
FLIX: A Simple and Communication-Efficient Alternative to Local
Methods in Federated Learning

Elnur Gasanov Ahmed Khaled Samuel Horváth Peter Richtárik
KAUST Princeton University KAUST KAUST

Abstract

Federated Learning (FL) is an increasingly
popular machine learning paradigm in which
multiple nodes try to collaboratively learn
under privacy, communication and multiple
heterogeneity constraints. A persistent prob-
lem in federated learning is that it is not clear
what the optimization objective should be:
the standard average risk minimization of su-
pervised learning is inadequate in handling
several major constraints specific to federated
learning, such as communication adaptivity
and personalization control. We identify sev-
eral key desiderata in frameworks for feder-
ated learning and introduce a new framework,
FLIX, that takes into account the unique chal-
lenges brought by federated learning. FLIX
has a standard finite-sum form, which enables
practitioners to tap into the immense wealth
of existing (potentially non-local) methods for
distributed optimization. Through a smart
initialization that does not require any com-
munication, FLIX does not require the use
of local steps but is still provably capable
of performing dissimilarity regularization on
par with local methods. We give several al-
gorithms for solving the FLIX formulation
efficiently under communication constraints.
Finally, we corroborate our theoretical results
with extensive experimentation.

1 INTRODUCTION

There is a wealth of data today that is decentralized
among many clients and which can not be centralized
for privacy reasons. Federated Learning (FL) aims to

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

enable machine learning in this decentralized setting
while respecting data privacy. Application domains
of federated learning include healthcare, learning lan-
guage models for virtual keyboards, and speech recog-
nition (Kairouz et al., 2019). The promise of federated
learning is that by participating in a distributed train-
ing process, clients can learn better machine learning
models than they can using only their own data. The
main cost in using federated learning over local training
lies in the network bandwidth used for the distributed
training process. Hence, federated learning must be
flexible enough to provide a benefit to users without a
prohibitive communication cost. The standard formu-
lation of FL is to cast it as an optimization problem of
the form

min
x∈Rd

[
f(x)

def
=

1

n

n∑
i=1

fi(x)

]
, (ERM)

where fi is the loss function on client i. Thus, the goal
of classical FL is for the n clients to collaboratively learn
a single model, x∗ = arg min f , to be deployed on all
clients. Recent development shows that using a single
model for all clients can be severely detrimental to in-
dividual performance on many clients (Yu et al., 2020),
defeating the purpose of joining distributed training.
Furthermore, (ERM) offers no clear tunable knobs that
can accommodate constraints on the network band-
width. Motivated by these concerns, the chief question
of our paper is:

Can we find a formulation for federated learn-
ing that is flexible enough to accommodate the
needs of federated learning, yet also solvable
using standard methods?

1.1 Key properties of the FLIX framework

Our main contribution is FLIX (Federated Learning
mIXtures), a novel and flexible formulation for feder-
ated learning: define αi > 0 to be the personalization
parameter for node i, and let xi

def
= minx∈Rd fi(x) be

the local solution to the i-th objective– note that xi

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

can be found by solely running a local optimizer, and
hence computing it requires no communication at all.
If fi is nonconvex, then xi can be merely a stationary
point, i.e. a point such that ∇fi(xi) = 0. The FLIX
problem is

min
x∈Rd

f̃(x)
def
=

1

n

n∑
i=1

fi(αix+ (1− αi)xi). (FLIX)

Once we find a solution x∗ of sufficient quality
for (FLIX), we deploy Ti(x∗) = αix∗ + (1− αi)xi
on node i as its final personalized model. We now
enumerate some of the key properties of (FLIX):

• Efficiently solvable as a finite-sum problem.
Formulation (FLIX) preserves the standard finite-
sum formulation of empirical risk minimization.
Moreover, it preserves problem structure: we show
(in Section 3) that when the fi are smooth (and/or
convex), f̃ is also smooth (resp. convex). Hence, we
can leverage standard empirical risk minimization
method for federated learning under communication
and/or personalization constraints. In Section 3
we instantiate several such methods and show they
enjoy fast convergence guarantees under standard
assumptions on the functions f1, . . . , fn.

• Adaptive to communication constraints. Com-
munication efficiency is an important concern fed-
erated learning, as often bandwidth is valuable and
limited (Konečný et al., 2016; Li et al., 2019; Kairouz
et al., 2019). The FLIX formulation is adaptive to
communication constraints: observe that comput-
ing xi, a precondition to solving (FLIX), requires
no communication at all, and can be done purely
locally on node i. If αi = 0, then no communica-
tion at all is needed to compute the personalized
model Ti(x∗). By varying αi between 0 and 1, we
can control the amount of communication needed
to compute Ti(x∗). We show (in Section 3) that
given a communication budget of R steps, we can
find parameters αi that allows us to solve (FLIX) in
no more than R communication steps.

• Adaptivity to personalization. Our end-goal
in federated learning is to generalize well on each
client : this means that the solution deployed on node
i should be tailored to its local data distribution,
which may differ from the data distributions on other
nodes. Hence, we want to use the data from other
nodes to train the model deployed on node i only if
that data is useful on its own distribution. Indeed, a
naive application of empirical risk minimization can
have terrible effects in federated learning situations
where the pure local model (i.e. xi) does better than
average empirical risk minimizer (Yu et al., 2020). In
FLIX, varying αi enables us to amplify or reduce the

effect of other objectives on the solution deployed
on node i. In situations where the data on all of
the nodes is sufficiently heterogeneous, we set αi to
be small and the effect of other data on node i will
be neglibile. On the other hand, when the data on
the different nodes is related we may set αi to be
closer to 1. We observe a benefit to varying α in
this manner in practice: Figure 1 shows the effect
of varying the αi on real data (see Section 4 for the
details and for other experiments).

(a) 100 workers created out of two clients’ data

(b) 50 workers with distinct data distributions

Figure 1: Test accuracy of FLIX model for different
personalization parameter values, FOMAML and Rep-
tile. αi = α is set to the value indicated on horizontal
axis. FOMAML and Reptile are independent from
the personalization parameter α. Plots correspond to
different data splittings.

FLIX fills a gap that is unsatisfied by existing methods.
To the best of our knowledge, there is no other method
for federated learning that is efficiently solvable via
standard algorithms and also adaptive to communica-
tion and personalization constraints, and indeed both
constraints are important in practice (Li et al., 2020).
We believe the key properties we enumerate can also
serve as natural desiderata in the development of new
formulations and methods for federated learning.

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

1.2 Related work

Personalization has garnered significant recent inter-
est in federated learning as personalized models often
perform well in practice compared to non-personalized
models (Jiang et al., 2019; Yu et al., 2020). FLIX is
a model mixture method: the personalized solution is
a mixture of a global model and a local model. In
recent work, Deng et al. (2020) and Mansour et al.
(2020) propose model mixture methods and prove their
statistical benefits, while Zec et al. (2021) introduce
a similar formulation based on the mixture of experts
framework. Unfortunately, we show in the supplemen-
tary material that, from the perspective of optimization
and without additional data, the formulations in all
three works are trivially minimized at the local mini-
mizers x1, . . . , xn. An alternative to model mixing is
mixing in function space, where we optimize a mix-
ture of objectives rather than a model mixture. This
mixture is often constructed to control model variance:
examples of this approach can be found in (Hanzely
and Richtárik, 2020; T. Dinh et al., 2020; Huang et al.,
2021; Dinh et al., 2021). In FLIX, we take the model
mixture approach as it allows us to use pretraining to
better solve the problem while still regularizing model
variance (see Section 2.1). A parallel line of work ap-
plies meta-learning methods like MAML to federated
learning (Jiang et al., 2019; Fallah et al., 2020a): in
Section 2.2 we motivate FLIX by taking MAML as
our starting point. Chen et al. (2021) discuss the sta-
tistical limits of personalization and show that either
solving empirical risk minimization or local training
is optimal, depending on certain problem parameters;
However, as of yet there is no single optimal adaptive
algorithm (from the statistical perspective). There are
several other techniques in federated learning that can
be combined with our approach for better results, such
as clustering (Sattler et al., 2020) or robust optimiza-
tion (Reisizadeh et al., 2020).

2 THE FLIX FORMULATION

In this section we reintroduce and motivate the FLIX
formulation in detail. We define the FLIX objective as

f̃(x;α1, . . . , αn, x1, . . . , xn)
def
=

1

n

n∑
i=1

fi(αix+ (1− αi)xi),
(1)

where αi ∈ (0, 1) is the personalization coefficient
for node i and xi is the minimizer of fi, for all
i = 1, 2, . . . , n. We will use f̃(x) to refer to the ob-
jective in (1) when the αi and xi are clear from the

context. The FLIX problem is then

min
x∈Rd

[
f̃(x) =

1

n

n∑
i=1

fi(αix+ (1− αi)xi)

]
. (2)

Let α = [α1, . . . , αn] be the vector of the personaliza-
tion coefficients. If x∗ = x∗(α) is a solution of (2),
we call Ti(x;αi, xi) = αix∗ + (1− αi)xi the deployed
solution on node i. Like with f̃ , we will refer to the
deployed solution on node i as Ti(x) when xi and αi
are clear from the context.

2.1 Motivation 1: from Local GD to FLIX

The most popular algorithm for solving federated
learning problems is the Federated Averaging algo-
rithm (Kairouz et al., 2019), also known as Local
(Stochastic) Gradient Descent (Local GD/SGD). Local
GD alternates steps of local computation on each node
with steps of communication and aggregation. More
concretely, the Local GD update is:

xit+1 =

{
xit − γ∇fi(xit) if t mod H 6= 0
1
n

∑n
i=1

[
xit − γ∇fi(xit)

]
if t mod H = 0

,

where H is the number of local steps. Early papers on
federated learning (such as e.g. (Konečný et al., 2016))
motivated local methods as communication-efficient
ways of solving (ERM), but subsequent theoretical de-
velopment reveals that local methods are, in fact, quite
bad solvers for (ERM) whenever there is significant sta-
tistical heterogeneity among the clients (Woodworth
et al., 2020). Moreover, Pathak and Wainwright (2020)
show that for the linear least-squares problem, Local
GD converges to a different point than the minimizer
of (ERM). More generally, the fixed points of Local
GD can be very different from the minimizer of (ERM)
whenever H > 1 (Malinovskiy et al., 2020). Hanzely
and Richtárik (2020) show that a mild variant of Lo-
cal GD can be interpreted as SGD applied on the
nd-dimensional regularized objective fλ defined by

fλ(y1, y2, . . . , yn)
def
=

[
1

n

n∑
i=1

fi(yi) +
λ

2n

n∑
i=1

‖yi − ȳ‖2
]
,

where ȳ = 1
n

∑n
i=1 yi is the counterpart of x in (ERM),

and where λ is a regularization parameter determined
according to the number of local steps. Objective fλ
is the summation of two terms: the first asks that
each node i finds a solution yi that minimizes its local
objective well, while the regularizer ψ(y1, . . . , yn) =
1

2n

∑n
i=1 ‖yi − ȳ‖

2 forces the solutions y1, y2, . . . , yn to
be close to their average ȳ. Hence, Local GD in-
centivizes finding personalized solutions y1, y2, . . . , yn
that have small population variance. Hanzely and

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

Richtárik (2020) note that as the λ parameter varies
between 0 and ∞, the solutions found by Local GD
interpolate between the pure local optimal models (i.e.
xi = argminx fi(x)) and the solution of the global prob-
lem x∗ (the minimizer of (ERM)). Our starting point
is then the following observation:

The solutions y1, . . . , yn found by Local GD
are an implicit mixture of the local minimiz-
ers x1, . . . , xn and the global empirical risk
minimizer x∗.

Rather than seeking an implicit mixture of the local
and global optimal models, we instead propose to find
an explicit mixture of the local optimal models and a
global model: given any global model x (not necessarily
the empirical risk minimizer), we choose coefficients
α1, α2, . . . , αn (all between 0 and 1) and then deploy
on node i the mixture

Ti(x) = αix+ (1− αi)xi, (3)

we may then choose x as the best such global model by
explicitly solving the optimization problem

min
x∈Rd

1

n

n∑
i=1

fi (αix+ (1− αi)xi) ,

and this is exactly the FLIX formulation. Ob-
serve that coefficients α1, α2, . . . , αn should regular-
ize the population variance of the deployed solutions
T1(x), T2(x), . . . , Tn(x), as in local methods. We show
this rigorously for equal αi in Proposition 3. Our de-
velopment thus leads us to a natural framework that
captures the strength of local methods while also satis-
fying the desiderata specified in Section 1.1.

2.2 Motivation 2: from model-agnostic
meta-learning to FLIX

We now motivate FLIX differently by starting with
personalization via fine-tuning. The ordinary formu-
lation of the federated learning problem (ERM) asks
for a single global model to be used on all clients.
If the clients are sufficiently heterogeneous, a single
model may perform badly on many of them (Jiang
et al., 2019). Personalizing a global model to each of
the users’ custom data is often beneficial in practice;
For example, Wang et al. (2019) study the benefits of
personalizing language models for a virtual keyboard
application used by tens of millions of users. They
observe that a sizeable fraction of the users benefit
from personalization. Personalization is often done in
two steps:
Step I: initial model training. Find a “good”
global model xglobal.

Step II: fine-tuning. Personalize the global model
xglobal on each client to get the personalized local
models xi.

Methods that fit this framework are known as finite-
tuning approaches: they include the model-agnostic
meta-learning (MAML) family of methods (Finn et al.,
2017). In addition to its practical popularity, recent
theoretical investigations reveal that fine-tuning ap-
proaches, such as MAML, are also benefical from a
statistical perspective (Fallah et al., 2021; Chua et al.,
2021). In MAML, we find xglobal by optimizing for
the loss after a single step of gradient descent, i.e. the
MAML objective is

Find xglobal ∈ argmin
x∈Rd

1

n

n∑
i=1

fi(x− γ∇fi(x)), (4)

where γ is a given stepsize. Once xglobal is found, we
may then fine-tune it by running gradient descent for
a number of steps on each node i locally using its own
objective fi (Finn et al., 2017). To gain further insight
into what fine-tuning is doing, we now consider the case
when each fi is a quadratic function. Because this prob-
lem is amenable to analysis, several authors have used
it to study the theoretical properties of MAML (Collins
et al., 2020; Charles and Konečný, 2021; Gao and Sener,
2020), and we follow in their footsteps. We assume that
each fi can be written as fi(x) = 1

2x
TAix− bTi x+ ci,

where Ai ∈ Rd×d is a positive definite matrix, bi ∈ Rd,
and ci ∈ R. Now suppose that we have some initial
global model x0, and we fine-tune it by running gradi-
ent descent for H steps on node i: the next proposition
shows the final iterate is a matrix-weighted average of
the initial solution and the optimal local solution:

Proposition 1. Suppose that we run gradient
descent for H steps on the quadratic objective
fi = 1

2 x
TAix − bTi x + c starting from x0 with step-

size γ > 0. Suppose that the stepsize satisfies γ ≤ 1
Li
,

where Li = λmax(Ai). Then the final iterate xHi can be
written as

xHi =
(
I − JHi

)
xi + JHi x

0,

where xi minimizes fi and Ji ∈ Rd×d is a matrix with
maximum eigenvalue smaller than 1, i.e. λmax(J) < 1.

