooks.
6This is clearly a lower bound on the complexity of training, since backward passes are not accounted for. Furthermore,

as is the case for training, optimizations like distributed data-parallel paradigms can be applied to our method, allowing
to process larger batch sizes, thus reducing the number of forward passes required to O(LD).



D Computing Absolute Deviation

In this section, we present the full derivation of absolute deviation, introduced in section 2.4. Recalling equation 4,∫
π

|fk(x)− ak(x)|dx =

D−1∑
ε=0

∫ tε+1

tε

|fk(π(t))− ak(π(t))| · ‖π̇(t)‖dt

=

D−1∑
ε=0

∫ tε+1

tε

|fk(x0 + td)− ak(x0 + td)| · ‖d‖dt

=‖d‖ ·
D−1∑
ε=0

∫ tε+1

tε

(
|fkε (x0)− fk0 (x0) + t

(
fkε (x1)− fkε (x0)− fk1 (x1) + fk0 (x0)

)
|
)
dt

we note that, on each linear region Aε, the affine function inside the absolute value of the integrand is not
necessarily monotonic, as fk and ak may intersect at

Z =
fk0 (x0)− fkε (x0)

fkε (x1)− fkε (x0)− fk1 (x1) + fk0 (x0)
(5)

If this is the case, then the integral over Aε can be split as the sum of integrals over two sub-intervals [tε, t∗] ∪
[t∗, tε+1], yielding:∫

π

|fk(x)− ak(x)|dx =‖d‖ ·
D−1∑
ε=0

∫ t∗

tε

|fkε (x0)− fk0 (x0) + t
(
fkε (x1)− fkε (x0)− fk1 (x1) + fk0 (x0)

)
|dt+

+‖d‖ ·
D−1∑
ε=0

∫ tε+1

t∗

|fkε (x0)− fk0 (x0) + t
(
fkε (x1)− fkε (x0)− fk1 (x1) + fk0 (x0)

)
|dt

(6)

Otherwise — if the intersection between fk and ak occurs outside of Aε — we take t∗ as
t∗ = max{tε,min{Z, tε+1}}, which can be efficiently solved as a simple linear programme.

Finally, for each k = 1, . . . ,K, absolute deviation is given by∫
π

|fk(x)− ak(x)|dx =‖d‖
(

(t∗ − tε)|fkε (x0)− fk0 (x0)|+ (tε+1 − t∗)|fkε (x0)− fk0 (x0)| +

t2∗ − t2ε
2
|fkε (x1)− fkε (x0)− fk1 (x1) + fk0 (x0)| +

t2ε+1 − t2∗
2

|fkε (x1)− fkε (x0)− fk1 (x1) + fk0 (x0)|
) (7)

E Data-Driven Trajectories

Each data-driven trajectory πn in section 3 is obtained from a starting sample x0
n and A augmented versions

{xan : a = 1, . . . , A−1}, so that πn is composed of line paths connecting each xan with xa+1%A
n , for a = 0, . . . , A−1,

forming a closed loop.

Each augmented image xan is obtained by translating the starting point x0
n along a circular trajectory of radius

r = 4, with translation parameter s = (r cosαa, r sinαa), for αa = a · 2πA . Specifically, x0
n is first padded by

2 pixels on each edge, then translated along the circular trajectory, and finally cropped back to its original
resolution. Finally, in addition to Novak et al. (2018), we ensure that no edge artifacts are introduced in the
augmented images in the transformation process.

F Additional Experiments

Ablating Data-Driven Trajectories In this section, we consider alternatives to estimating density and
absolute deviation along closed loops in the input space. We begin by recalling that, since both density and



(a) (b)

Figure 7: ECDF of density along data-driven paths on CIFAR-10 samples, for a network trained with data
augmentation and without (“vanilla”). a) VGG8. b) ResNet18.
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Figure 8: (Log x-scale) Absolute deviation and density for circular trajectories (top); open paths connecting weak
augmentations of a base train image (middle); circular paths connecting uniform noise with per-pixel statistics
as the CIFAR-10 training split (bottom).

absolute deviation are computed as line integrals on compact 1D supports, alternative strategies, like MC-
based sampling of random directions in pixel space, increase chances of double counting linear regions, making
computations more memory intensive. Hence, 1-D paths are a core contribution w.r.t. scalability of our method.
Figure 8 presents ablations on circular paths, in which three alternatives are considered, namely closed loops
as in the main experiments (top), open paths connecting weak augmentations (1-pixel shifts) of a base training
image (middle), and finally closed paths connecting uniform random noise with the same per-pixel statistics as
the CIFAR-10 training split (bottom).



Under all settings, absolute deviation correctly separates ResNet18s respectively trained on clean as well as 20%
noisy labels on CIFAR-10, while density struggles on trajectories that lie close to the train data. Finally, both
density and deviation are almost uniformly distributed if measured away from the training data, corroborating
in the setting of modern networks what observed by Novak et al. (2018).

Distribution of Density for Networks Trained with Data Augmentation Extending Figure 4, we
study the distribution of density values for VGG8 and ResNet18 trained with and without data augmentation,
reporting our findings in Figure 7. It can be observed that, while density correctly separates VGG8 trained
with and without data augmentation, the distance between the two cumulative distribution functions is less
marked, in contrast with absolute deviation in Figure 3, which more strongly distinguishes between smoothness
induced by data augmentation, and vanilla training. Finally, the ECDF curves are ranked in the opposite order
for ResNet18 (Figure 7, right), which produces more regions when data augmentation is enabled. This shows
that, unike absolute deviation, density is an unreliable predictor of nonlinearity for trained networks, producing
inconsistent results when different architectures are compared.

Distribution of Paired Differences Complementing Table 2, this section provides a few representative
examples of the distribution of instance-level differences, showing how density and absolute deviation change
on individual paths when the training settings change. Figure 9 shows the distribution of density and absolute
deviation for three settings. First, when comparing a trained ResNet18 on CIFAR-10 with its initialization (left),
density can meaningfully capture increased nonlinearity, as showed by the distribution of differences being shifted
towards positive values (0.99±0.01 positive differences for density). Second, for a VGG8 trained with and without
data augmentation on CIFAR-100 (middle), we see how density becomes a noisy estimator of nonlinearity, as
indicated by the distribution of differences being shifted towards negative values (0.38± 0.24 positive differences
for density). Third, for a ResNet18 trained with and without augmentation on CIFAR-10 (right), density fails to
capture the difference in nonlinearity, with the distribution of differences being strongly biased towards negative
values (0.03±0.03 positive differences for density). In contrast, absolute deviation consistently and more reliably
detects increased nonlinearity at the level of individual paths (as shown by always positive distribution values),
thus better capturing the nonlinear behaviour of piece-wise affine functions for ReLU networks.
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Figure 9: Distribution of per-path paired differences of density (x-axis) and absolute deviation (y-axis). (Left)
Paired differences for a ResNet18 trained with data augmentation on CIFAR-10 vs the same network at ini-
tialization. Here, both density and absolute deviation are able to strongly detecting increased nonlinearity at
the level of individual paths. (Middle) Paired differences for a VGG8 trained on CIFAR-100 with and without
data augmentation. While absolute deviation captures the regularity induced by data augmentation, density
becomes a noisy estimator of nonlinearity. (Right) Paired differences for a ResNet18 trained on CIFAR-10 with
and without data augmentation. Similarly to VGG8/CIFAR-100, density fails to measure increased nonlinearity
when data augmentation is disabled.
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