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Abstract

The sharing of scarce resources among multi-
ple rational agents is one of the classical prob-
lems in economics. In exchange economies,
which are used to model such situations,
agents begin with an initial endowment of re-
sources and exchange them in a way that is
mutually beneficial until they reach a com-
petitive equilibrium (CE). The allocations at
a CE are Pareto efficient and fair. Conse-
quently, they are used widely in designing
mechanisms for fair division. However, com-
puting CEs requires the knowledge of agent
preferences which are unknown in several ap-
plications of interest. In this work, we explore
a new online learning mechanism, which, on
each round, allocates resources to the agents
and collects stochastic feedback on their ex-
perience in using that allocation. Its goal
is to learn the agent utilities via this feed-
back and imitate the allocations at a CE in
the long run. We quantify CE behavior via
two losses and propose a randomized algo-
rithm which achieves sublinear loss under a
parametric class of utilities. Empirically, we
demonstrate the effectiveness of this mecha-
nism through numerical simulations.

1 Introduction

An exchange economy (EE) is a classical micro-
economic construct used to model situations where
multiple rational agents share a finite set of scarce
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resources. Such scenarios arise frequently for appli-
cations in operations management, urban planning,
crowd sourcing, wireless networks, and sharing re-
sources in data centers (Cohen and Cyert, 1965; Har-
ris et al., 1982; Simonsen, 2018; Dissanayake et al.,
2015; Georgiadis et al., 2006; Hussain et al., 2013). In
an EE, agents share a set of resources consisting of
multiple resource types. They begin with an initial
endowment and then exchange these resources among
themselves based on a price system. This exchange
process allows two agents to trade different resource
types if they find it mutually beneficial to do so. Under
certain conditions, continually trading in this manner
results in a competitive equilibrium (CE), where the
allocations have desirable Pareto-efficiency and fair-
ness properties. EEs have attracted much research
attention, historically since they are tractable mod-
els to study human behavior and price determination
in real-world markets, and more recently for design-
ing multi-resource fair division mechanisms (Debreu,
1982; Crockett et al., 2008; Tiwari et al., 2009; Budish
et al., 2017; Babaioff et al., 2019, 2021).

One of the most common use cases for fair division,
which will be especially pertinent in this work, occurs
in the context of shared computational resources. For
instance, in a data center shared by an organization,
we wish to allocate resources such as CPUs, memory,
and GPUs to different users who wish to share this
cluster in a way that is Pareto-efficient (so that the re-
sources are put into good use) and fair (for long-term
user satisfaction). Here, unlike in real world economies
where agents might trade with each other until they
reach an equilibrium, the equilibrium is computed us-
ing a central mechanism (e.g. a cluster manager)
based on the preferences submitted by the agents to
obtain an allocation with the above properties. In-
deed, fair division mechanisms are a staple in many
popular multi-tenant cluster management frameworks
used in practice, such as Mesos (Hindman et al., 2011),
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Quincy (Isard et al., 2009), Kubernetes (Burns et al.,
2016), and Yarn (Vavilapalli et al., 2013). Due to
this strong practical motivation, a recent line of work
has studied such fair division mechanisms for resource
sharing in a compute cluster (Chen et al., 2018; Ghodsi
et al., 2013; Parkes et al., 2015; Ghodsi et al., 2011),
with some of them based on exchange economies and
their variants (Zahedi et al., 2018; Gutman and Nisan,
2012; Lai et al., 2005; Varian, 1973).

However, prior work on EEs and fair division typi-
cally assumes knowledge of the agent preferences, in
the form of a utility function which maps an alloca-
tion of the m resource types to the value the agent
derives from the allocation. For instance, in the above
example, an application developer needs to quantify
how well her application performs for each allocation
of CPU/memory/GPU she receives. At best, doing
so requires the laborious and often erroneous task of
profiling their application (Delimitrou and Kozyrakis,
2013; Misra et al., 2021), and at worst, it can be in-
feasible due to practical constraints (Venkataraman
et al., 2016; Rzadca et al., 2020). However, having
received an allocation, application developers find it
easier to report feedback about the utilities based on
the performance they achieved. Moreover, in many
real-world systems, this feedback scheme can often be
automated (Hindman et al., 2011).

1.1 Contributions & summary of results

We study a multi-round mechanism for computing CE
in an exchange economy so as to generate fair and effi-
cient allocations when the exact utilities are unknown
a priori. A central mechanism is used to learn the user
utilities over time via feedback from the agents. At the
beginning of each round, the mechanism generates al-
locations; at the end of the round, agents report feed-
back on the allocation they received. The mechanism
then uses this information to better learn the prefer-
ences. In particular, we focus on applications for fair
division where a centralized mechanism can compute
an allocation of these resources on each round, say, by
estimating the utilities and finding their equilibria.

In this pursuit, we first formalize this online learning
task and construct two loss functions: the first LCE di-
rectly builds on the definition of a CE, while the latter
LPE is motivated by the fairness and Pareto-efficiency
considerations that arise in fair division. To make the
learning problem tractable, we focus on a parametric
class of utilities which include the constant elasticity of
substitution (CES) utilities which feature prominently
in the econometric literature and other application-
specific utilities used in the systems literature.

We develop a randomized online mechanism which ef-

ficiently learns utilities over rounds of allocations while
simultaneously striving to achieve Pareto-efficient and
fair allocations. We show that this mechanism achieves
Õ(
√
T ) loss for the two loss functions with both in-

expectation and high-probability upper bounds (The-
orems 4.1 and 4.2), under a general family of utility
functions. To the best of our knowledge, this is the
first work that studies CE without knowledge of user
utilities; as such different analysis techniques are nec-
essary. For instance, finding a CE is distinctly different
from a vanilla optimization task, and common strate-
gies in bandit optimization such as upper-confidence-
bound (UCB) based algorithms do not apply (details
in 4). Instead, our algorithm uses a sampling proce-
dure to balance the exploration-exploitation trade-off.
We develop new techniques both to bound the losses
and to analyse the algorithm. Finally, we corroborate
these theoretical insights with empirical simulations.

1.2 Related work

Our work builds on a rich line of literature at the inter-
section of microeconomics and machine learning. This
richness is not surprising: many real world systems
are economic and multi-agent in nature, where deci-
sions taken by or for one agent are weighed against the
considerations of others, especially when these agents
have competing goals such as in resource allocation,
matching markets, and in auction-like settings.

As in this work, several works have studied online
learning formulations to handle situations where the
agents’ preferences are not known a priori, but can
be learned from repeated interactions (Dudik et al.,
2017; Kakade et al., 2010; Balcan et al., 2016; Babaioff
et al., 2013; Athey and Segal, 2013; Kandasamy et al.,
2020a). Our setting departs from these as we wish to
learn agent preferences in an exchange economy, with
a focus on designing fair division mechanisms.

Since the seminal work of Varian (1973), fair division of
multiple resource types has received significant atten-
tion in the game theory, economics, and computer sys-
tems literature. One of the most common perspectives
on this problem is as an exchange economy (or as a
Fisher market, which is a special case of an EE). More-
over, fair allocation mechanisms have been deployed
in many practical resource allocation tasks when com-
pute resources are shared by multiple users. Due to
space constraints, we defer a more detailed overview
on this line of works in Appendix E.1.

Notably, in all of the above cases, an important re-
quirement for the mechanism is that agent utilities be
known ahead of time. Some work has attempted to
lift this limitation by making explicit assumptions on
the utility, but it is not clear that if these assumptions
hold in practice (Le et al., 2020; Zahedi et al., 2018).
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Recently, Kandasamy et al. (2020b) provides a gen-
eral method for learning agent utilities for fair division
using feedback. However, they only study a single-
resource setting and do not do not explore multiple re-
source types. Crucially, in the multi-resource setting,
one agent can exchange a resource of one type for a dif-
ferent type of resource from another user, so that both
are better off after the exchange. Thus, learning in a
multi-resource setting is significantly more challenging
than the single-resource case since there is no notion
of exchange, and requires new analysis techniques.

2 Background

We first present some necessary background material
on exchange economies, their competitive equilibria,
and fair division mechanisms.

2.1 Exchange economies

In an exchange economy, we have n agents and m di-
visible resource types. Each agent i ∈ [n] has an en-
dowment, ei = (ei1, . . . , eim), where eij can be viewed
the amount of resource j agent i brings to the econ-
omy for trade. In the shared compute cluster example,
ei may represent agent i’s contribution to this cluster.
Without loss of generality we assume

∑
i∈[n] ei1 = 1

so that the space of resources is denoted by [0, 1]m.

We denote an allocation of these resources to the n
agents by x = (x1, x2, . . . , xn), where xi ∈ [0, 1]m and
xij denote the amount of resource j that is allocated to
agent i. The set of all feasible allocations is therefore
X = {x :

∑m
i=1 xij 6 1, xij > 0,∀i ∈ [n], j ∈ [m]}.

An agent’s utility function is simply ui : [0, 1]m →
[0, 1], where ui(xi) represents her valuation for an al-
location xi she receives. Here ui is non-decreasing,
i.e., ui(xi) 6 ui(x′i) for all xi 6 x′i element-wise (more
allocations will not hurt).