The proof of Proposition 1 and all subsequent proofs
are relegated to the supplementary. Plugging the result
of Proposition 1 into Equation (4), observe that in
MAML we find the initial model x0 by solving the
problem

min
x∈Rd

1

n

n∑
i=1

fi((I − Ji)xi + Jix).

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

Hence, MAML is optimizing for a specific weighted
average of the initial model x0 and the local solutions
x1, x2, . . . , xn. We thus propose to dispense with the
specific matrix Ji and instead optimize an average
weighted with an arbitrary constant αi:

min
x∈Rd

1

n

n∑
i=1

fi(αix+ (1− αi)xi),

and this is exactly the FLIX formulation. Observe that
by choosing αi we may accomplish a similar effect to
multiplying by JHi for large H, so this is a valid approx-
imation at least for large H. This gives FLIX a new
interpretation as an approximate generalized MAML,
where we optimize the global model for performance
after potentially many gradient descent steps rather
than just a single step. By exploiting information about
the objective’s optimum xi (available at zero commu-
nication cost in federated learning), FLIX takes into
account higher-order information that ordinary MAML
can not.

3 THEORY AND ALGORITHMS

In this section we aim to develop algorithms to
solve (FLIX) in a communication-efficient manner. Be-
fore discussing concrete algorithms, we study a few
algorithm-independent properties of (FLIX) that will
come in handy for understanding the formulation and
proving convergence bounds. The following proposition
shows that the formulation preserves smoothness and
convexity. This is in contrast to other meta-learning
methods such as MAML, where the objective may gen-
erally be nonsmooth (Fallah et al., 2020b).

Proposition 2. Suppose that each objective fi is
Li-smooth. That is, for any x, y ∈ Rd we have
‖∇fi(x)−∇fi(y)‖ ≤ Li ‖x− y‖. Then the FLIX
objective f̃ defined in (1) is Lα-smooth for Lα

def
=

1
n

∑n
i=1 α

2
iLi. If each fi is convex, then f̃ is also con-

vex. If each fi is µi-strongly convex, then f̃ is µα
strongly convex for µα

def
= 1

n

∑n
i=1 α

2
iµi.

Our next result offers some insight into the variance-
regularizing effect of the αi: in particular, when all the
αi are equal, increasing α in (FLIX) directly decreases
the variance of the deployed local models from their
mean. As discussed in Section 2.1, this is a key property
of local descent methods that the FLIX formulation
captures.

Proposition 3. Suppose that α1 = α2 = . . . =
αn = β in the FLIX formulation (FLIX). Let
T1(x), T2(x), . . . , Tn(x) be the deployed models defined
in (3). If y1, . . . , yn are vectors in Rd and ȳ is their
mean, we define V (y1, . . . , yn) as the population vari-

ance

V (y1, . . . , yn)
def
=

1

n

n∑
i=1

‖yi − ȳ‖2.

Then,

V (T1(x), . . . , Tn(x)) = (1− β)
2
V (x1, . . . , xn).

One-shot learning is a learning paradigm where we may
use only a single round of communication to solve the
federated learning problem (Guha et al., 2019; Salehka-
leybar et al., 2019). When the personalization pa-
rameters are small enough, we can provably solve the
FLIX problem with a single round of communication
by computing a certain weighted average of the local
solutions x1, x2, . . . , xn. We first consider if each xi
is a minimizer of fi, then we can get an approximate
minimizer:
Theorem 1. Suppose that each objective fi is Li-
smooth, that each xi minimizes fi, and let L̂ def

=
1
n

∑n
i=1 Li. Given the pure local models x1, x2, . . . , xn,

define the weighted average

xavg def
=

n∑
i=1

wixi, wi
def
=

α2
iLi
nLα

, Lα
def
=

1

n

n∑
i=1

α2
iLi.

(5)

We further define the constants

D
def
= max

i,j=1,...,n,i6=j
‖xi − xj‖ and,

V
def
=

n∑
i=1

wi‖xi − xavg‖2
(6)

Fix any ε > 0. Assume that either maxi=1,...,n αi ≤√
2ε/
√
L̂D, or αi = β for all i and β ≤

√
2ε/
√
L̂D.

Then xavg is an ε-approximate minimizer of (FLIX).

We can relax this to the requirement that each xi is
a stationary point, in which we case we also get an-
other stationary point using weighted averaging, see
Theorem 3 in the supplementary for details. We point
out that this implies FLIX applies equally well to ob-
jectives with minimizers (e.g. when the fi are strongly
convex) as well as when the objective is non-convex
and the goal is attaining a stationary point rather than
minimization. For larger αi than that required by The-
orem 1 or Theorem 3, we need more communication
rounds than one. In the next subsection, we describe
how distributed gradient descent can be used to solve
the problem.

3.1 Distributed gradient descent

The simplest approach to solving (FLIX) is via dis-
tributed gradient descent: given the local models

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

x1, x2, . . . , xn (precomputed before starting the pro-
cess) and an initial global model x0, we run the update

xk+1 = xk − γ

n

n∑
i=1

αi∇fi
(
αix

k + (1− αi)xi
)
.

(DGD)

Each iteration of (DGD) requires that every node sends
its local gradient ∇f̃i(xk) to the server. The server
then averages the received gradients, computes the new
iterate xk+1, and broadcasts it to the nodes. The next
theorem shows that under smoothness and strong con-
vexity, distributed gradient descent converges linearly
to the solution of (FLIX).
Theorem 2. Suppose that each fi in (FLIX) is Li-
smooth and µi-strongly convex. Define xavg, Lα, and L̂
by (5) and V,D by (6). Suppose that we run (DGD)
for K iterations starting from x0 = xavg. Then the
following hold:

i) If the αi are allowed to be arbitrary, then for αmax
def
=

maxi=1,...,n αi we have

f̃(xk)− min
x∈Rd

f̃(x) ≤
(

1− µα
Lα

)K
α2

maxL̂D

2
.

ii) If αi = β for all i, then

f̃(xk)− min
x∈Rd

f̃(x) ≤
(

1− µ̂

L̂

)K
β2L̂V

2
, (7)

where µ̂ def
= 1

n

∑n
i=1 µi.

There are four ways of making the right hand side in (2)
small (i.e. decrease the communication complexity):

• Communicate more. Increase the number of com-
munications K.

• Homogeneous data. The variance V =∑n
i=1 wi‖xi − xavg‖2 can be seen as a measure of

data heterogeneity. More homogeneous data sets
will have smaller V , which leads to better perfor-
mance.

• Train simpler models. Focusing attention on
models with smaller L̂ (adjust model design), or
larger µ̂ (e.g., add more regularization).

• Put more weight on local models. If we prefer lo-
cal models to the global model, then αi is small, and
hence fewer communications are needed to achieve
any given accuracy.

Armed with Theorem 2, we make good on our promise
in Section 1.1 and show that FLIX can be solved using
any communication budget. Looking at (2) we see that
for any fixed ε > 0 we have

f̃(xk)− min
x∈Rd

f̃(x) ≤ ε

as long as
β ≤ Aqk,

where A =

√
2ε/(L̂V) and q = 1/

√
1− µ̂

L̂
.

Putting this together leads to the following observa-
tions:

• If β = 0, the problem can be solved with 0 communi-
cations (i.e. , each device i independently computes
the pure local model xi).

• If 0 < β ≤ A, the problem can be solved with 1
communication (i.e., compute xavg). This follows
from Theorem 1, and also from the more general
result Theorem 2 by setting K = 0.

• If A < β ≤ Aq, the problem can be solved with
2 communications (1 communication to compute
x0 = xavg, followed by one iteration of distributed
GD).

• If Aqk−1 < β ≤ Aqk, the problem can be solved with
k+ 1 communications (1 communication to compute
x0 = xavg, followed by K iterations of distributed
gradient descent).

• If β = 1, we need 1 communication to compute
x0 = xavg, followed by k ≥ L̄

µ̄ log L̄V
2ε iterations of

distributed gradient descent. This is recovers the
standard communication complexity of gradient de-
scent needed to find the optimal solution of the
average risk minimization problem (ERM).

In the supplementary, we develop other algorithms
for solving (FLIX) such as distributed gradient de-
scent with compression (Alistarh et al., 2017) and DI-
ANA (Mishchenko et al., 2019). We point out that
Theorem 8 and Theorem 9 analyze the compressed
gradient descent and DIANA algorithms applied in
the non-convex case, showing explicit dependence of
the convergence rates on α, thus this convergence
theory applies to convex as well as non-convex ob-
jectives. Because (FLIX) has a standard finite-sum
form, many more algorithms can be used to solve it,
e.g. accelerated minibatch SGD (Cotter et al., 2011)
or SARAH (Nguyen et al., 2017). We leave the task
of finding the optimal algorithm for (FLIX) to future
work.

4 EXPERIMENTS

Logistic regression with l2 regularizer. For our
first experiment, we consider a setup where each device
runs regularized logistic regression:

fi(x) :=
1

ki

ki∑
j=1

[
log (1 + exp (−a>i,jx))

]
+
λ

2
‖x‖2, (8)

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

where ai,j ∈ Rd are given for all j = 1 . . . ki, ki is a
number of data points associated with device i and
λ is a regularization parameter. The objective given
by (8) is typically used in classification problems. It is
not difficult to show that fi is 1/4ki

∥∥∥∑ki
i=1 aia

>
i

∥∥∥+ λ-
smooth and λ-strongly convex.

Figure 2: Squared averaged distance 1/n
∑n
i=1 ‖xi −

x∗i ‖2 and loss f(x)−f∗ vs. # of communication rounds
of Gradient Descent for logistic regression with l2 reg-
ularizer. αi = α is set to the value indicated in the
legend.

We use four datasets from LIBSVM (Chang and Lin,
2011) for (8): w6a, mushrooms, ijcnn1.bz2, a6a.
We set all αi’s to be equal. We divide data equally
between all machines while preserving the order of data
points such that i-th machine owns data with indices
b(i−1)r/nc+ 1 up to bir/nc, where r is the total number
of data points. We set the regularization parameter
λ to 0.1. To find pure local models for each machine
we run gradient descent with step size 1/Li, where Li
is fi’s smoothness parameter until the norm of the

gradient is below 10−6. We set the condition number
to be κ = 1

n

∑n
i=1 Li/λ.

In this experiment, we investigate the convergence of
gradient descent and look into the dependence between
convergence and value of α. As expected, Figure 2
confirms that smaller values of α lead to better con-
vergence as we rely more on local solutions and thus
start closer to the optimal solution. Also note that the
speed of the convergence appears to be constant among
different values of α which is also predicted by our
theory as the same α on each machine does not affect
the conditioning of the global problem, see Proposi-
tion 2. We also use the DIANA algorithm (Mishchenko
et al., 2019) with the random sparsification (also known
as Rand-k compression), where set k coordinates to
zero at random before communicating gradients to the
server. Figure 3 shows the effect of varying k on the
convergence of the method in terms of communication
rounds. We consider 7 values of k linearly spaced be-
tween 1 and d. Similar to Figure 2, we observe that
smaller values of α lead to better convergence. The rate
at which the algorithm converges linearly is controlled
by the compression constant ω+1 = d/k or the effective
conditioning κ(ω+1)/n. This is in line with the theory
for DIANA (Mishchenko et al., 2019).

Table 1: Test accuracy comparisons of different meth-
ods after 3k rounds of training on EMNIST and Shake-
speare datasets. Numbers next to FLIX model denote
the value of αi = α.

MODEL EMNIST SHAKESPEARE

FLIX, 0.1 0.862 0.5620
FLIX, 0.3 0.8691 0.5291
FLIX, 0.5 0.8634 0.5718
FLIX, 0.7 0.8652 0.5146
FLIX, 0.9 0.8397 0.5642
FedAvg 0.8663 0.5629

For completeness, we include convex experiments with
unregularized logistic loss, extra experiments for all the
combinations of 5 datasets and 3 algorithms – gradient
descent, compressed gradient descent, and DIANA,
as well as a detailed experimental description in the
supplementary material (see Section 11).

Generalization experiment 1: Fitting Sine Func-
tions with two-layer neural networks. Follow-
ing Finn et al. (2017) and Zhou et al. (2019), we show
the generalization advantages of the proposed method
on the following regression problem. We define i-th
client’s function fi(x) = ai sin (x+ bi), where ampli-
tude ai and phase bi lie in the intervals [0.1, 0.5] and
[0, 2π], respectively. For each client, we fix ai and bi

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

Figure 3: Loss f(x)− f∗ vs. # of communication rounds of DIANA for logistic regression problem l2 regularizer,
k is a sparsification parameter of Random-k compressor.

Figure 4: Average MSE vs. personalization parameter α.

and sample 50 points uniformly at random from the
interval [−5.0, 5.0]. We measure regression fit in terms
of mean squared error (MSE) loss. To train a model
each client adopts a neural net with 2 hidden layers of
size 40 with tanh activation. Further technical details
are deferred to the appendix. For the experiment, we
first sample 2 pairs {ai, bi} and each of 200 clients is
assigned one pair, we investigate different proportion–
(30, 170), (50, 150), (70, 130), (90, 110). We then train
our FLIX formulation with αi = α = 0.1, 0.2, . . . , 1.
For testing for each client generates a new dataset of
size 2000. Figure 4 shows average MSE over clients
against different values of α for different proportions.
As this figure indicates, optimal α for which test av-
erage MSE is minimal can dramatically outperform
the edge cases of either global model for all tasks or
personalized model trained only on the local dataset.
This underlines the main benefit of FLIX formulation,

which aims to find an optimal trade-off between local
personalization and a single global model.

Generalization experiment 2: Comparison to
FOMAML and Reptile with mutli-class logis-
tic regression. Inspired by Reddi et al. (2021), we
conduct a similar experiment to compare generaliza-
tion capabilities, i.e., test accuracy, of FLIX and its
two baselines FOMAML (Finn et al., 2017), and Rep-
tile (Nichol et al., 2018) on the following tasks. For
the first experiment (see Figure 1a), we take 500 train
data points of two clients (with client ids ‘00000267’
and ‘00000459’) from the Stack Overflow dataset (Ten-
sorFlow Developers, 2021) and divide them among 100
workers so that there are 50 workers with 10 train data
points from the first client and another 50 with 10
data points from the second client. For the second
experiment (see Figure 1b), a worker gets 90 train data

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

(a) EMNIST (b) Shakespeare

Figure 5: Generalization progress of FLIX vs. FedAvg on high-scale datasets.

points from a distinct client. For both experiments,
each objective component fi is a cross-entropy loss for
multi-class logistic regression. Further technical details
and the hyperparameters tuning for a fair comparison
can be found in the supplementary. In the test phase,
for each client, we used a hold-out testing dataset of
size 300 (the same dataset has been used for workers
related to the same client in the first experiment). It
can be observed from Figure 1a, that for wide range of
αi, αi ∈ {0.2, 0.4, 0.6, 0.8} FLIX exhibits a better gen-
eralization than its classical meta-learning competitors
(FOMAML and Reptile), and it can lead to improve-
ment of up to 11% in recall@5. Figure 1b shows that
in the more real-world scenario FLIX outperforms FO-
MAML and Reptile while showing its best test accuracy
in non-edge α. More experimental details and figures
are included in the supplementary (Section 11).

