
Confident Least Square Value Iteration with Local Access to a
Simulator

Botao Hao1 Nevena Lazić1 Dong Yin1 Yasin Abbasi-Yadkori1Csaba Szepesvári12

1DeepMind
2University of Alberta

Abstract

Learning with simulators is ubiquitous in

modern reinforcement learning (RL). The sim-

ulator can either correspond to a simplified

version of the real environment (such as a

physics simulation of a robot arm) or to the

environment itself (such as in games like Atari

and Go). Among algorithms that are provably

sample-efficient in this setting, most make the

unrealistic assumption that all possible en-

vironment states are known before learning

begins, or perform global optimistic planning

which is computationally inefficient. In this

work, we focus on simulation-based RL under

a more realistic local access protocol, where

the state space is unknown and the simula-

tor can only be queried at states that have

previously been observed (initial states and

those returned by previous queries). We pro-

pose an algorithm named Confident-LSVI

based on the template of least-square value

iteration. Confident-LSVI incrementally

builds a coreset of important states and uses

the simulator to revisit them. Assuming that

the linear function class has low approxima-

tion error under the Bellman optimality oper-

ator (a.k.a. low inherent Bellman error), we

bound the algorithm performance in terms

of this error, and show that it is query- and

computationally-efficient.

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

1 Introduction

Modern reinforcement learning (RL) problems can be

categorized into three classes based on the protocol for

interaction with the environment: batch RL, online

RL, and simulation-based RL. In batch RL, the agent

only has access to a pre-collected dataset of experiences

in the environment. In online RL, the agent can only

follow the dynamics of the MDP during the learning

process. In simulation-based RL, the agent has the

access to a simulator and can query the simulator at

particular state-action pairs. We further categorize

simulation-based RL into two types:

• Random access. In this setting, the agent can

query the simulator with any state-action pair of

its choice to obtain a reward and a sample of the

next state. This is often referred as the access

to a generative model in literature [Kakade, 2003,

Sidford et al., 2018, Yang and Wang, 2019].

• Local access. Here the agent can only query or

revisit states that have previously been observed,

such as initial states and those returned by past

queries. This is a more restrictive protocol than

random access, and more realistic to implement

(for example, using checkpointing).

In this work, we assume the agent interacts with the

environment under the local access protocol. This set-

ting can be implemented with most simulators used

in practice, but is rarely taken full advantage of. It

has only recently received attention from the theory

community [Yin et al., 2021, Li et al., 2021] and in

empirical approaches [Ecoffet et al., 2021]. In partic-

ular, the Go-Explore algorithm [Ecoffet et al., 2021]

uses state revisiting to solve a set of hard-exploration

problems, including reaching the new state-of-the-art

performance on Montezuma’s revenge. The main mes-

Confident Least Square Value Iteration with Local Access to a Simulator

sage that Go-Explore delivers is that a sample-efficient

agent should remember promising states that it has

previously visited, and run planning or exploration

from them.

Inspired by the design principles of Go-Explore,

we propose a confident least-square value iteration

(Confident-LSVI) algorithm that relies on the local

access protocol, and advances the theoretical under-

standing of RL with linear function approximation.

Confident-LSVI maintains a coreset that stores im-

portant state-action pairs. At each iteration, the agent

revisits the state-action pairs in the coreset and queries

the simulator with them. Whenever the agent discov-

ers a promising new state-action pair, it updates the

coreset and restarts. Our algorithm is computationally-

efficient and easy to implement since we do not require

any global optimistic planning which could lead to

computational inefficiency [Zanette et al., 2020a, Du

et al., 2021].

From a theoretical side, we assume that the linear

function class has low approximation error under the

Bellman optimality operator, which is often referred

to as low inherent Bellman error (IBE) [Munos and

Szepesvári, 2008, Zanette et al., 2020a,b]. We bound

the policy optimization error in terms of the IBE, and

show that the simulator query cost is polynomial in

the feature dimension, effective horizon, and IBE. In

the unrealizable case, our algorithm matches the state-

of-the-art query cost bound [Lattimore et al., 2020]

without the knowledge of model misspecification error,

while prior works based on optimistic planning [Zanette

et al., 2020a, Jin et al., 2020] require this term to correct

their confidence bounds. In terms of analysis, we adapt

a powerful proof technique recently proposed in Yin

et al. [2021] to relate our algorithm to a virtual value

iteration algorithm with uniformly bounded error under

the Bellman optimality operator.

2 Related Work

The focus of our work is query-efficient learning in large

MDPs with linear function approximation, assuming

access to a simulator. We discuss several related works

based on different structural assumptions.

Q∗-realizability In this setting, the optimal action-

value function is realizable in the linear function class.

For a deterministic transition kernel, Wen and Roy

[2013] proposed a provably efficient algorithm with Q∗-

realizability. For a stochastic transition kernel, Weisz

et al. [2021b] have shown that query-efficient learning

is impossible under Q∗-realizability, regardless of the

algorithm or simulator interaction protocol.

Q∗-realizability with constant gap Assuming

that there exists a suboptimality gap ∆gap between the

value of the optimal action and any suboptimal action

in every state, there exist algorithms whose query cost

scales polynomially in the feature dimension d, plan-

ning horizon, and 1/∆gap under random access [Du

et al., 2020] and local access protocols [Li et al., 2021].

However, query-efficient learning with a constant gap is

impossible under the online setting [Wang et al., 2021].

Low inherent Bellman error In the online RL set-

ting, Zanette et al. [2020a] proposed an algorithm with

a sublinear regret guarantee, which can be converted

into a query-efficient planning algorithm through stan-

dard online-to-batch conversion [Cesa-Bianchi et al.,

2004] approach. However, the algorithm of Zanette

et al. [2020a] needs to solve a global optimization prob-

lem for optimistic planning, for which no efficient im-

plementation is available. In contrast, our algorithm

is computationally-efficient. Zanette et al. [2020b] de-

veloped an algorithm called FRANSIS that is both

computationally efficient and query efficient but re-

quired an explorability condition.

Qπ-realizability This assumption means that the

Q-functions for all policies can be (approximately)

represented by linear function approximation in some

given features. Assuming the random access to the

simulator, Du et al. [2020], Lattimore et al. [2020] de-

rived query-efficient algorithms for this setting. These

algorithms assume the knowledge of full feature matrix

and are not computationally-efficient. Very recently,

Yin et al. [2021] developed an algorithm that is both

query and computationally efficient under the local

access protocol, and corresponds to a version of policy

iteration.

Linear MDPs In this setting, the rewards are linear

and the transition kernel has a low-rank factorization

based on the features vectors. Under the random access

protocol, Yang and Wang [2019] showed an optimal

query-cost bound for a variance-reduction Q-learning

type algorithm. Efficient learning under the linear

MDP assumption has attracted much activity in recent

years [Jin et al., 2020, Agarwal et al., 2020a, Wang

et al., 2020, Zanette et al., 2021].

Remark 2.1. As shown in Zanette et al. [2020a], the

Botao Hao1, Nevena Lazić1, Dong Yin1, Yasin Abbasi-Yadkori1, Csaba Szepesvári12

aforementioned assumptions have the following rela-

tionship:

linear MDPs ⊆ Qπ-realizability ⊆ Q∗-realizability

linear MDPs ⊆ zero IBE ⊆ Q∗-realizability

Qπ-realizability 6= zero IBE ,

where A ⊆ B means assumption A is stronger than

assumption B.