In an exchange economy, agents exchange resources
based on a price system. We denote a price vector
by p, where p ∈ Rm+ and 1>p = 1 (the normalization
accounts for the fact that only relative prices matter).
Here pj denotes the price for resource j. Given a price
vector p, an agent i has a budget p>ei, which is the
monetary value of her endowment according to the
prices in p. As this is an economy, a rational agent will
then seek to maximize her utility under her budget:

di(p) = arg max
xi∈[0,1]m

ui(xi) subject to p>xi 6 p
>ei. (1)

While generally, the preferred allocations di(p) form
a set, for simplicity we will assume it is a singleton
and treat di as a function which outputs an alloca-
tion for agent i. This is justified under very general

conditions (Mas-Colell et al., 1995; Varian and Varian,
1992). We refer to di(p) chosen in the above manner
as the agent i’s demand for prices p.

Competitive equilibria – definition, existence
and uniqueness: A natural way to allocate re-
sources to agents is to set prices p for the resources, and
have the agents maximize their utility under this price
system. That is, we allocate x(p) = (x1, . . . , xn). Un-
fortunately, such an allocation may be infeasible, and
even if it were, it may not result in an efficient alloca-
tion. However, under certain conditions, we can com-
pute a competitive equilibrium (CE), where the prices
have both of the desired properties:

Definition 2.1 (Competitive (Walrasian) Equilib-
rium). A CE is a pair of allocations and prices (x?, p?)
such that (i) the allocations are feasible and (ii) all
agents maximize their utilities under the budget in-
duced by prices p?. Precisely,∑

i∈[n]

x?i,j 6
∑
i∈[n]

eij = 1, ∀ j ∈ [m],

x?i = di(p
?), ∀ i ∈ [n].

Some definitions of a CE require that the first condi-
tion above being an exact equality (e.g., (Mas-Colell
et al., 1995)). However, when the utilities are strictly
increasing (which will be the case in the sequel), both
definitions coincide (Varian and Varian, 1992).

Utilities. In general, CEs do always exist but may
not be unique. However, one important class of utili-
ties that guarantee this condition with much attention
in the fair division literature is the constant elastic-
ity of substitution (CES) utility. Due to its favorable
properties, CES utilities are widely-studied in many
fair division works, and most of the existing algorithms
that generate fair and efficient allocations assume CES
utilities or its sub-classes (Varian and Varian, 1992;
Mas-Colell et al., 1995). CES utilities are also ubiqui-
tous in the microeconomics literature; due to this flex-
ibility in interpolating between perfect substitutability
and complementary, they are also able to approximate
several real-world utility functions. Moreover, compu-
tationally, there are efficient methods for computing a
CE in the CES and related classes (Zhang, 2011; Za-
hedi et al., 2018). In contrast, even when CE exist,
they may be hard to find under more general classes
of utilities (Varian and Varian, 1992).

Example 2.2 (CES utilities). A CES utility takes the

form ui(x) =
(∑m

j=1 θijx
ρ
i

)1/ρ
where ρ is the elasticity

of substitution, and θi = (θi1, . . . , θim) is an agent-
specific parameter. When ρ = 1, this corresponds to
linear utilities where goods are perfect substitutes. As
ρ→∞, the utilities approach perfect complements.
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2.2 Fair division

We describe exchange economies which are used in
fair-division mechanisms. We first formally define the
fair division problem.

In a standard mechanism for fair division when the
utilities are inputs, each agent truthfully1 submits her
utility ui to the mechanism. The mechanism then re-
turns an allocation x ∈ X that are not only efficient
but also fair, which satisfies the following two require-
ments: sharing incentive (SI) and Pareto-efficiency
(PE). An allocation x = (x1, . . . , xm) satisfies SI if
the utility an agent receives is at least as much as her
utility when using her endowment, i.e. ui(xi) > ui(ei).
This simply states that she is never worse off than if
she had kept her endowment to herself, so she has the
incentive to participate in the fair division mechanism.

A feasible allocation x is said to be PE if the utility of
one agent can be increased only by decreasing the util-
ity of another. Rigorously, an allocation x dominates
another x′, if ui(xi) > uj(x

′
i) for all i ∈ [n] and there

exists some i ∈ [n] such that ui(xi) > ui(x
′
i). An allo-

cation is Pareto-efficient if it is not dominated by any
other point. We denote the set of Pareto-efficient allo-
cations by PE . One advantage of the PE requirement,
when compared to other formalisms which maximize
social or egalitarian welfare, is that it does not com-
pare the utility of one agent against that of another.
The utilities are useful solely to specify an agent’s pref-
erences over different allocations.

EEs in fair division: The above problem descrip-
tion for fair division naturally renders itself to a so-
lution based on EEs. By treating the resource allo-
cation environment as an exchange economy, we may
compute its equilibrium to determine the allocations
for each agent. Then, the SI property follows from the
fact that each agent is maximizing her utility under
her budget, and an agent’s endowment (trivially) falls
under her budget. The PE property follows from the
first theorem of welfare economics (Varian and Var-
ian, 1992; Mas-Colell et al., 1995). Several prior works
have used this connection to design fair-division mech-
anisms for many practical applications (Varian, 1973;
Crockett et al., 2008; Zahedi et al., 2018).

Computing a CE: In order to realize a CE allo-
cation in a fair division mechanism, the mechanism
needs to compute a CE given a set of utilities. One
way to do this is via tatonnement (Varian and Varian,
1992). While there are general procedures, such as

1Unlike some previous works on fair division (Parkes
et al., 2015; Kandasamy et al., 2020b; Ghodsi et al., 2011),
we do not study strategic considerations, where agents may
attempt to manipulate outcomes in their favor by falsely
submitting their utilities.

tatonnement (Varian and Varian, 1992), they are not
guaranteed to converge to an equilibrium even when it
exists; moreover, even when they do, the rate of con-
vergence can be slow. This has led to the development
of efficient procedures for special classes of functions.
One such method is proportional response dynamics
(PRD) (Zhang, 2011; Zahedi et al., 2018) which con-
verges faster under CES utilities (Zhang, 2011) and
other classes of utilities (Zahedi et al., 2018) when
ei = αi1m for all i ∈ [n] (with

∑
i αi = 1). In fact, in

our evaluations, we adopt PRD for computing a CE,
which is a subroutine of the learning algorithm.

We note that in the context of fair division, the CE
allocations are more pertinent than the CE prices.
While the prices are used to compute fair allocations,
they are not used directly in their own right.

3 Online Learning Formulation

We formalize online learning an equilibrium in an ex-
change economy under bandit feedback, when the ex-
act agent utilities are unknown a priori. We consider a
multi-round setting, where in each round t, the mech-
anism selects (xt, pt), where xt = (xt,1, . . . , xt,n) ∈ X
are the allocations for each agent for the current round,
and pt are the prices for units of each resource.

The agents, having experienced their allocation, re-
port stochastic feedback {yt,i}i∈[n], where yt,i is σ sub-
Gaussian and E[yt,i|xt,i] = ui(xt,i). The mechanism
then uses this information to compute allocations for
the next round. As described in Section 1, this set up
is motivated by use cases in data center resource allo-
cations, where jobs (agents) cannot state their utility
upfront, but can report feedback on their performance
in an automated way.

Going forward, we slightly abuse notation when re-
ferring to the allocations. When i ∈ [n] indexes an
agent, xi = (xi1, . . . , xim) ∈ [0, 1]m denotes the al-
location to agent i. When t indexes a round, xt =
(xt,1, . . . , xt,n) ∈ X will refer to an allocation to all
agents, where xt,i = (xt,i,1, . . . , xt,i,m) ∈ [0, 1]m de-
notes i’s allocation in that round. The intended mean-
ing should be clear from context.

3.1 Losses

We study two losses for this setting. The first loss
is based directly on the definition of an equilibrium
(Def. 2.1). For a ∈ R, denote a+ = max(0, a). We
define the CE loss `CE of an allocation–price pair (x, p)
as the sum, over all agents, of the difference between
the maximum attainable utility under price p and the
utility achieved by allocation x. The T -round loss LCE

T
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is the sum of `CE(xt, pt) losses over T rounds. We have:

`CE(x, p)
def
=

n∑
i=1

(
max

x′i:p
>x′i6p

>ei
ui(x

′
i)− ui(x)

)+

,

LCE
T

def
=

T∑
t=1

`CE(xt, pt).

(2)

It is straightforward to see that for a CE pair (x?, p?),
we have `CE(x?, p?) = 0. As this loss is based di-
rectly on the definition of a CE, it captures many of
the properties of a CE.

