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Abstract

By invoking a pathwise series expansion of
Brownian motion, we propose to approximate
a stochastic differential equation (SDE) with
an ordinary differential equation (ODE). This
allows us to reformulate Bayesian inference for
a SDE as the parameter estimation task for an
ODE. Unlike a nonlinear SDE, the likelihood
for an ODE model is tractable and its gradi-
ent can be obtained using adjoint sensitivity
analysis. This reformulation allows us to use
an efficient sampler, such as NUTS, that rely
on the gradient of the log posterior. Applying
the reparameterisation trick, variational infer-
ence can also be used for the same estimation
task. We illustrate the proposed method on
a variety of SDE models. We obtain similar
parameter estimates when compared to data
augmentation techniques.

1 INTRODUCTION

The task of estimating the parameters of a SDE ob-
served at discrete times is highly challenging. One
has to deal with the estimation of a high dimensional
latent diffusion in addition to the governing parame-
ters. Moreover, the exact transition densities given by
the forward Kolmogorov equation, required to calcu-
late the likelihood, are intractable for a nonlinear SDE.
Thus, the estimation task involves an intractable likeli-
hood. This intractability can be side-stepped using the
Euler-Maruyama discretisation of the SDE, resulting
in a Gaussian approximation of the transition density.
However, this approximation is valid for a small time
interval. Often much smaller than the interval be-
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tween successive observations. Hence, such approxima-
tion is generally used with data-augmentation methods
(Segrensen, [2004) in the context of Bayesian inference
using a Markov chain Monte Carlo (MCMC) algorithm.
Additionally any sampling scheme has to also deal with
the strong correlation between the diffusion path and
the model parameters. Slow convergence of MCMC,
that involves data-augmentation, incurs a high compu-
tational cost due to the iterative nature of sampling a
discretised diffusion path.

With the widespread availability of automatic differ-
entiation (AD) techniques, Bayesian inference is in-
creasingly carried out using MCMC algorithms that
traverse the parameter space based on gradient of the
target density. Such algorithms have a proposal gener-
ating mechanism that can rapidly explore the parame-
ter space when compared to traditional random-walk
MCMC. Moreover, optimisation based alternatives to
MCMC such as black-box variational inference has
the potential to further expedite the inference process.
AD has made it possible to apply such algorithms to
many complex models with a differentiable target den-
sity. Many probabilistic programming platforms, that
rely on AD, includes such algorithms and have vastly
automated the entire process of Bayesian inference.

Application of the aforementioned efficient algorithms
to a SDE is highly non-trivial. The likelihood is in-
tractable and thus non-differentiable. If an Euler-
Maruyama discretisation is used then one has to
backpropagate through the SDE solver steps (Giles
and Glasserman, [2006). This is error-prone and
highly inefficient in terms of memory. Moreover, data-
augmentation methods are often embedded within simu-
lation based inference algorithms (Andrieu et al., 2010)
that are inherently non-differentiable. Recently, an ele-
gant method for extending AD to Stratonovich SDEs
was introduced in |Li et al.| (2020]) that is much more
efficient (albeit for diagonal noise models) than earlier
attempts. Building on the path-integral formulation
of variational inference (Archambeau et al., [2008} |Op;
per, |2019) to avoid the intractability of the transition
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density, this AD technique can be used to carry out
Bayesian inference of the diffusion path. However, this
particular variational formulation does not lend itself
to Bayesian inference of the parameters. Furthermore,
this AD technique cannot be used in the context of
MCMC, again due to the intractability of the transition
density and thus the likelihood.

In case of an ODE;, in contrast to a SDE, the likelihood
is tractable and there exists an efficient numerical sensi-
tivity analysis technique that lends itself to AD (Chen
et al.l |2018; |Ghosh et al.l |2021). Thus, we propose
to approximate a SDE by an equivalent ODE using a
pathwise truncated series expansion of Brownian mo-
tion (Lyons et all 2012, |2014)). The resulting ODE
contains the same SDE parameters in addition to aux-
iliary parameters that are the expansion coefficients.
We estimate all these parameters jointly where the
marginal density of the model parameters is the de-
sired quantity of interest. We carry out this estimation
task using the No-U-Turn (Hoffman and Gelman) 2014))
sampler (NUTS) as well as using black-box variational
inference, both inherently capable of handling the in-
flated parameter dimension efficiently. We summarise
our contributions as follows:

e We propose a method for estimating the parame-
ters of a SDE by utilising an approximation scheme
that transforms the SDE to an ODE. This ap-
proximation scheme enables the usage of efficient
inference algorithms that use the gradient of the
posterior distribution in order to traverse the pa-
rameter space.

e In contrast to some of the widely used meth-
ods for the inference of SDE parameters, the
proposed method circumvents the need of data-
augmentation which incurs a large computational
expense.

e Application of the proposed method is not limited
to SDEs that have a particular structure such as
linear drift, constant diffusion and additive noise.

1.1 Related Work

Series expansion of Brownian motion for infer-
ence, in conjunction with a Gibbs sampling scheme,
was first introduced in [Lyons et al.| (2012)) for systems
with additive noise. [Lyons et al.| (2014) applied series
expansion for filtering in nonlinear state-space models.
By marrying series expansion with adjoint sensitivity
analysis, our approach can be applied to both additive
and multiplicative noise models, the latter is preva-
lent in biology. Moreover, our approach is targeted
towards differentiable inference, which accommodates
faster and more efficient inference algorithms.