Du et al. [2021] introduced a more general structural

framework called Bilinear Classes that can cover many

of the existing popular structural assumptions. How-

ever, their algorithm still requires a global optimistic

planning step which is not computationally-efficient.

Additional related works Under the linear mix-

ture MDP assumption, Yang and Wang [2020], Cai

et al. [2020], Zhou et al. [2020], Ayoub et al. [2020],

Modi et al. [2020] proposed either model-based or

model-free algorithms that can achieve a sub-linear

regret guarantee with function approximation. More-

over, Zhou et al. [2021] proved the first minimax regret

for linear mixture MDP model. Agarwal et al. [2020a]

derived a poly(d, 1/(1 − γ), ε−1) sample cost bound

for the policy cover-policy gradient algorithm. Weisz

et al. [2021a] introduced TensorPlan, a query-efficient

local planning under linear realizability of the optimal

state-value function. Assuming the MDP has low Bell-

man/Witness rank, Jiang et al. [2017], Sun et al. [2019]

proposed algorithms that are sample-efficient but com-

putationally inefficient. Another line of works focus on

sublinear regret guarantee with function approximation

in the infinite-horizon undiscounted setting (average re-

ward case), including Politex [Abbasi-Yadkori et al.,

2019, Lazic et al., 2021], AAPI [Hao et al., 2021], and

MDP-EXP2 [Wei et al., 2021].

3 Problem Setting

Notation We use ∆S to denote the set of probability

distributions defined on any countable set S and write

[N] := {1, 2, . . . , N} for any positive integer N .

Infinite-horizon MDP An infinite-horizon dis-

counted Markov decision process (MDP) can be char-

acterized by a tuple (S,A, R, P, γ), where S is the

countable state space, A is the finite action space,

R : S ×A → [0, 1] is the reward function, P : S ×A →
∆S is the probability transition kernel and γ ∈ (0, 1)

is the discount factor. Both P and R are unknown.

We let s0 ∈ S be a fixed initial state. At each state

s, if we pick action a ∈ A, the environment evolves

to a random next state s′ according to distribution

P (s′|s, a) and generates a stochastic reward r ∈ [0, 1]

with E[r|s, a] = R(s, a).

A stationary policy π : S → ∆A is a mapping from a

state to a distribution over actions. If for all state s,

π(a|s) = 1 for some action a, we call π a deterministic

policy. For a policy π, its value function Vπ(s) is the

expected value of cumulative rewards received under

policy π when starting from an arbitrary state s, i.e.,

Vπ(s) = Eπ
[∞∑
t=0

γtR(st, at)
∣∣∣s0 = s

]
,

where at ∼ π(·|st), st+1 ∼ P (·|st, at) and Eπ denotes

the expectation over the sample path and stochastic

reward generated under policy π. The action value

function Qπ(s, a) is defined as

Qπ(s, a) = Eπ
[∞∑
t=0

γtR(st, at)
∣∣∣s0 = s, a0 = a

]
.

The Bellman optimality operator for any function Q :

S ×A → R is defined as

T Q(s, a) := R(s, a) + γEs′∼P (·|s,a)

[
max
a′∈A

Q(s′, a′)

]
.

(3.1)

The optimal action value function Q∗ is the unique

solution of Bellman optimality equation T Q = Q. The

optimal policy π∗ is greedy with respect to Q∗ and

thus a deterministic policy.

Linear function approximation and efficient

planning Let φ : S × A → Rd be a feature map

which assigns to each state-action pair a d-dimensional

feature vector. A feature map combined with a pa-

rameter vector w ∈ Rd gives rise to the linear function

Qw : S × A → R defined by Qw(s, a) = φ(s, a)>w.

When the agent interacts with a large MDP, a feasi-

ble solution will approximate the optimal action value

function by (linear) function approximation. With-

out loss of generality, we assume ‖φ(s, a)‖2 ≤ 1 for all

(s, a) ∈ S ×A throughout the paper.

Let Πγ : RS×A → R be a truncation operator defined

by (Πγf)(s, a) = max(min(f(s, a), (1 − γ)−1), 0). We

define the inherent Bellman error as follows:

Definition 3.1 (Inherent Bellman error [Munos and

Szepesvári, 2008, Zanette et al., 2020a]). The inher-

ent Bellman error of an MDP with a linear feature

Confident Least Square Value Iteration with Local Access to a Simulator

representation φ is denoted by I and defined as

I = sup
v∈Rd

inf
w∈Rd

‖w‖2≤b

sup
(s,a)∈S×A

∣∣φ(s, a)>w − T ΠγQv(s, a)
∣∣ .

Here b is an upper bound of the `2-norm of the param-

eter vector w.

Remark 3.2. As shown in Zanette et al. [2020a,

Proposition 3], zero inherent Bellman error assump-

tion is a strictly weaker assumption than linear MDP

assumption [Yang and Wang, 2019, Jin et al., 2020].

Intuitively, this is because in linear MDPs, the Bellman

operator maps any function Q to a linear space, while

with zero inherent Bellman error only members of the

linear function space get mapped to the same space.

An efficient planning algorithm has low query and

computational cost independent of the size of state

space. Here, query cost refers to the number of queries

to the simulator while computational cost refers to

the number of logic operations. An MDP simulator is

formally defined below.

Definition 3.3 (MDP simulator). A simulator imple-

menting an MDP M = (S,A, R, P, γ) is a “black-box

oracle” that when queried with a state action pair

(s, a) returns a stochastic reward rsa ∈ [0, 1] with mean

R(s, a) and a random state s′sa ∼ P (·|s, a).

Local access to a simulator means the agent is only

allowed to query the simulator with a state that the

agent has previously observed. The goal of this work

is to propose an efficient planning algorithm with local

access to a simulator.

4 Algorithm

Our algorithm, named Confident-LSVI, builds on

the template of least-square value iteration (LSVI) and

is presented in Algorithm 1. The algorithm iteratively

builds a coreset C ⊆ S ×A of state-action pairs whose

features cover the feature directions encountered so

far. During each iteration the algorithm queries the

simulator with the coreset elements to obtain data for

updating the Q-function estimate. If the algorithm

encounters new feature directions during this process

(we make this precise later), it updates the coreset and

restart value iteration from the beginning. If still no

new directions are encountered after K iterations, the

algorithm performs a final check for the greedy policy

corresponding to the last Q-function by rolling it out.

