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Abstract

We address the multi-task Gaussian process
(GP) regression problem with the goal of de-
composing input effects on outputs into com-
ponents shared across or specific to tasks and
samples. We propose a family of mixed-effects
GPs, including doubly and translated mixed-
effects GPs, that performs such a decompo-
sition, while also modeling the complex task
relationships. Instead of the tensor product
widely used in multi-task GPs, we use the
direct sum and Kronecker sum for Cartesian
product to combine task and sample covari-
ance functions. With this kernel, the overall
input effects on outputs decompose into four
components: fixed effects shared across tasks
and across samples and random effects specific
to each task and to each sample. We describe
an efficient stochastic variational inference
method for our proposed models that also
significantly reduces the cost of inference for
the existing mixed-effects GPs. On simulated
and real-world data, we demonstrate that our
approach provides higher test accuracy and
interpretable decomposition.

1 INTRODUCTION

Gaussian processes (GPs) have been widely used for
multi-task regression due to their strength as flexible
nonparametric Bayesian models that also model uncer-
tainty in prediction. Many of the previous multi-task
GP regression methods used the tensor product to com-
bine a covariance function for a single-task GP with a
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task correlation matrix (Liu et al., 2018, 2020; Bonilla
et al., 2008). This approach, used in intrinsic models of
coregionalization (IMC; Bonilla et al., 2008) and linear
models of coregionalization (LMC; Goulard and Voltz,
1992), has the advantage that the estimations of the
covariance function and the task correlation matrix de-
couple, which makes inference efficient, especially with
stochastic variational inference (Titsias, 2009; Hoffman
et al., 2013; Hensman et al., 2013). However, these
and other multi-task GPs, such as collaborative multi-
output GPs (COGPs; Nguyen and Bonilla, 2014) or
convolved GPs (CVGPs; Alvarez and Lawrence, 2011),
did not provide an explicit decomposition of input
effects on outputs into meaningful and interpretable
components.

As an alternative, mixed-effects GPs (Pillonetto et al.,
2010; Wang and Khardon, 2012; Chung et al., 2020;
Tounner et al., 2020) have been proposed to decompose
input effects on outputs into fixed effects shared across
all tasks and random effects specific to each task. How-
ever, they were too restrictive to model the complex
dependencies across tasks, as the input effects on out-
puts were either the same across tasks as in fixed effects
or independent across tasks as in random effects.

In this paper, we introduce a family of mixed-effects
GPs for multi-task regression, including doubly mixed-
effects GP and translated mixed-effects GP, which
combines the advantages of both multi-task GPs with
tensor-product kernels and mixed-effects GPs. Our
doubly mixed-effects GP models the complex inter-
task and inter-sample relationships and decomposes
the input effects on the output functions into four com-
ponents (Fig. 1): fixed effects shared by samples and
by tasks and random effects specific to each sample and
to each task. Excluding the sample-specific random
effects leads to a translated mixed-effects GP that can
model the task-specific translation of the functions for
all samples.

Our approach overcomes the limitations of the existing
multi-task GPs with Kronecker product or tensor prod-
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uct by combining the task and sample covariance func-
tions with direct sum (Duvenaud et al., 2011; Yukawa,
2015; Pravesh and Roi, 2020) and Kronecker sum (Gree-
newald et al., 2019; Yoon and Kim, 2020; Zhang, 2020).
Both the direct sum and Kronecker sum are the Carte-
sian product rather than the tensor product. We show
that the direct sum leads to fixed effects shared across
tasks and samples and that the Kronecker sum leads to
random effects specific to each task and sample. Unlike
IMC, our approach does not suffer from the cancel-
lation of inter-task transfer for noiseless observations
with block design, known as autokrigeability (Bonilla
et al., 2008; Wackernagel, 2003).