Pathwise approximation of SDE can be framed
using the theory of rough paths (Friz and Hairer| |2020)),
going beyond Brownian motion. Our approach can
be easily integrated with rough path based analysis.
Pathwise approximations have also been used earlier
(Kloeden and Jentzen, [2007)) for numerical solution
of SDEs, and recently for constructing normalizing
flows (Hodgkinson et al., 2020). Our contribution is
in using pathwise approximation to obtain a tractable
and differentiable likelihood.

Variational inference for a SDE was first intro-
duced in|Archambeau et al.| (2008)) using a path-integral
formulation. |Li et al.| (2020) extended these earlier ap-
proaches (Archambeau et al. |2008; |Opper}, |2019) using
a novel AD technique. In addition to the aforemen-
tioned limitations of the method in |Li et al.| (2020),
a common difficulty with all these path-integral ap-
proaches is that of finding a suitable variational ap-
proximation of the latent diffusion path. In our ap-
proach the variational approximation is constructed in
the parameter space; a simpler task in comparison. We
demonstrate this in section [(.3]

ODE approximation of transition density can
also be derived using a Gaussian process approxima-
tion of the transition density (Golightly and Gillespie,
2013; [Fearnhead et al.| |2014). Our approach rely on a
pathwise approximation of the diffusion and thus can
accommodate non-Gaussian transition densities.

An AD framework for ODEs was introduced in
Chen et al.| (2018]) utilising the adjoint sensitivity
method of [Pontryagin et al.| (1962) and its applica-
tion for inference (Stapor et al., 2018} Melicher et al.|
2017).

2 BACKGROUND

We begin by first introducing the Bayesian inference
framework for a diffusion process described by a SDE.
Consider a K-dimensional diffusion process that satis-
fies the following SDE:
dtha(Xt,H)dt—f— \/B(Xt,e)th, X = xy,
(1)
where X ; denotes the value of the process at time ¢, a
is a K-dimensional drift vector, B a K x K diffusion
matrix and the driving noise W, is a K-dimensional
Brownian motion which is treated in the It6 sense.
Both the drift and diffusion matrix depends on an
unknown parameter vector & € RP. If the initial value
x( is unknown then this is estimated along with the 6.

We assume that a(-) and B(-) are sufficiently regu-
lar functions such that Equation has a weak non-
explosive solution (Oksendal, 2013)).
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Consider a set of noisy experimental observations
y € RMXK observed at M experimental time points,
{t:} M1, for the K states. Within the Bayesian infer-
ential paradigm we want to place a prior distribution
on the unknown parameters p(€) and intend to obtain
the corresponding posterior distribution

(X, 0ly) < p(y| X, 0)p(X[0)p(0) (2)

of the latent path X and the unknown parameters 0,
where p(y|X,0) is the likelihood and p(X10) is the
distribution of the diffusion X defined from the SDE
given by Equation (T]). For a nonlinear SDE, p(X|0) is
intractable. To work around this intractability an Euler-
Maruyama discretisation is generally used, yielding
a Gaussian approximation to the transition density.
Inference proceeds by generating samples of X and 6.

Within an MCMC scheme, samples of X and 6 can
be drawn by using a Gibbs sampling (Golightly and
Wilkinson), [2008)) scheme. As an alternative to such
Gibbs proposal mechanism both X and 0 can be jointly
updated using a particle MCMC scheme wherein a
particle filter is used to draw the diffusion path and
evaluate an unbiased estimate of the likelihood. Par-
ticle MCMC methods, despite their higher computa-
tional cost, produce a faster mixing Markov chain and
thus have become the state-of-the-art for inference in
SDEs. Nonetheless, both these methods are inherently
non-differentiable and rely crucially on a random-walk
proposal for updating 6.

3 PATHWISE APPROXIMATION

By the definition of an It integral, within a time inter-
val [0,T] a standard Brownian motion can be written
as (Luol |2006; [Lyons et al., [2012):

t T
W, = / AW, = / Lo, (5)dWs, (3)
0 0

where I[g 4 (+) is the indicator function. Suppose {¢;}i>1
is an orthonormal basis of L?[0,T]. For example this
can be the following trigonometric function related
to the Karhunen-Loeve (KL) expansion of Brownian
motion (Sarkka and Solin, 2019):

bi(t) = (2/T)"/? cos{(2i — 1)nt/2T}. (4)

We can interpret I 4 as an element of L?[0,T], and
expand it in terms of the basis functions:

Tjo,4(s Z(Ho 0,0(-), @i () &5 (s)
! (5)
Z(/ 6i(u)du) 6:(5)

i=1

~.

Substituting into we see that:

_i( /0 : 6i(s)aW, ) /0 ‘hwde. (6)

We will use the shorthand Z; := fo @i (s)dW,. Since
the basis functions {¢;} are deterministic and orthonor-

mal, it follows from standard results of It6 calculus
that Z; ~ N(0,1).

The infinite series in Equation @ can be truncated
after N terms to obtain a pathwise series approximation
W, of Brownian motion. Taking derivative with respect
to time we obtain the following approximation to the
differential of Brownian motion given by

N
AW, = Z Z;igi(t)dt. (7)

Consider now a scalar SDE driven by this approximate
Brownian motion:

dX; = a(Xy,0)dt + b(Xy, 0)dW,, (8)

where a, b are some scalar drift and diffusion term. As
N — 00 the exact solution of the equation above will
converge to the solution had it been driven by the
exact Brownian motion. The seminal work of Wong
and Zakai (1965) shows that as N — oo the solution
however converges to the solution of a Stratonovich
SDE given by

dXt = G(Xt, H)dt + b(Xt, 9) o th, (9)