If no new directions are encountered, the algorithm

Algorithm 1 Confident-LSVI

1: Input: the simulator, number of iterations K, reg-

ularization parameter λ, uncertainty check thresh-

old τ , number of rollouts m1,m2, length of rollouts

N

2: Initialize: C ← ∅
3: for a ∈ A do

4: if φ(s0, a)>(Φ>C ΦC + λI)−1φ(s0, a) > τ then

5: C ← C ∪ {(s0, a)}
6: end if

7: end for

start value iteration (∗)
8: Initialize: Q0 = 0

9: for k = 1, . . . ,K do

10: for (s, a) ∈ C do

11: for i = 1, . . . ,m1 do

12: Query the simulator with (s, a), receive next

state sis,a and reward ris,a
13: Run Uncertainty Check with sis,a,ΦC,

parameters τ , λ

14: If not return None, restart from Line (∗)
15: Compute regression target yi as in Eq. (4.1):

yis,a = ris,a + γmaxa′ ΠγQk−1(sis,a, a
′)

16: end for

17: end for

18: Compute wk using least squares as in Eq. (4.2)

and set Qk(s, a) = φ(s, a)>wk ∀s, a
19: end for

20: Let πK be greedy w.r.t QK
final rollout check

21: for i = 1, . . . ,m2 do

22: si0 ← s0

23: for j = 0, . . . , N − 1 do

24: Query the simulator with (sij , πK(sij)), receive

reward rij and next state sij+1

25: Run Uncertainty Check with sij+1, ΦC,

parameters τ , λ

26: If not return None, restart from Line (∗)
27: end for

28: end for

29: return the greedy policy πK

returns this policy. The main benefit of local access to

the simulator is that it allows us to revisit the elements

of the coreset, as well as to conduct uncertainty checks

on the next states and policy rollouts.

Algorithm details Let us denote ΦC ∈ R|C|×d the

feature matrix of all the elements in the coreset. We

write Qk = Qwk
for notational simplicity and set Q0 =

Botao Hao1, Nevena Lazić1, Dong Yin1, Yasin Abbasi-Yadkori1, Csaba Szepesvári12

Algorithm 2 Uncertainty Check

Input: state s, coreset features ΦC, parameters τ ,

λ

for a ∈ A do

if φ(s, a)>(Φ>C ΦC + λI)−1φ(s, a) > τ then

Expand C ← C ∪ {(s, a)}
break

end if

end for

return None

0 at the beginning of value iteration. We initialize

the coreset based on the initial state s0 and set each

policy πk to be greedy with respect to Qk (breaking

ties uniformly at random).

In each iteration, Confident-LSVI queries the simu-

lator m1 times at each coreset element (s, a) ∈ C to ob-

tain samples of rewards and next states {ris,a, sis,a}
m1
i=1.

The algorithm checks whether the coreset should be

expanded to include the new states by running the

Uncertainty Check shown in Algorithm 2 on the

next states. The check determines whether there exists

an action a ∈ A and next state sis,a such that

φ(sis,a, a)>(Φ>C ΦC + λI)−1φ(sis,a, a) > τ ,

for parameters τ and λ. We say that the uncertainty

check passes if it returns None.

• If the uncertainty check fails and returns a state

action pair (s, a), the coreset C is expanded as

C ← C ∪ {(s, a)}, and value iteration restarts from

the beginning with the updated coreset (Line (∗)
in Algorithm 1).

• Otherwise, we compute the regression targets:

yis,a = ris,a + γmax
a′

ΠγQk−1(sis,a, a
′) , (4.1)

and update the Q-function parameters using reg-

ularized least-squares:

Qk(s, a) = φ(s, a)>wk ∀s, a ,

where

wk = argmin
w∈Rd

∑
(s,a)∈C

1

m1

m1∑
i=1

(
yis,a − φ(s, a)>w

)2
+ λ‖w‖22 .

(4.2)

Remark 4.1. We say a new loop starts whenever the

value iteration restarts. In each loop, the algorithm

performs at most K steps of value iteration. As long as

the algorithm starts a new loop, the size of the coreset

C increases by 1.

After successfully finishing K steps of value iteration

without starting a new loop, the algorithm conducts

a final rollout check for the output greedy policy πK
with respect to QK . For each (s, a) ∈ C, the algorithm

runs N steps rollouts following πK and implements the

uncertainty check (Algorithm 2). If the uncertainty

check fails at any point, we again expand the coreset

and restart value iteration. Otherwise, we return πK
as the final policy.

Remark 4.2. In practice, rather than revisiting and

querying each element of the coreset at each iteration

of LSVI, we can save the data from past loops and

only query the simulator at the latest addition to the

coreset at the beginning of each round of LSVI.

5 Analysis

In this section, we study the query and computational

cost of Confident-LSVI. We first show that the core-

set expansion step can only happen a small number of

times that is independent of the size of the state space.

Lemma 5.1. Under the assumption that ‖φ(s, a)‖2 ≤
1 for all (s, a) ∈ S ×A, the size of the coreset is upper

bounded by

Cmax :=
e

e− 1

1 + τ

τ
d

(
ln

(
1 +

1

τ

)
+ ln

(
1 +

1

λ

))
.

In particular, when choosing τ = 1, the size of the

coreset will not exceed 4d ln(2 + 2/λ).

This result can be derived using the technique in Russo

and Van Roy [2013] as the eluder dimension of linear

function class. We include a full proof in the appendix

for self-completeness.

Next we state the main result.

Theorem 5.2 (Policy optimization error). Let ε > 0

be the target accuracy. With the choice of algorithm

Confident Least Square Value Iteration with Local Access to a Simulator

parameters in Algorithm 1 as follows:

λ =
ε2(1− γ)4

256b2
, τ = 1 ,

m1 =
64 (ln(1/δ) + d ln(1 + 4 ln(2 + 2/λ)/λ))

ε2(1− γ)6
,

m2 =
32 ln(1/δ)

ε2(1− γ)2
,

K =
ln(8/(ε(1− γ)2))

1− γ
,N =

ln(8/(ε(1− γ)))

1− γ
,

the policy optimization error of confident-LSVI can

be upper bounded by

V ∗(s0)− VπK
(s0)

≤ ε+ 8

√
ln

(
2 +

512b2

d2(1− γ)4

) √
dI

(1− γ)2
,

(5.1)

with probability at least 1− (K + 2)Cmaxδ.

In the bound of Eq. (5.1), the first term represents the

target accuracy while the second term represents the

model missepcification error.

Query cost Next we study the query cost of

Confident-LSVI to find an ε-optimal policy and any

logarithm factor is ignored. From Algorithm 1, we run

at most Cmax loops and each loop we run K steps of

value iteration with m1 times queries to the simulator

at each iteration. When I = 0 in the realizable case,

the total query cost to find an ε-optimal policy is at

most

Cmax (KCmaxm1 +Nm2) = Õ

(
d3

ε2(1− γ)7

)
.

When I 6= 0, the query cost to find a Õ(
√
dI/(1−γ)2)-

optimal policy is at most

Cmax (KCmaxm1 +Nm2) = Õ

(
d2

I2(1− γ)3

)
.

Note that in our problem, the agent does not encounter

a query cost when computing the feature vector φ(s, a)

of a state-action pair.

Remark 5.3. Under random access protocol and lin-

ear MDPs assumption, Yang and Wang [2019] derived

a Õ(d/ε2(1− γ)3) query-cost bound that matches the

minimax lower bound proposed in the same paper.

Since there is a large gap between our upper bound

and the lower bound, it would be interesting to investi-

gate if the more restrictive local access protocol makes

the problem fundamentally harder.

Computational cost The key features of

Confident-LSVI are its computational effi-

ciency and ease of implementation. Since the value

iteration steps only involve matrix multiplication

and matrix inversion, the computational cost is

polynomial in the aforementioned factors. Notice

that the computational cost is also linear in |A| since

in Uncertainty Check we need to enumerate all

the actions. In contrast, Zanette et al. [2020a] and

Du et al. [2021] need to solve a global optimization

problem whose computational tractability is unknown.