Our second loss is motivated by the fair division use
case. Recall from Sec. 2.2 that in fair division, while
prices are useful in computing CE allocations, they
have no value in their own right. Therefore, we will
motivate our loss function based on the sharing incen-
tive (SI) and Pareto-efficiency (PE) desiderata for fair
division. It is composed of two parts. We define the SI
loss `SI for an allocation x as the sum, over all agents,
of how much they are worse off than their endowment
utilities. We define the PE loss `PE for an allocation x
as the minimum sum, over all agents, of how much they
are worse off than some Pareto-efficient utilities. Next,
we define the fair division loss `FD as the maximum of
`SI and `PE. Finally, we define the T -round loss LFD

T

for the online mechanism as the sum of `FD(xt) losses
over T rounds. We have:

`SI(x)
def
=

n∑
i=1

(ui(ei)− ui(xi))+
,

`PE def
= inf

x′∈PE

n∑
i=1

(ui(x
′
i)− ui(xi))

+
,

`FD(x)
def
= max

(
`PE(x), `SI(x)

)
,

LFD
T

def
=

T∑
t=1

`FD(xt). (3)

Note that individually achieving either small `SI or
`PE is trivial: if an agent’s utility is strictly increas-
ing, then by allocating all the resources to this agent
we have zero `PE as such an allocation is Pareto-
efficient; moreover, by simply allocating each agent
their endowment we have zero `SI. In `FD, we re-
quire both to be simultaneously small which neces-
sitates a clever allocation that accounts for agents’ en-
dowments and utilities. One intuitive interpretation
of the PE loss is that it can be bounded above by
the L1 distance to the Pareto-front in utility space;
i.e. denoting the set of Pareto-efficient utilities by
UPE = {{ui(xi)}i∈[n];x ∈ PE} ⊂ Rn, and letting
u(x) = (u1(x1), . . . , un(xn)) ∈ Rn, we can write,
`PE(x) 6 minu∈UPE

‖u− u(x)‖1.

The FD loss is more interpretable as it is stated in
terms of the SI and PE requirements for fair division.

On the other hand, the CE loss is less intuitive. More-
over, in EEs, while prices help us determine the allo-
cations, they do not have value on their own. Given
this, the CE loss has the somewhat undesirable prop-
erty that it depends on the prices pt. That said, since
the CE loss is based directly on the definition of a
CE, it captures other properties of a CE that are not
considered in `FD (see an example in Appendix E.3).
It is also worth mentioning that either loss cannot be
straightforwardly bounded in terms of the other.

Note that we have presented a basic version of the on-
line learning framework as it provides a simplest plat-
form to study the learning problem of efficient and fair
allocations. For instance, one could consider richer set-
tings where the utilities might change over time with
certain contextual information. While these settings
are beyond the scope of this work, we believe the anal-
ysis techniques and intuitions developed here are also
insightful in analysing other variant settings.

3.2 Model and assumptions

To make the learning problem tractable, we make some
additional assumptions on the problem. We consider
the following parametric class of utility functions P.

Let φj : [0, 1] → [0, 1] be an increasing func-
tion which maps the allocation xij of resource j
to agent i to some feature value. For brevity, we
will write φ : [0, 1]m → [0, 1]m, such that φ(xi) =
(φ1(xi1), φ2(xi2), . . . , φm(xim)); Next, let µ : R+ →
[0, 1] be an increasing function. Finally, let Θ ⊂ Rm+
be a set of positive parameters. Then, we consider the
following class of utilities P:

P =

{
{ui}ni=1; ui(xi) = µ

(
θ>i φ(xi)

)
for some θi ∈ Θ, ∀i ∈ [n]

} (4)

An agent’s utility then takes the form ui(xi) =
µ(θ∗i

>φ(xi)) where the featurization φ and the func-
tion µ are known, but the true parameters θ∗i ∈ Θ are
unknown and need to be learned by the mechanism.

We consider the above class of functions for the follow-
ing reasons. First, observe that it represents a valid
class of utilities in that for all positive θ, the utili-
ties are increasing in the allocations. Second, a CE
is guaranteed to exist uniquely in this class. Third,
from a practical point of view, it subsumes a major-
ity of utilities studied in the fair division literature,
such as linear utilities, the CES utilities from Ex-
ample 2.2 (Crockett et al., 2008; Tiwari et al., 2009;
Budish et al., 2017; Babaioff et al., 2019, 2021), and
other application-specific utilities (Zahedi et al., 2018;
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Venkataraman et al., 2016), Fourth, also from a prac-
tical point of view, the CE can be efficiently computed
on this class (Zhang, 2011). Finally, it also allows us
to leverage techniques for estimating generalized linear
models in our online learning mechanism (Chen et al.,
1999; Filippi et al., 2010).

We will also assume the following regularity condi-
tions on P to avoid some degenerate cases in our
analysis. First, µ is continuously differentiable, it
is Lipschitz-continuous with constant Lµ, and Cµ =
infθ∈Θ,x∈X µ̇

(
θ>φ(x)

)
> 0. Second, Θ ⊂ [θmin,∞)m,

where θmin > 0. These assumptions can be relaxed
(albeit with a more involved analysis), or replaced
by other equivalent regularity conditions (Chen et al.,
1999; Filippi et al., 2010), without affecting the main
analysis ideas or take-aways in this paper. Our results
also apply when µ, φ, and Θ can be defined separately
for each agent, but we assume they are the same to
simplify the exposition.

4 Algorithm and Theoretical Results

Algorithm 1 A Randomized Alg. for Learning in EEs

1: Input: number of initialization sub-phases M >
1, confidence parameters {δt}t>1.

2: t← 0
3: for ` = 1, . . . ,M do // Initialization phase
4: for k = 1, . . . ,max(m,n) do
5: t← t+ 1, xt ← (0m, . . . ,0m)
6: for h = 1, . . . ,min(m,n) do
7: if m < n then
8: xt,h+k−1,j ← 1 for all j ∈ [m].
9: else

10: xt,i,h+k−1 ← 1 for all i ∈ [n].
11: Allocate xt and observe rewards {yt,i}i∈[n].
12: while True do // Round for learning phase
13: t← t+ 1
14: for i = 1, 2, . . . , n do

15: Compute Qt,i
def
=
∑t−1
s=1 φ(xs,i)φ(xs,i)

>

16: Compute

θ̄t,i = arg minθ∈Θ

∥∥∥∥∑t−1
s=1 φ(xs,i)

(
µ(θ>φ(xs,i))− ys,i

)∥∥∥∥
Q−1
t,i

17: Sample θ′t,i ∼ N (θ̄t,i, α
2
tQ
−1
t,i ). // See (5) for

αt.
18: θt,i ← arg minθ′∈Θ ‖θ′t,i − θ′‖. // Projection
19: Choose allocations and prices xt, pt =

CE({ut,i}ni=1), where ut,i(·) = µ(θ>t,iφ(·))

20: Observe rewards {yt,i}i∈[n].

We present a randomized online learning algorithm
for learning the agents’ utilities and generating fair
and efficient allocations. Note that this algorithm

not only needs to learn the unknown utilities quickly,
but should also simultaneoulsy find the CE alloca-
tion. This latter aspect introduces new challenges in
our setting. For instance, the most popular approach
for stochastic optimization under bandit feedback are
based on upper-confidence-bounds (UCB). However,
finding a CE cannot be straightforwardly framed as a
vanilla optimization procedure and hence UCB proce-
dures do not apply. Instead, our proposed algorithm
uses a key randomized sampling step, which tradeoffs
between exploration and exploration while maintain-
ing the utilities’ shape constraints in every round for
computing the CE (details in proof sketch).

The algorithm, outlined in Algorithm 1, takes input
parameters M and {δt}t>1 whose values we will spec-
ify shortly. It begins with an initialization phase for
M sub-phases (line 3), each of length min(n,m). Dur-
ing each sub-phase, we allocate each resource entirely
to each user for at least one round. This initializa-
tion phase ensures that some matrices we define sub-
sequently are well conditioned.

After the initialization phase, the algorithm operates
on each of the remaining rounds as follows. For each
user, it first computes quantities Qt,i ∈ Rm×m and
θ̄t,i ∈ Rm as defined in lines 15, and 16. As we explain
shortly, θ̄t,i can be viewed as an estimate of θ∗i based
on the data from the first t− 1 rounds. The algorithm
then samples θ′t,i ∈ Rm from a normal distribution

with mean θ̄t,i and co-variance α2
tQt,i, where, αt is

defined as:

α2
t = 4

κ2σ2

C2
µ

m log(t) log

(
m

δt

)
,

κ = 3 + 2 log
(
1 + 2‖φ(1)‖22

)
.

(5)

The sampling distribution, which is centered at our
estimate θ̄t,i, is designed to balance the exploration-
exploitation trade-off on this problem. Next, it
projects the sampled θ′i,t onto Θ to obtain θt,i.

In line (19), the algorithm obtains an allocation and
price pair xt, pt by computing the CE on the θt,i val-
ues obtained above, i.e. by pretending that ut,i(·) =
µ(θ>t,iφ(·)) is the utility for user i.

It is important to note that the computation of the CE
happens as a subroutine of the mechanism, and users
will simply receive the allocations xt. The mechanism
collects the rewards {yt,i}i∈[n] from each user and then
repeats the same for the remaining rounds. As we dis-
cussed in Sec. 2.2, there are different ways to compute
a CE efficiently in our setting, including tatonnement
or the proportional response dynamics (PRD) algo-
rithm (Zhang, 2011) which we implemented. Given
that our algorithm focus on learning the efficient and
fair allocations, we do not focus on the computation
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complexity of CE in this work. Empirically, we find
PRD converges quickly in the simulations.