Thus, we can approximate the above Stratonovich SDE
by Equation , which is actually an ODE:

dX, ) . N
— = a(X1,0) +b(X;,0) > Zigi(t). (10)

i=1

Similarly, we can approximate a K-dimensional Brown-
ian motion by applying the truncated series expansion
to each of the K dimensions. Substituting such a K-
dimensional approximation in a Stratonovich equivalent
of Equation we obtain the following ODE:

N N

i=1

where Z;,®; € RE and a(-) is the drift of the
Stratonovich equivalent of Equation . Formula of
a(-) in terms of the It6 SDE’s drift and diffusion is
given in Appendix[A] Note that the drift of the It6 and
Stratonovich equivalents are same when B(-) is not a
function of the state X;.
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Convergence to the Stratonovich SDE in the multivari-
ate case is not guaranteed in general (Lyons et al.,2014)).
However, theorem 2.3.1 in [Shmatkov| (2006) states that
convergence for the multivariate case is guaranteed
when the sequence in Equation @ converges uniformly.
If one chooses to expand the Brownian motion using
Haar wavelets then convergence of this sequence is in-
deed uniform (Lyons et al., 2014; | McShane, |2020). This
is the Levy-Ciecelski construction of Brownian motion.
Note that in our experiments we did not observe a fail-
ure to converge to the Stratonovich limit while using
the KL basis function. Similar findings were reported
in [Lyons et al.| (2012).

Only a few terms in the series expansion in general cap-
tures the large scale oscillations whereas the remaining
terms determine the small-scale (high frequency) oscil-
lations. Thus, even without using a really large number
of terms in the expansion a good approximation p(X t)
to the true time ¢ marginal distribution p(X) can be
achieved. In Figure [l| we compare the marginal density
of the states of a Lotka-Volterra model (see section
obtained through the Euler-Maruyama and the
series approximation introduced here. Clearly, with
even N = 10 the approximation matches well.

4 INFERENCE USING MCMC

Note that the randomness in the model in Equation
is now encapsulated in the expansion coefficients
Z ;. Consequently, inference involving the above model
is no longer a “missing-data” problem that is gener-
ally solved using data-augmentation. Thus, we use
the ODE approximation of the SDE for estimating
the SDE parameters 6. We first assume that y is the
vector of noisy observation, at the M time-points, of
the solution X (0) := X(0,Z,x,) € RX of the ODE
given by Equation (1)), which approximates the actual
diffusion path X ~ X, where Z := {Z;}¥| and z is
the initial value. The task then is to infer the poste-
rior distribution of all the unknown parameters of the
ODE: 0,Z,xy. We can now write the joint posterior
distribution of (8, Z, xo) as

where the likelihood p(y|X (6)) is now both tractable
and differentiable, with respect to @,7Z, xy. Note that
the prior p(Z;) is N(0,Ixxx) by construction.

We can obtain samples from this posterior distribution
using a MCMC, sampler that targets the gradient of the
log posterior: Vg z z,{logp(0,Z,xoly)}, such as the
NUTS sampler. The marginal density p(0|y) can be
easily obtained by collecting the corresponding samples.
Moreover, we can obtain the posterior distribution of

the approximate sample path X(a)lgyz,zONP(QZ’mo‘y)
by solving the ODE using the parameter samples.

5 VARIATIONAL INFERENCE

Let us denote by © := (6, Z, ) the vector containing
all the unknown quantities that we want to estimate.
Using variational inference we can approximate p(©|y)
with a tractable distribution ¢(®]|A) from a family of
distributions ¢(-|A), indexed by A, by maximising the
evidence lower bound (ELBO) (Jordan et all [1999)
given by

L(X) = E[log p(y| X (©))p(©)] — E[log ¢(O|N)] (13)

where the above expectations are with respect to
q(®|A). If gradient of the ELBO, w.r.t the variational
parameter A, is available then variational inference can
be formulated as a simple gradient descent problem as
follows:

A= A +9VaL(A), (14)

where ~ is a learning rate. However, for an ODE the
above expectations are intractable. Following |Ghosh
et al.| (2021)), we apply the reparameterisation trick
(Kingma et al.| |2014; Rezende et all 2014; [Titsias and
Lazaro-Gredilla, 2014) to obtain a Monte Carlo (MC)
estimate, using L samples, of the gradient of the ELBO:

L
1 .
VaLuc(A) = 7 Y Ve | logp(y| X (©1)p(©') -
=1
log q(QZIA)}VAg(A, ")),

(15)
where ©' is the output of an invertible, differentiable
function g(X, €)) and V) ~ p(€)-a parameter free dis-
tribution. Substituting this MC estimate in Equation
, we can find the optimal A* using the following
stochastic optimisation update:

A= A +9VaLlyc(A). (16)

5.1 Choice of The Approximation

To place prior distributions with support on positive re-
als we need to transform the support of ® to the uncon-
strained real line RP: T : RQO — RP | and subsequently
obtain a transformed parameter vector & = T'(®). The
posterior density p(®ly), with the above transforma-
tion, is given by

p(©ly) o ply| X (T (€)p(T(€)) | det T (€) |,

(17)
where Jp-1(&) is the Jacobian of the inverse of T'. This
transformation lets us choose an approximating distri-
bution ¢(&|A) with unconstrained support, such as a
Gaussian.
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Figure 1: Comparison of the marginal density of the Lotka-Volterra model states at time T=30. We used 1000

samples to evaluate these densities.