We develop a stochastic variational inference method
for doubly and translated mixed-effects GPs. Our ap-
proach breaks down the Cartesian-product kernel into
fixed- and random-effects components in the variational
distribution and introduces inducing points in each
component for efficient inference. For mixed-effects
GPs, in comparison to the previous method (Wang and
Khardon, 2012), we reduce the expensive cost of inver-
sion of the covariance matrix O(n®p?®) for n samples
and p tasks to O(n3) for exact inference, and reduce
O(n3p) to O(m%) with mx inducing points for vari-
ational inference. On simulated and real-world data,
we demonstrate that our approach provides accurate
predictive models and an interpretable decomposition
of input effects on outputs into four fixed and random
effects components across tasks and samples.

2 DOUBLY AND TRANSLATED
MIXED-EFFECTS GPs

We introduce a doubly mixed-effects GP for learning
fixed and random effects across samples and tasks, and
from this model, derive a translated mixed-effects GP.
We consider a functional mapping from d inputs = € R?
to p outputs f : R? — RP with a GP prior. Let g
be an r-dimensional task descriptor for the kth task.
We model f(x;, gx), the kth output for the ith sample
with the task descriptor g; and input x;, with two sets
of mixed effects:

F@i gi) = Fx (@) + folgr) + fx (i) + f&(gr). (1)
In Eq. (1), fx and f% are fixed effects shared across
tasks and random effects specific to the kth task, re-
spectively, whereas fo and fG are fixed effects shared
across samples and random effects for the ith sample,
respectively (Fig. 1). Each component in Eq. (1) has
its own zero-mean GP prior,

fX ~ gP(Oa kX(:Bam/))a f;ﬁ( ~ g,P(Oa
fa ~GP(0, k(g.g"), &~ GP(0, ke

fx, fx

I

Figure 1: Illustration of the decomposition by doubly
mixed-effects GPs. The overall input effects on multiple
outputs (top) are decomposed into four components:
task-wise fixed effects fx (surface plot, left), task-wise
random effects f~§(’s (orange lines, left), sample-wise
fixed effects fg (surface plot, right), and sample-wise
random effects fé’s in Eq. (1) (orange lines, right).

where kx(x,x') = C ov(fx(z), fx(x')), kX(ww):
Cov(f¥(z), [x (), kic(g g') = Cov(fa(9), fa(g")),
and kq(g,g') = Cov(fi(g), fu(g')) are covariance
functions. The random effects share the same ker-
nels ky and k¢, and are mutually independent across
tasks and across samples, i.e., Cov(f% (), fX( ') =

and Cov(fi,(g), f() = 0 it i £ .

The doubly mixed-effects GP prior in Eq. (1) is equiva-
lent to a GP prior that combines sample and task covari-
ance functions through the direct-sum and Kronecker-
sum operators, both of which are Cartesian products.
Assume input data X = [z, ..., x,] € R¥*™ for n
samples, output data Y € RP*", task descriptors
G € R™?  and a p x n matrix F with the (k,:)th
element [F|g; = f(x;,gx). Then, vec(F) after stack-
ing the columns of F' into a vector has the following
multivariate Gaussian distribution,

veo(F) ~ N(0, K), 2)
where the np x np kernel matrix K is

K:KXaHKG+Kx@Kg. (3)

The direct-sum operator H and the Kronecker-sum
operator @ above are defined as

KXEKG:KX®ﬂp,p+]ln,n®KG7 (43‘)
using the Kronecker-product operator ®, an a X a all-
one matrix 14 4, and an a x a identity matrix I,. Kx,

Ky, K¢, and K¢ are kernel matrices with the (i, j)th
elements [KX}ij = kx(.’lli, :Bj), [KX}ij = kx(.’lli, :Bj),
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[KG]Z] = ]%G(glﬁ gj)7 and [KG]ZJ = ]‘%G(giu g]) Then7
the output data Y € RP*™ are modeled as the noisy
observations of F, i.e., vec(Y) ~ N (vec(F), 02I,,).