Computation of θ̄it: It is worth explaining
steps 15–16 used to obtain the estimate θ̄it for user i’s
parameter θ∗i . Recall that for each agent i, the mech-
anism receives stochastic rewards yt,i where yt,i is a σ
sub-Gaussian random variable with E[yt,i] = ui(xt,i)
in round t. Therefore, given the allocation-reward
pairs {(xs,i, ys,i)}t−1

s=1, the maximum quasi-likelihood

estimator θ̂MLE
t,i for θi is defined as the maximizer of the

quasi-likelihood L(θ) =
∑t−1
s=1 log pθ(ys,i|xs,i), where

pθ(yi|xi) is as defined below. Here, µ(ν) = ∂b(ν)
∂ν and

c(·) is a normalising term. We have:

pθ(yi|xi) = exp
(
yiθ
>φ(xsi)− b(θ>φ(xsi)) + c(yi)

)
. (6)

Upon differentiating, we have that θ̂MLE
t,i is the unique

solution of the estimating equation:

t−1∑
s=1

φ(xsi)
(
µ
((
θ̂MLE
t,i

)>
φ(xs,i)

)
− ysi

)
= 0.

In other words, θMLE
t,i would be the maximum likeli-

hood estimate for θ∗i if the rewards yt,i followed an
exponential family likelihood as shown in (6). Our
assumptions are more general; we only assume the
rewards are sub-Gaussian centred at µ(θ∗i

>φ(xt,i)).
However, this estimate is known to be consistent under
very general conditions, including when the rewards
are sub-Gaussian (Chen et al., 1999; Filippi et al.,

2010). Since θ̂MLE
t,i might be outside of the set of fea-

sible parameters Θ, this motivates us to perform the
projection in the Q−1

t,i norm to obtain θ̄t,i as defined in
line 16. Here, Qt,i, defined in line (15), is the design
matrix obtained from the data in the first t− 1 steps.

On the algorithm design: It is worth compar-
ing the design of our algorithm against prior work
in the bandit literature under similar parametric as-
sumptions (Dani et al., 2008; Filippi et al., 2010; Li
et al., 2017; Rusmevichientong and Tsitsiklis, 2010).
For instance, in a CE, each agent is maximizing their
utility under a budget constraint. Therefore, a seem-
ingly natural idea is to adopt a UCB based procedure,
which is the most common approach for stochastic op-
timization under bandit feedback (Auer, 2002). How-
ever, adopting a UCB-style method for our problem
proved to be unfruitful. Consider using a UCB of the
form µ(θ̄>itφ(·)) + Uit(·), where Uit quantifies the un-
certainty in the current estimate. Unfortunately, a
CE is not guaranteed to exist for utilities of the above
form, which means that finding a suitable allocation
can be difficult. An alternative idea is to consider
UCBs of the form µ(θ̂>t,iφ(·)) where θ̂t,i is an upper

confidence bound on θ∗i (recall that both θ∗i and φ are
non-negative). While CEs are guaranteed to exist for

such UCBs, θ̂t,i is not guaranteed to uniformly con-
verge to θ∗i , resulting in linear loss.

Instead, our algorithm takes inspiration from classical
Thompson sampling (TS) procedure for multi-armed
bandits in the Bayesian paradigm (Thompson, 1933).
The sampling step in line 17 is akin to sampling from
the posterior beliefs in TS. It should be emphasized
that the sampling distributions on each round cannot
be interpreted as the posterior of some prior belief on
θ∗i . In fact, they were designed so as to put most of
their mass inside a frequentist confidence set for θ∗i .

4.1 Upper bounds on the loss

The following two theorems are the main results
bounding the loss terms LFD, LCE for Algorithm 1. In
the first theorem, we are given a target failure proba-
bility of at most δ. By choosing δt appropriately, we
obtain an infinite horizon algorithm for which both loss
terms are Õ(

√
T ) with probability at least 1 − δ. In

the second theorem, with a given time horizon T , we
obtain an algorithm whose expected losses are Õ(

√
T ).

Theorem 4.1. Assume the conditions in Section 3.2.
Let δ > 0 be given. Choose δt = 2δ

nπ2t2 . Then, the fol-
lowing upper bounds on LFD, LCE hold for Algorithm 1
with probability at least 1− δ.

LFD(T ), LCE(T ) ∈ O
(
n
(
m+ m2

√
M

)√
T
(

log(nT/δ) + log(T )
))
.

Theorem 4.2. Assume the conditions in Section 3.2.
Let T > M max(m2, n) be given. Choose δt = 1

T .
Then, the follow upper bounds on LFD, LCE hold for
Algorithm 1.

E[LFD(T )], E[LCE(T )] ∈ O
(
n
(
m+ m2

√
M

)√
T (log(T ))

)
,

Above, probabilities and expectations are with respect
to both the randomness in the observations and the
sampling procedure. Both theorems show that we can
learn with respect to both losses at

√
T rate. Note that

the rates depend on the number of initialization sub-
phases M . By choosing M = m2, we get a Õ(nm

√
T )

bound. However, this also requires a large initializa-
tion phase, which may not be feasible in practice. We
can instead choose M to be small, but this leads to
correspondingly worse asymptotic bounds.

Proof sketch. Our proof uses some prior mar-
tingale concentration results from the bandit litera-
ture (Rusmevichientong and Tsitsiklis, 2010; Filippi
et al., 2010), and additionally, we use some high level
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Figure 1: The CE loss LCE
T vs the number of rounds T , evaluated with m = 3 resource types and n = 5 agents

with CES utilities. We present results for ρ = 0.5, ρ = 0.75, and ρ = 1 respectively (see Example 2.2). All figures
show results which are averaged over 10 runs, and the shaded region shows the standard error at each time T .

intuitions from prior frequentist analyses of Thomp-
son sampling (Kaufmann et al., 2012; Agrawal and
Goyal, 2012; Mutnỳ and Krause, 2019). At the same
time, we also require novel techniques, both to bound
the loss terms, and analyse the algorithm. Our proof
for bounding LCE

T first defines high probability events
At,i, Bt,i for each agent i and round t. At,i captures the
event that the estimated θ̄t,i is close to θ∗i in Qt,i norm.
We upper bound P(Act,i) using the properties of the
maximum quasi-likelihood estimator on GLMs (Chen
et al., 1999; Filippi et al., 2010) and a martingale argu-
ment. Bt,i captures the event that the sampled θt,i is
close to θ̄t,i in Qt,i norm. Given these events, we then
bound the instantaneous losses `CE(xt, pt) by a super
martingale with bounded differences. The final bound
is obtained by an application of the Azuma inequality.

Another key ingredient in this proof is to show that the
sampling step also explores sufficiently–the Bit event
only captures exploitation; since the sampling distri-
bution is a multi-variate Gaussian, this can be conve-
niently argued using an upper bound on the standard
normal tail probability. While bounding LFD uses sev-
eral results and techniques as above, it cannot be di-
rectly related to LCE, and requires a separate analysis.

5 Experiments

We evaluated Algorithm 1 with simulations. To the
best of our knowledge, this is the first online algorithm
studying fair and efficient allocations with unknown
utilities with multiple heterogeneous resource types,
and there are no existing natural baselines. There is
also no straightforward adaptation of the method de-
scribed in Kandasamy et al. (2020b) for single resource
types since they do not consider the exchange of re-
sources. We evaluated based on two types of utilities.

1. CES utilities: Described in Example 2.2.

2. Amdahl’s utilities: The Amdahl’s utility func-
tion, described in Zahedi et al. (2018), is used to model
the performance of jobs distributed across heteroge-

neous machines in a data center. This utility is moti-
vated by Amdahl’s Law (Amdahl, 2013), which models
a job’s speed up in terms of the fraction of work that
can be parallelized. Let 0 < fij < 1 denote the paral-
lel fraction of user i’s job on machine type j. Then, an
agent’s Amdahl utility is: ui(x) =

∑m
j=1 θijφij(xij),

where φij(xij) = xij/fi+(1−fi)xij. φij(xij) is the rel-
ative speedup produced by allocation xij . Both CES
and Amdahl utilities belong to our class P given in (4).

We focus our evaluation on the CE loss; computing
the FD loss is computationally expensive as it requires
taking an infimum over the Pareto-front (more details
in Appendix E). Our first set of experiments consider
an environment with m = 3 resource types and n = 5
agents, all of whom have CES utilities. We conduct
three experiments with different values for the elastic-
ity of substitution ρ. Our second set of experiments
consider an environment with m = 2 resource types
and n = 8 agents, all of whom have Amdahl’s utilities,
where the results are similar and thus included in Ap-
pendix D. We conduct three experiments with different
values for the parallel fraction fij . All experiments are
run for T = 2000 rounds, where we set δ = 1

T . The
results are given in Figure 1. They show that the CE
loss grows sublinearly with T which indicates that the
algorithm is able to learn utilities and compute a CE.

To compute the CE at line 19 of Algorithm 1, we
use the proportional response dynamics procedure
from Zhang (2011) with 20 iterations. To compute
LCE, we need to maximize each agent’s utility subject
to a budget. Full experimental details and additional
results are included in Appendix D.

6 Conclusion

We introduced and studied the problem of online learn-
ing a competitive equilibrium in an exchange econ-
omy, without a priori knowledge of agents’ utilities.
We quantify the learning performance via two losses,
the first motivated from the definition of an equilib-
rium, and the second by fairness and Pareto-efficiency
considerations in fair division. We develop a random-
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ized algorithm which achieves Õ(nm
√
T ) loss after T

rounds under both losses, and corroborate these theo-
retical results with simulations. While our work takes
the first step towards sequentially learning a market
equilibrium in exchange economies, an interesting av-
enue for future work would be to study learning ap-
proaches in broader classes of agent utilities and mar-
ket dynamics.
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A Technical Lemmas

We first provide some useful technical lemmas.