Gaussian Approximation: Parameters of a nonlin-
ear ODE such as Equation are often strongly cor-
related. Moreover due the nature of our approximation
we also expect correlations to exist between the expan-
sion coefficients Z and ©. For nonlinear ODEs; a full-
rank Gaussian density as the variational approximation
was shown in |Ghosh et al| (2021) to be able to capture
the correlation structure of the posterior amply. Thus,
folowing |Ghosh et al.| (2021]) we also chose a full-rank
Gaussian approximation: ¢(&€|A) = N (&|p, X), where
A= (u, E) are the variational parameters. To ensure
that the covariance matrix ¥ remains positive semidefi-
nite, we parameterise the covariance using Cholesky fac-
torisation, 3 = LL'. To ensure uniqueness we take the
logarithm of the diagonal elements of L. The required
reparameterisation, & = g(\, €), then simply follows as
the affine transform & = p + Le, €~ N(0,1).

5.2 Gradient Evaluations

To carry out inference we need to obtain the gradient
of a scalar function: i) the log posterior in the MCMC
case or, ii) the ELBO for variatonal inference with
respect to the model parameters ® or the variational
parameters A. This in turn requires the propagation
of gradients through the ODE. This can be efficiently
carried out using the adjoint sensitivity analysis (Chen
et al 2018} Rackauckas et all [2018 |Ghosh et all
2021)), which is the continuous formulation of reverse-
mode automatic differentiation. We describe this for
obtaining the gradient of the ELBO w.r.t ®. Note
that the downstream gradients, %, can be trivially
obtained using AD. Gradient of the prior and likelihood
densities can be obtained analogously.

Consider a cost function, such as the ELBO, that de-
pends on the ODE solution at the measurement times:
C(X) = >, c(Xy,), where the sum appears due the

factorisation of the likelihood over the time axis. In
adjoint sensitivity analysis (Rackauckas et al., |2018)
the gradient of the above scalar-valued cost function
C(-), whose input is the ODE solution, can be com-
puted directly. The first step is to solve a backwards
ODE, the adjoint problem:

da(t)
dt

T Of
X’

where we use the shorthand f to denote denote the
velocity field of the ODE in Equation . Further-
more, at each experimental time point ¢; this backward
ODE is perturbed by % The gradient of the cost
function with respect to the ODE parameters can be

evaluated by another quadrature as follows:

0f (X4, © bt

Tif(ag ) +Z/t a(t)Tg—({)dt.

(19)
Note that a continuous solution of the system and
the adjoint states is required for the integration above.
Alternatively, the system, the adjoint and the cost
function ODEs can be solved simultaneously backward
in time (Chen et al., [2018)).

= —aft)

(18)

dC
T = afto)

i i

6 BENCHMARKING

We begin by testing the efficacy of the series approx-
imation for the task of parameter estimation. We
conducted two sets of experiments. In the first set we
compared the proposed MCMC and variational infer-
ence schemes with the particle marginal Metropolis-
Hastings (PMMH) algorithm (Andrieu et al., |2010;
Golightly and Wilkinson, [2011)), whose estimates of
0, X was treated as gold standard and a proxy for the
true unknown posterior. In the second set of experi-
ments we compared performance of the the proposed
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variational formulation with the one proposed in |Li
et al.| (2020).

For the first set of experiments we used two biological
SDEs: (i) the stochastic Lotka-Volterra model, and (ii)
the stochastic SIR epidemic model. Both these models
have non-diagonal diffusion and thus is less amenable
to the method of [Li et al.| (2020) (see section 3.3 in
that paper). Also, these models have state dependent
diffusion term and thus their drifts were converted to
the Stratonovich equivalents. For the second set of
experiments we chose (i) the SDE associated with the
Ornstein-Uhlenbeck (OU) process, and (ii) a SDE de-
scribing a bi-stable double-well system whose marginal
density is multi-modal. We used simulated data for all
the models except the SIR one.

While applying the PMMH algorithm, we used a Boot-
strap particle filter (Gordon et al., |1995; |Golightly
and Wilkinson, [2011)) which uses the Euler-Maruyama
discretisation as the proposal (Golightly and Wilkin-
son, [2011)) for X and we updated 0 using an adaptive
random-walk Metropolis-Hastings algorithm.

Having run the PMMH, we then compared with this
gold standard the estimates of the posterior obtained
by applying MCMC using the NUTS algorithm and
variational inference, both using the proposed series
approximation: which we denote as SA-ODE. By
VI we denote the proposed variational inference using
SA-ODE, and by pathVI we denote the variational
inference method of |Li et al.|(2020). Further details of
MCMC and VT settings, for each experiment, is given
in Appendix

A crucial algorithmic hyperparameter for the proposed
method is the number of basis functions IV in the trun-
cated series expansion. We chose N by comparing
the time 7" marginal densities obtained by solving (i)
the SA-ODE and (ii) the original SDE using Euler-
Maruyama discretisation, based on some trial parame-
ters sampled from the prior. We used the N for which
we found reasonable agreement between the marginal
densities. For all the models except the double-well this
was N > 8. However, for the double-well, which has
a multi-modal marginal density, N > 50 was needed.
Thus, we set N = 10 for all the models except double-
well, for the later we set N = 50. Furthermore, we
carried out a sensitivity analysis of the posterior esti-
mates of the Lotka-Volterra model to the choice of N.
This sensitivity analysis is furnished in Appendix
We defer further discussion on the implications of the
choice of N till section [7

For all the models we have used the KL basis function
(see Equation {4]) to implement the SA-ODE. In Ap-
pendix we have compared the posterior estimates
for the Lotka-Volterra, as obtained by NUTS, between

the KL and the Haar wavelet basis. The estimates were
indistinguishable. However, the wavelet basis function
requires stricter error tolerances for the ODE solver.
For this reason we decided to use the KL basis function
throughout. Note that the OU and double-well SDEs
are univariate and thus convergence is guaranteed for
both the KL and wavelet functions. Finally, we have
set the value of T in Equation to be the end-point
of the chosen time interval for each of the models.