The direct sum and Kronecker sum in Eq. (3) model
doubly fixed effects and doubly random effects, respec-
tively, combining the task effects and sample effects
through a Cartesian product. In the direct sum in
Eq. (4a), Kx ® 1,,,, forces the rows of F' to have the
same fixed effects for all tasks, while 1,, , ® K forces
the columns of F' to have the same fixed effects for all
samples. In the Kronecker sum in Eq. (4b), Kx ® I,
encodes the random effects specific to each row of F' for
each task, whereas I,, ® K¢ encodes the independent
random effects for each column or sample.

The kernel matrix of doubly mixed-effects GP in Egs.
(4a) and (4b) can be viewed as a special case of that
of LMC. IMC used Eq. (2) with the tensor-product
kernel matrix

K =Kx ® Xg, (5)

where K x is an n X n kernel matrix for samples, and
3¢ is a p X p free-form positive semi-definite matrix
modeling correlation amorég tasks. IMC was general-
ized to LMC with K =}~ | K% ® 3¢, with a set of
kernel matrices { K% }5_; and task covariance matrices
{2235 .. Egs. (4a) and (4b) can be obtained by fixing
either the kernel or coregionalization matrix of LMC
to an identity or all-one matrix.

However, there are several advantages to using the
Cartesian product over the tensor product. First, the
Cartesian product is known as a sparser and more inter-
pretable counterpart to the tensor product (Kalaitzis
et al., 2013; Imrich et al., 2008). Second, our model
allows a decomposition of input effects on outputs into
fixed and random effects across samples and tasks as
we show in prediction below, providing insights into
the input-output relationships that IMC and LMC can-
not. Finally, as we detail later in this section, unlike
IMC, our model does not suffer from the undesirable
property known as autokrigeability, where inter-task
transfer does not occur in prediction when the data is
noiseless with block design (Wackernagel, 2003; Bonilla
et al., 2008).

Translated Mixed-Effects GPs We obtain the
translated mixed-effects GP by modifying the doubly
mixed-effects GP in Eq. (1) to exclude the sample-
specific random effects fg:

Fl@iogr) = fx (@) + fa(gn) + fx (@)

We use the term “translated,” because the mixed-effects
GP f = fx —&—ff(, which we describe below, is combined
with the fixed effects fg that plays the role of task-
specific translation.

Mixed-Effects GPs Our doubly mixed-effects GP
reduces to the mixed-effects GP (Pillonetto et al., 2010;
Wang and Khardon, 2012; Chung et al., 2020), when
we modify Eq. (1) to f(xi,gx) = fx (z:) + f& () to
include only task-wise mixed effects. This is equivalent
to Eq. (2) with K = Kx ®1,,, + Kx ® I,,.

If observations are available for all tasks for each sample,
the covariance matrix in Eq. (2) can be conveniently
written in terms of Cartesian products as in Eqgs. (4a)
and (4b) for all variations of mixed-effects GPs. Such
a block design is commonly used in multi-task GPs,
including LMC and IMC (van der Wilk et al., 2020).
For our doubly and translated mixed-effects GPs and
the existing mixed-effects GPs, it is not necessary to
have a block design, where observations are available for
all tasks per sample. However, in doubly mixed-effects
GPs, observations for only few tasks per sample may
not provide enough statistical power to model f& in
Eq. (1) in a meaningful way. In an extreme case, with
an observation for only one task per sample, doubly
mixed-effects GPs cannot model f@ but mixed-effects
GPs and translated mixed-effects GPs can still model
all of their random and fixed effects.