Lemma A.1. Suppose that Z is a χ2
m random variable, i.e. Z =

∑m
k=1 Z

2
k , where for all k, Zk are i.i.d. random

variables drawn from N (0, 1). Then,

P (Z > m+ α) =

{
e−

α
8 α > m

e−
α2

8m α 6 m.

Proof. Suppose that X is sub-exponential random variable with parameters (ν, b) and expectation µ. Applying
well known tail bounds for sub-exponential random variables (e.g. (Wainwright, 2019)) yields:

P (X > µ+ α) =

{
e−

α2

2ν2 0 6 α 6 ν2

b , and

e−
α
2b α > ν2

b .

The lemma follows from the fact that a χ2
m random variable is sub-exponential with parameters (ν, b) = (2, 4). �

Lemma A.2. (Lower bound for normal distributions) Let Z be a random variable Z ∼ N (0, 1), then P (Z >

t) > 1
t+
√
t2+4

√
2
π e
− t22 .

Proof. First, from Abramowitz et al. (1988) (7.1.13) we have,

ex
2

∫ ∞
x

e−t
2

dt >
1

x+
√
x2 + 2

.

Set t =
√

2x, then the above equation yields:

P (Z > t) =
1√
2π

∫ ∞
t

e−
x2

2 dx >
1

t+
√
t2 + 4

√
2

π
e−

t2

2 ,

which completes the proof. �

Lemma A.3. (Azuma-Hoeffding inequality(Wainwright, 2019)) Let (Zs)s>0 be a super martingale w.r.t. a
filtration (Ft)t>0. Let (Bt)t>0 be predictable processes w.r.t. (Ft)t>0, such that |Zs − Zs−1| 6 Bs for all s > 1
almost surely. Then for any δ > 0,

P

ZT − Z0 6

√√√√2 log

(
1

δ

) T∑
t=1

B2
t

 > 1− δ.

Lemma A.4. ∀x ∈ [0, c], c > 0, we have x 6 c
log(1+c) log(1 + x).

Proof. The result follows immediately from the fact that the function f(x)
def
= x

log(1+x) is non-decreasing on

(0,∞). �

Lemma A.5. (Lemma 1, Filippi et al. (2010)) Let (Fk, k > 0) be a filtration, (mk; k > 0) be an Rd-valued
stochastic process adapted to (Fk). Assume that ηk is conditionally sub-Gaussian in the sense that there exists

some R > 0 such that for any γ > 0, k > 1, E[exp(γηk)|Fk−1] 6 exp
(
γ2R2

2

)
almost surely. Then, consider the

martingale ξt =
∑t
k=1mk−1ηk and the process Mt =

∑t
k=1mk−1m

>
k−1. Assume that with probability one, the

smallest eigenvalue of Md is lower bounded by some positive constant λ0, and that ‖mk‖2 6 cm almost surely
for any k > 0. Then, the following holds true: for any 0 < δ < min(1, d/e) and t > max(d, 2), with probability
at least 1− δ,

‖ξt‖M−1
t
6 κR

√
2d log(t) log(d/δ),

where κ =
√

3 + 2 log(1 + 2
c2m
λ0

).
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B Bounding LCE

First, consider any round t. We will let Ft
def
= σ

(
{(xis, yis)n,t−1

i=1,s=1}}
)

denote the σ-algebra generated by the

observations in the first t − 1 rounds. Clearly, {Ft}t>0 is a filtration. We will denote Et[·|Ft] = Et[·] to be the

expectation when conditioning on the past observations up to round t − 1. Similarly, define Pt(·)
def
= P (·|Ft) =

E[I(·)|Ft].

Recall that {δt}t>0 are inputs to the algorithm. Similarly, let {δ2t}t>0 be a sequence. We will specify values for
both sequences later in this proof. Given these, further define the following quantities on round t:

β1t
def
=

2

Cµ
κσ
√

2m log(t)

√
log

(
m

δt

)

β2t
def
=
√
αt(m+ γ2t) where, γ2t

def
= max

(
8 log

(
1

δ2t

)
,

√
8m log

(
1

δ2t

))
β3t

def
= Lµ(β1t + β2t).

Here, recall that Lµ is the Lipschitz constant of µ(·), Cµ is such that Cµ
def
= infθ∈Θ,x∈X µ̇

(
θ>φ(x)

)
, and αt is a

sequence that is defined and used in Algorithm 1.

Next, we consider the following two events:

Ait
def
= {‖θ∗i − θ̄it‖Qit 6 β1t},

Bit
def
= {‖θ̄it − θit‖Qit 6 β2t}.

where Qit
def
=
∑t−1
s=1 φ(xis)φ(xis)

> is a design matrix that corresponding to the first t− 1 steps.

Lastly, define

ρit(x)
def
= ‖φ(x)‖Q−1

it
=

√
φ>(x)Q−1

it φ(x),

and
Sit

def
= {x ∈ X : ui(x

∗
it)− ui(x) > β3tρit(x)} ,

where x∗it = arg maxy∈X ,p>t y6p>t ei ui(y). Here, we used X to denote the set of feasible allocations for one agent:
{x ∈ Rm : 0 6 x 6 1}.

Intuitively, x̃it is the best true optimal affordable allocation for agent i in round t under the price function pt.
Since the set {y ∈ X , p>t y 6 p>t ei} is a compact set, the maximum is well defined.

Now we begin our analysis with the following lemmas.

Lemma B.1. For any round t > t0, Pt(Ait) > 1− δ1t.

Proof. Define function git(θ) =
∑t−1
s=1 µ

(
θ>φ(xis)

)
φ(xis). Then by the fundamental theorem of calculus, we

have
git(θit)− git(θit) = Git(θ

∗
i − θ̄it),

where Git =
∫ 1

0
∇git

(
sθ∗i + (1− s)θ̄it

)
ds, and

∇git(θ) =

t−1∑
s=1

φ(xis)φ(xis)
>µ′(θ>φ(xis)).

By the definition of Cµ and Qit, we have that Git � CµQit �M · I, where the last inequality follows due to the
initialisation scheme. Therefore, Git is invertible and moreover,

G−1
it �

1

Cµ
Q−1
it . (7)
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We can write,
θ∗i − θ̄it = G−1

it

(
git(θit)− git(θ̄it)

)
. (8)

Therefore, we have, (
θ∗i − θ̄it

)>
Qit

(
θ∗i − θ̄it

)
=
(
git(θit)− git(θ̄it)

)>
G−1
it QitG

−1
it

(
git(θit)− git(θ̄it)

)
6

1

C2
µ

(
git(θit)− git(θ̄it)

)
Q−1
it

(
git(θit)− git(θ̄it)

)
=

1

C2
µ

∥∥(git(θit)− git(θ̄it))∥∥Q−1
it

,

where the first equality follows from Eq (7), and the inequality follows from Eq (8).

Therefore,

‖θ∗i − θ̄it‖Qit 6
1

Cµ

∥∥(git(θit)− git(θ̄it))∥∥Q−1
it

6
2

Cµ

∥∥(git(θit)− git(θ̄MLE
it )

)∥∥
Q−1
it

=
2

Cµ

∥∥∥∥∥
t−1∑
s=1

φ(xis)(Yis − µ
(
φ(xis)

>θ∗i
)
)

∥∥∥∥∥
Q−1
it

.

where the second inequality is from the triangle inequality, and the last equality is from the definition of θMLE
it

and git.

Let Ait denote the event that∥∥∥∥∥
t−1∑
s=1

φ(xis)(Yis − µ
(
φ(xis)

>θ∗i
)
)

∥∥∥∥∥
Q−1
it

6 κσ
√

2m log(t)

√
log

(
d

δt

)
,

then we have Ait holds with probability at least δt by Lemma A.5.

�

Lemma B.2. For any round t > t0, Pt(Bit) > 1− δ2t.

Proof. First, recall that Bit = {‖θ̄it − θit‖Qit 6 β2t}. We can now write,

P (Bcit) = P (‖θit − θ̄it‖Qit > β2t)

6 P (‖θ′it − θ̄it‖Qit > β2t)

= P (‖θ′it − θ̄it‖α−1
t Qit

> α
− 1

2
t β2t)

= P (
√
Z >

√
Mtγ2t),

where Z =
(
θit − θ̄it

)>
α−2
t Qit

(
θit − θ̄it

)
. The first step simply uses the fact that since θ̄it is already inside Θ

(see line 17 in Algorithm 1), projecting θ′it to be inside Θ after sampling only brings it even closer to θ̄it.

Note that Z is a χ2
m random variable. This follows from the fact that

θit ∼ N (θ̄it, α
2
tQ
−1
it ),

therefore we have
α−1
t Q

1/2
it

(
θit − θ̄it

)
∼ N (0, Im).
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Denote y = α−1
t Q

1/2
it

(
θit − θ̄it

)
, then Z = y>y is a χ2

m random variable.

Therefore, by Lemma A.1, and the definition that γ2t = max
(

8 log( 1
δ2t

),
√

log( 1
δ2t

)
)

, we have

P (Bcit) = P (Z > n+ γ2t) 6 δ2t,

which completes the proof. �

Lemma B.3. Let x be arbitrary such that x ∈ X . Then,

Pt(uit(x) > ui(x)|Ait) > q0,

with q0 =
√

2
π

1√
2+
√

6
1
e ≈ 0.075.