Generalization experiment 3: Comparison to
FedAvg with CNNs and LSTMs on large-scale
datasets. For this section, we implement all the meth-
ods using the Python FedJAX library (Ro et al., 2020).
We compare FLIX’s solution versus pure global ob-
tained by FedAvg on two large-scale FL datasets: the
EMNIST (Caldas et al., 2018) and Shakespeare (McMa-
han et al., 2017) datasets, solving a character prediction
task on the first dataset and a next-character prediction
task on the second dataset. For the first task, we adopt
the EMNIST CNN model as described in (Reddi et al.,
2021). To choose the hyperparameters for FLIX, we run
grid search on a five-dimensional grid: pure local model
(PLM) batch sizes [10, 20, 50, 100], pure local model
learning rates [10−5, 10−4, 10−3, 10−2, 10−1, 1], FLIX
batch sizes [20, 50, 100, 200], and FLIX learning rates
[10−10, 10−9, . . . , 1]. We run SGD for 100 local epochs
to compute PLMs for each client; with PLMs computed,
we run Adam to compute FLIX global model. At each
round of training in FLIX, we apply client subsampling
and randomly choose ten clients to participate in the

training. For the final training, we choose the five hyper-
parameters showing the highest accuracy on a hold-out
validation (different from the test) dataset (cut from
train EMNIST dataset). For training FedAvg, we use
the same hyperparameters and setting used by (Reddi
et al., 2021). For the second task, we use the next-
character prediction model described in (McMahan
et al., 2017). We choose hyperparameters as follows:
for the pure local model learning rates, we search over
the grid [10−1, 10−0.5, 100, 100.5, 101], for FLIX learning
rates, we search over the grid [10−2, 10−1.5, . . . , 102],
for the batch sizes for PLM and FLIX we search over
the grid [1, 4, 10, 20]. To compute PLMs, we run SGD
for 25 epochs on each client locally. We then use SGD
to compute the FLIX global model. At each round,
only ten clients were chosen uniformly at random to
participate in the training. We report test accuracy of
the final models in Table 1 and show the generalization
progress for the best alphas in Figure 5. As Table 1
shows the generalization capability of FLIX is superior
to the purely global model obtained by FedAvg on both
datasets.

5 ACKNOWLEDGMENTS

We would like to thank David Pugh for his support in
configuring experiments on the KAUST HPC cluster.

References

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka,
and Milan Vojnovic. QSGD: communication-efficient
SGD via gradient quantization and encoding. In
Isabelle Guyon, Ulrike von Luxburg, Samy Ben-
gio, Hanna M. Wallach, Rob Fergus, S. V. N. Vish-
wanathan, and Roman Garnett, editors, Advances
in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 1709–1720, 2017. (Cited on page 6)

Sebastian Caldas, Peter Wu, Tian Li, Jakub Konečný,
H. Brendan McMahan, Virginia Smith, and Ameet
Talwalkar. LEAF: A benchmark for federated set-
tings. arXiv preprint arXiv:1812.01097, 2018. (Cited
on page 9)

Chih-Chung Chang and Chih-Jen Lin. LIBSVM: A
library for support vector machines. ACM transac-
tions on intelligent systems and technology (TIST),
2(3):1–27, 2011. (Cited on page 7)

Zachary Charles and Jakub Konečný. Convergence
and accuracy trade-offs in federated learning and
meta-learning. In Arindam Banerjee and Kenji Fuku-
mizu, editors, Proceedings of The 24th International
Conference on Artificial Intelligence and Statistics,
volume 130 of Proceedings of Machine Learning Re-
search, pages 2575–2583. PMLR, 13–15 Apr 2021.
(Cited on page 4)

Shuxiao Chen, Qinqing Zheng, Qi Long, and Weijie J.
Su. A theorem of the alternative for personalized
federated learning. arXiv preprint arXiv:2103.01901,
2021. (Cited on page 3)

Kurtland Chua, Qi Lei, and Jason D. Lee. How fine-
tuning allows for effective meta-learning. arXiv
preprint arXiv:2105.02221, 2021. (Cited on page 4)

Liam Collins, Aryan Mokhtari, and Sanjay Shakkottai.
How does the task landscape affect MAML perfor-
mance? arXiv preprint arXiv:2010.14672, 2020.
(Cited on page 4)

Andrew Cotter, Ohad Shamir, Nati Srebro, and
Karthik Sridharan. Better mini-batch algorithms via
accelerated gradient methods. In John Shawe-Taylor,
Richard S. Zemel, Peter L. Bartlett, Fernando C. N.
Pereira, and Kilian Q. Weinberger, editors, Advances
in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing
Systems 2011. Proceedings of a meeting held 12-14
December 2011, Granada, Spain, pages 1647–1655,
2011. (Cited on page 6)

Yuyang Deng, Mohammad Mahdi Kamani, and
Mehrdad Mahdavi. Adaptive personalized federated
learning. arXiv preprint arXiv:2003.13461, 2020.
(Cited on pages 3 and 38)

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. BERT: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805, 2019. (Cited
on page 39)

Canh T. Dinh, Tung T. Vu, Nguyen H. Tran, Minh N.
Dao, and Hongyu Zhang. FedU: A unified framework

for federated multi-task learning with laplacian reg-
ularization. arXiv preprint arXiv:2102.07148, 2021.
(Cited on page 3)

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar.
Personalized federated learning with theoretical guar-
antees: A model-agnostic meta-learning approach. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 3557–3568.
Curran Associates, Inc., 2020a. URL https:
//proceedings.neurips.cc/paper/2020/file/
24389bfe4fe2eba8bf9aa9203a44cdad-Paper.pdf.
(Cited on page 3)

Alireza Fallah, Aryan Mokhtari, and Asuman E.
Ozdaglar. On the convergence theory of gradient-
based model-agnostic meta-learning algorithms. In
Silvia Chiappa and Roberto Calandra, editors, The
23rd International Conference on Artificial Intelli-
gence and Statistics, AISTATS 2020, 26-28 August
2020, Online [Palermo, Sicily, Italy], volume 108
of Proceedings of Machine Learning Research, pages
1082–1092. PMLR, 2020b. (Cited on page 5)

Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar.
Generalization of model-agnostic meta-learning algo-
rithms: Recurring and unseen tasks. arXiv preprint
arXiv:2102.03832, 2021. (Cited on page 4)

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-
agnostic meta-learning for fast adaptation of deep
networks. In Doina Precup and Yee Whye Teh,
editors, Proceedings of the 34th International Con-
ference on Machine Learning, ICML 2017, Sydney,
NSW, Australia, 6-11 August 2017, volume 70 of
Proceedings of Machine Learning Research, pages
1126–1135. PMLR, 2017. (Cited on pages 4, 7, and 8)

Katelyn Gao and Ozan Sener. Modeling and optimiza-
tion trade-off in meta-learning. In Hugo Larochelle,
Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina
Balcan, and Hsuan-Tien Lin, editors, Advances in
Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Sys-
tems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. (Cited on page 4)

Eduard Gorbunov, Filip Hanzely, and Peter Richtárik.
A unified theory of sgd: Variance reduction, sam-
pling, quantization and coordinate descent. arXiv
preprint arXiv:1905.11261, 2019. (Cited on pages 23,
24, 25, 28, and 29)

Neel Guha, Ameet Talwalkar, and Virginia Smith.
One-shot federated learning. arXiv preprint
arXiv:1902.11175, 2019. (Cited on page 5)

Filip Hanzely and Peter Richtárik. Federated learn-
ing of a mixture of global and local models.
arXiv:2002.05516, 2020. (Cited on page 3)

https://proceedings.neurips.cc/paper/2020/file/24389bfe4fe2eba8bf9aa9203a44cdad-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/24389bfe4fe2eba8bf9aa9203a44cdad-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/24389bfe4fe2eba8bf9aa9203a44cdad-Paper.pdf

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang,
Jiangchuan Liu, Jian Pei, and Yong Zhang. Person-
alized cross-silo federated learning on non-iid data.
arXiv preprint arXiv:2007.03797, 2021. (Cited on
page 3)

Yihan Jiang, Jakub Konečný, Keith Rush, and Sreeram
Kannan. Improving federated learning personaliza-
tion via model agnostic meta learning. arXiv preprint
arXiv:1909.12488, 2019. (Cited on pages 3 and 4)

Peter Kairouz, H. Brendan McMahan, Brendan Avent,
Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji,
Kallista Bonawitz, Zachary Charles, Graham Cor-
mode, Rachel Cummings, Rafael G. L. D’Oliveira,
Hubert Eichner, Salim El Rouayheb, David Evans,
Josh Gardner, Zachary Garrett, Adrià Gascón, Badih
Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid
Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo,
Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Ja-
vidi, Gauri Joshi, Mikhail Khodak, Jakub Konečný,
Aleksandra Korolova, Farinaz Koushanfar, Sanmi
Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal,
Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus
Pagh, Mariana Raykova, Hang Qi, Daniel Ramage,
Ramesh Raskar, Dawn Song, Weikang Song, Sebas-
tian U. Stich, Ziteng Sun, Ananda Theertha Suresh,
Florian Tramèr, Praneeth Vepakomma, Jianyu Wang,
Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han
Yu, and Sen Zhao. Advances and open problems in
federated learning. arXiv preprint arXiv:1912.04977,
2019. (Cited on pages 1, 2, and 3)

Ahmed Khaled and Peter Richtárik. Better theory
for SGD in the nonconvex world. arXiv preprint
arXiv:2002.03329, 2020. (Cited on pages 33 and 34)

Ahmed Khaled, Othmane Sebbouh, Nicolas Loizou,
Robert M. Gower, and Peter Richtárik. Unified
analysis of stochastic gradient methods for composite
convex and smooth optimization. arXiv preprint
arXiv:2006.11573, 2020. (Cited on pages 24, 31, and 33)

Jakub Konečný, H. Brendan McMahan, Felix X. Yu,
Peter Richtárik, Ananda Theertha Suresh, and Dave
Bacon. Federated learning: Strategies for improving
communication efficiency. In NIPS Private Multi-
Party Machine Learning Workshop, 2016. (Cited on
pages 2 and 3)

Dingwei Li, Qinglong Chang, Lixue Pang, Yanfang
Zhang, Xudong Sun, Jikun Ding, and Liang Zhang.
More industry-friendly: Federated learning with high
efficient design. arXiv preprint arXiv:2012.08809,
2020. (Cited on page 2)

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and
Virginia Smith. Federated learning: Challenges,
methods, and future directions. arXiv preprint
arXiv:1908.07873, 2019. (Cited on page 2)

Zhize Li and Peter Richtárik. A unified analysis of
stochastic gradient methods for nonconvex federated
optimization. arXiv preprint arXiv:2006.07013, 2020.
(Cited on page 35)

Grigory Malinovskiy, Dmitry Kovalev, Elnur Gasanov,
Laurent Condat, and Peter Richtárik. From local
SGD to local fixed-point methods for federated learn-
ing. In Proceedings of the 37th International Con-
ference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceed-
ings of Machine Learning Research, pages 6692–6701.
PMLR, 2020. (Cited on page 3)

Yishay Mansour, Mehryar Mohri, Jae Ro, and
Ananda Theertha Suresh. Three approaches for per-
sonalization with applications to federated learning.
arXiv preprint arXiv:2002.10619, 2020. (Cited on
pages 3 and 38)

Brendan McMahan, Eider Moore, Daniel Ram-
age, Seth Hampson, and Blaise Agüera y Arcas.
Communication-Efficient Learning of Deep Networks
from Decentralized Data. In Aarti Singh and Jerry
Zhu, editors, Proceedings of the 20th International
Conference on Artificial Intelligence and Statistics,
volume 54 of Proceedings of Machine Learning Re-
search, pages 1273–1282. PMLR, 20–22 Apr 2017.
(Cited on page 9)

Konstantin Mishchenko, Eduard Gorbunov, Martin
Takác, and Peter Richtárik. Distributed learning
with compressed gradient differences. arXiv preprint
arXiv:1901.09269, 2019. (Cited on pages 6, 7, and 23)

Yurii Nesterov. Lectures on Convex Optimization.
Springer International Publishing, 2018. doi: 10.
1007/978-3-319-91578-4. (Cited on pages 15 and 22)

Lam M. Nguyen, Jie Liu, Katya Scheinberg, and Mar-
tin Takác. SARAH: A novel method for machine
learning problems using stochastic recursive gradient.
In Doina Precup and Yee Whye Teh, editors, Proceed-
ings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine
Learning Research, pages 2613–2621. PMLR, 2017.
(Cited on page 6)

Alex Nichol, Joshua Achiam, and John Schulman. On
first-order meta-learning algorithms. arXiv preprint
arXiv:1803.02999, 2018. (Cited on page 8)

Reese Pathak and Martin J. Wainwright. FedSplit: an
algorithmic framework for fast federated optimiza-
tion. arXiv preprint arXiv:2005.05238, 2020. (Cited
on page 3)

Sashank J. Reddi, Zachary Charles, Manzil Zaheer,
Zachary Garrett, Keith Rush, Jakub Konečný, Sanjiv
Kumar, and Hugh Brendan McMahan. Adaptive
federated optimization. In International Conference

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

on Learning Representations (ICLR), 2021. (Cited
on pages 8, 9, and 39)

Amirhossein Reisizadeh, Farzan Farnia, Ramtin
Pedarsani, and Ali Jadbabaie. Robust federated
learning: the case of affine distribution shifts. arXiv
preprint arXiv:2006.08907, 2020. (Cited on page 3)

Jae Hun Ro, Ananda Theertha Suresh, and KeWu. Fed-
JAX: Federated learning simulation with JAX, 2020.
URL http://github.com/google/fedjax. (Cited
on page 9)

Saber Salehkaleybar, Arsalan Sharifnassab, and S. Ja-
maloddin Golestani. One-shot federated learning:
Theoretical limits and algorithms to achieve them.
arXiv preprint arXiv:1905.04634, 2019. (Cited on
page 5)

Felix Sattler, Klaus-Robert Müller, and Wojciech
Samek. Clustered federated learning: Model-agnostic
distributed multitask optimization under privacy
constraints. IEEE Transactions on Neural Net-
works and Learning Systems, pages 1–13, 2020. doi:
10.1109/TNNLS.2020.3015958. (Cited on page 3)

Canh T. Dinh, Nguyen Tran, and Josh Nguyen. Person-
alized federated learning with moreau envelopes. In
H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan,
and H. Lin, editors, Advances in Neural Information
Processing Systems, volume 33, pages 21394–21405.
Curran Associates, Inc., 2020. (Cited on page 3)

TensorFlow Developers. TensorFlow Feder-
ated Stack Overflow dataset, 2021. URL
https://www.tensorflow.org/federated/
api_docs/python/tff/simulation/datasets/
stackoverflow/load_data. (Cited on page 8)