Prediction Given the doubly mixed-effects GP prior
with the decomposition in Eq. (1), the posterior predic-
tive distribution also decomposes into four components.
Given n/ new samples X* = [z7,...,x},] € R*" | the
predicted outputs for existing tasks F* € RP*™ have
a similar decomposition

F*:Fx*—FFG‘FFX*‘FFGy (6)

where [Fx-|x; = fx(27), [Fclki = fa(gk), [Fx+]ki =
fi(xp), and [Fglg; = fi(gk). The distribution of F*
is given as Gaussian with the mean and covariance
matrix formed by the sum of the means and covari-
ance matrices of the four component-wise posterior
predictive distributions,

p(vec(Fx+) | y) = N((Kx-x ® 1,,)Ty,
KX* & ]lp,p - (KX*X ® ]lp,p)F(KXX* ® ]lp,p)>>
p(vec(Fg) | y) = N((1pn @ Ka)Ty,
]ln’,n’ 0y KG - (]ln’,n & KG)F(]ln,n’ @ Kg)),
p(vec(Fx+) | y) = N ((Kx-x ® I,)Ty,
Kx-®1I,— (Kx-x © L) T(Kxx- ® L)),
p(vec(Fg) | y) = N(0,I, ® Kg),
where T' = (K + 021,,,) 7}, y = vec(Y), [Kx-xij =
kx(z}, z;), and [Kx-x]ij = kx(x},x;). The posterior
predictiye distribution for the sample—speciﬁc r~and0m
effects Fy; is simply their prior p(Fg) =[], p(f&)-

In the noiseless case with ¢ = 0, the posterior pre-
dictive means under Eq. (6) depend on the entire
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observation vector y. This implies that there exists
inter-task transfer and that the model does not suffer
from autokrigeability. To see this, notice that when
02 =0, we have I = K ! and this inversion cannot be
distributed to each term in K in Eq. (3), whereas with
the Kronecker-product kernel in Eq. (5) the inversion
can be distributed as K ! = K;(l ® 251, causing the
inter-task transfer to cancel (Bonilla et al., 2008).

When data are available only for a subset of the tasks,
given a single observation for the kth task and ith new
sample y;;, the posterior predictive distribution for the
sample-specific random effects becomes

p([FG]:i | yl:z) =N (chk'}/l:iyl:iv KG - ’YZiKGynggk) )

where [13‘0] . is the ith column of Fg, Kggk is the
kernel matrix between G and gy, and ~;; = ([Kx+]i +

[Kx-)ii + [Kcler + [Kg)ke +02) 7!

For mixed-effects GPs, compared to the previous infer-
ence methods (Wang and Khardon, 2012), we describe
an approach that significantly reduces the computa-
tional cost for exact inference. The bottleneck opera-
tion in posterior inference in Eq. (6) is the inversion
I' = (K + 0°I,,)"! with the time cost O(np?) as
described in Wang and Khardon (2012). The follow-
ing theorem shows that this cost can be significantly
reduced to O(n?) involving only an inversion of n x n
matrices (proof in Supplementary Material A).

Theorem 1. In mized-effects GPs, T’ can be obtained
as follows:

1 _ .
(K—FO’ZI”;D)?I = ];((pKX +KX + 0'21’71,)71_

(Kx + aZIn)*l) ®1,,+ (Kx +02L,) ' @I,

In other previous works, to reduce the cost O(n3p?) to
O(np?), fixed effects were modeled with linear models
(Shi et al., 2012) or with deep neural networks (Chung
et al., 2020) and only random effects were modeled
with GPs. With our simple strategy described above,
we are able to reduce the cost, while keeping the GP
prior for the fixed effects.

3 VARIATIONAL INFERENCE

The computational bottleneck for learning and infer-
ence in the doubly mixed-effects GPs is the inversion of
the large np x np matrix (K +021I,,) in O(n®p?) time.
To improve the computational efficiency, we adopt the
sparse variational GP framework with mini-batch train-
ing (Hensman et al., 2013). We set up the variational
distribution such that the posterior predictive distri-
bution for each of the four random and fixed effects

components in Eq. (6) involves only task or sample
covariance matrices, not the large Cartesian product
of the two matrices. Our approach collapses the large
covariance matrix in exact inference such that matrix
inversion is performed only on the smaller individual
task and sample covariance matrices.