Proof. First, notice that

uit(x) > ui(x) ⇐⇒ µ
(
θ>itφ(x)

)
> µ

(
(θ∗i )>φ(x)

)
⇐⇒ θ>itφ(x) > (θ∗i )>φ(x)

⇐⇒
(
θit − θ̄it

)>
φ(x)

αtρit(x)
>

(
θ∗i − θ̄it

)>
φ(x)

αtρit(x)
.

Since θit ∼ N (θ̄it, α
2
tQ
−1
it ), we have(

θit − θ̄it
)>
φ(x) ∼ N (0, α2

tφ(x)>Q−1
it φ(x)), =⇒

(
θit − θ̄it

)>
φ(x) ∼ N (0, α2

tρ
2
it(x)).

=⇒
(
θit − θ̄it

)>
φ(x)

αtρit(x)
∼ N (0, 1).

From the above we have that

Pt (uit(x) > ui(x)|Ait) = Pt

(
Z >

(
θit − θ̄it

)>
φ(x)

αtρit(x)

∣∣∣∣Ait
)
,

where Z ∼ N (0, 1) is sampled independently of the observations, since the randomness in Algorithm 1 can be
assumed to be independent of the randomness in the observations. Therefore, under the event Ait,∣∣∣∣∣

(
θit − θ̄it

)>
φ(x)

αtρit(x)

∣∣∣∣∣ =

∣∣∣∣∣∣
(
θit − θ̄it

)>
Q

1
2
itQ
− 1

2
it φ(x)

αtρit(x)

∣∣∣∣∣∣
6
‖θit − θ̄it‖Qit‖φ(x)‖Q−1

it

αtρit(x)

6
βit
αt

=

√
8

α0
.

Here, the first inequality follows from the definition of the matrix norm and the definition of Ait, and the second
inequality follows from the definition of β1t.

Therefore, by Lemma A.2, we have

Pt(uit(x) > ui(x)|Ait)

= PZ∼N (0,1)(Z >

√
8

α0
)

>

√
2

π

1√
8/α2

0 +
√

4 +
√

8/α2
0

e
− 4

α2
0 .

Setting α2
0 = 4, we have

Pt (uit(x) > ui(x)|Ait) >
√

2

π

1√
2 +
√

6

1

e
≈ 0.075,

which completes the proof. �
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Lemma B.4. Let θ1, θ2 ∈ Θ ∈ Rm. Let Q � 0, Q ∈ Rm×m be a positive semi-definite matrix, and ρQ(x) =√
φ(x)>Q−1φ(x). Then, ∣∣µ(θ>1 φ(x))− µ(θ>2 φ(x))

∣∣ 6 Lµ‖θ1 − θ2‖Q · ρQ(x).

Proof. This follows from the Lipschitz properties of µ and the following simple calculations:∣∣µ(θ>1 φ(x))− µ(θ>2 φ(x))
∣∣ 6 Lµ|(θ1 − θ2)>φ(x)|

= Lµ|(θ1 − θ2)>Q
1
2Q−

1
2φ(x)|

6 Lµ‖θ1 − θ2‖Q‖φ(x)‖Q−1

= Lµ‖θ1 − θ2‖Q · ρQ(x).

�

Lemma B.5. For any round t > t0, Pt(xit /∈ Sit) > q0(1− δt)− δ2t.

Proof. First, when event Bit holds, by lemma B.4, we have that for all x,

|uit(x)− ūit(x)| 6 Lµβ2tρit(x).

Note that by definition, uit(x) = µ
(
(θit)

>φ(x)
)
, and ūit(x) = µ

(
(θ̄it)

>φ(x)
)
. Therefore,

ūit(x)− uit(x) > −Lµβ2tρit(x). (9)

On the other side, under event Ait, by lemma B.4, we have that for all x,

|ui(x)− ūit(x)| 6 Lµβ1tρit(x). (10)

Moreover, recall that by definition for any x ∈ Sit,

ui(x
∗
it)− ui(x) > β3tρit(x). (11)

Therefore, consider any x ∈ Sit, and under the condition that Ait ∩Bit ∩ {uit(x∗it) > ui(x
∗
it)}, we have

uit(x
∗
it)− uit(x) > ui(x

∗
it)− uit(x)

= (ui(x
∗
it)− ui(x)) + (ui(x)− ūit(x)) + (ūit(x)− uit(x))

> 0,

(12)

where the last inequality follows from combining equations Eq (9), Eq (10), Eq (11) and the definition of β3t.
Hence, Eq (12) implies that, under the same condition, xit /∈ Sit since by construction, xit maximizes uit under
the budget, thus

uit(xit) > uit(x
∗
it),

This further implies that,

Pt(xit /∈ Sit) > Pt (uit(x
∗
it) > uit(x),∀x ∈ Sit)

> Pt (uit(x
∗
it) > uit(x),∀x ∈ Sit|Ait ∩Bit{ui(x∗it) > ui(x)})

× P (Ait ∩Bit ∩ {ui(x∗it) > ui(x)})
= P (Ait ∩Bit ∩ {ui(x∗it) > ui(x)})
> P (Ait ∩ {ui(x∗it) > ui(x)})− P (Bcit)

= P ({ui(x∗it) > ui(x)}|Ait)P (Ait)− P (Bcit)

> q0(1− δt) + δ2t.

Here, the second and third inequality both from the law of total probability and rearranging terms, and the last
inequality follows from Lemma B.1, Lemma B.2 and Lemma B.3, which completes the proof. �
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Lemma B.6. For t > max(t0, t
′
0),

Et[`it] 6
5

q0
β3tEt[ρit(xit)] + δt + δ2t.

Here, `it = (ui(x
∗
it)− ui(xit))

+
, and t′0 is chosen such that, ∀t > t′0, δt <

1
4 , δ2t <

q0
4 .

Proof. First, define
x′it = arg min

x:p>t 6p>t ei,x/∈Sit
ρit(x).

This implies that,
Et[ρit(xit)] > Et[ρit(xit)|xit /∈ Sit]P (x /∈ Sit) > ρit(x′it)P (x /∈ Sit).

Therefore, by Lemma B.5, we have

ρit(x
′
it) 6

Et[ρit(xit)]
q0(1− δt)− δ2t

.

Select t′0 such that, ∀t > t′0, δt = 1
4 , and δ2t 6

q0
4 , then we have:

ρit(x
′
it) 6

2

q0
Et[ρit(xit)].

Also, under Ait ∩Bit,
‖θ∗i − θit‖Qit 6 ‖θ∗i − θ̄it‖Qit + ‖θ̄it − θit‖Qit 6 β1t + β2t,

where the first inequality follows from triangle inequality, and the second one follows from the definitions of Ait
and Bit. Hence,

|µit(x)− µi(x) 6 Lµ(β1t + β2t)ρit(x) = β3tρit(x).

Therefore, we have

`it = ui(x
∗
it)− ui(xit)

= ui(x
∗
it)− ui(x′it) + ui(x

′
it)− ui(xit)

6 2β3tρit(x
′
it) + β3tρit(xit)

6
4

q0
β3tE[ρit(xit)] + β3tρit(xit).

which further yields

Et[`it] 6 Et[`it|Ait ∩Bit] + Et[`it|Acit ∪Bcit]P (Acit ∪Bcit)

6
4

q0
β3tE[ρit(xit)] + β3tEt[ρit(xit)] + δt + δ2t

6
5

q0
β3tEt[ρit(xit)] + δt + δ2t,

(13)

which completes the proof. �

Lemma B.7. Let δ′ > 0. Define LiT =
∑T
t=1 `it. Then, with probability at least 1− δ′,

LiT 6
T∑
t=1

(δt + δ2t) + Õ

(
m2

√
M

√
T

(
log(T ) + log

(
1

δ′

)))

Proof. First, define for s > 1,

uis = `is −
5β3s

q0
ρis(xis)− (δs + δ2s),

and vit =
∑t
s=1 uis, with vi0 = 0 and ui0 = 0. We show that {vit}, t > 0 is a super-martingale with respect to

the filtration (Ft)t>0.
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First,

Et[uit] = Et[`it]−
5β3t

q0
Et[ρit(xit)]− (δt + δ2t) 6 0.

Moreover,

|vit − vi,t−1| 6 |`it|+
5β3t

q0
|ρit(xit)|+ (δt + δ2t)

6 1 +
5β3t

q0

‖φ(1)‖2√
M

+ 1

6
7β3t

q0

‖φ(1)‖2√
M

, Dt.

Therefore, by Lemma A.3, with probability at least 1− δ′, we have that

viT − vi,0 6

√√√√s log

(
1

δ′

T∑
t−1

D2
t

)
6

7β3t

q0
‖φ(1)‖2

√
2 log( 1

δ′ )

M
T.

Therefore, we have

LiT =

T∑
s=1

`is 6
T∑
t=1

(δt + δ2t) +
5β3t

q0

T∑
t=1

ρit(xt) +
7β3t

q0
‖φ(1)‖2

√
2 log( 1

δ′ )

M
T. (14)

Now it remains to bound
∑T
t=1 ρit(xt). Since Qit �MI, by the definition of ρit(xit), we have

ρitxit 6
‖φ(1)‖2√

M
.