We used the numpyro probabilistic programming li-
brary to apply NUTS and variational inference for the
ease of comparison. Furthermore, we used a jax im-
plementation of the Dormand-Prince adaptive ODE
solver for integrating the SA-ODE. This solver pro-
vides an implementation of adjoint sensitivity that
is needed for applying NUTS and variational infer-
ence. For the PMMH algorithm we implemented a
vectorised particle filter in jax and implemented the
adaptive MCMC in Python. The code is available at
https://github.com/sgbgl0/sdeinference.

6.1 Stochastic Lotka-Volterra Model

The stochastic Lotka—Volterra model (Wilkinsonl, [2018)
has been widely used for benchmarking (see [Fearnhead
et al.| (2014); Giagos (2010))). This model describes a
population comprising of two competing species: preda-
tors which die with rate ¢ and reproduce with rate
c1 by consuming prey, which in turn reproduce with
rate cs. This system can be defined using the following
drift and diffusion terms (see (Wilkinson, [2018)) for
derivation):

_ Clth — CQX%XE
(X, 0) = LQXQXE — 3 X2]’
C1Xt1 + C2Xt1Xt2

—CQthXtQ

_CQth th
CgXE —I—CQthXtQ ’
(20)
where the state vector X; = (X}, X?) denotes the
prey and predator species respectively. The parameter
vector is the rate constants: 8 = (c1,co,c3), and the
task is to estimate these given a noise corrupted sample
path from the above system. We generated such a
sample path using the Euler-Maruyama discretisation,
with initial values o = (100.,100.), between the time
interval [0: 0.5 : 50]. A set of 10 evenly spaced values
from this path corrupted with Gaussian noise with o =
10 constitute the observations y. Following |Golightly
and Wilkinson| (2011) we consider xy, o to be known
and thus we are left with estimating the rate constants
and the expansion coefficients.

B(X,,0) = {

The likelihood, for the series approximation, is a Gaus-
sian, p(y|0, Z,0) =[], N(X(t;;0,Z),021), where I is
a 2 x 2 identity matrix. We placed the following priors
on the rates: ¢; ~ Beta(2,1) ¢2 x 100 ~ Half (0, 1)
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and c3 ~ Beta(1,2). The priors on the expansion
coefficients are just standard Gaussians.

Summaries of the posterior marginals are furnished in
Table|ll Plots of the posterior diffusion paths are given
in Appendix We noticed close match between
the posteriors estimated with the series approxima-
tion to that of the PMMH. The estimates obtained
using NUTS, however, are closer to the gold standard.
NUTS produced a relative ESS (averaged over the three
parameters) of 0.89 and PMMH produced 0.05. We
repeated the inference process using further realisations
of the artificial noise. Additional results are furnished

in Appendix [B:3]

Runtimes of the competing algorithms are furnished in
Table 2l The large difference between the runtimes of
PMMH and NUTS/VI is due to the additional com-
putational expense incurred by the particle filter, in
comparison to solving the SA-ODE, at each step of
the MCMC. However, this additional computational
expense can be reduced by implementing the particle
filter on a GPU (or a high-performance computing
cluster).

6.2 The SIR Compartmental Model

The SIR model (Anderson et all [1992) of infectious
disease models the number of susceptible (.5), infected
(I), and recovered (R) people in a population subjected
to an epidemic. The stochastic version of the SIR
model, for a population of N people, can be defined
using an SDE with the following drift and diffusion
terms (see [Fuchs| (2013)) for derivation):

[ -BS,

(X, 6) = [ﬁstft - ’tﬂt] ’ (21)
1 [ B8, —BS:1

BOxe0) = | T35l s s

where the infection 8 and recovery ~ rates are unknown
parameters. Also, we have N = S; + I; + R;. We used
this SDE to model an outbreak of influenza at a boys
boarding school in 1978 (Jackson et al.l[2013). This par-
ticular dataset was previously used for benchmarking in
Ryder et al.| (2018)). This data consists of the number of
infections for a period of 14 days. The population size
is N = 763. In addition to 3, v we also estimated the
fractional initial susceptibility, sg = So/N, assuming
the initial recovered fraction ro = 0 and thus ig = 1—sg.
As this is count data we have used a Poisson likelihood
p(y| 8,7, s0, Z) = Poisson(I;), and placed the following
priors: 3,y ~ Gamma(2,2) and so ~ Beta(2,1).

Summaries of the posterior marginals are presented
in Table [I The model fit plot is shown in Appendix
In this example NUTS produced a relative ESS
(again averaged over the three parameters) of 0.95

and PMMH produced 0.05. Runtimes are furnished
in Table [2| where we noticed similar speedup as was
found in the case of Lotka-Volterra model.

6.3 Comparison with an Alternative
Variational Formulation

For the purpose of comparing VI with the pathVI
method we used the OU process given by the following
SDE:

dl’t = 01(92 — il?t)dt + 03th, (22)

with unknown parameters 8 = (61,6s,03), and the
double-well SDE given by

dry = 4x4(0) — x2)dt + O2d Wy, (23)

with unknown parameters 8 = (1, 65). For both these
SDEs we simulated noisy data by adding Gaussian
noise with o = 0.05 to the diffusion obtained between
the time interval [0 : 0.1 : 10] with initial value zg = 0.
We repeated the above to generate 5 datasets for each
model. We estimated xg, o for both models.