We define inducing points U = {ux, '&i(p, ug, ug"}
for fixed and random effects and a set of latent functions
Z = {Zx, Zx, ZG, Z(;} evaluated at mx and mg
inducing inputs for samples and for tasks. We assume
that the fixed and random effects have the same my
for samples and mG for tasks, but this can be relaxed.
Let F = {fx, fx", fo, fcl;"} denote the collection of
fixed and random effects given the input data. Then,
we approximate the posterior p(F, U | y) with the
following variational distribution,

o(F,u) = p(fx | ux)qlax) [[ o(f% | @%)a(a%)
k=1

p(fe | ue)q(ue) [ [ p(Fe | 6s)a(as),
=1

with the following independent variational priors on
the fixed and random effects

= N(mx, Sx), q(@k)=N(mk, S%), )
= N(’ﬁ’Lg, S’G)v q(alG) = N(mG7 SG)‘

We construct the variational distribution such that the
four doubly mixed-effects components are independent
of each other by assigning separate inducing inputs,
mean vector, and free-form covariance matrix to each
component. The limitation of this variational approxi-
mation is that it may be more prone to overfitting than
the exact posterior because each component has its own
variational parameters. However, as we show in our
experiments in Section 4, our methods outperformed
other methods on test accuracy.

q(ux)
q(ug)

Then, we optimize the evidence lower bound (ELBO)
for doubly mixed-effects GP

L =Eyr[logply | F)| -

If task descriptors g in Eq. (1) are not available,
the inducing points over tasks ug and af" cannot
be defined. However, by allowing the tNabk covari-
ances kc(g.9') = Cov(fg(g), fc(g')) and kc(g,9') =
Cov(f&(g), f&(g')) to be free-form covariances 3¢ and
3¢, the variational parameters with inducing points
over samples and the free-form covariances can be opti-
mized. Alternatively, our model can be combined with
methods for learning features to jointly extract latent
task features.

L{g@) [l p@)]. (3

Prediction Unlike the exact posterior in Eq. (6),
the variational posterior predictive distribution ¢(F)



Jun Ho Yoon, Daniel P. Jeong, Seyoung Kim

involves inversions of smaller mx X mx and mg X mg
matrices. Given new samples X, the variational poste-
rior predictive distributions for fx-, fg, and f%. can
be obtained from q(fx+) = [p(fx- | ax)q(tx)dux
and similarly for the other random and fixed effects,

Ke+Kgz,K; (Se — Kz,)K; Kz,¢),
k 7% m—1 k
q( X*) —N(KX*ZXKZXmX,

—1 &k > A
KL (S K5 K} K (),
Notice that the variational posterior predictive distribu-
tion for the sample-specific random effects f¢, is just the
prior distribution because p(f% | uly) = p(f&) fori # j.
This prediction has complexity O(pm% + m3 +m,).

For mixed-effects GP, our approach performs predic-
tion for a new sample with the cost of matrix inversion
O(m%), significantly less than O(pn?®) previously dis-
cussed in Wang and Khardon (2012). While Wang and
Khardon (2012) also used sparse variational inference,
they introduced inducing points only for fixed effects,
and thus, an inversion of n X n matrix was required to
infer random effects for each of the p tasks.

Mini-Batch Training Since the elements of Y are
conditionally independent given the mixed effects, and
the expected log-likelihood term in Eq. (8) decomposes
across samples and tasks, we can optimize the ELBO
by using noisy estimates of the gradient (Hoffman et al.,
2013; Hensman et al., 2013). We subsample by samples
and bg task descriptors into mini-batches of shape
(bx,bs) and estimate the expected log-likelihood term
in Eq. (8) as the expected log-likelihood only for the
corresponding observations in Y scaled by

np
bxbag "

Identifiable Parameters The diagonal elements of
two matrices combined with Kronecker sum are known
to be unidentifiable as A® B = (A +clI) @ (B — ¢l)
for any ¢ € R (Greenewald et al., 2019), and similarly
for the elements in direct sum since AH B = (A +
c1) B (B — cl). However, the following theorem states
that doubly mixed-effects GPs do not suffer from this

unidentifiability (proof in Supplementary Material A).
Theorem 2. The ELBO in Eq. (8) is minimized by
a unique {S‘X’S'G’S’}(:p?gé:”}, In other words, the
ELBO changes if we substitute {S'X,Sg,g;p,géf"}
with {Sx + 1,8 — cl,8% +cI,..., 8% +cI, S} —
cI,.‘.,S'g;—cI} for any ¢ € R.