Hence, by Lemma A.4 and rearranging terms, we have

T∑
t=t0

ρ2
it(xit) 6

‖φ(1)‖22
M

1

log
(

1 + ‖φ(1)‖2√
M

) T∑
t=t0

log
(
1 + φ>(xit)Q

−1
it φ(xit)

)
. (15)

Also notice that,

T∑
t=t0

log
(
1 + φ>(xit)Q

−1
it φ(xit)

)
= log ΠT

t=t0

(
1 + ‖φ(xit)‖2Q−1

it

)
= log

det(QiT )

det(Qi,t0)
.

Note that the trace of Qi,t+1 is upper-bounded by t · ‖φ(1)‖2, then given that the trace of the positive definite

matrix QiT is equal to the sum of its eigenvalues, we have that det(QiT ) 6
(
t ‖φ(1)‖22

)m
. Moreover, det(Qi,t0) >

(M)m, therefore,
T∑
t=t0

log
(
1 + φ>(xit)Q

−1
it φ(xit)

)
6 m log

(
‖φ(1)‖22T

M

)
.

Combining with Eq (15), and applying Cauchy-Schwartz inequality, we have

T∑
t=t0

ρit(xit) 6

√√√√T

T∑
t=t0

ρ2
it(xit) 6

√
T

√√√√‖φ(1)‖22
M

m

log
(

1 + ‖φ(1)‖2√
M

) log

(
‖φ(1)‖22T

M

)
. (16)
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Putting together Eq (14) and Eq (16), with the fact that ‖φ(1)‖2 = O(
√
m), e.g. ‖φ(1)‖2 6 cφ

√
m, we have

that with probability at least 1− δ′,

LiT 6
T∑
t=1

(δt + δ2t) +
β3t

q0

√
T√
M

5cφm

√√√√ 1

log
(

1 + ‖φ(1)‖2
m

) log

(
‖φ(1)‖22T

M

)
+ 7cφ

√
m

√
2 log(

1

δ′
)


=

T∑
t=1

(δt + δ2t) + Õ

(
m2

√
M

√
T

(
log(T ) + log

(
1

δ′

)))
,

where the last step comes from the fact that β3t = Õ(m). This completes the proof. �

B.1 Proof of Theorem 4.1 for LCE

Corollary B.8. With probability at least 1− δ′,

LCE
T 6 n

T∑
t=1

(δ1t + δ2t) + Õ

(
n
m2

√
M

√
T

(
log(T ) + log(

1

δ′
)

))

Proof. This a direct result from Lemma B.7 and the definition of LCE
T : With probability at least 1− δ′,

LCE
T =

n∑
i=1

T∑
t=1

(
max

y:p(y)6p(ei)
ui(y)− ui(xit)

)+

6 n
T∑
t=1

(δt + δ2t) + Õ

(
n
m2

√
M

√
T

(
log(T ) + log

(
1

δ′

)))
.

�

Proof. Choose δt = δ2t = 2δ
nπ2t2 . Then,

T∑
t=1

(δt + δ2t) 6
2

3
δ.

Also choose δ′ = δ
3 , then by Corollary B.8, with probability at least 1− δ,

LCE
T = O

(
n
m2

√
M

√
T

(
log

(
δ

3

)
+ log(T ))

))
.

�

B.2 Proof of Theorem 4.2 for LCE

Proof. Choose δ1t = δ2t = δ′ = 1
T . Denote the event where LCE

T = O
(
n m2
√
M

√
T
(
log
(
δ
3

)
+ log(T ))

))
holds as E .

Then, by Lemma B.7,

E[LCE
T ] = E[LCE

T |E ] + E[LCE
T |Ec]P (Ec) 6 2 +O

(
n
m2

√
M

√
T

(
log

(
δ

3

)
+ log(T ))

))
.

where M > m. This completes the proof. �



Learning Competitive Equilibria in Exchange Economies

C Bounding LFD

Recall that the definition of `FD is directly based on the requirements of Pareto efficiency and fair share: `FD(x)
def
=

max
(
`PE(x), `SI(x)

)
, where `PE(x) = minx′∈PE

∑n
i=1 (ui(x

′
i)− ui(xi))

+
; and `SI(x) =

∑n
i=1 (ui(ei)− ui(xi))+

.

To bound LFD, we first provide a useful lemma which shows that `SI is a weaker notion than `CE.

Lemma C.1. For any allocation x and price p, `SI(x) 6 `CE(x, p).

Proof. This simply uses the fact that an agent’s endowment is always affordable under any price vector p.
Therefore,

`SI(x) =

n∑
i=1

(ui(ei)− ui(xi))+

6
n∑
i=1

(
max

y:p>y6p>ei
ui(y)− ui(x)

)+

,∀p

= `CE(x, p),

�

Having lemma C.1 at hand, the key remaining task is to bound `PE. We will show that this can be achieved by
an analogous analysis as in Section B.1, but with some key differences.

First, we define S̃it (in comparison to Sit used in Section B.1):

S̃it
def
= {x ∈ X : ui(x

∗
i )− ui(x) > β3tρit(x)} ,

where x∗ ∈ Rn×m is the unique equilibrium allocation. Note that S̃it shares a similar spirit as Sit, which is used
in Section B.1, but with a different referencing point x∗.

We show a key lemma which provides a lower bound on P (x 6∈ S̃it).
Lemma C.2. For any round t > t0, Pt(xit /∈ S̃it) > q0(1− δt)− δ2t.

Proof. First, when event Bit holds, by lemma B.4, we have that for all x,

|uit(x)− ūit(x)| 6 Lµβ2tρit(x).

Note that by definition, uit(x) = µ
(
(θit)

>φ(x)
)
, and ūit(x) = µ

(
(θ̄it)

>φ(x)
)
. Therefore,

ūit(x)− uit(x) > −Lµβ2tρit(x). (17)

On the other side, under event Ait, by lemma B.4, we have that for all x,

|ui(x)− ūit(x)| 6 Lµβ1tρit(x). (18)

Moreover, recall that by definition for any x ∈ S̃it,

ui(x
∗
i )− ui(x) > β3tρit(x). (19)

Therefore, consider any x ∈ S̃it, and under the condition that Ait ∩Bit ∩ {uit(x∗i ) > ui(x
∗
i )}, we have

uit(x
∗
i )− uit(x) > ui(x

∗
i )− uit(x)

= (ui(x
∗
i )− ui(x)) + (ui(x)− ūit(x)) + (ūit(x)− uit(x))

> 0,

(20)
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where the last inequality follows from combining equations Eq (17), Eq (18), Eq (19) and the definition of β3t.
Moreover, recall that xit maximizes uit under the budget, thus

uit(xit) > uit(x
∗
i ),

Therefore, Eq (20) implies that, xit /∈ S̃it. This further implies,

Pt(xit /∈ S̃it) > Pt
(
uit(x

∗
i ) > uit(x),∀x ∈ S̃it

)
> Pt

(
uit(x

∗
i ) > uit(x),∀x ∈ S̃it|Ait ∩Bit{ui(x∗it) > ui(x)}

)
· P (Ait ∩Bit ∩ {ui(x∗it) > ui(x)})

= P (Ait ∩Bit ∩ {ui(x∗i ) > ui(x)})
> P (Ait ∩ {ui(x∗i ) > ui(x)})− P (Bcit)

= P ({ui(x∗i ) > ui(x)}|Ait)P (Ait)− P (Bcit)

> q0(1− δt) + δ2t.

Here, the second and third inequality both from the law of total probability and rearranging terms, and the last
inequality follows from Lemma B.1, Lemma B.2 and Lemma B.3, which completes the proof. �

Lemma C.3. At any round t > t0, define x′′it
def
= arg minx 6∈S̃it,p>t y6p>t ei

ρit(xit), then we have

`PE(xt) 6
∑
i∈[n]

bPE
it ,

with probability at least 1− δt − δ2t, and bPE
it = 2β3tρit(x

′′
it) + β3tρit(xit).

Proof. Begin with the definition of `PE, we have

`PE(xt) = min
x∈PE

∑
i∈[n]

(ui(xi)− ui(xit))

6
∑
i∈[n]

(ui(x
∗
i )− ui(xit))

=
∑
i∈[n]

(ui(x
∗
i )− ui(x′′it)) +

∑
i∈[n]

(ui(x
′′
i )− ui(xit))

6 β3t

∑
i∈[n]

ρit(x
′′
it) +

∑
i∈[n]

(ui(x
′′
i )− ui(xit)) ,

where the last inequality follows from this definition. Moreover, we have

ui(x
′′
it) 6 uit(x

′′
it) + β3tρit(x

′′
it),

and

ui(xit) > uit(xit)− β3tρit(xit).

under the event Ait ∩Bit, by Eq (17) and Eq (18). Putting these together yields

`PE(xt) 6 2β3t

∑
i∈[n]

ρit(x
′′
it) + β3t

∑
i∈[n]

ρit(xit)
def
=
∑
i∈[n]

bPE
it ,

which completes the proof. �

Now we show that the above result leads to the lemma below, which shows a analogous guarantee as we obtained
in lemma B.6.
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Lemma C.4. For t > max(t0, t
′
0),

Et[
∑
i∈[n]

`FD
it ] 6

5

q0
β3tEt[

∑
i∈[n]

ρit(xit)] + n(δt + δ2t).

Here, t′0 is chosen such that, ∀t > t′0, δt <
1
4 , δ2t <

q0
4 .