In|Li et al.| (2020) the pathVI algorithm was formulated
to produce a point estimate of the parameters and
an approximate posterior distribution of the latent
sample path. Thus, we compared the accuracy of
the point estimates of the parameters and posterior
distribution of the sample path obtained using VI and
pathVI. We also compared the performance of both
these methods against PMMH. For VI and PMMH
we used a MAP estimate of the parameters. For both
the SDEs, while running PMMH and VI, we placed
the following priors: 6 ~ Gamma(2,2), zo ~ N(0,1),
o ~ Half N(0,1), and we have a Gaussian likelihood,
p(Yl6. Z,xp,0) = [[; N(2(t:; 0, Z), 0?).

In pathVI one has to construct a variational approxi-
mation as a posterior SDE. This posterior SDE shares
the same diffusion term with the prior SDE: which
is the model whose parameters are to be inferred (as
point estimates). However, one has to come up with
a function describing the drift term in the variational
approximation. Following |Li et al.| (2020) we chose
the drift term as a mlp. Specifically we used a mlp
with two hidden layers having 50 units each and a soft-
plus nonlinearity. We tried some other combinations
of layers/units/nonlinearity, but did not notice any
significant change in performance. We used the imple-
mentation of pathVI found in the torchsdeﬂ package.

We compared the point estimates, obtained by the com-
peting methods, by calculating the Euclidean distances
between the ground truth 8 and its point estimate 6.
We summarised these distances across the five datasets,
for both models, in Figure [3]| We noticed that VI was

"https://github.com/google-research/torchsde
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Table 1: The mean + standard deviation of the posterior distribution of each parameter for the Lotka-
Volterra and SIR models. VI and NUTS are using the SA-ODE model. Posterior distribution for each

method is represented, pointwise, by 1000 samples.

THE SIR MODEL

0 TRUE VALUE PMMH

VI NUTS

8 - 1.8427 £0.0719 1.8069 £0.1319  1.8479 £ 0.1413

¥ - 0.4875 4+ 0.0190 0.4849 4+ 0.0278  0.4851 £ 0.0258

So - 0.9964 4+ 0.0010  0.9957 4+ 0.0010  0.9959 £+ 0.0014

THE STOCHASTIC LOTKA-VOLTERRA MODEL

c TRUE VALUE PMMH VI NUTS
c1 0.5 0.5081 4+ 0.0261  0.4846 £ 0.0205 0.4961 £ 0.0219
100 X c2 0.25 0.2492 +0.0113  0.2417 +0.0092 0.2454 4+ 0.0096
c3 0.3 0.2965 4+ 0.0159  0.2872 £0.0115 0.2924 + 0.0126

able to produce more accurate estimates in comparison
to pathVI. Moreover, VI’s estimates were much more
closer to the ones produced by PMMH. In Figure [2] we
have shown the posterior distributions of the latent dif-
fusion’s sample path for two (out of the 5) datasets. It
is evident from these plots that pathVI performs poorly
in estimating the sample path of the latent diffusion.
VI, in comparison, produced an estimate of the sample
path that was closer to the gold standard produced
by PMMH. The pathVI method minimises the KL di-
vergence between the true and approximate posterior
diffusion paths. Note that VI also minimises this KL
divergence between the true and approximate posterior
paths, implicitly, by minimising the divergence between
the true and approximate posterior distribution of the
coefficients. Constructing an adequate variational ap-
proximation of the posterior diffusion path, as is done
in pathVI through the usage of a posterior SDE, is
much more challenging than constructing a variational
approximation of the posterior of the coefficients, which
have a standard Gaussian prior. For this reason we no-
ticed significantly better quality of estimates obtained
using VI, especially for the double-well model which
has a multi-modal time ¢ marginal distribution p(z;).

Table 2: Runtimes of PMMH, NUTS and VI for
the stochastic lotka-Volterra (LV) and SIR models.
Respective parameter estimates are given in Table [I]
These were run on a 3.6 GHz machine with 16 GB
memory.

RUNTIMES IN SECONDS

ExampLe PMMH VI NUTS
LV 4919 75 203
SIR 3676 78 292

7 DISCUSSION

Clearly there is a trade-off between speed and accuracy
of VI, in comparison to NUTS. However, this trade-
off is not unique to this method and is a well known
limitation of variational inference.

Applying the proposed method to high-dimensional
SDEs may appear to be challenging considering the
requirement of inferring a large number of coefficients.
However, note that using any data-augmentation based
inference method for SDEs, one has to infer the sample
path of the latent diffusion, in addition to the model
parameters. The sample path for a high-dimensional
SDE scales much more poorly, in comparison to the
coefficients, and inference is thus more challenging in
comparison to the proposed method. The proposed
method infers the (approximate) sample path through
the coefficients.

Theoretical bounds on the error between the posterior
induced by a Gaussian process and its series approxi-
mation can be found in the PDE constrained inverse
problem literature. See for example [Dodwell et al.
(2015) and the references therein. Similar bounds, with
respect to IV, can be derived for the proposed SA-ODE
based inference. Alternatively, one can set a very large
N in the SA-ODE and then approach the resulting
high-dimensional sampling problem using a dimension-
independent sampler (Cotter et al 2013} | Titsias and
Papaspiliopoulos, 2018)). Note that the complexity of
SA-ODE does not depend on N by construction. Our
simple recipe of comparing the time 7" marginal den-
sities (see Figure [l is found to be effective for the
models we have used. We also noticed that a threshold
value of N exists beyond which the increase in expan-
sion terms has little effect on the estimation quality.
This is reinforced through the sensitivity analysis (to
the choice of N) we carried out for the Lotka-Volterra
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Figure 2: Posterior distribution of the latent diffusion path, for two different datasets: (a-b) the OU process,
(c-d) the double-well system. Summaries of the posterior distribution are shown in Appendix
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Figure 3: Euclidean distances between the ground truth and point estimates found by the three alternative
methods for: (a) the OU process, (b) the double-well system. These distances are summarised across five

datasets, for each model.

model (see Appendix [B.2)).