Extensions Our doubly and translated mixed-effects
GPs can be extended in a straightforward manner.

—Fixed effects
Random effects
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Figure 2: Fixed and random effects estimated by differ-
ent methods on simulated data. (a) Ground truth, (b)
doubly mixed-effects GP, (c) translated mixed-effects
GP, and (d) mixed-effects GP. Task-wise mixed effects
(left) and sample-wise mixed effects (right).

The SOLVE-GP framework (Shi et al., 2020) can be
adopted by decomposing the fixed and random effects
into orthogonal components. Our approach can be
extended to deep GPs (Damianou and Lawrence, 2013;
Bui et al., 2016) by recursively putting our GP prior
on the function output of each layer and adopting
the doubly stochastic variational inference framework
(Salimbeni and Deisenroth, 2017).

4 EXPERIMENTS

We compare the performance of doubly and translated
mixed-effects GPs with those of mixed-effects GP, IMC,
LMC, COGP, and CVGP on simulated and four real-
world datasets.

We implemented all GPs with mixed effects to be com-
patible with the GPflow framework (Matthews et al.,
2017) in TensorFlow (Abadi et al., 2015). For LMC, we
used the implementation of stochastic variational infer-
ence available in GPflow (van der Wilk et al., 2020),
where in K = Zle K5 ® ¥¢, each ¥¢, has rank 1.
For IMC, we modified the implementation of LMC such
that with S = 1, £}, can have an arbitrary rank L.
For all models, we used squared exponential kernels
SE(c%,0) = 0% - exp(— gz |l@ — «'||3). We initialized
the kernel hyperparameters to 02 = 1, £ = 1, the induc-
ing inputs to the cluster centers identified by k-means,
and the variational parameters to zero-mean and prior
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covariance matrix of the given inducing points. With
the Adam optimizer (Kingma and Ba, 2015), we used
the default learning rate n = 102 and momentum hy-
perparameters 51 = 0.9 and 2 = 0.999. We computed
the absolute percent change in the average ELBO eval-
uated for 10 successive iterations and trained until we
observed five drops below tolerance ¢ = 10~%. For
COGP and CVGP, we modified the codes provided by
the authors and used the same convergence criterion on
their objectives, ELBO for COGP and log-likelihood
for CVGP. For COGP and CVGP, we chose the number
of latent GPs between 1 and 5 with the best accuracy.

For the models with mixed effects, we compared the
decomposition of input effects on outputs, as the other
models do not provide such a decomposition. We eval-
uated all methods on prediction accuracy using mean
absolute error (MAE) and prediction uncertainty using
negative log predictive density (NLPD) on heldout test
data. For prediction in doubly mixed-effects GPs, we
added 10% of the observations in each task in the test
data to the training data to allow the model to recover
the corresponding sample-specific random effects.

4.1 Simulated Data

We illustrate the decomposition of fixed and random
effects by a doubly mixed-effects GP on a single sim-
ulated dataset, comparing with those from the other
methods with mixed effects. We generated a dataset
with 50 tasks and 50 samples and with a single di-
mensional input x and task descriptor g, both linearly
spaced in [—1, 1], from sinusoidal and linear functions,
fx = 3sin(3x), fo = 2cos(3g), f¥?° = -z - 0.5+ q,
f3590 = 4 40.5 — a, f§%° = —gcos(g + ¢) — 0.5 + a,
and féﬁf)o = gcos(g + ¢) — 0.5 — «, where each
a, ¢ ~ Uniform(0,1). For all methods, we used mini-
batches of shape (10,10) and 10 inducing points for
both samples and tasks. Given the true model (Fig.
2(a)), the doubly mixed-effects GP recovered all un-
derlying effects most accurately (Fig. 2(b)). In the
translated mixed-effects GP, the missing sample-specific
random effects were absorbed into the other three com-
ponents, most notably into the fixed effect shared across
samples, which was made less accurate (Fig. 2(c)). The
mixed-effects GP recovered task-specific random effects
poorly, as it does not learn the sample-wise mixed
effects (Fig. 2(d)).