Proof. First, note that, by the definition of x′′it,

Et[ρt(xit)] > Et[ρt(xit)|xit /∈ Sit]P (x /∈ Sit) > ρit(x′′it)P (x /∈ Sit).

Moreover, combining the above with Lemma C.2, we have

ρit(x
′′
it) 6

Et[ρit(xit)]
q0(1− δt)− δ2t

.

Select t′0 such that, ∀t > t′0, δt = 1
4 , and δ2t 6

q0
4 , then we have:

ρit(x
′′
it) 6

2

q0
Et[ρit(xit)].

Also, under Ait ∩Bit,
‖θ∗i − θit‖Qit 6 ‖θ∗i − θ̄it‖Qit + ‖θ̄it − θit‖Qit 6 β1t + β2t,

where the first inequality follows from triangle inequality, and the second one follows from the definitions of Ait
and Bit. Hence,

|µit(x)− µi(x) 6 Lµ(β1t + β2t)ρit(x) = β3tρit(x).

Therefore, we have ∑
i∈[n]

bPE
it 6 2β3t

∑
i∈[n]

ρit(x
′′
it) + β3t

∑
i∈[n]

ρit(xit)

6
4

q0
β3tE[

∑
i∈[n]

ρit(xit)] + β3t

∑
i∈[n]

ρit(xit).

Moreover, by Lemma C.1 and eq (13) which holds under the same condition of Ait ∩Bit, we have∑
i∈[n]

`FD
it 6

∑
i∈[n]

max{`PE
it , `

SI
it }

6 2β3t

∑
i∈[n]

ρit(x
′′
it) + β3t

∑
i∈[n]

ρit(xit)

6
4

q0
β3tE[

∑
i∈[n]

ρit(xit)] + β3t

∑
i∈[n]

ρit(xit).

Therefore, we have

Et[
∑
i∈[n]

`FD
it ] 6 Et[

∑
i∈[n]

bPE
it ] 6

4

q0
β3tE[

∑
i∈[n]

ρit(xit)] + β3tEt[
∑
i∈[n]

ρit(xit)] + n(δt + δ2t)

6
5

q0
β3tEt[

∑
i∈[n]

ρit(xit)] + n(δt + δ2t),

which completes the proof. �

With the above lemmas at hand, we are now ready to provide a proof of Theorem 4.1 for LFD
T .
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C.1 Proof of Theorem 4.1 for LFD

Proof. Lemma C.4 shows a analog guarantee as we obtained in lemma B.6 for the LFD loss function. Therefore,
following the same steps in lemma B.7, we have that with probability at least 1 − δ′ where δ′ will be specified
momentarily,

LFD
T =

T∑
t=t0

n∑
i=1

`FD
it

6 n
T∑
t=1

(δt + δ2t) +
nβ3t

q0

√
T√
M

(
5cφm

√√√√ 1

log
(

1 + ‖φ(1)‖2√
M

) log

(
‖φ(1)‖22T

M

)

+ 7c2φ
√
m

√
2 log(

1

δ′
)

)
= n

T∑
t=1

(δt + δ2t) + Õ

(
n
m2

√
M

√
T

(
log(T ) + log

(
1

δ′

)))
,

(21)

Choose δt = δ2t = 2δ
nπ2t2 . Then,

T∑
t=1

(δt + δ2t) 6
2

3
δ.

Also choose δ′ = δ
3 , then by Eq (21), with probability at least 1− δ,

LFD
T = O

(
nm2

√
M

√
T

(
log

(
δ

3

)
+ log(T ))

))
.

�

C.2 Proof of Theorem 4.2 for LFD

Proof. The theorem results follow from eq (21). Choose δ1t = δ2t = δ′ = 1
T and denote the event where

LFD
T = O

(
nm2
√
M

√
T
(
log
(
δ
3

)
+ log(T ))

))
holds as E . Then,

E[LFD
T ] = E[LPE

T |E ] + E[LFD
T |Ec]P (Ec) 6 O

(
nm2

√
M

√
T

(
log

(
δ

3

)
+ log(T ))

))
,

where M > m. This completes the proof.

�

D Additional Experimental Details and Results

In this section, we present the simulation results with the Amdahl utilities, as described in Section 5, and
additional implementation details.

Figure 2 presents the simulation results for agents with the Amdahl’s utilities.

Empirically, we compute LCE by maximizing each agent’s utility subject to the budget constraint. We approxi-
mate this by randomly sampling feasible allocations y from a simplex, accept those that cost no more price than
the agent’s endowment, lastly take the maximum. We sampled up to 50 accepted samples in each round. All
experiments are run on a AWS EC2 p3.2xlarge machine.
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Figure 2: The CE loss LCE
T vs the number of rounds T . evaluated with m = 2 resource types and n = 8 agents

and Amdahl’s utilities. The three figures correspond to fi = 0.2, fi = 0.3, and fi = 0.5 (as in Section 5). All
figures show results which are averaged over 10 runs, and the shaded region shows the standard error at each
time T .

E Further Discussions

E.1 Further Background on Fair Division and Exchange Economies

Since the seminal work of Varian (1973), fair division of multiple resource types has received significant attention
in the game theory, economics, and computer systems literature. We provide more background on the related
works in the fair division literature and their applications in this section.

Among the theoretical works in fair division, one of the most common perspectives on this problem is as an
exchange economy (or as a Fisher market, which is a special case of an EE) (Varian, 1973; Mas-Colell et al.,
1995; Gutman and Nisan, 2012; Crockett et al., 2008; Tiwari et al., 2009; Budish et al., 2017; Babaioff et al.,
2019, 2021).

Fair allocation mechanisms have been deployed in many practical resource allocation tasks when compute re-
sources are shared by multiple users (Zahedi et al., 2018). There have also been applications of other market-based
resource allocation schemes for data centers and power grids (Lai et al., 2005; Wolski et al., 2001; Hindman et al.,
2011; Burns et al., 2016; Vavilapalli et al., 2013). One line of work in this setting studied fair division when
the resources in question are perfect complements; some examples include dominant resource fairness and its
variants (Ghodsi et al., 2011; Parkes et al., 2015; Gutman and Nisan, 2012; Ghodsi et al., 2013; Li and Xue,
2013; Dolev et al., 2012). Although the assumption of perfect complement resource types leads to computa-
tionally simple mechanisms, in many practical applications, there is ample substitutability between resources,
and hence the above mechanisms can be inappropriate. For example, in compute clusters, CPUs and GPUs are
often interchangeable for many jobs, albeit with different performance characteristics. Indeed, in this work, we
in particular focused on the applications of EE and fair division mechanisms for computing resource allocation.

E.2 Computation of the FD loss

We note that one main challenge for computing the FD loss is that we need to approximate the Pareto Front
and then take a minimum over it. To approximate it, even in the simplest two agent two resource set up, this
requires grid search on a 4D space which can be computationally prohibitive. In our experiments, the dimensions
are 15 (3 resources by 5 agents) and 16 (2 resources by 8 agents), for which grid search is not feasible. Given that
efficient computations over the Pareto frontier have remain a technical challenge, we focused the evaluations on
the CE loss in this work.

E.3 On the loss functions

We provide an example to demonstrate that the FD loss (3), while more interpretable than the CE loss (2), may
not capture all properties of an equilibrium.

For this consider the following example with n = 3 agents and m = 2 resources where the endowments of agent
1, agent 2, and agent 3 are e1 = (0.45, 0.05), e2 = (0.45, 0.05), and e3 = (0.1, 0.9) respectively. Their utilities
are:

u1(x1) = 0.1x11 + x12, u2(x2) = 0.2x21 + x22, u3(x3) = x31 + 0.1x32.
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The utilities of the three users if they were to simply use their endowment is, u1(e1) = 0.1× 0.45 + 0.05 = 0.095,
u2(e2) = 0.14, and u3(e3) = 0.19. We find that while agents 1 and 2 benefit more from the second resource, they
have more of the first resource in their endowments and vice versa for agent 3. By exchanging resources, we can
obtain a more efficient allocation.

The unique equilibrium prices for the two goods are p? = (1/2, 1/2) and the allocations are x?1 = (0, 0.5) for agent
1, x?2 = (0, 0.5) for agent 2, and x?3 = (1.0, 0.0) for agent 3. The utilities of the agents under the equilibrium
allocations are u1(x1) = 0.5, u2(x2) = 0.5, and u3(x3) = 1.0. Here, we find that by the definition of CE,
`PE(x?, p?) = 0. It can also be verified that `FD(x?, p?) = 0.

In contrast, consider the following allocation for the 3 users: x1 = (0.35, 0.49) for agent 1, x2 = (0.35, 0.49) for
agent 2, and x3 = (0.3, 0.02) for agent 3. Here, the utilities are u1(x1) = 0.1×0.35+0.49 = 0.525, u2(x2) = 0.56,
and u3(x3) = 0.3002. This allocation is both PE (as the utility of one user can only be increased by taking
resources from someone else), and SI (as all three users are better off than having their endowments). Therefore,
`FD((x1, x2, x3)) = 0. However, user 3 might complain that their contribution of resource 2 (which was useful
for users 1 and 2) has not been properly accounted for in the allocation. Specifically, there do not exist a set of
prices p for which `PE(x, p) = 0. This example illustrates the role of prices in this economy: it allows us to value
the resources relative to each other based on the demand.
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