5.1 Comparison to Existing Results

We discuss our algorithm in the context of two closely

related works:

• Comparison to Yin et al. [2021]. Yin et al. [2021]

studied an algorithm based on policy iteration

and used the same local access protocol with Qπ-

realizability. We show that the query cost of

Confident-LSVI has better dependency on the

effective planning horizon than Yin et al. [2021].

The main reason is that for policy iteration, we

need to run rollouts of length 1/(1 − γ) at each

iteration while for value iteration, we just need

to run rollouts of length 1. In terms of the proof

technique, although we borrow the idea of intro-

ducing a virtual algorithm as a bridge, we have a

different way to analyze the virtual algorithm due

to the final rollout check step designed specifically

to value iteration.

• Comparison to Li et al. [2021]. Assuming a con-

stant sub-optimality gap assumption, Li et al.

[2021] also proposed a value iteration type algo-

rithm using state revisiting but their analysis is

very different from ours. They mimic the anal-

ysis of LSVI-UCB [Jin et al., 2020] in the on-

line setting and prove the Q-function estimate is

optimistic, while we mimic the analysis in the

generative model setting and provide a `∞ error

guarantee. In addition, their result do not allow

for model misspecification error.

It is also worth emphasizing why the analysis of LSVI-

UCB [Jin et al., 2020] fails for low inherent Bellman

error assumption. The bonus term brings in a non-

linear component that will not get mapped to the same

linear function space by zero inherent Bellman error

assumption but can be filtered out by the linear MDP

assumption.

Botao Hao1, Nevena Lazić1, Dong Yin1, Yasin Abbasi-Yadkori1, Csaba Szepesvári12

6 Proof Sketch

We provide a proof sketch for our main result. To ana-

lyze the algorithm, we first note that if we run approx-

imate value iteration (AVI) with uniformly bounded

error in each iteration, then using standard error prop-

agation results, we can expect the greedy policy w.r.t.

the last Q-function to perform well, as stated in the

following theorem.

Theorem 6.1. Let Q1, Q2, ..., QK be a sequence of

Q-functions generated by running approximate value

iteration. Suppose that for each k ∈ [K] we have

||Qk − T ΠγQk−1||∞ ≤ η. Let πk be the greedy policy

with respect to Qk. Then for any initial state s0,

V ∗(s0)− VπK
(s0) ≤ 2η

(1− γ)2
+

2γK

(1− γ)2
.

The detailed proof of Theorem 6.1 is deferred to Ap-

pendix A.1 and follows the steps in Munos [2005].

Unfortunately, in our algorithm, the Bellman error

is only uniformly bounded on the set of state-action

pairs that pass the uncertainty check (we make this

precise later). Our analysis will connect the output of

Confident-LSVI to the output of a value iteration

algorithm that makes the same updates on this set and

has uniformly bounded Bellman error outside of this

set.

To make this connection, we introduce two algorithms

named quasi-LSVI and virtual-LSVI. These algorithms

are for analysis purposes only, and not implementable.

We refer to the simulator that Confident-LSVI in-

teracts with as the real simulator, while quasi-LSVI

and virtual-LSVI interact with the quasi simulator and

the virtual simulator respectively.

Step 1: Quasi-LSVI First, we note that the size

of the final coreset of our real algorithm Confident-

LSVI is a random variable, whose value cannot exceed

Cmax, defined in Lemma 5.1. If we choose to analyze

the final loop of our real algorithm, we need to condi-

tion on the fact that the policy that we output comes

from the last loop; however, this type of condition-

ing introduces additional statistical dependencies in

the analysis. The purpose of introducing quasi-LSVI,

which runs exactly Cmax loops, is to overcome this type

of statistical dependencies.

• Quasi-LSVI is identical to Confident-LSVI, ex-

cept that it does not restart the algorithm when

the Uncertainty Check step fails. Instead, in

quasi-LSVI, we record the first uncertain state-

action pair that we encounter during the algo-

rithm, and then keep running the algorithm and

finish the K steps of value iteration. If the algo-

rithm records an uncertain state-action pair, then

in the next loop, we add this pair to the core-

set and restart the algorithm; otherwise, we still

restart the algorithm using the same coreset until

we finish Cmax loops. We will use Q̄k and w̄k to

denote the Q-functions and corresponding weights

produced by quasi-LSVI in any particular loop.

Quasi-LSVI is initialized to the same function,

Q̄0 = Q0 = 0.

• The quasi simulator is coupled with the real sim-

ulator at the start of each loop. This means

that when the two simulators are queried for

the nth time with the same state-action pair,

i.e., (sreal, areal) = (squasi, aquasi), the next states

and rewards that they return are also the same,

(s′real, rreal) = (s′quasi, rquasi). When Confident-

LSVI ends the current loop, quasi-LSVI continues

to finish K steps of value iteration and sample from

probability transition kernel P independently from

Confident-LSVI. We notice that the coupling

argument and the fact that the quasi algorithm

only adds the first uncertain state-action pair to

the coreset ensure that before the real algorithm

ends, at the beginning of each loop, the quasi-LSVI

always has the same coreset as the real algorithm.

In the final loop of Confident-LSVI, since the weights

produced by Confident-LSVI and quasi-LSVI, i.e.,

wK and w̄K are computed in the same way with exactly

the same data, it is easy to see wK = w̄K in the final

loop. Furthermore, both Confident-LSVI and quasi-

LSVI both return the greedy policy with respect to

the final Q-function. Therefore, they output exactly

the same policy and thus their value functions are the

same, i.e. VπK
(s0) = Vπ̄K

(s0) in the final loop of the

real algorithm.

Given λ, τ > 0, and a feature matrix ΦC ∈ R|C|×d, we

define H ⊆ S ×A as

H :=
{

(s, a) : φ(s, a)>(Φ>C ΦC + λI)−1φ(s, a) ≤ τ
}
.

While we can show that our Q-function estimates have

low Bellman error for state-action pairs in H (see

Lemma 6.2 in the following), we have no control on

state-action pair outside H. To overcome this obstacle,

we introduce virtual-LSVI in the next step.

Confident Least Square Value Iteration with Local Access to a Simulator

Step 2: Virtual-LSVI Similarly to quasi-LSVI,

virtual-LSVI runs exactly Cmax loops and its simu-

lator is coupled with quasi-LSVI at the start of each

loop. In each loop, we run LSVI using the simulator

and the current coreset, followed by the final rollout.

Similarly to quasi-LSVI, virtual-LSVI records the first

uncertain state-action pair that it encounters in a loop

to the coreset and keeps finishing the K steps of value

iteration. If an uncertain pair is recorded, virtual-LSVI

adds it to the coreset and starts the next loop; and

even if there is no recorded elements, it still starts

the new loop with the same coreset until finishing the

Cmax loops. This design ensures that at the beginning

of each loop, quasi-LSVI and virtual-LSVI have the

same coreset. We use Q̃k and w̃k to denote the Q-

functions and weight vectors produced by virtual-LSVI

in a particular loop. The weight vectors are initialized

to w̃0 = 0 and updated using least-squares as in quasi-

LSVI. However, the virtual Q-functions are different

and defined as follows:

Q̃k(s, a) :=

{
w̃>k φ(s, a), (s, a) ∈ H ,
T ΠγQ̃k−1(s, a), (s, a) /∈ H ,

(6.1)

where the oracle knowledge of the true Bellman opti-

mality operator T is assumed to be given to virtual-

LSVI. The next policy π̃k is defined as the greedy policy

with respect to the virtual Q-function Q̃k(s, a).