Kangkang Wang, Rajiv Mathews, Chloé Kiddon, Hu-
bert Eichner, Françoise Beaufays, and Daniel Ram-
age. Federated evaluation of on-device personaliza-
tion. arXiv preprint arXiv:1910.10252, 2019. (Cited
on page 4)

Blake Woodworth, Kumar Kshitij Patel, and Nathan
Srebro. Minibatch vs local SGD for heterogeneous dis-
tributed learning. arXiv preprint arXiv:2006.04735,
2020. (Cited on page 3)

Zheng Xu, Karan Singhal, Zachary Charles, Ziyu Liu,
Advait Gadhikar, and Shanshan Wu. Federated opti-
mization. GitHub repository, 2021. (Cited on page 39)

Tao Yu, Eugene Bagdasaryan, and Vitaly Shmatikov.
Salvaging federated learning by local adaptation.
arXiv preprint arXiv:2002.04758, 2020. (Cited on
pages 1, 2, and 3)

Edvin Listo Zec, Olof Mogren, John Martinsson,
Leon René Sütfeld, and Daniel Gillblad. Special-
ized federated learning using a mixture of experts.
arXiv preprint arXiv:2010.02056, 2021. (Cited on
pages 3 and 38)

Pan Zhou, Xiaotong Yuan, Huan Xu, Shuicheng Yan,
and Jiashi Feng. Efficient meta learning via mini-
batch proximal update. In H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 32, pages 1534–1544. Curran Asso-
ciates, Inc., 2019. (Cited on page 7)

http://github.com/google/fedjax
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/stackoverflow/load_data

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

APPENDIX

Contents

1 INTRODUCTION 1

1.1 Key properties of the FLIX framework . 1

1.2 Related work . 3

2 THE FLIX FORMULATION 3

2.1 Motivation 1: from Local GD to FLIX . 3

2.2 Motivation 2: from model-agnostic meta-learning to FLIX . 4

3 THEORY AND ALGORITHMS 5

3.1 Distributed gradient descent . 5

4 EXPERIMENTS 6

5 ACKNOWLEDGMENTS 9

6 BASIC FACTS AND NOTATION 15

7 PROOFS FOR SECTIONS 2 AND 3 16

7.1 Proof of Proposition 1 . 16

7.2 Proofs for algorithm-independent results . 16

7.2.1 Proof of Proposition 2 . 16

7.2.2 A proposition for bounding the gradient norm . 17

7.2.3 Proof of Proposition 3 . 18

7.3 Results on one shot averaging . 18

7.4 Distributed Gradient Descent . 22

8 OTHER ALGORITHMS 23

8.1 Strongly convex objectives . 23

8.1.1 DCGD . 23

8.1.2 DIANA . 26

8.2 Convex objectives . 30

8.2.1 DCGD . 30

8.2.2 DIANA . 33

8.3 Nonconvex objectives . 33

8.3.1 DCGD . 34

8.3.2 DIANA . 35

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

9 DISCUSSION OF OTHER MODEL MIXTURE METHODS 38

10 EXPERIMENTAL DETAILS 39

11 EXTRA EXPERIMENTS 41

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

6 BASIC FACTS AND NOTATION

We will use the triangle inequality for norms: ∥∥∥∥∥
n∑
i=1

ai

∥∥∥∥∥ ≤
n∑
i=1

‖ai‖ . (9)

We say that a function g is Lg-smooth if for any x, y ∈ Rd we have

‖g(x)− g(y)‖ ≤ Lg ‖x− y‖ . (10)

Note that (10) implies

g(x) ≤ g(y) + 〈∇g(y), x− y〉+
Lg
2
‖x− y‖2. (11)

We say that a function g is µg-strongly convex for µg > 0 if for all x, y ∈ Rd we have

g(x) ≥ g(y) + 〈∇g(y), x− y〉+
µg
2
‖x− y‖2. (12)

If (12) holds with µg = 0, we say that g is convex.

We say C ∈ Bd(ω) is a compression operator if C is unbiased (i.e., E[C(x)] = x for all x ∈ Rd) and if the second
moment is bounded as

E‖C(x)− x‖2 ≤ ω‖x‖2 ∀x ∈ Rd. (13)

Note that if C ∈ Bd(ω), then

E‖C(x)‖2 ≤ (1 + ω)‖x‖2,∀x ∈ Rd. (14)

Let f be a convex function. Then the Bregman divergence associated with f for points x, y ∈ Rd is defined in the
following way:

Df (x, y) = f(x)− f(y)− 〈∇f(y), x− y〉.

Nesterov (2018) shows that if function f is convex and L-smooth, then for all x and y

‖∇f(x)−∇f(y)‖2 ≤ 2LDf (x, y). (15)

Let a, b ∈ Rn be arbitrary vectors. Then, it holds that

‖a+ b‖2 ≤ 2(‖a‖2 + ‖b‖2). (16)

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

7 PROOFS FOR SECTIONS 2 AND 3

This section collects the proofs of all propositions and theorems mentioned in the paper.

7.1 Proof of Proposition 1

In Section 2.2 we provided the motivation for FLIX through the lens of fine-tuning. We used the following
proposition on fine-tuning quadratics:

Proposition 1. Suppose that we run gradient descent for H steps on the quadratic objective fi = 1
2x

TAix−bTi x+c
starting from x0 with stepsize γ > 0. Suppose that the stepsize satisfies γ ≤ 1

Li
, where Li = λmax(Ai), and suppose

that Ai is positive definite. Then the final iterate xHi can be written as

xHi =
(
I − JHi

)
xi + JHi x

0, (17)

where xi minimizes fi and Ji ∈ Rd×d is a matrix with maximum eigenvalue smaller than 1, i.e. λmax(J) < 1.

Proof. The gradient descent update is

xt+1
i = xti − γ∇f(xti)

= xti − γ(Aix
t
i − bi)

= (I − γAi)xti + γbi. (18)

Note that because xi minimizes fi, we have ∇fi(xi) = 0 by first-order optimality. Hence,

∇fi(xi) = 0⇐⇒ Aixi = bi.

Using this in (18),

xt+1
i = (I − γAi)xti + γAixi

Subtracting xi from both sides,

xt+1
i − xi = (I − γAi)xti + (γAi − I)xi

= (I − γAi)(xti − xi).

Iterating the above equality for H steps we get

xHi − xi = (I − γAi)H(x0 − xi).

Rearranging the terms we get (17) with Ji
def
= (I − γAi). Observe that when γ ≤ 1

λmax(Ai)
and λmin(Ai) > 0 we

have that λmax(I − γAi) < 1.

7.2 Proofs for algorithm-independent results

7.2.1 Proof of Proposition 2

Proposition 2. Suppose that each objective fi is Li-smooth. That is, for any x, y ∈ Rd we have

‖∇fi(x)−∇fi(y)‖ ≤ Li ‖x− y‖ . (19)

Then the FLIX objective f̃ defined in (1) is Lα-smooth for Lα
def
= 1

n

∑n
i=1 α

2
iLi. If each fi is convex, then f̃ is

also convex. If each fi is µi-strongly convex, then f̃ is µα strongly convex for µα
def
= 1

n

∑n
i=1 α

2
iµi.

Proof. We separate the proofs in two cases: when each fi is smooth, and when each fi is (strongly) convex.

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

(i) Suppose that each fi is Li-smooth, and let x, y ∈ Rd. Then by direct computation we have∥∥∥∇f̃(x)−∇f̃(y)
∥∥∥ =

∥∥∥∥∥ 1

n

n∑
i=1

αi [∇fi(αix+ (1− αi)xi)−∇fi(αiy + (1− αi)yi)]

∥∥∥∥∥
(9)
≤ 1

n

n∑
i=1

‖αi‖ ‖∇fi(αix+ (1− αi)xi)−∇fi(αiy + (1− αi)yi)‖

(19)
≤ 1

n

n∑
i=1

α2
iLi ‖x− y‖ = Lα ‖x− y‖ ,

hence f̃ is Lα-smooth.

(ii) Suppose that each fi is µi-strongly convex for µi ≥ 0 (where µi = 0 corresponds to just convexity). Then for
x, h ∈ Rd we have

f̃(x+ h) =
1

n

n∑
i=1

fi(αi(x+ h) + (1− αi)xi)

(12)
≥ 1

n

n∑
i=1

[
fi(αix+ (1− αi)xi) + 〈∇fi(αix+ (1− αi)xi), αih〉+

µi
2
‖αih‖2

]
=

1

n

n∑
i=1

fi(αix+ (1− αi)xi) +

〈
1

n

n∑
i=1

αi∇fi(αix+ (1− αi)xi), h

〉

+
1

n

n∑
i=1

α2
iµi
2
‖h‖ .

= f̃(x) +
〈
∇f̃(x), h

〉
+
µα
2
‖h‖2,

hence f̃ is µα-strongly convex if all the µi are positive (resp. convex if they are equal to 0).

7.2.2 A proposition for bounding the gradient norm

Proposition 2 provides us with a simple way to bound the gradient of f̃ in terms of the distance to the optimum
xα:
Proposition 4. Define xα as the solution to the FLIX problem (FLIX):

xα
def
= argmin

x∈Rd

[
f̃(x) =

1

n

n∑
i=1

fi(αix+ (1− αi)xi)

]
.

Define Lα as in Proposition 2. Then for any x ∈ Rd we have∥∥∥∇f̃(x)
∥∥∥ ≤ Lα ‖x− xα‖ , (20)

and
f̃(x)− f̃(xα) ≤ Lα

2
‖x− xα‖2. (21)

Proof. By Proposition 2, we have for any x, y ∈ Rd that∥∥∥∇f̃(x)−∇f̃(y)
∥∥∥ ≤ Lα ‖x− y‖ .

Putting y = xα and using that ∇f̃(xα) = 0 we get (20). The Lα-smoothness of f̃ implies

f̃(x) ≤ f̃(y) +
〈
∇f̃(y), x− y

〉
+
Lα
2
‖x− y‖2.

Putting y = xα recovers (21).

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

7.2.3 Proof of Proposition 3

Proposition 3. Suppose that α1 = α2 = . . . = αn = β in the FLIX formulation (FLIX). Let
T1(x), T2(x), . . . , Tn(x) be the deployed models defined in (3). If y1, . . . , yn are vectors in Rd and ȳ is their
mean, we define V (y1, . . . , yn) as the population variance V (y1, . . . , yn)

def
= 1

n

∑n
i=1 ‖yi − ȳ‖

2. Then,

V (T1(x), T2(x), . . . , Tn(x)) = (1− β)
2
V (x1, x2, . . . , xn).

Proof. By direct computation observe

V (T1(x), T2(x), . . . , Tn(x)) =
1

n

n∑
i=1

∥∥∥∥∥∥Ti(x)− 1

n

n∑
j=1

Tj(x)

∥∥∥∥∥∥
2

=
1

n

n∑
i=1

∥∥∥∥∥∥βx+ (1− β)xi −
1

n

n∑
j=1

(βx+ (1− β)xj)

∥∥∥∥∥∥
2

=
1

n

n∑
i=1

∥∥∥∥∥∥(1− β)

xi − 1

n

n∑
j=1

xj

∥∥∥∥∥∥
2

= (1− β)2V (x1, x2, . . . , xn).

7.3 Results on one shot averaging

Before proving Theorems 1 and 3, we will need the following lemma which shows that the gradient of the FLIX
and the functional suboptimality can be bound using a weighted average of the iterate norms:

Lemma 1. Suppose that each fi is Li-smooth and that each xi is a stationary point of fi. Then for any x ∈ Rd
we have, ∥∥∥∇f̃(x)

∥∥∥ ≤ 1

n

n∑
i=1

α2
iLi ‖x− xi‖ , (22)

and, ∥∥∥∇f̃(x)
∥∥∥2

≤ 1

n

n∑
i=1

α4
iL

2
i ‖x− xi‖

2
, (23)

and,

f̃(x) ≤ 1

n

n∑
i=1

fi(xi) +
1

2n

n∑
i=1

α2
iLi‖x− xi‖

2
. (24)

Proof. For the first inequality, using the fact that ∇fi(xi) = 0 for all i, and applying the triangle inequality (9)
and the Li-smoothness of fi, we get

∥∥∥∇f̃(x)
∥∥∥ =

∥∥∥∥∥ 1

n

n∑
i=1

αi∇fi(αix+ (1− αi)xi)

∥∥∥∥∥
=

∥∥∥∥∥ 1

n

n∑
i=1

αi [∇fi(αix+ (1− αi)xi)−∇fi(xi)]

∥∥∥∥∥
(9)
≤ 1

n

n∑
i=1

|αi| ‖∇fi(αix+ (1− αi)xi)−∇fi(xi)‖

(10)
≤ 1

n

n∑
i=1

α2
iLi ‖x− xi‖ .

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

For the second inequality, we use that ∇fi(xi) = 0, the convexity of the squared norm, and smoothness:

∥∥∥∇f̃(x)
∥∥∥2

=

∥∥∥∥∥ 1

n

n∑
i=1

αi∇fi(αix+ (1− αi)xi)

∥∥∥∥∥
2

=

∥∥∥∥∥ 1

n

n∑
i=1

αi [∇fi(αix+ (1− αi)xi)−∇fi(xi)]

∥∥∥∥∥
2

≤ 1

n

n∑
i=1

α2
i ‖∇fi(αix+ (1− αi)xi)−∇fi(xi)‖2

(10)
≤ 1

n

n∑
i=1

α4
iL

2
i ‖x− xi‖

2
.

Using Li-smoothness of fi and that ∇fi(xi) = 0, we get

fi(αix+ (1− αi)xi) = fi(xi + αi(x− xi))
(11)
≤ fi(xi) + 〈∇fi(xi), αi(x− xi)〉+

α2
iLi
2
‖x− xi‖2

= fi(xi) +
α2
iLi
2
‖x− xi‖2.

Averaging the above inequality yields (24).

As communicated earlier in the paper, we can solve (FLIX) by taking a weighted average of the pure local
models xi if the αi are small enough. This is a consequence of preprocessing step where we compute xi, which is
communication-free, and also a consequence of the new formulation, where for small α the FLIX objective is less
responsive to argument change (see Proposition 2).

Theorem 1. Suppose that each objective fi is Li-smooth, that xi minimizes fi, and let L̂ def
= 1

n

∑n
i=1 Li. Given

the pure local models x1, x2, . . . , xn, define the weighted average

xavg def
=

n∑
i=1

wixi, wi
def
=

α2
iLi
nLα

, Lα
def
=

1

n

n∑
i=1

α2
iLi. (25)

We further define the constants

D
def
= max

i,j=1,...,n,i6=j
‖xi − xj‖2 , and V

def
=

n∑
i=1

wi‖xi − xavg‖2 (26)

Fix any ε > 0. Assume that either maxi=1,...,n αi ≤
√

2ε/
√
L̂D, or αi = β for all i and β ≤

√
2ε/
√
L̂D. Then

xavg is an ε-approximate minimizer of (FLIX). That is,

f̃(xavg;α1, . . . , αn, x1, . . . , xn)− min
x∈Rd

f̃(x;α1, . . . , αn, x1, . . . , xn) ≤ ε.