8 CONCLUSION

We presented a Bayesian inference approach for SDEs
which replaces the SDE by a (random) ODE, render-
ing a tractable and differentiable likelihood. Using
this approach we re-purposed differentiable inference
algorithms for ODEs for the task of parameter estima-

tion of SDEs. When compared to the particle MCMC
algorithm, considered to be the state-of-the-art, we
recovered similar posterior estimates of the parame-
ters of a variety of SDEs. The proposed method also
outperforms a recently proposed variational inference
algorithm for SDEs, in regards to the accuracy of pa-
rameter estimates. In future work we want to develop
the proposed methodology towards constructing gener-
ative models for time series data.
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Supplementary Material:
Differentiable Bayesian inference of SDE parameters using a
pathwise series expansion of Brownian motion

A DRIFT OF STRATONOVICH SDE

The Stratonovich SDE given by
dX] = a(X},0)dt+ Y /019 (Xy,0) 0 dW!, ij=1,...K, (24)
j=1
with the same solutions as the K-dimensional Ito SDE driven by a K-dimensional Wiener process given by
dX} = a(X},0)dt + Y /b (Xy, 0)dW}, ij=1,...K, (25)
j=1
has a drift coefficient that is defined component-wise as
} . K& A /b (X, 0)}
a(X},0)dt = a(X},0)dt + Y Y /bR (X, 0) —Y— 2 (26)
k=1j=1 OXi

==+ VI KL basis NUTS KL basis
— VI Wavelet basis NUTS Wavelet basis
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Figure 4: Comparison of the marginal density of the Lotka-Volterra parameters as obtained by NUTS and VI,
using the wavelets (solid lines) and KL (dashed lines) basis function. The black vertical lines indicate the true

parameter values.
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B ADDITIONAL RESULTS FOR THE LOTKA-VOLTERRA MODEL

B.1 Wavelet Basis Function

For the multivariate case uniform convergence of the SA-ODE to the corresponding Stratonovich SDE is guaranteed
if one chooses Haar wavelets as an orthonormal basis in which to expand the driving Brownian motion (Lyons
et al., [2014). Thus, we wanted to compare the approximation achieved by using the KL basis function with that
of Haar wavelets. But, before we delve into the comparison, let us briefly introduce the Haar wavelets: which is a
complete orthonormal basis of L?[0,T.

The Haar wavelets are parameterised by two natural numbers: the scale n > 0 and the shift 0 < k < 2”. The first
wavelet is defined as
1 0<t<Z
Yoolt) =q—-1 T <t<T. (27)
0 otherwise

Further wavelets are defined by rescaling 1,  so that it is non-zero only on some sub-interval of [0, 7], while
ensuring that the wavelet still has unit norm. In general,

2n/2
t) = — 2" — kt). 28
wn,k( ) \/T 1/)0,0( ) ( )
Thus, 1, o is a copy of ¥ restricted to [0,7/2], and ), ; is a copy restricted to [T'/2,T]. Furthermore, we
add the constant function ¥, = ﬁ to form a complete basis. To be consistent with the notation introduced in
section (3| (main text) we set ¢y = v, dg = g, $3 = 11 o and so on.

To compare the wavelet and KL basis we ran NUTS and VI on the simulated dataset used in section (main
text), with the same algorithmic settings retained. We set N = 10 and T' = 50 as was done in section (main
text). Marginal densities of the parameters are plotted in Figure [4f Although we get similar estimates, as in
(Lyons et all [2014] 2012)), following which we used KL expansion throughout, the wavelets required stricter
error tolerances for the ODE solver. We thus recommend the usage of a stiff solver when using the wavelet
basis. Extension of AD for a stiff solver can be done using the custom op creation method of |(Ghosh et al.| (2021).
However, a JIT compiled solver, provided with Jax, is faster.

B.2 Sensitivity to Truncation of The Series: The Choice of N

To carry out this sensitivity analysis we used five realisations of the simulated dataset. The first one is used in
section (main text) and the estimates on the rest are summarised in section We ran the NUTS algorithm
with N = 3,5, 8, 10 respectively and measured the maximum mean discrepancy (MMD) to the corresponding
estimates obtained by PMMH for each dataset. We used the KL basis throughout and retained all algorithmic
settings for NUTS as in section (main text). MMD for specific choices of N are shown in Figure |5 It is
apparent that with N = 8 the MMD plateaus.

B.3 Results for Additional Datasets

To benchmark the methods with this model we used simulated data for which the corresponding estimates are
summarised in Table [1| (main text). In addition to this dataset we generated four more datasets using new
realisations of the artificial noise corruption. The MMD between the posterior distribution obtained using PMMH
and the ones obtained using VI/NUTS are shown in Figure @ All the algorithmic and model specific settings
were kept the same as was used in section (main text). Additionally in Table [3| we have summarised the
individual posterior distributions for each of these additional dataset.