We now analyze the performance of virtual-LSVI. By

the definition of Q̃k in Eq. (6.1), the Bellman error

is zero for (s, a) /∈ H. The next lemma provides a

bound of Bellman error for (s, a) ∈ H. Recall that per

Lemma 5.1, the size of the coreset is upper-bounded

by Cmax = 4d ln(2 + 2/λ) when τ = 1.

Lemma 6.2 (Bellman error of virtual-LSVI). With

probability at least 1−Kδ, we have for any (s, a) ∈ H
and any iteration k ∈ [K],∣∣∣Q̃k(s, a)− T ΠγQ̃k−1(s, a)

∣∣∣ ≤ η ,
where

η =

√
2 ln

(
1

δ

)
+ d ln

(
1 +

Cmax

λd

)
4
√
τ(1− γ)−1

√
m1

+
√
λτb+ (

√
Cmaxτ + 1)I ,

and b is an upper bound of `2-norm of the parameter

vector.

The proof of Lemma 6.2 is deferred to Appendix

A.2. Together with a union bound over Cmax loops,

the Bellman error can be uniformly bounded: ‖Q̃k −
T ΠγQ̃k−1‖∞ ≤ η holds for any k ∈ [K] and any loop

with probability at least 1−KCmaxδ. Combining with

the finite-time error propagation analysis for AVI in

Theorem 6.1, it is straightforward to have the following

result.

Theorem 6.3 (Policy optimization error for virtu-

al-LSVI). Letting π̃K be greedy with respect to Q̃K ,

we have that

V ∗(s0)− Vπ̃K
(s0) ≤ 2η

(1− γ)2
+

2γK

(1− γ)2
,

holds for all loops of virtual-LSVI with probability at

least 1−KCmaxδ and η is defined in Lemma 6.2.

Step 3: Analysis of quasi-LSVI The next lemma

relates the rollout trajectories of virtual-LSVI and

quasi-LSVI.

Lemma 6.4. When the real algorithm Confident-

LSVI successfully finishes the final rollout check, we

have w̃K = w̄K and all the rollout trajectories pro-

duced by virtual-LSVI during the final rollout check

are exactly the same as those produced by quasi-LSVI.

Recall that the definition of Qπ(s, a):

Qπ(s, a) = Eπ
[∞∑
t=0

γtr(st, at)
∣∣∣s0 = s, a0 = a

]
.

Furthermore, we define the N -step truncated Q-

function:

QNπ (s, a) = Eπ
[
N∑
t=0

γtr(st, at)
∣∣∣s0 = s, a0 = a

]
.

From the boundedness of reward function,

Qπ(s, a)−QNπ (s, a) ≤ γN

1− γ
. (6.2)

Note that quasi-LSVI continues to finish the K steps

of value iteration and final rollouts for each loop. Ac-

cording to Hoeffding’s inequality and using a union

bound, we have with probability at least 1−Cmaxδ for

any loop∣∣∣∣∣∣ 1

m2

m2∑
i=1

N−1∑
j=0

γjrij −QNπ̄K
(s0, π̄K(s0))

∣∣∣∣∣∣
≤ 1

1− γ

√
1

2m2
ln

(
1

δ

)
,

Botao Hao1, Nevena Lazić1, Dong Yin1, Yasin Abbasi-Yadkori1, Csaba Szepesvári12

where rij is the reward collected by quasi-LSVI inter-

acting with quasi simulator. Overall, we have

V ∗(s0)− Vπ̄K
(s0) = V ∗(s0)−Qπ̄K

(s0, π̄K(s0))

=QNπ̄K
(s0, π̄K(s0))−Qπ̄K

(s0, π̄K(s0))

+
1

m2

m2∑
i=1

N−1∑
j=0

γjrij −QNπ̄K
(s0, π̄K(s0))

+ V ∗(s0)− 1

m2

m2∑
i=1

N−1∑
j=0

γjrij .

From Lemma 6.4, the rollout trajectectories of virtual-

LSVI and quasi-LSVI are the same starting from s0,

which implies that∣∣∣∣∣∣ 1

m2

m2∑
i=1

N−1∑
j=0

γjrij − V ∗(s0)

∣∣∣∣∣∣
≤ γN

1− γ
+

1

1− γ

√
1

2m2
ln

(
1

δ

)
+ |Qπ̃K

(s0, π̃K(s0))− V ∗(s0)|

=
γN

1− γ
+

1

1− γ

√
1

2m2
ln

(
1

δ

)
+ V ∗(s0)− Vπ̃K

(s0) .

Together with Theorem 6.3, we have

V ∗(s0)− Vπ̄K
(s0)

≤2

(
γN

1− γ
+

1

1− γ

√
1

2m2
ln

(
1

δ

))

+
2η

(1− γ)2
+

2γK

(1− γ)2
,

(6.3)

holds with probability at least 1− (K + 2)Cmaxδ.

Step 4: Final query cost The final step is to sim-

plify the policy optimization error bound and optimize

the algorithm parameters.

Lemma 6.5. With the algorithm parameters chosen

as in Theorem 5.2, the upper bound in Eq. (6.3) can

be simplified to

V ∗(s0)− Vπ̄K
(s0)

≤ ε+ 8

√
ln

(
2 +

512b2

d2(1− γ)4

) √
dI

(1− γ)2
,

with probability at least 1− (K + 2)Cmaxδ.

The proof of Lemma 6.5 is deferred to Appendix A.5.

From Step 1, we know that VπK
(s0) = Vπ̄K

(s0). This

ends the proof.

7 Discussion

In this paper, we propose a query and computation-

ally efficient local planning algorithm using local access

protocol. Future work includes extending this idea to

richer function classes, such as Bilinear Classes [Du

et al., 2021]. Note that in our paper, the feature map-

ping is given. Thus it is also very interesting to study

the representation learning [Agarwal et al., 2020b, Modi

et al., 2021] under local access protocol.

References

Yasin Abbasi-Yadkori, Peter Bartlett, Kush Bhatia, Nevena
Lazic, Csaba Szepesvari, and Gellért Weisz. Politex: Re-
gret bounds for policy iteration using expert prediction.
In International Conference on Machine Learning, pages
3692–3702. PMLR, 2019.

Alekh Agarwal, Mikael Henaff, Sham Kakade, and Wen
Sun. PC-PG: Policy cover directed exploration for
provable policy gradient learning. arXiv preprint
arXiv:2007.08459, 2020a.

Alekh Agarwal, Sham Kakade, Akshay Krishnamurthy,
and Wen Sun. FLAMBE: Structural complexity and
representation learning of low rank MDPs. arXiv preprint
arXiv:2006.10814v2, 2020b.

Alex Ayoub, Zeyu Jia, Csaba Szepesvari, Mengdi Wang,
and Lin Yang. Model-based reinforcement learning with
value-targeted regression. In International Conference
on Machine Learning, pages 463–474. PMLR, 2020.

Qi Cai, Zhuoran Yang, Chi Jin, and Zhaoran Wang. Prov-
ably efficient exploration in policy optimization. In Inter-
national Conference on Machine Learning, pages 1283–
1294. PMLR, 2020.