Proof. Define

Eα(x)
def
=

1

2n

n∑
i=1

α2
iLi ‖x− xi‖

2
. (27)

Note that since the vectors {xi} are known, the expression Eα(x) can be minimized in x, leading to a weighted
average of the pure local models:

xavg
def
=

n∑
i=1

wixi, wi
def
=

α2
iLi
nLα

, Lα
def
=

1

n

n∑
i=1

α2
iLi. (28)

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

Note that xavg, can be computed using a single communication round. By plugging (28) into (27), we can evaluate
the error of the average model:

E(xavg) =
Lα
2

n∑
i=1

wi ‖xavg − xi‖2 =
LαVα

2
, (29)

where

Vα
def
=

n∑
i=1

wi ‖xavg − xi‖2 = E‖xi − Exi‖2 (30)

can be interpreted as the variance of the local optimal models {xi}. We now give two ways how E(xavg) can be
bounded:

• Assume the customization parameters {αi} are allowed to be arbitrary. Since xavg is in the convex hull of
the set {x1, . . . , xn}, we have ‖xavg − xi‖ ≤ maxi,j ‖xi − xj‖. Therefore,

Vα ≤ D
def
= max

i,j
‖xi − xj‖2 . (31)

Moreover,

Lα =
1

n

n∑
i=1

α2
iLi ≤ α2

maxL̄, (32)

where αmax
def
= maxi αi and L̄

def
= 1

n

∑n
i=1 Li. By plugging (31) and (32) into (29), we get

E(xavg) ≤ α2
maxL̄D

2
. (33)

• Assume the customization parameters {αi} are all equal: αi = β for all i. Then wi = Li∑
j Lj

, and hence xavg

and Vα = V are independent of β. Since Lα = β2L̄, by plugging these expressions into (29), we get

E(xavg) ≤ β2L̄V

2
. (34)

Note that V ≤ D.

Equations (33) and (34) yield the following observation: fix any ε > 0 and assume one of the following conditions
holds: (1) The maximum personalization parameter satisfies

αmax ≤
√

2ε

L̄D
. (35)

Or, (2) All the personalization parameters are equal, i.e., αi = β for all i, and

β ≤
√

2ε

L̄V
. (36)

Then
E(xavg) ≤ ε. (37)

Then combining (24) from Lemma 1 with (37) we get that the weighted average of the local optimal models xavg

satisfies

f̃(xavg) ≤ 1

n

n∑
i=1

fi(xi) + ε ≤ 1

n

n∑
i=1

fi(x
α) + ε = f̃(xα) + ε,

where xα = argminx∈Rd f̃(x) and where we used that xi minimizes fi. This shows the second part of this
Theorem’s claim.

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

The next theorem extends the previous result to stationary points instead of minimizers.

Theorem 3. Suppose that each objective fi is Li-smooth and that xi is a stationary point of fi, and let
L̂

def
= 1

n

∑n
i=1 Li. Given the pure local models x1, x2, . . . , xn, define the weighted average

xavg def
=

n∑
i=1

wixi, wi
def
=

α4
iL

2
i

nL̂α
L̂2
α

def
=

1

n

n∑
i=1

α4
iL

2
i . (38)

Fix any ε > 0 and define D and V as in Theorem 1. Assume that either maxi=1,...,n αi ≤
√

2ε/
√
L̂D, or αi = β

for all i and β ≤
√

2ε/
√
L̂D. Then xavg is a stationary point of (FLIX). That is,∥∥∥∇f̃(xavg)

∥∥∥ ≤ ε.
Proof. We will proceed very similarly to Theorem 1. Let

ζα(x) =
1

n

n∑
i=1

α4
iL

2
i ‖x− xi‖

2
.

It is easy to show that (38) minimizes ζα(x), giving

ζα(xavg) =
L̂2
αVα
2

, (39)

where

Vα
def
=

n∑
i=1

wi‖xavg − xi‖2.

• Assume the customization parameters {αi} are allowed to be arbitrary. Since xavg is in the convex hull of
the set {x1, . . . , xn}, we have ‖xavg − xi‖ ≤ maxi,j ‖xi − xj‖. Therefore,

Vα ≤ D
def
= max

i,j
‖xi − xj‖2 . (40)

Moreover,

L̂2
α =

1

n

n∑
i=1

α4
iL

2
i ≤ α4

maxL̂
2, (41)

where αmax
def
= maxi αi and L̂2 def

= 1
n

∑n
i=1 L

2
i . By plugging (40) and (41) into (39), we get

ζα(xavg) ≤ α4
maxL̂

2D. (42)

• Assume the customization parameters {αi} are all equal: αi = β for all i. Then wi =
L2
i∑
j L

2
j
, and hence xavg

and Vα = V are independent of β. Since L2
α = β4L̂2, by plugging these expressions into (39), we get

ζα(xavg) ≤ β4L̂2V. (43)

Combining (42) and (43) we get that if (1) αmax ≤
(

ε2

L̂2D

)1/4

or (2) αi = β and β ≤
(

ε2

L̂2V

)1/4

then

ζα(xavg) ≤ ε2.

It remains to use (23) from Lemma 1 and then take square roots.

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

Algorithm 1 Distributed gradient descent for FLIX.

Require: Number of communication rounds K, stepsize γ, initial point x0

1: for k = 0, 1, . . . ,K − 1 do
2: for i = 1, . . . , n in parallel do
3: Compute ∇f̃i(xk) = αi∇fi

(
αix

k + (1− αi)xi
)
and communicate it to server.

4: Average and broadcast the new iterate

xk+1 = xk − γ

n

n∑
i=1

∇f̃i(xk).

7.4 Distributed Gradient Descent

Gradient descent is a simple but yet informative way to solve many optimization problems. Here we provide the
proof for the convergence of DGD.

Theorem 2. Suppose that each fi in (FLIX) is Li-smooth and µi-strongly convex. Define xavg, Lα, and L̂ by (5)
and V,D by (6). Suppose that we run (DGD) for K iterations starting from x0 = xavg. Then the following hold:

i) If the αi are allowed to be arbitrary, then for αmax
def
= maxi=1,...,n αi we have

f̃(xk)− min
x∈Rd

f̃(x) ≤
(

1− µα
Lα

)k
α2

maxL̂D

2
.

ii) If αi = β for all i, then

f̃(xk)− min
x∈Rd

f̃(x) ≤
(

1− µ̂

L̂

)k
β2L̂V

2
,

where µ̂ def
= 1

n

∑n
i=1 µi.

Proof. Recall the standard result that gradient descent for an L-smooth and µ-strongly convex objective g satisfies
for any initial point x0

g(xk)− g∗ ≤ (1− γµ)
k

(g(x0)− g∗) , (44)

where g∗ = minx∈Rd g(x). For a proof, see (Nesterov, 2018). Note that by Proposition 2 we have that f̃ is
Lα-smooth and µα-strongly convex. Specializing (44) to this case yields

f̃(xk)− min
x∈Rd

f̃(x) ≤
(

1− µα
Lα

)k (
f̃(x0)− min

x∈Rd
f̃(x)

)
(45)

Note that our initialization is the same xavg from Theorem 1. Plugging the bounds of that theorem into (45)
yields the theorem’s claims.

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

Table 2: Convergence results for Distributed Compressed Gradient Descent and DIANA in different settings. All
the constants are independent of α.

ALGORITHM ASSUMPTION CONVERGENCE GUARANTEE COROLLARY

DCGD smoothness, str cvx
E‖xk − x∗‖2 ≤ (1− γ0µ)kC1 + C2

1
E[f̃(xk)− f̃∗] ≤ ((1− γ0µ)kC1 + C2)α2

DIANA smoothness, str cvx
E‖xk − x∗‖2 ≤ (1− ρ)kC

2
E[f̃(xk)− f̃∗] ≤ (1− ρ)kCα2

DCGD smoothness, cvx E[f̃(xk)− f̃(x∗)] ≤ 1
kC1α

2 + C2α 3

DIANA smoothness, cvx E[f̃(xk)− f̃(x∗)] ≤ 1
k (C1α

2 + C2α) 4

DCGD smoothness min
0≤t≤k−1

E‖∇f̃(xt)‖2 ≤ (1+C1γ
2
0)
k
C2

γ0k
α2 5

DIANA smoothness E‖∇f̃(x̂)‖2 ≤ C
k α

2 6

8 OTHER ALGORITHMS

In this section, we include additional algorithms to solve (FLIX) formulation, namely, DCGD (Gorbunov et al.,
2019) and DIANA (Mishchenko et al., 2019). In Table 2, we display convergence guarantees for these algorithms.
One can see that similarly to our results in Section 3 both of the algorithms requires less iterations in terms
of convergence in both local deploy iterates Ti(xk)’s and functional value f̃(xk). In addition, for the standard
(ERM) problem, i.e., α = 1, we recover the best known convergence guarantees. Below, we provide a derivation
of these claims.

8.1 Strongly convex objectives

8.1.1 DCGD

We firstly introduce the DCGD algorithm followed by general convergence results that we later exploit to obtain
a convergence guarantee for DCGD applied to (FLIX).

Algorithm 2 Distributed Compressed Gradient Descent with different noise levels ωi
Require: x0 ∈ Rd, learning rate γ
1: for k = 0, 1, 2, . . . do
2: Broadcast xk to all workers
3: for i = 1, . . . , n in parallel do
4: Evaluate ∇fi(xk)
5: gki = Ci(∇fi(xk))

6: gk = 1
n

∑n
i=1 g

k
i

7: xk+1 = xk − γgk

Lemma 2. Suppose each fi is Li-smooth and convex, and f is L-smooth. Let Ci : Rd → Rd be randomized
compression operators satisfying Ci ∈ Bd(ωi). Let gk = 1

n

∑n
i=1 Ci(∇fi(xk)). Then

E‖gk −∇f(x∗)‖2 ≤ 2

(
L+

2 max{Liωi}
n

)
Df (xk, x∗) + σDCGD, (46)

where σDCGD = 2
n2

∑n
i=1 ωi‖∇fi(x∗)‖2.

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

Proof. By applying bias-variance decomposition to E‖gk −∇f(x∗)‖2, we get

E‖gk −∇f(x∗)‖2 = ‖∇f(xk)−∇f(x∗)‖2 + E‖gk −∇f(xk)‖2.

Since all functions are convex holds, function f as a linear combination of convex functions is also convex. That
is why the first term enjoys the ’classic’ bound for convex and smooth functions expressed in Bregman divergence
between xk and x∗ (see inequality 15):

‖∇f(xk)−∇f(x∗)‖2 ≤ 2LDf (xk, x∗). (47)

We start looking into the second term by expanding the quadratic:

E‖gk −∇f(xk)‖2

= E

∥∥∥∥∥ 1

n

n∑
i=1

Ci(∇fi(xk))− 1

n

n∑
i=1

∇fi(xk)

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

n

n∑
i=1

(Ci(∇fi(xk))−∇fi(xk))

∥∥∥∥∥
2

=
1

n2

n∑
i=1

E‖Ci(∇fi(xk))−∇fi(xk)‖2+

1

n2

∑
i 6=j

E〈Ci(∇fi(xk))−∇fi(xk), Cj(∇fj(xk))−∇fj(xk)〉.

Since Ci ∈ B(ωi) ∀i is drawn independently, the expected value of each scalar product in the second sum becomes
the scalar product of expected values, each of which is zero due to unbiasedness of a compression operator (see
Section 6):

E〈Ci(∇fi(xk))−∇fi(xk), Cj(∇fj(xk))−∇fj(xk)〉
= 〈ECi(∇fi(xk))−∇fi(xk)︸ ︷︷ ︸

=0

,ECj(∇fj(xk))−∇fj(xk)〉︸ ︷︷ ︸
=0

= 0.

Then, we apply 13 (the second property of compressed operators) to get the final upper-bound on E‖gk−∇f(xk)‖2.

E‖gk −∇f(xk)‖2 =
1

n2

n∑
i=1

E‖Ci(∇fi(xk))−∇fi(xk)‖2 ≤ 1

n2

n∑
i=1

ωi‖∇fi(xk)‖2.

Curiously but not surprisingly, the result resembles the Law of large numbers (indeed, if each squared gradient
norm and noise level are bounded above by values R and ω0 respectively, then the right side is bounded by ω0R

n ,
which converges to zero as n converges to infinity), what partially verifies the correctness of the proof. The error
E‖gk −∇f(xk)||2 is now estimated by squared gradient norms at iterate xk, which is, in general, a random point
generated by CGD. Since we already have some dependence on Bregman divergence in 47, which perfectly fits
assumptions for unified theories from papers Gorbunov et al. (2019) and Khaled et al. (2020) required in later
theorems, we express the term in the right side of the last inequality in Bregman divergence, too. By subtracting
and adding the same vector ∇fi(x∗) inside the norm operator we get

1

n2

n∑
i=1

ωi‖∇fi(xk)‖2 =
1

n2

n∑
i=1

ωi‖∇fi(xk)−∇fi(x∗) +∇fi(x∗)‖2

≤ 2

n2

n∑
i=1

ωi‖∇fi(xk)−∇fi(x∗)‖2 +
2

n2

n∑
i=1

ωi‖∇fi(x∗)‖2,

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

where in the second line we used (16). Applying again the bound from 15 to the first term and using the linearity
of Bregman divergence we have

2

n2

n∑
i=1

ωi‖∇fi(xk)−∇fi(x∗)‖2 ≤
2

n2

n∑
i=1

ωi2LiDfi(x
k, x∗)

≤ 4 max{Liωi}
n2

n∑
i=1

Dfi(x
k, x∗) =

4 max{Liωi}
n

Df (xk, x∗).

Incorporation of the results above gives the statement.

Proposition 5. Suppose each fi is Li-smooth and µi-strong. Assume αi ≡ α ∈ R for all i. For any x0 ∈ Rd, it
holds that

‖x0 − x∗‖2 ≤ 1

µ
Li‖x0 − xi‖2. (48)

Proof.

‖x0 − x∗‖2
(12)
≤ 2

µα
(f̃(x0)− f̃(x∗))

Proposition 2
=

2

µα2
(f̃(x0)− f̃(x∗))

(24)
≤ 2

µα2
Eα(x0)

(27)
=

1

µα2

1

n

n∑
i=1

Liα
2‖x0 − xi‖2 =

1

µ
Li‖x0 − xi‖2.

Proposition 6. Suppose each fi is Li-smooth and µi-strong. Assume αi ≡ α ∈ R for all i. Then,

‖xi − x∗‖2 ≤
maxi Li

µ
max
i,j
‖xi − xj‖2. (49)

Proof. According to Proposition 5, for any x∗l where l ∈ {1, . . . , n} it follows that

‖xl − x∗‖2 ≤
1

µ
Li‖xl − xi‖2 ≤

1

µ
max
i
Li · ‖xl − xi‖2 ≤

1

µ
max
i
Li ·max

i,j
‖xj − xi‖2.

Taking the average of both sides finishes the proof.