C ADDITIONAL PLOTS FOR EACH MODEL

C.1 Plots of The Latent Diffusion for Lotka-Volterra Model

Here we evaluate the posterior predictive distribution of the latent diffusion X*(0)|0,Z,a:0~p(9,z,:l:o|y)a using the
SA-ODE approximation, on a finer grid ¢* than the observations. The posterior predictive distribution is
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Figure 5: Comparison of the effect of increasing the number of expansion terms N on the MMD between the
PMMH estimate and the estimates obtained from running NUTS, with NV = 3,5, 8,10, for the Lotka-Volterra
model. All estimates used 1000 samples from the posterior.
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Figure 6: Comparison of the MMD between the posterior distribution obtained using PMMH to the ones obtained
using NUTS/VI, for the stochastic Lotka-Volterra model. These MMDs are summarised across five datasets.

evaluated pointwise using samples obtained from running NUTS or drawn from the VI approximation. We used
the posterior distributions estimated using the simulated dataset that was used in section (main text). The

mean and the 95% credible intervals of X* are shown in Figure

C.2 Model Fit Plots for The SIR Model

We evaluated the posterior predictive distribution p(y*|y) on a finer time grid ¢t*, using the SA-ODE. Samples
of the posterior predictive distribution were evaluated pointwise using the posterior estimates obtained from
running NUTS and VI. Figure |8 summarises the mean and 95% credible intervals of p(y*|y).
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Table 3: The mean + standard deviation of the posterior distribution of each parameter for the Stochastic

Lotka-Volterra model, for each of the additional dataset.

DATASET 2
c TRUE VALUE PMMH VI NUTS
c1 0.5 0.5194 +0.0273  0.5026 £ 0.0205 0.5093 + 0.0224
100 X c2 0.25 0.2557 +0.0122  0.2477 £0.0092  0.2494 + 0.0095
cs3 0.3 0.2937 +0.0163  0.2883 £0.0125 0.2906 + 0.0132
DATASET 3
c TRUE VALUE PMMH VI NUTS
c1 0.5 0.5172 4£0.0213 0.4970 £ 0.0159 0.5210 4+ 0.0204
100 X c2 0.25 0.2540 4+ 0.0080  0.2432 £ 0.0067 0.2514 £ 0.0076
c3 0.3 0.3140 £ 0.0117  0.3048 £0.0101  0.3130 £ 0.0111
DATASET 4
c TRUE VALUE PMMH VI NUTS
c1 0.5 0.4696 4+ 0.0200 0.4628 = 0.0195 0.4574 £ 0.0205
100 X c2 0.25 0.2512 +0.0100  0.2499 £ 0.0077  0.2454 + 0.0087
c3 0.3 0.2836 +0.0134  0.2831 £0.0115 0.2778 £ 0.0127
DATASET 5
c TRUE VALUE PMMH VI NUTS
c1 0.5 0.5129 +0.0197  0.5291 £0.0162 0.5259 + 0.0216
100 X c2 0.25 0.2578 +0.0080  0.2646 £ 0.0067  0.2604 + 0.0080
cs3 0.3 0.3229 +0.0123  0.3281 £0.0099 0.3215 £ 0.0109
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Figure 7: Mean and 95% credible intervals of the posterior predictive distribution of the latent diffusion X *, for
the Lotka-Volterra model.

C.3 Summaries of the Posterior Distribution of OU/DW Sample Paths

Summaries of the posterior distribution (shown in Figure [2(a)| & in the main text) of the latent sample path
of the OU process, for two datasets, are shown in Figure [9) Summaries of the posterior distribution (see Figure

& [2(d)| in the main text) of the sample path for the double-well model, for two datasets, are shown in
Figure These distributions were summarised by the mean and the 95% credible intervals.
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Figure 8: Mean and 95% credible intervals of the posterior predictive distribution for the SIR model.

D FURTHER DETAILS OF THE EXPERIMENTS

For, variational inference we used the RMSprop (Tieleman and Hinton) 2016]) optimisation algorithm with a step
size of 1073, for the first set of experiments, and 10~2 for the second set. Our choice of RMSprop is motivated by
the findings in |Ghosh et al. (2021). For the variational inference method of (2020), we used the ADAM
optimisation (Kingma and Ba, 2015) with a learning rate of 10~2 that is exponentially decayed with rate 0.999
during each iteration.

For the stochastic Lotka-Volterra model we ran two chains of PMMH, each for 100,000 iterations from
slightly differing initial states. We ran the particle filter with 500 particles. We discarded the first 50,000 iterations
as burnin for each chain and thinned accordingly to have 1000 samples representing the gold standard posterior
estimate. For the SA-ODE two chains of NUTS were run for 1000 iterations (which is sufficient since NUTS is a
high ESS sampler) after an initial 1000 warmup iterations. The NUTS samples, from the two chains, are then
thinned to obtain 1000 samples. VI with the series approximation was run for 30,000 iterations with L = 1. For
plotting and summarising the posterior distributions, and comparing to the gold standard we used 1000 samples
from the variational approximation for this and the subsequent (SIR model) example.

For the stochastic SIR model we ran two chains of PMMH, each for 200,000 iterations, again started with
slightly different initial states. We ran the particle filter with 500 particles. In this case we discarded the first
100,000 iterations as burnin for each chain and thinned accordingly to obtain 1000 samples that represent the
gold standard. We used the same setup, as was used in the previous example, for applying NUTS and VI with
the series approximation.

For the OU and DW models we used 1000 samples from the variational approximation produced by VI
to obtain the MAP estimate. We also ran the PMMH algorithm for 100,000 iterations, with a burnin of 50,000
iterations, and thinned to obtain 1000 samples representing the gold standard estimate. Here we used 300 particles.
We then used these samples to obtain a corresponding gold standard MAP estimate as a baseline to compare the
variational methods. We ran both VI and pathVI for 2000 iterations with L = 50.
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Figure 9: Summaries of the posterior distributions of the latent path of the OU process for two different datasets.
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Figure 10: Summaries of the posterior distributions of the latent path of the double-well model for two different

datasets.
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