Nicolo Cesa-Bianchi, Alex Conconi, and Claudio Gentile.
On the generalization ability of on-line learning algo-
rithms. IEEE Transactions on Information Theory, 50
(9):2050–2057, 2004.

Simon S Du, Sham M Kakade, Ruosong Wang, and Lin
Yang. Is a good representation sufficient for sample
efficient reinforcement learning? In International Con-
ference on Learning Representations, 2020.

Simon S Du, Sham M Kakade, Jason D Lee, Shachar Lovett,
Gaurav Mahajan, Wen Sun, and Ruosong Wang. Bilinear
classes: A structural framework for provable generaliza-
tion in RL. arXiv preprint arXiv:2103.10897, 2021.

Adrien Ecoffet, Joost Huizinga, Joel Lehman, Kenneth O
Stanley, and Jeff Clune. First return, then explore.
Nature, 590(7847):580–586, 2021.

Botao Hao, Nevena Lazic, Yasin Abbasi-Yadkori, Pooria
Joulani, and Csaba Szepesvári. Adaptive approximate
policy iteration. In International Conference on Artificial
Intelligence and Statistics, pages 523–531. PMLR, 2021.

David A Harville. Matrix algebra from a statistician’s
perspective, 1998.

Confident Least Square Value Iteration with Local Access to a Simulator

Nan Jiang, Akshay Krishnamurthy, Alekh Agarwal, John
Langford, and Robert E Schapire. Contextual decision
processes with low Bellman rank are PAC-learnable. In
International Conference on Machine Learning, pages
1704–1713. PMLR, 2017.

Chi Jin, Zhuoran Yang, Zhaoran Wang, and Michael I
Jordan. Provably efficient reinforcement learning with
linear function approximation. In Conference on Learning
Theory, pages 2137–2143. PMLR, 2020.

Sham Machandranath Kakade. On the sample complexity of
reinforcement learning. University of London, University
College London (United Kingdom), 2003.

Tor Lattimore and Csaba Szepesvári. Bandit algorithms.
Cambridge University Press, 2020.

Tor Lattimore, Csaba Szepesvari, and Gellert Weisz. Learn-
ing with good feature representations in bandits and in
RL with a generative model. In International Conference
on Machine Learning, pages 5662–5670. PMLR, 2020.

Nevena Lazic, Dong Yin, Yasin Abbasi-Yadkori, and Csaba
Szepesvari. Improved regret bound and experience re-
play in regularized policy iteration. arXiv preprint
arXiv:2102.12611, 2021.

Gen Li, Yuxin Chen, Yuejie Chi, Yuantao Gu, and Yuting
Wei. Sample-efficient reinforcement learning is feasible
for linearly realizable MDPs with limited revisiting. arXiv
preprint arXiv:2105.08024, 2021.

Aditya Modi, Nan Jiang, Ambuj Tewari, and Satinder
Singh. Sample complexity of reinforcement learning using
linearly combined model ensembles. In International
Conference on Artificial Intelligence and Statistics, pages
2010–2020. PMLR, 2020.

Aditya Modi, Jinglin Chen, Akshay Krishnamurthy, Nan
Jiang, and Alekh Agarwal. Model-free representation
learning and exploration in low-rank mdps. arXiv
preprint arXiv:2102.07035, 2021.

Rémi Munos. Error bounds for approximate value iteration.
In Proceedings of the National Conference on Artificial
Intelligence, volume 20, page 1006. Menlo Park, CA;
Cambridge, MA; London; AAAI Press; MIT Press; 1999,
2005.

Rémi Munos and Csaba Szepesvári. Finite-time bounds
for fitted value iteration. Journal of Machine Learning
Research, 9(5), 2008.

Daniel Russo and Benjamin Van Roy. Eluder dimension
and the sample complexity of optimistic exploration.
In Advances in Neural Information Processing Systems,
pages 2256–2264. Citeseer, 2013.

Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and
Yinyu Ye. Near-optimal time and sample complexities
for solving Markov decision processes with a generative
model. In Proceedings of the 32nd International Confer-
ence on Neural Information Processing Systems, pages
5192–5202, 2018.

Satinder P Singh and Richard C Yee. An upper bound
on the loss from approximate optimal-value functions.
Machine Learning, 16(3):227–233, 1994.

Wen Sun, Nan Jiang, Akshay Krishnamurthy, Alekh Agar-
wal, and John Langford. Model-based rl in contextual
decision processes: Pac bounds and exponential improve-
ments over model-free approaches. In Conference on
Learning Theory, pages 2898–2933, 2019.

Ruosong Wang, Simon S Du, Lin Yang, and Russ R
Salakhutdinov. On reward-free reinforcement learning
with linear function approximation. Advances in neural
information processing systems, 33:17816–17826, 2020.

Yuanhao Wang, Ruosong Wang, and Sham M Kakade. An
exponential lower bound for linearly-realizable MDPs
with constant suboptimality gap. arXiv preprint
arXiv:2103.12690, 2021.

Chen-Yu Wei, Mehdi Jafarnia Jahromi, Haipeng Luo, and
Rahul Jain. Learning infinite-horizon average-reward
MDPs with linear function approximation. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pages 3007–3015. PMLR, 2021.

Gellert Weisz, Philip Amortila, Barnabás Janzer, Yasin
Abbasi-Yadkori, Nan Jiang, and Csaba Szepesvári. On
query-efficient planning in MDPs under linear realizabil-
ity of the optimal state-value function. arXiv preprint
arXiv:2102.02049, 2021a.

Gellért Weisz, Philip Amortila, and Csaba Szepesvári.
Exponential lower bounds for planning in MDPs with
linearly-realizable optimal action-value functions. In Al-
gorithmic Learning Theory, pages 1237–1264. PMLR,
2021b.

Zheng Wen and Benjamin Van Roy. Efficient exploration
and value function generalization in deterministic sys-
tems. In Proceedings of the 26th International Confer-
ence on Neural Information Processing Systems-Volume
2, pages 3021–3029, 2013.

Lin Yang and Mengdi Wang. Sample-optimal parametric
Q-learning using linearly additive features. In Inter-
national Conference on Machine Learning, pages 6995–
7004. PMLR, 2019.

Lin Yang and Mengdi Wang. Reinforcement leaning in
feature space: Matrix bandit, kernels, and regret bound.
International Conference on Machine Learning, 2020.

Dong Yin, Botao Hao, Yasin Abbasi-Yadkori, Nevena
Lazić, and Csaba Szepesvári. Efficient local planning
with linear function approximation. arXiv preprint
arXiv:2108.05533, 2021.

Andrea Zanette, Alessandro Lazaric, Mykel Kochenderfer,
and Emma Brunskill. Learning near optimal policies with
low inherent Bellman error. In International Conference
on Machine Learning, pages 10978–10989. PMLR, 2020a.

Andrea Zanette, Alessandro Lazaric, Mykel J Kochenderfer,
and Emma Brunskill. Provably efficient reward-agnostic
navigation with linear value iteration. Advances in Neural
Information Processing Systems, 33:11756–11766, 2020b.

Andrea Zanette, Ching-An Cheng, and Alekh Agarwal.
Cautiously optimistic policy optimization and explo-
ration with linear function approximation. In Conference
on Learning Theory (COLT), 2021.