Theorem 4. Assume all conditions of Lemma 2 hold, and each function fi is µi-strongly convex. Then, if
γ ≤ 1

Lα+
2max{Liα2

i
ωi}

n

, then

E‖xk − x∗‖2 ≤ (1− γµα)k‖x0 − x∗‖2 +
2γ

µαn2

n∑
i=1

ωi‖∇[fi(Ti(x
∗))]‖2. (50)

Proof. The lemma is a direct corollary of Theorem 4.1 from Gorbunov et al. (2019) and Proposition 2 with
constants A = Lα +

2 max{Liα2
iωi}

n , D1 = σDCGD = 2
n2

∑n
i=1 ωi‖∇[fi(Ti(x

∗))]‖2,
B = 0, σ2

k ≡ 0, ρ = 1, C = 0, D2 = 0.

Corollary 1. Assume all conditions of Theorem 4 hold, and αi ≡ α ∀i. If γ = 1

α2(L+
2ωmaxi Li

n)
= γ0

1
α2 , then

E‖xk − x∗‖2 ≤ (1− γ0µ)k
1

µ
Li‖x0 − xi‖2 +

2γ0ω(maxi Li)
2 maxi,j ‖xi − xj‖2

µ2n
(51)

and

E[f̃(xk)− f̃∗] ≤ ((1− γ0µ)kC1 + C2)α2, (52)

where C1 = Li
2µLi‖x0 − xi‖2 and C2 =

Liγ0ω(maxi Li)
2 maxi,j ‖xi−xj‖2
µ2n

.

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

Proof. Notice that

n∑
i=1

ωi‖∇[fi(αix
∗ + (1− αi)xi)]‖2 =

n∑
i=1

ωi‖αi∇fi(αix∗ + (1− αi)xi)‖2

= ωα2
n∑
i=1

‖∇fi(αx∗ + (1− α)xi)‖2
∇fi(xi)=0

= ωα2
n∑
i=1

‖∇fi(αx∗ + (1− α)xi)−∇fi(xi)‖2

(10)
≤ ωα2

n∑
i=1

Li‖α(x∗ − xi)‖2 ≤ ωα4 max
i
Lin‖x∗ − xi‖2

(49)
≤ ωα4n(maxi Li)

2

µ
max
i,j
‖xi − xj‖2.

This brings us to the following bound on the neigbourhood:

2γ

µαn2

n∑
i=1

ωi‖∇[fi(Ti(x
∗))]‖2 =

2γ0

α4µn2

n∑
i=1

ωi‖∇[fi(Ti(x
∗))]‖2

≤ 2γ0ω(maxi Li)
2 maxi,j ‖xi − xj‖2

µ2n
.

(53)

We further investigate the rate of convergence

1− γµα
Proposition 2

= 1− γ0
1

α2
µα2 = 1− γ0µ. (54)

As can be seen, the rate of convergence does not depend on α.

Combining last two results we obtain the following dependence on α for CGD convergence:

E‖xk − x∗‖2

(50)
≤ (1− γµα)k‖x0 − x∗‖2 +

2γ

µαn2

n∑
i=1

ωi‖∇[fi(Ti(x
∗))]‖2

(54)
= (1− γ0µ)k‖x0 − x∗‖2 +

2γ

µαn2

n∑
i=1

ωi‖∇[fi(Ti(x
∗))]‖2

(48)
≤ (1− γ0µ)k

1

µ
Li‖x0 − xi‖2 +

2γ

µαn2

n∑
i=1

ωi‖∇[fi(Ti(x
∗))]‖2

(53)
≤ (1− γ0µ)k

1

µ
Li‖x0 − xi‖2 +

2γ0ω(maxi Li)
2 maxi,j ‖xi − xj‖2

µ2n

= (1− γ0µ)kC̃1 + C̃2,

(55)

where constants C̃1 = 1
µLi‖x0 − xi‖2 and C̃2 =

2γ0ω(maxi Li)
2 maxi,j ‖xi−xj‖2
µ2n

do not depend on α.

In terms of suboptimality convergence for CGD we have

E[f̃(xk)− f̃∗]
(11)
≤ Lα

2
E‖xk − x∗‖2 Lα def

=
L

2
α2E‖xk − x∗‖2

(55)
≤ ((1− γ0µ)kC1 + C2)α2, (56)

where C1 = C̃1L
2 and C2 = C̃2L

2 .

8.1.2 DIANA

We follow the same procedure as for the previous subsection. Below, we introduce DIANA algorithm, followed by
general theorem, which is then applied to (FLIX).

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

Algorithm 3 DIANA with different noise levels ωi
Require: x0, h0

1, . . . , h
0
n ∈ Rd, h0 = 1

n

∑n
i=1 h

0
i

1: for k = 0, 1, 2, . . . do
2: Broadcast xk to all workers
3: for i = 1, . . . , n in parallel do
4: ∆k

i = ∇fi(xk)− hki
5: Sample ∆̂k

i ∼ Ci(∆k
i)

6: hk+1
i = hki + βi∆̂

k
i

7: ĝki = hki + ∆̂k
i

8: gk = 1
n

∑n
i=1 ĝ

k
i = hk + 1

n

∑n
i=1 ∆̂k

i

9: xk+1 = xk − γgk
10: hk = 1

n

∑n
i=1 h

k+1
i = hk + 1

n

∑n
i=1 βi∆̂

k
i

Lemma 3. Suppose each fi is Li-smooth and convex, and f is L-smooth. Let Ci : Rd → Rd be randomized
compression operators satisfying Ci ∈ Bd(ωi). Let gk = 1

n

∑n
i=1 h

k
i + Ci(∇fi(xk)− hki). Then

E‖gk −∇f(x∗)‖2 ≤ 2

(
L+

2 max{Liωi}
n

)
Df (xk, x∗) +

2

n
σ2
k, (57)

where σ2
k = 1

n

∑n
i=1 ωi‖hki −∇fi(x∗)‖2.

Proof. We start with bias-variance decomposition:

E‖gk −∇f(x∗)‖2 = ‖∇f(xk)−∇f(x∗)‖2 + E‖gk −∇f(xk)‖2, (58)

where the first term in RHS bounded due to convexity and smoothness of function f : ‖∇f(xk) − ∇f(x∗)‖2
(15)
≤

2LDf (xk, x∗). Function f is, indeed, convex as a linear combination of convex functions fi.

When expanding the second term in RHS of equation 58, we encounter scalar products, each of which is zero in
expectation due to independence of Ci for all i and unbiasedness of a compression operator (see the definition in
Section 6).

E‖gk −∇f(xk)‖2

= E

∥∥∥∥∥ 1

n

n∑
i=1

(hki + Ci(∇fi(xk)− hki))− 1

n

n∑
i=1

∇fi(xk)

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

n

n∑
i=1

Ci(∇fi(xk)− hki)− (∇fi(xk)− hki)

∥∥∥∥∥
2

=
1

n2

n∑
i=1

E‖Ci(∇fi(xk)− hki)− (∇fi(xk)− hki)‖2

+
1

n2

∑
i6=j

E〈Ci(∇fi(xk)− hki)− (∇fi(xk)− hki), Cj(∇fj(xk)− hkj)− (∇fj(xk)− hkj)〉︸ ︷︷ ︸
=0

.

Then, we apply bounded variance property of compression operators:

E‖gk −∇f(xk)‖2 =
1

n2

n∑
i=1

E‖Ci(∇fi(xk)− hki)− (∇fi(xk)− hki)‖2

≤ 1

n2

n∑
i=1

ωi‖∇fi(xk)− hki ‖2.

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

We subtract and add ∇fi(x∗) inside each norm operator to split ∇fi(xk) and hki from each other using (16):

E‖gk −∇f(xk)‖2 ≤ 1

n2

n∑
i=1

ωi‖∇fi(xk)− hki ‖2

=
1

n2

n∑
i=1

ωi‖∇fi(xk)−∇fi(x∗)− (hki −∇fi(x∗))‖2

≤ 2

n2

n∑
i=1

ωi‖∇fi(xk)−∇fi(x∗)‖2 +
2

n2

n∑
i=1

ωi‖hki −∇fi(x∗)‖2

While leaving the second term in the last line unchanged (it is basically 2σk/n), we apply (15) to each norm of
gradient differences in the first term and use max-function over Liωi to take out Bregman divergences:

2

n2

n∑
i=1

ωi‖∇fi(xk)−∇fi(x∗)‖2 ≤
2

n2

n∑
i=1

ωi2LiDfi(x
k, x∗)

≤ 4 max{ωiLi}
n2

n∑
i=1

Dfi(x
k, x∗) =

4 max{ωiLi}
n

Df (xk, x∗),

where in the last part we used linearity property of Bregman divergence. It remains to incorporate all results to
get the statement.

Lemma 4. Assuming all conditions of Lemma 3 hold, let hk+1
i = hki + βiCi(∇fi(xk) − hki) and βi ≤ 1

ωi+1 ,
where i ∈ {1, . . . , n}. Then,

σ2
k+1 ≤ (1−minβi)σ

2
k + 2 max{βiωiLi}Df (xk, x∗). (59)

Proof. Gorbunov et al. (2019) state for βi ≤ 1
ωi+1

E‖hk+1
i −∇fi(x∗)‖2 ≤ (1− βi)‖hki −∇fi(x∗)‖2 + 2βiLiDfi(x

k, x∗). (60)

From this it follows that

σ2
k+1 =

1

n

n∑
i=1

ωi‖hk+1
i −∇fi(x∗)‖2

≤ 1

n

n∑
i=1

(1− βi)ωi‖hki −∇fi(x∗)‖2 +
1

n

n∑
i=1

2βiωiLiDfi(x
k, x∗)

≤ (1−minβi)σ
2
k +

1

n

n∑
i=1

2βiωiLiDfi(x
k, x∗)

≤ (1−minβi)σ
2
k + 2 max{βiωiLi}

1

n

n∑
i=1

Dfi(x
k, x∗)

= (1−minβi)σ
2
k + 2 max{βiωiLi}Df (xk, x∗).

Theorem 5. Assume all conditions of Lemmas 3, 4 hold, and each function fi is µi-strongly convex. If
γ ≤ 1

Lα+
2max{Liα2

i
ωi}

n +
4max{βiωiLiα2

i
}

nmin βi

, then

E[Dk] ≤ max

{
(1− γµα)k,

(
1− 1

2
minβi

)k}
D0, (61)

where Dk = ‖xk − x∗‖2 + 4
nmin βi

γ2σ2
k and Lα is defined as in Proposition 2.

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

Proof. The lemma is a direct corollary of Theorem 4.1 from Gorbunov et al. (2019), 3 and 4 and strong convexity
with constants: A = Lα +

2 max{Liα2
iωi}

n , B = 2
n , D1 = 0, ρ = minβi, C = max{βiωiLiα2

i }, D2 = 0,M =
4

nmin βi
= 2B

ρ ≥
4(1+maxωi)

n .

Corollary 2. Assume all conditions of Theorem 5 hold and αi ≡ α ∀i. If γ = 1
α2 · 1

L+
2max{Liωi}

n +
4max{βiωiLi}

nmin βi

=:

γ0
1
α2 , then

E‖xk − x∗‖2 ≤ max

{
(1− γ0µ)k,

(
1− 1

2
minβi

)k}(
1 +

4

nminβi
γ2

0ωiL
2
i

)
1

µ
Li‖x0 − xi‖2 (62)

and

E[f̃(xk)]− f̃∗ ≤ max

{
(1− γ0µ)k,

(
1− 1

2
minβi

)k}
Cα2, (63)

where C = Li
2

(
1 + 4

nmin βi
γ2

0ωiL
2
i

)
1
µLi‖x0 − xi‖2.

Proof. Let us investigate the quantity D0. We assume memory hi0 in DIANA algorithm is equal to ∇[fi(Ti(x
0))]

for i ∈ {1, . . . , n}. Plugging in definitions and initializations we obtain expanded definition of D0:

D0 def
=‖x0 − x∗‖2 +

4

nminβi
γ2σ2

0

γ=γ0
1
α2

= ‖x0 − x∗‖2 +
4

nminβi
γ2

0

1

α4
σ2

0

σ2
0 def
= ‖x0 − x∗‖2 +

4

nminβi
γ2

0

1

α4

1

n

n∑
i=1

ωi‖hi0 −∇[fi(Ti(x
∗))]‖2

hi0initialisation
= ‖x0 − x∗‖2 +

4

nminβi
γ2

0

1

α4

1

n

n∑
i=1

ωi‖∇[fi(Ti(x
0))]−∇[fi(Ti(x

∗))]‖2

.

We further upper bound the sum in the last term using smoothness properties of functions fi:

1

n

n∑
i=1

ωi‖∇[fi(Ti(x
0))]−∇[fi(Ti(x

∗))]‖2

=
1

n

n∑
i=1

ωi‖∇[fi(αx
0 + (1− α)x∗i)]−∇[fi(αx

∗ + (1− α)x∗i)]‖2

=
1

n

n∑
i=1

ωi‖α(∇fi(αx0 + (1− α)x∗i)−∇fi(αx∗ + (1− α)x∗i))‖2

= α2 1

n

n∑
i=1

ωi‖∇fi(αx0 + (1− α)x∗i)−∇fi(αx∗ + (1− α)x∗i)‖2

≤ α2 1

n

n∑
i=1

ωiL
2
i ‖α(x0 − x∗)‖2 = α4ωiL2

i ‖x
0 − x∗‖2.

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

Plugging this result back into the definition of D0 and applying further bounds we get

D0 ≤
(

1 +
4

nminβi
γ2

0ωiL
2
i

)
‖x0 − x∗‖2

(12)
≤
(

1 +
4

nminβi
γ2

0ωiL
2
i

)
2

µα
(f̃(x0)− f̃(x∗))

Proposition 2
=

(
1 +

4

nminβi
γ2

0ωiL
2
i

)
2

µα2
(f̃(x0)− f̃(x∗))

(24)
≤
(

1 +
4

nminβi
γ2

0ωiL
2
i

)
2

µα2
Eα(x0)

(27)
=

(
1 +

4

nminβi
γ2

0ωiL
2
i

)
1

µα2

1

n

n∑
i=1

Liα
2‖x0 − xi‖2

=

(
1 +

4

nminβi
γ2

0ωiL
2
i

)
1

µ
Li‖x0 − xi‖2,

what shows that D0 can be upper bounded by value independent of α. Since Mγ2σ2
k ≥ 0 Dk = ‖xk − x∗‖2 +

Mγ2σ2
k ≥ ‖xk − x∗‖2, and that is why

E‖xk − x∗‖2 ≤ EDk ≤ max

{
(1− γµα)k,

(
1− 1

2
minβi

)k}
D0

= max

{
(1−

(
γ0

1

α2

)
(µα2))k,

(
1− 1

2
minβi

)k}
D0

= max

{
(1− γ0µ)k,

(
1− 1

2
minβi

)k}
D0

≤ max

{
(1− γ0µ)k,

(
1− 1

2
minβi

)k}(
1 +

4

nminβi
γ2

0ωiL
2
i

)
1

µ
Li‖x0 − xi‖2,

what means that the convergence of iterates is completely independent from α. To derive the result for the
convergence of functional values we use Lα-smoothness of function f̃ (see Proposition 2): E[f̃(xk)] − f̃∗ ≤
Lα
2 E‖xk − x∗‖2 = α2 Li

2 E‖xk − x∗‖2.

8.2 Convex objectives

8.2.1 DCGD

As for the previous section, we first introduce the algorithm, followed by general theorem, which is then applied
to (FLIX).