Botao Hao1, Nevena Lazić1, Dong Yin1, Yasin Abbasi-Yadkori1, Csaba Szepesvári12

Dongruo Zhou, Jiafan He, and Quanquan Gu. Provably
efficient reinforcement learning for discounted MDPs with
feature mapping. arXiv preprint arXiv:2006.13165, 2020.

Dongruo Zhou, Quanquan Gu, and Csaba Szepesvari.
Nearly minimax optimal reinforcement learning for linear
mixture markov decision processes. In Conference on
Learning Theory, pages 4532–4576. PMLR, 2021.

Confident Least Square Value Iteration with Local Access to a Simulator

A Proofs

A.1 Proof of Theorem 6.1

Proof. We first write

||Qk −Q∗||∞ ≤ ||Qk − T ΠγQk−1||∞ + ||T ΠγQk−1 − T Q∗||∞
≤ ||Qk − T ΠγQk−1||∞ + γ||ΠγQk−1 −Q∗||∞
≤ η + γ||Qk−1 −Q∗||∞ ,

where the second inequality follows from the contraction of the Bellman operator and the third inequality follows

from the error assumption and the fact that Πγ can only make error smaller. Thus expanding the error expression

and using the fact that Q∗ in the valid range
[
0, (1− γ)−1

]
, we get the result

||QK −Q∗||∞ ≤
K−1∑
k=0

γkη + γK ||Q0 −Q∗||∞ ≤
η

1− γ
+

γK

1− γ
.

Using the standard result in Singh and Yee [1994], we have

V ∗(s0)− VπK
(s0) ≤ 2

1− γ
‖QK −Q∗‖∞ ≤

2η

(1− γ)2
+

2γK

(1− γ)2
.

A.2 Proof of Lemma 6.2

From Definition 3.1, there exists some vk ∈ Rd with ‖vk‖2 ≤ b such that for any (s, a),∣∣∣T ΠγQ̃k−1(s, a)− φ(s, a)>vk

∣∣∣ ≤ I . (A.1)

For any (s, a) ∈ H, we use the definition of Q̃k in Eq. (6.1) such that∣∣∣Q̃k(s, a)− T ΠγQ̃k−1(s, a)
∣∣∣

=
∣∣∣φ(s, a)>w̃k − φ(s, a)>vk + φ(s, a)>vk − T ΠγQ̃k−1(s, a)

∣∣∣
≤
∣∣φ(s, a)> (w̃k − vk)

∣∣+ I ,

(A.2)

where w̃k is the regularized least square estimator. Let’s denote V (λ) =
∑

(s,a)∈C φ(s, a)φ(s, a)> + λI. We

decompose the main term into the errors due to the regularization, noise and bias respectively as follows:

φ(s, a)> (w̃k − vk) = φ(s, a)>

V (λ)−1
∑

(s,a)∈C

1

m1

m1∑
i=1

(
ris,a + γmax

a
ΠγQ̃k−1(sis,a, a)

)
− vk


= −λφ(s, a)>V (λ)−1vk︸ ︷︷ ︸

I1

+ φ(s, a)>V (λ)−1
∑

(s,a)∈C

φ(s, a)

(
1

m1

m1∑
i=1

(
ris,a + γmax

a
ΠγQ̃k−1(sis,a, a)− T ΠγQ̃k−1(s, a)

))
︸ ︷︷ ︸

I2

+ φ(s, a)>V (λ)−1
∑

(s,a)∈C

φ(s, a)
(
T ΠγQ̃k−1(s, a)− φ(s, a)>vk

)
︸ ︷︷ ︸

I3

.

For a vector x ∈ Rd and a matrix A ∈ Rd×d, we define ‖x‖A =
√
x>Ax. According to the definition of good set

H in Eq. (6), we have ‖φ(s, a)‖2V (λ)−1 ≤ τ for (s, a) ∈ H.

Botao Hao1, Nevena Lazić1, Dong Yin1, Yasin Abbasi-Yadkori1, Csaba Szepesvári12

• Bounding I1. By Cauchy–Schwarz inequality,

|I1| ≤ λ‖φ(s, a)‖V (λ)−1‖vk‖V (λ)−1 .

Since λmin(V (λ)) ≥ λ, we have v>k V (λ)−1vk ≤ ‖vk‖22/λ ≤ b2/λ. This implies

|I1| ≤
√
λτb . (A.3)

• Bounding I2. From the definition of Bellman optimality operator, the true regression target is

T ΠγQ̃k−1(s, a) = r(s, a) + γEs′∼P (·|s,a)

[
max
a

ΠγQ̃k−1(s′, a)
]
.

Note that ris,a + γmaxa ΠγQ̃k−1(sis,a, a) is an unbiased estimate of T ΠγQ̃k−1(s, a) and is bounded by

[0, 1 + (1− γ)−1]. Let

Zi = ris,a + γmax
a

ΠγQ̃k−1(sis,a, a)− T ΠγQ̃k−1(s, a).

Then we have Zi/(
√
m1(1 + (1− γ)−1)) is bounded by 1/

√
m1. By the rotation invariance of sub-Gaussian

random variable, the sub-Gaussian norm of
∑m1

i=1 Zi/(
√
m1(1 + (1− γ)−1)) is bounded by 1. Then we can

rewrite ∥∥∥∥∥∥
∑

(s,a)∈C

φ(s, a)

(
1

m1

m1∑
i=1

(
ris,a + γmax

a
ΠγQ̃k−1(sis,a, a)

)
− T ΠγQ̃k−1(s, a)

)∥∥∥∥∥∥
V (λ)−1

=

∥∥∥∥∥∥1 + (1− γ)−1

√
m1

∑
(s,a)∈C

φ(s, a)

m1∑
i=1

Zi√
m1(1 + (1− γ)−1)

∥∥∥∥∥∥
V (λ)−1

=
1 + (1− γ)−1

√
m1

∥∥∥∥∥∥
∑

(s,a)∈C

φ(s, a)

m1∑
i=1

Zi√
m1(1 + (1− γ)−1)

∥∥∥∥∥∥
V (λ)−1

.

Using the self-normalized martingale inequality (Theorem 20.4 in Lattimore and Szepesvári [2020]), the

following holds with probability at least 1− δ∥∥∥∥∥∥
∑

(s,a)∈C

φ(s, a)

m1∑
i=1

Zi√
m1(1 + (1− γ)−1)

∥∥∥∥∥∥
V (λ)−1

≤

√
2 ln

(
1

δ

)
+ ln

(
det(V (λ))

λd

)
.

Since we have assumed ‖φ(s, a)‖2 ≤ 1,

ln

(
det(V (λ))

λd

)
≤ ln

[(
1 +
|C|
λd

)d]
≤ d ln

(
1 +
|C|
λd

)
.

Therefore, we have with probability at least 1− δ,

I2 ≤ ‖φ(s, a)‖V (λ)−1

∥∥∥∥∥∥
∑

(s,a)∈C

φ(s, a)

(
1

m1

m1∑
i=1

(
ris,a + γmax

a
ΠγQ̃k−1(sis,a, a)

)
− T ΠγQ̃k−1(s, a)

)∥∥∥∥∥∥
V (λ)−1

≤
√
τ

√
2 ln

(
1

δ

)
+ d ln

(
1 +
|C|
λd

)
2(1 + (1− γ)−1)

√
m1

.

(A.4)

• Bounding I3. According to Lemma B.1 and Eq. (A.1),

|I3| ≤ ‖φ(s, a)‖V (λ)−1

∥∥∥∥∥∥
∑

(s,a)∈C

φ(s, a)
(
T ΠγQ̃k−1(s, a)− φ(s, a)>vk

)∥∥∥∥∥∥
V (λ)−1

≤
√
τ
√
|C|I2 .

(A.5)

Confident Least Square Value Iteration with Local Access to a Simulator

Overall, putting Eqs (A.2)-(A.5) together, we have∣∣∣Q̃k(s, a)− T ΠγQ̃k−1(s, a)
∣∣∣

≤

(
√
λb+

√
2 ln

(
1

δ

)
+ d ln

(
1 +
|C|
λd

)
4(1− γ)−1

√
m1

)
√
τ + (

√
|C|τ + 1)I ,

with probability at least 1− δ. Taking a union bound over K iterations, we finish the proof.

A.3 Proof of Lemma 6.4

When the algorithm successfully finishes the final rollout check, both virtual-LSVI and quasi-LSVI are in the last

loop. Then in any iteration and any rollout trajectories of quasi-LSVI, all the state-action pairs belong to H. In

the first iteration, since π̄0 = π̃0 and two simulators are coupled, two regression targets are the same and thus

w̄1 = w̃1. If we have w̄k = w̃k, by the definition of virtual Q-function in Eq. (6.1), π̄k and π̃k always take the

same action given s when for all a ∈ A, (s, a) ∈ H. Again using the fact that the simulators are coupled, the

rollout trajectories by πk and π̃k are also the same between the main algorithm and the virtual algorithm, and

thus w̄k+1 = w̃k+1.

A.4 Proof of Lemma 5.1

We restate the core set construction process in the following way with slightly different notation. We begin with

Φ0 = 0. In the t-th step, we have a core set with feature matrix Φt−1 ∈ R(t−1)×d. Suppose that we can find

φt ∈ Rd, ‖φt‖2 ≤ 1, such that

φ>t (Φ>t−1Φt−1 + λI)−1φt > τ , (A.6)

then we let Φt := [Φ>t−1 φt]
> ∈ Rt×d, i.e., we add a row at the bottom of Φt−1. If we cannot find such φt, we

terminate this process. We define Σt := Φ>t Φt + λI. It is easy to see that Σ0 = λI and Σt = Σt−1 + φtφ
>
t .

According to matrix determinant lemma [Harville, 1998], we have

det(Σt) = (1 + φ>t Σ−1
t−1φt) det(Σt−1) > (1 + τ) det(Σt−1)

> · · · > (1 + τ)t det(Σ0) = (1 + τ)tλd , (A.7)

where the inequality is due to (A.6). Since det(Σt) is the product of all the eigenvalues of Σt, according to the

AM-GM inequality, we have

det(Σt) ≤
(

tr(Σt)

d

)d
=

(
tr(
∑t
i=1 φiφ

>
i) + tr(λI)

d

)d
≤
(
t

d
+ λ

)d
, (A.8)

where in the second inequality we use the fact that ‖φi‖2 ≤ 1. Combining (A.7) and (A.8), we know that t must

satisfy

(1 + τ)tλd <

(
t

d
+ λ

)d
,

which is equivalent to

(1 + τ)
t
d <

t

λd
+ 1. (A.9)

We note that if t ≤ d, the result of the size of the core set in Lemma 5.1 automatically holds. Thus, we only

consider the situation here t > d. In this case, the condition (A.9) implies

t

d
ln(1 + τ) < ln(1 +

t

λd
) < ln(

t

d
(1 +

1

λ
)) = ln(

t

d
) + ln(1 +

1

λ
)

= ln

(
tτ

d(1 + τ)

)
+ ln(

1 + τ

τ
) + ln(1 +

1

λ
) . (A.10)

Botao Hao1, Nevena Lazić1, Dong Yin1, Yasin Abbasi-Yadkori1, Csaba Szepesvári12

Using the fact that for any x > 0, ln(1 + x) > x
1+x , and that for any x > 0, ln(x) ≤ x

e , we obtain

tτ

d(1 + τ)
<

tτ

ed(1 + τ)
+ ln(

1 + τ

τ
) + ln(1 +

1

λ
) , (A.11)

which implies

t <
e

e− 1

1 + τ

τ
d

(
ln(1 +

1

τ
) + ln(1 +

1

λ
)

)
.

This ends the proof.

A.5 Proof of Lemma 6.5

By elementary change of base formula and Taylor expansion, we have

ln1/γ(x) =
ln(x)

ln(1/γ)
≈ ln(x)

1− γ
.

Let ε > 0 be the target accuracy. When we choose the number of iterations K = ln(8/(ε(1− γ)2))/(1− γ), we

have
2γK

(1− γ)2
≤ 1

4
ε . (A.12)

When we choose the length of rollouts N = ln(8/(ε(1− γ)))/(1− γ), we have

2γK

(1− γ)
≤ 1

4
ε . (A.13)

When we choose the number of rollouts m2 = 32 ln(1/δ)/((1− γ)2ε2), we have

2

1− γ

√
1

2m2
ln

(
1

δ

)
≤ 1

4
ε . (A.14)

Setting the uncertainty check threshold τ = 1, the Q-function estimation error reduces to

η =

√
2 ln

(
1

δ

)
+ d ln

(
1 +

Cmax

λd

)
4(1− γ)−1

√
m1

+
√
λb+ (

√
Cmax + 1)I ,

and the maximum size of the coreset Cmax = 4d ln(2 + 2/λ) . Letting the number of queries during value iteration

step

m1 =
1028

(
ln (1/δ) + d ln

(
1 + Cmax

λd

))
ε2(1− γ)6

,

and the regularization parameter

λ =
ε2(1− γ)4

256b2
,

we have
2η

(1− γ)2
≤ 1

4
ε+

4
√
Cmax

(1− γ)2
I . (A.15)

Putting Eqs. (A.12)-(A.15) together, we have

|Vπ̄K
(s0)− V ∗(s0)| ≤ ε+

4
√
Cmax

(1− γ)2
I = ε+ 8

√
ln

(
2 +

512b2

d2(1− γ)4

) √
dI

(1− γ)2
,

with probability at least 1− (K + 2)Cmaxδ. This ends the proof.

Confident Least Square Value Iteration with Local Access to a Simulator

B Auxiliary Lemmas

Lemma B.1 (Lemma 8 in Zanette et al. [2020a]). Let {ai}i=1,...,n be any sequence of vectors in Rd and {bi}i=1,...,n

be any sequence of scalars that |bi| ≤ ε. For any λ ≥ 0 we have∥∥∥∥∥
n∑
i=1

aibi

∥∥∥∥∥
2

(
∑n

i=1 aia
>
i +λI)−1

≤ nε2 .

	Introduction
	Related Work
	Problem Setting
	Algorithm
	Analysis
	Comparison to Existing Results

	Proof Sketch
	Discussion
	Proofs
	Proof of Theorem 6.1
	Proof of Lemma 6.2
	Proof of Lemma 6.4
	Proof of Lemma 5.1
	Proof of Lemma 6.5

	Auxiliary Lemmas