Theorem 6. Assume all conditions of Lemma 2 hold. Let 0 < γ ≤ 1

4

(
Lα+

2max{Liωiα2
i
}

n

) . Then,

E[f̃(xk)− f̃(x∗)] ≤ 2(f̃(x0)− f̃(x∗))

k
+
‖x0 − x∗‖2

γk
+ 2γσDCGD, (64)

where xk = (1/k)
k∑
j=1

xj.

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

Proof. The theorem is a corollary of Corollary 4.1 from Khaled et al. (2020) with constants

A = Lα +
2 max{Liωiα2

i }
n

, B = 0, σ2
k ≡ 0,

ρ = 1, C = 0, D2 = 0,

D1 = σDCGD =
2

n2

n∑
i=1

ωi‖∇[fi(Ti(x
∗))]‖2

=
2

n2

n∑
i=1

ωiα
2
i ‖∇fi(Ti(x∗))‖2.

Corollary 3. Assume all conditions of Lemma 2 hold. Let αi = α, ωi = ω for all i, γ = 1

4(Li+ 2ωmaxi Li
n)α2

and

sup
α∈[0,1]

inf
x∗∈X

‖x0 − x∗‖ = R. Then,

E[f̃(xk)− f̃(x∗)]

≤ α2 · 2

k

(
Li‖x0 − xi‖2 + 2

(
Li +

2 max{Liωi}
n

)
R2

)
+ α · ωmaxi Li

nLi + 2ωmaxi Li

(
f̃(x∗(0))− 1

n

n∑
i=1

fi(xi)

)

=
1

k
C1α

2 + C2α.

Proof. Let us investigate f̃(x0) − f̃(x∗). Let αi ≡ α ∈ R for all i. Since min 1
n

∑n
i=1 fi(Ti(x)) ≥

1
n

∑n
i=1 min fi(Ti(x)) = 1

n

∑n
i=1 min fi(x) and each fi is Li-smooth, we get

f̃(x0)− f̃(x∗) ≤ f̃(x0)− 1

n

n∑
i=1

fi(xi)

=
1

n

n∑
i=1

fi(αx
0 + (1− α)xi)− f(xi)

(10)
≤ 1

n

n∑
i=1

Li‖α(x0 − xi)‖2

= α2Li‖x0 − xi‖2.

This observation shows that the dependence between f̃(x0)− f̃(x∗) and α is quadratic. f̃(x0)− f̃(x∗) diminishes
to zero as α goes to zero what proves our intuition: the closer α is to zero, the less steps the algorithm needs to
make till convergence.

We verify that the stepsize in the corollary fits the restriction on stepsizes in Theorem 6.

1

γ
= 4

(
Lα +

2 max{Liωiα2
i }

n

)
αi≡α, Proposition 2

= 4

(
Li +

2 max{Liωi}
n

)
· α2.

(65)

Further assuming that inf
x∗∈X

‖x0 − x∗‖ is bounded above for all α ∈ [0, 1] by value R ∈ R, we obtain the following

result:

1

γ
‖x0 − x∗‖2 ≤ 4

(
Li +

2 max{Liωi}
n

)
R2α2.

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

The neighborhood governing term is γσDCGD. Let us assume αi ≡ α and ωi ≡ ω for all i.

σDCGD =
2

n2

n∑
i=1

ωiα
2
i ‖∇fi(Ti(x∗))‖2

Ti(x) def
=

2

n2

n∑
i=1

ωiα
2
i ‖∇fi(αix∗ + (1− αi)xi)‖2

αi≡α, ωi≡ω
=

2ωα2

n2

n∑
i=1

‖∇fi(αix∗ + (1− αi)xi)‖2

Since x∗i minimizes fi(x), ∇fi(x∗i) = 0. Thus,

2ωα2

n2

n∑
i=1

‖∇fi(αix∗ + (1− αi)xi)‖2

=
2ωα2

n2

n∑
i=1

‖∇fi(αix∗ + (1− αi)xi)−∇fi(xi)‖2

Inequality (15) further bounds each norm of gradient differences.

2ωα2

n2

n∑
i=1

‖∇fi(αix∗ + (1− αi)xi)−∇fi(xi)‖2

≤ 4ωα2

n2

n∑
i=1

Li(fi(αix
∗ + (1− αi)xi)− fi(xi))

≤ 4ωα2 maxi Li
n2

n∑
i=1

(fi(αix
∗ + (1− αi)xi)− fi(xi))

=
4ωα2 maxi Li

n

(
f̃(x∗)− 1

n

n∑
i=1

fi(xi)

)
In the rightmost term point x∗ depends on α because it is an optimal point of a problem dependent on α. But
the observation below explicitly reveals the dependence. Since each fi is convex,

f̃(x) =
1

n

n∑
i=1

fi(αx+ (1− α)xi)

≤ α 1

n

n∑
i=1

fi(x) + (1− α)
1

n

n∑
i=1

fi(xi).

Taking the minimum of both sides of inequality above we get to

f̃(x∗) ≤ αf̃(x∗(0)) + (1− α)
1

n

n∑
i=1

fi(xi).

We established that

σDCGD ≤
4ωmaxi Li

n

(
f̃(x∗(0))− 1

n

n∑
i=1

fi(xi)

)
α3. (66)

Together with equality 65 it brings us to the following bound on the neighbourhood:

γσDCGD ≤
ωmaxi Li

nLi + 2ωmaxi Li

(
f̃(x∗(0))− 1

n

n∑
i=1

fi(xi)

)
α = Cα,

where C does not depend on α.

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

8.2.2 DIANA

As for the previous section, we first introduce the algorithm, followed by general theorem, which is then applied
to (FLIX).
Theorem 7. Assume all conditions of Lemmas 3 and 4 hold. Let 0 < γ ≤ 1

4

(
Lα+

2maxi{Liα2
i
ωi}

n +
4maxi{βiωiLiα2

i
}

nmini βi

) .
Then,

E[f̃(xk)− f̃(x∗)] ≤
(

2(f̃(x0)− f̃(x∗)) +
4γ

nminβi
σ2

0 +
1

γ
‖x0 − x∗‖2

)
1

k
. (67)

Proof. The theorem is a corollary of Corollary 4.1 from Khaled et al. (2020) with constants

A = Lα +
2 max{Liωiα2

i }
n

,B =
2

n
,D1 = 0,

ρ = min
i
βi, C = max

i
{βiωiLiα2

i }, D2 = 0.

Corollary 4. Assume all conditions of Lemmas 3 and 4 hold. Let αi = α, ωi = ω, h0
i = 0 ∈ Rd for all i,

γ = 1

4(Li+ 6ωmaxi Li
n)α2

, sup
α∈[0,1]

inf
x∗∈X

‖x0 − x∗‖ = R. Then,

E[f(xk)− f(x∗)] ≤ 1

k
(C1α

2 + C2α),

where C1 = 2
(
Li‖x0 − xi‖2 + 2

(
Li + 6ωmaxi Li

n

)
R2
)
and C2 = ω(ω+1) maxi Li

(nLi+6ωmaxi Li)

(
f̃(x∗(0))− 1

n

∑n
i=1 fi(xi)

)
.

Proof. Let us investigate stepsize γ. The statement of the corrolary requires the stepsize equals its maximum
value 1

4

(
Lα+

2maxi{Liα2
i
ωi}

n +
4maxi{βiωiLiα2

i
}

nmini βi

) . Since αi = α, ωi = ω, βi = 1
1+ω for all i,

γ =
1

4
(
Lα +

2 maxi{Liα2
iωi}

n +
4 maxi{βiωiLiα2

i }
nmini βi

) =
1

4
(
Li + 6ωmaxi Li

n

)
α2
. (68)

From definitions it follows that σ2
0 = n

2σDCGD if h0
i = 0 ∈ Rd. Thus,

σ2
0 =

n

2
σDCGD

(66)
≤ 2ωmax

i
Li

(
f̃(x∗(0))− 1

n

n∑
i=1

fi(xi)

)
α3.

That is why

4γ

nminβi
σ2

0

βi=
1
ω+1

=
4γ(ω + 1)

n
σ2

0

(68)
=

ω + 1

n
(
Li + 6ωmaxi Li

n

)
α2
σ2

0

=
ω + 1

(nLi + 6ωmaxi Li)α2
σ2

0 ≤
2ω(ω + 1) maxi Li

(nLi + 6ωmaxi Li)

(
f̃(x∗(0))− 1

n

n∑
i=1

fi(xi)

)
α.

Remaining terms are analyzed as for DCGD in convex case.

8.3 Nonconvex objectives

In this section we analyze algorithms in the nonconvex case of functions. Throughout this section we assume
that x∗i is a stationary point of function fi. For the sake of convenience we transfer Lemma 1 from Khaled and
Richtárik (2020) to here.
Lemma 5 (Lemma 1 from Khaled and Richtárik (2020)). Suppose f∗i = min fi(x) exists and fi is Li-smooth.
Then, for any x ∈ Rd it holds that

‖∇fi(x)‖2 ≤ 2Li(fi(x)− f∗i).

Throughout this section we will use notation f∗ def
= 1

n

∑n
i=1 f

∗
i .

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

8.3.1 DCGD

Theorem 8. Suppose f∗i = min fi(x) exists and fi is Li-smooth for each i. Then, if γ ≤ 1
Lα

,

min
0≤t≤k−1

E‖∇f̃(xt)‖2 ≤
2
(

1 +
2Lαγ

2 max{Liωiα2
i }

n

)k
γk

(f̃(x0)− f?). (69)

Proof. The proof is a direct application of Theorem 2 in (Khaled and Richtárik, 2020) to our setting. First, let
us analyze E‖g(x)‖2.

E‖g(x)‖2 = E

∥∥∥∥∥ 1

n

n∑
i=1

Ci(∇[fi(Ti(x))])

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

n

n∑
i=1

Ci(∇[fi(Ti(x))])− E

[
1

n

n∑
i=1

Ci(∇[fi(Ti(x))])

]∥∥∥∥∥
2

+

∥∥∥∥∥E
[

1

n

n∑
i=1

Ci(∇[fi(Ti(x))])

]∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

n

n∑
i=1

Ci(∇[fi(Ti(x))])− 1

n

n∑
i=1

∇[fi(Ti(x))]

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

n

n∑
i=1

∇fi(Ti(x))

∥∥∥∥∥
2

= E

∥∥∥∥∥ 1

n

n∑
i=1

Ci(∇[fi(Ti(x))])− 1

n

n∑
i=1

∇[fi(Ti(x))]

∥∥∥∥∥
2

+
∥∥∥∇f̃(x)

∥∥∥2

=
1

n2

n∑
i=1

‖Ci(∇[fi(Ti(x))])−∇[fi(Ti(x))]‖2 +
∥∥∥∇f̃(x)

∥∥∥2

≤ 1

n2

n∑
i=1

ωi‖∇[fi(Ti(x))]‖2 +
∥∥∥∇f̃(x)

∥∥∥2

.

To analyze the first term we refer ourselves to Lemma 5:

‖∇[fi(Ti(x))]‖2 Ti def
= ‖∇[fi(αix+ (1− αi)xi)]‖2 = α2

i ‖∇fi(αix+ (1− αi)xi)‖2

Lemma 5
≤ α2

i 2Li(fi(αix+ (1− αi)xi)− f∗i)

Plugging this in the previous inequality we get

E‖g(x)‖2 ≤ 1

n2

n∑
i=1

ωi‖∇[fi(Ti(x))]‖2 +
∥∥∥∇f̃(x)

∥∥∥2

≤ 1

n2

n∑
i=1

ωiα
2
i 2Li(fi(αix+ (1− αi)xi)− f∗i) +

∥∥∥∇f̃(x)
∥∥∥2

≤ 2 max{Liωiα2
i }

n

(
1

n

n∑
i=1

fi(αix+ (1− αi)xi)−
1

n

n∑
i=1

f∗i

)
+ ‖∇f̃(x)‖2

=
2 max{Liωiα2

i }
n

(f̃(x)− f∗) + ‖∇f̃(x)‖2,

what means that Assumption 2 from Khaled and Richtárik (2020) holds with A =
2 max{Liωiα2

i }
n , B = 1, C = 0.

Then, as Theorem 2 from the same paper states, for stepsize γ ≤ 1
Lα

it holds that

min
0≤t≤k−1

E‖∇f̃(xt)‖2 ≤
2
(

1 +
2Lαγ

2 max{Liωiα2
i }

n

)k
γk

(f̃(x0)− f?).

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

Corollary 5. Suppose assumptions of Theorem 8 hold, αi ≡ α, ωi ≡ ω. Let γ = γ0
1
α2 ≤ 1

Liα2
and ∆0 =

sup
α
f̃(x0)− f∗.

min
0≤t≤k−1

E‖∇f̃(xt)‖2 ≤ α2
2
(

1 +
2Lωγ2

0 maxi Li
n

)k
γ0k

∆0. (70)

Proof. We note that when αi ≡ α, Lα = Lα2, which follows from the definition of Lα. Plugging equations
Lα = Lα2, γ = γ0

1
α2 , αi ≡ α and ωi ≡ ω into the main result of Theorem 8 we get

min
0≤t≤k−1

E‖∇f̃(xt)‖2 ≤ α2
2
(

1 +
2Lωγ2

0 maxi Li
n

)k
γ0k

(f̃(x0)− f?).

Noting that f̃(x0)− f∗ ≤ ∆0 we finish the proof.

8.3.2 DIANA

Theorem 9. Suppose f∗i = min fi(x) exists and fi is Li-smooth for each i. Let βk ≡ β and ωk ≡ ω for all

k ∈ {1, . . . , n}. Suppose β ∈ 1
1+ω

[
1,min

{
1 + 1

2(1+ω) ,
√

3
2 + ω + 1

2ω

}]
and γ ≤ 1

Lα
· min

{
1

2
√
η0
, 2√

1+8η0+1

}
,

η0 = (1+ω)ω(1+2(1+ω))
n , and h0

i = ∇[fi(Ti(x
0))]. Let x̂ be a point chosen uniformly at random among iterates

x0, x1, . . . , xk−1 generated by DIANA. Then,

E‖∇f̃(x̂)‖2 ≤ 2

γk
(f̃(x0)− f∗). (71)

Proof. The proof is following the proof of Theorem 1 in Li and Richtárik (2020) with small modifications: we
rewrite the main proposition in the different way and give slightly different bound on the stepsize. First, Lemma
9 in Li and Richtárik (2020) says that

E‖gk‖2 ≤ ‖∇f(xk)‖2 +
1 + ω

n
σ2
k, (72)

Eσ2
k+1 ≤ (1− ρ)σ2

k +
ω(1 + r)L2

αγ
2

1 + ω
‖∇f(x)‖2, (73)

where

σ2
k =

ω

(1 + ω)n

n∑
i=1

‖∇[fi(Ti(x
k))]− hki ‖2 (74)

ρ = θ − ω(1 + r)

n
L2
αγ

2 (75)

θ = min{1− β2ω, 2β − 1− β
r
− β2 − β2ω} (76)

and r is an arbitrary positive number. We choose r = 2(1 +w) > 0. For the sake of readability, we define function
ζ in the following way

2β − 1− β
2(1 + ω)

− β2 − β2ω = −(ω + 1)β2 +

(
2 +

1

2(1 + ω)

)
β − 1

2(1 + ω)
=: ζ(β)

That is why we can write that θ ∈ min{1− β2ω, ζ(β)}.

Second, let us analyze the lower bound for θ. Note that for β lying in the range
1

1+ω

[
1,min

{
1 + 1

2(1+ω) ,
√

3
2 + ω + 1

2ω

}]
we have

1− β2ω ≥ 1− ω

(1 + ω)2

(
3

2
+ ω +

1

2ω

)
= 1− ω

(1 + ω)2

(1 + 2ω)(1 + ω)

2ω

= 1− 1 + 2ω

2(1 + ω)
=

1

2(1 + ω)
,

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

and

ζ

(
1

1 + ω

)
= − 1

1 + ω
+

(
2 +

1

2(1 + ω)

)
1

1 + ω
− 1

2(1 + ω)

=
1

2(1 + ω)
+

1

2(1 + ω)2
≥ 1

2(1 + ω)
,

and

ζ

(
1

1 + ω
+

1

2(1 + ω)2

)
= − 1

1 + ω
− 1

(1 + ω)2
− 1

4(1 + ω)3

+

(
2 +

1

2(1 + ω)

)(
1

1 + ω
+

1

2(1 + ω)2

)
− 1

2(1 + ω)

=
1

2(1 + ω)
+

1

2(1 + ω)2
≥ 1

2(1 + ω)
.

Since ζ is a quadratic function with the ends of the parabola pointed downwards, for all β in the range we have
ζ(β) ≥ 1

2(1+ω) , which altogether means that θ ≥ 1
2(1+ω) > 0.

If we enforce

ω(1 + r)

n
L2
αγ

2 ≤ 1

4(1 + ω)

or

γ ≤ 1

2Lα

√
n

(1 + ω)ω(1 + r)
=

1

2Lα

√
n

(1 + ω)ω(1 + 2(1 + ω))
,

then ρ = θ − ω(1+r)
n L2

αγ
2 ≥ 1

4(1+ω) .

Now let us switch to the proof of the convergence. We first note that due to smoothness of fis and inequality 72
we get

Ef(xk+1) ≤ f(xk) + E〈∇f(xk), xk+1 − xk〉+
Lα
2
E‖xk+1 − xk‖2

= f(xk)− γ‖∇f(xk)‖2 +
Lαγ

2

2
E‖gk‖2

≤ f(xk)−
(
γ − Lαγ

2

2

)
‖∇f(xk)‖2 +

Lαγ
2

2

1 + ω

n
σ2
k.

Let us fix ξ > 0. Then according to 73 we have

E[f(xk+1)− f∗ + ξσ2
k+1]

≤ f(xk)− f∗ −
(
γ − Lαγ

2

2
− ξ ω(1 + r)L2

αγ
2

1 + ω

)
‖∇f(xk)‖2 +

(
ξ(1− ρ) +

Lαγ
2

2

1 + ω

n

)
σ2
k.

Let us notate ∆k = f(xk)− f∗ + ξσ2
k and set ξ = Lαγ

2

2ρ
1+ω
n . Then from previous inequality it follows that

E∆k+1 ≤ ∆k −
(
γ − Lαγ

2

2
− ξ ω(1 + r)L2

αγ
2

1 + ω

)
‖∇f(xk)‖2. (77)

Let us define γ′ the coefficient in front of ‖∇f(xk)‖2 in the last inequality. When is γ′ larger than γ
2 ?

γ − Lαγ
2

2
− ξ ω(1 + r)L2

αγ
2

1 + ω
= γ − Lαγ

2

2
− Lαγ

2

2ρ

1 + ω

n

ω(1 + r)L2
αγ

2

1 + ω

= γ − Lαγ
2

2
− Lαγ

2

2ρ

ω(1 + r)L2
αγ

2

n
= γ − γ

2

(
Lαγ +

L3
αγ

3ω(1 + r)

ρn

)
≥ γ

2
,

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

if

Lαγ +
L3
αγ

3ω(1 + r)

ρn
≤ 1.

Let us define y := Lαγ and a := ω(1+r)
n . Then according to (75) ρ = θ − ay2. Plugging this back to the last

inequality we get

y +
ay3

θ − ay2
≤ 1

⇔ yθ − ay3 + ay3

θ − ay2
≤ 1

⇔ yθ

θ − ay2
≤ 1

θ−ay2=ρ>0⇔ yθ ≤ θ − ay2

θ>0⇔ a

θ
y2 + y − 1 ≤ 0.

The last inequality holds for all y lying between zero and the positive root of the quadratic equation. The positive

root is
√

1+ 4a
θ −1

2a
θ

=
4a
θ

2a
θ

(√
1+ 4a

θ +1
) = 2√

1+ 4a
θ +1

. That means that the last inequality holds if

y ≤ 2√
1 + 4a

θ + 1

or the tightest bound for γ achieved on smallest θ gives

γ ≤ 1

Lα

2√
1 + 4ω(1+2(1+ω))

nθmin
+ 1

=
1

Lα

2√
1 + 8(1+ω)ω(1+2(1+ω))

n + 1
.

Going back to 77 we finally get

E∆k+1 ≤ ∆k − γ

2
‖∇f(xk)‖2

E‖∇f(xk)‖2 ≤ 2

γ
(E∆k − E∆k+1).

That is why

E‖∇f(x̂)‖2 =
1

k

k−1∑
t=0

E‖∇f(xt)‖2 ≤ 2

γk
(∆0 − E∆k) ≤ 2

γk
∆0.

The proof is written for general function f(x) = 1
n

∑n
i=1 fi(x). To apply the theorem for our setting, we replace

f by f̃ .

Corollary 6. Suppose all conditions of Theorem 9 hold and αi ≡ α for all i from {1, . . . , n}. Let γ = 1
α2 γ0,

where γ0 = 1
L

min
{

1
2
√
η0
, 2√

1+8η0+1

}
. Let ∆0 = sup

α
f̃(x0)− f∗ Then,

E‖∇f̃(x̂)‖2 ≤ α2 2

γ0k
∆0. (78)

Proof. According to the definition of Lα = 1
n

∑n
i=1 Liα

2
i , in the case of equal αis we get Lα = Lα2. It remains to

notice that the stepsize in the corollary condition still satisfies the condition on the stepsize γ in Theorem 9 and
∆0 ≥ f̃(x)− f∗.

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

9 DISCUSSION OF OTHER MODEL MIXTURE METHODS

Deng et al. (2020) propose that each client solves the local problem

min
v∈Rd

fi(αiv + (1− αi)w∗),

where w∗ is the minimizer of (ERM). This does not result in any personalization since the “personalized” solution
on each node is a reparameterization of each local solution xi. Furthermore, the convergence theory that Deng
et al. (2020) develop does not recover the linear convergence of gradient descent at αi = 1.

Mansour et al. (2020) introduce a similar method, MAPPER, where they propose to solve

min
z,αi,yi

1

n

n∑
i=1

fi(αiyi + (1− αi)z).

Again, this objective is trivially minimized by setting αi = 1, yi = minx∈Rd fi(x), and z = 0 (i.e. with no
personalization at all).

Zec et al. (2021) also introduce a similar formulation based on the mixture of experts framework, where they
propose to first learn the minimizer x∗ of (ERM), learn the optimal local models x1, x2, . . . , xn, and then learn a
mixture of both the global and local models (i.e. the αi) on each client. Unfortunately, this is also ill-defined, as
αi = 1 will always perform best on the local training set, and hence if there is no additional data the optimization
process cannot improve over the local minimizers x1, . . . , xn.

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

Figure 6: Grid-Search of stepsizes for FLIX for the first Stack Overflow experiment. Values in cells are logarithms
of validation losses. Horizontal axis corresponds to logarithm of scaled step-sizes. Red frames correspond to
minimum value in a row. Colors are scaled row-wise.

10 EXPERIMENTAL DETAILS

Generalization experiment 1: Fitting Sine Functions. We train each local model i until the gradient norm
‖∇fi(x)‖ is below 10−2. Stopping criteria for global models is the same but with respect to FLIX formulation:
‖ 1
n

∑n
i=1∇fi(Ti(x))‖ < 10−2. Gradient descent with line search at each iteration was used as a local and a meta

optimizer.

Generalization experiment 2: Comparison to FOMAML and Reptile. We preprocess the raw data
in the same way as in Reddi et al. (2021) for Stackoverflow logistic regression task, i.e., each feature vector is
a bag-of-words representation of a user’s sentence, each label vector is a binary vector showing if a sentence
relates to a particular question tag or not. Word vocabulary for the feature dataset is restricted to the 10000
most common words. We restrict the task to the 500 most used tags. For preprocessing, we used Tensorflow
computational procedures from Xu et al. (2021).

To select 50 clients for the Figure 1, we map first 5000 clients from train dataset to vector space with BERT Devlin
et al. (2019) and run k-means with 10 clusters. The first 50 clients from the first cluster have been selected for
the experiment.

The hold-out validation dataset is of size 100, for the first experiment, and of size 110, for the second
one. To compute pure local models we run gradient descent until the norm of the gradient is less than
[10−1, 10−2, 10−3, 10−4, 10−5], respectively. We train pure local models until the gradient norm is less than
10−4, for the first experiments, and 10−5, for the second, as this tolerance level was observed to have the lowest
generalization error on the validation dataset in our experiments.

Then, we use a grid-search to find optimal stepsizes for gradient descent used for training FLIX. Our grid for
step-sizes are [5 · 10−2, 5 · 10−1, . . . , 5 · 106]. The results are presented in Figures 6 and 7.

As table shows, the smaller α is, the higher step-size the task needs to achieve the best generalization, which is in
line with our convergence results, see Theorem 2 and Table 2.

To train FOMAML and Reptile, we set the number of inner steps to five and grid search outer and inner
loop step-sizes. The explored outer step-sizes are the same as for FLIX. Inner step-sizes iterate over the set
[10−3, 10−2, . . . , 10].

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

Figure 7: Grid-Search of stepsizes for FLIX for the second Stack Overflow experiment. Values in cells are
logarithms of validation losses. Horizontal axis corresponds to logarithm of scaled step-sizes. Red frames
correspond to minimum value in a row. Colors are scaled row-wise. Grey cells correspond to nan values.

Table 3: Combinations of the parameters that achieve the highest accuracy. See Section 4 for the description of
the grids.

PARAMETER EMNIST SHAKESPEARE

Personalization parameter α 0.3 0.5

PLM batch size 10 4

PLM learning rate 0.001 0.1

FLIX batch size 20 1

FLIX learning rate 0.01 100.5

After grid search, we run gradient descent for each value of alpha of FLIX, FOMAML, and Reptile for 10 000 and
50000 iterations in the first and seconds experiments accordigly and report obtained test accuracy.

Generalization experiment 3: Comparison to FedAvg with CNNs and LSTMs on large-scale datasets.
In Table 3 we indicate the best parameters for the tasks discussed in Section 4.

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

11 EXTRA EXPERIMENTS

Logistic regression with l2 regularizer. On figures 8, 9, 10, and 11 we present the plots for regularized
logistic regression loss for all datasets mentioned in the previous section and for all 3 algorithms: GD, CGD and
DIANA. Number of machines n is set to 50 for DIANA and GD, and is set to 8 for CGD. Plots showing the
dependence between loss and communication cost show that although in terms of communication rounds DIANA
and CGD lose to classical GD, they are better with respect to communication cost, which is of more practical
importance. We run all the algorithms with their best theoretical step-sizes.

Figure 8: Loss f(x)− f∗ vs. # of communication rounds of DIANA and GD for logistic regression problem l2
regularizer for four datasets, k is a sparsification parameter of Random-k compressor.

Unregularized logistic regression. Setting λ = 0 in problem 8, we obtain unregularized logistic regression
task, which is well-known to be a convex problem. Similarly to regularized case, we present four plots (12, 13, 14,

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

Figure 9: Loss f(x)− f∗ vs. communication cost in unit of thousands of float numbers of DIANA and GD for
logistic regression problem l2 regularizer for four datasets, k is a sparsification parameter of Random-k compressor.

and 15) exhibiting convergence of three algorithms in terms of communication rounds and overall communication
cost for four LIBSVM datasets. Number of machines n is set to 100 for DIANA and GD, and to 8 for CGD. We
run all the algorithms with their best theoretical step-sizes.

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

Figure 10: Loss f(x)− f∗ vs. # of communication rounds of CGD for logistic regression problem l2 regularizer
for four datasets, k is a sparsification parameter of Random-k compressor.

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

Figure 11: Loss f(x) − f∗ vs. communication cost in unit of thousands of float numbers of CGD for logistic
regression problem l2 regularizer for four datasets, k is a sparsification parameter of Random-k compressor.

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

Figure 12: Loss f(x)− f∗ vs. # of communication rounds of DIANA and GD for unregularized logistic regression
problem for four datasets, k is a sparsification parameter of Random-k compressor.

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

Figure 13: Loss f(x) − f∗ vs. communication cost in unit of thousands of float numbers of DIANA and GD
for unregularized logistic regression problem for four datasets, k is a sparsification parameter of Random-k
compressor.

Elnur Gasanov, Ahmed Khaled, Samuel Horváth, Peter Richtárik

Figure 14: Loss f(x)− f∗ vs. # of communication rounds of CGD for unregularized logistic regression problem
for four datasets, k is a sparsification parameter of Random-k compressor.

FLIX: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning

Figure 15: Loss f(x)− f∗ vs. communication cost in unit of thousands of float numbers of CGD for unregularized
logistic regression problem for four datasets, k is a sparsification parameter of Random-k compressor.

	INTRODUCTION
	Key properties of the FLIX framework
	Related work

	THE FLIX FORMULATION
	Motivation 1: from Local GD to FLIX
	Motivation 2: from model-agnostic meta-learning to FLIX

	THEORY AND ALGORITHMS
	Distributed gradient descent

	EXPERIMENTS
	ACKNOWLEDGMENTS
	BASIC FACTS AND NOTATION
	PROOFS FOR SECTIONS 2 AND 3
	Proof of proposition:quad-fine-tuned-sol
	Proofs for algorithm-independent results
	Proof of Proposition 2
	A proposition for bounding the gradient norm
	Proof of proposition:alpha-controls-variance

	Results on one shot averaging
	Distributed Gradient Descent

	OTHER ALGORITHMS
	Strongly convex objectives
	DCGD
	DIANA

	Convex objectives
	DCGD
	DIANA

	Nonconvex objectives
	DCGD
	DIANA

	DISCUSSION OF OTHER MODEL MIXTURE METHODS
	EXPERIMENTAL DETAILS
	EXTRA EXPERIMENTS