We compared all methods on test accuracy while vary-
ing the number of inducing points. We simulated a
dataset with 30 tasks and 100 samples. With = and
g linearly spaced in [—10, 10], we sampled each fixed
and random effect from a GP prior with the kernels
kx = SE(1,1), kx = SE(2,0.5), kg = SE(3,1), and
ke = SE(0.1,2), and add noise from N(0,0.12). We

1.4 — IMC —— DMGP 12
w — LMC T™GP O g
a
<10 COGP MGP 5
= cveP =z 6
0.6 3
0o S—p— 0 w
’ 20 40 60 80 20 40 60 80

Number of Inducing Points Number of Inducing Points

(a) (b)

. o ~—
£6 £
< = 8
24 2 6 =
2 / : % J

2000 4000 6000 8000 2000 4000 6000 8000

Samples Tasks

(c) (d)

Figure 3: Comparison of methods on simulated data.
(a) MAE and (b) NLPD on test data. (¢) Runtime, as
we vary the number of samples with a fixed number of
tasks p = 200, and (d) runtime, as we vary the number
of tasks with a fixed number of samples n = 200.

randomly selected 20% of the samples as a test set. We
varied mx = 10,20, ...,80 and mg = 10, 20,30. We
used L = 15 for IMC, S = 15 for LMC, and one latent
GP for both COGP and CVGP. We used mini-batches
of shape (bx,bg) = (15,20) for all models with mixed
effects, and (bx, bg) = (30,20) for the other methods.
Experiments for each setting were repeated 10 times
with different initializations. Doubly mixed-effects GP
almost always outperformed all other methods in MAE
(Fig. 3(a)) and in NLPD (Fig. 3(b)). All mixed-
effects models outperformed IMC and LMC: while
IMC and LMC required around 40 inducing points
to achieve their optimal test accuracy, translated and
doubly mixed-effects GPs needed only about half as
many inducing points for each component to achieve
the same accuracy and performed significantly better
with more inducing points. All of the methods showed
little variance in MAE and NLPD over 10 repetitions.

Next, we compared all methods on computation time.
We sampled data from the same GP priors above, ei-
ther fixing the number of tasks to 200 and varying
the number of samples as [2000, 4000, 6000, 8000] or
vice versa, with 1.6 million data points for the largest
dataset. For each dataset, we fixed the number of in-
ducing points to 30 and averaged the runtime over 5
different initializations. When fixing the number of
tasks, we set L = 100 for IMC and S = 100 for LMC.
When fixing the number of samples, we set L = 500 for
IMC and S = 500 for LMC. For COGP, we used five
latent GPs, as it resulted in the best performance. We
report the runtime on AMD EPYC 7742 CPUs each
with 64 cores, 256GB of RAM, 2.25-3.40 GHz clock
speed, 256MB of L3 cache, and 8 memory channels.
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The mixed-effects GP and translated mixed-effects GP
were almost always the fastest (Figs. 3(c) and 3(d)).
Doubly mixed-effects GP generally required more time
than IMC and the other mixed-effects GPs since it
has additional variational parameters for the sample-
specific random effects. CVGP ran out of memory on
the smallest dataset.

4.2 Real-World Data

On four real-world datasets, we examine the decom-
position of fixed and random effects learned by our
methods and compare all methods on prediction ac-
curacy for test data. We set the number of inducing
points myx such that they have real-world interpreta-
tion: one inducing point per week for the COVID data,
per 3 weeks for the NASA temperature data, per 2
weeks for the UK house price data, and per 4 streets
for NYC taxi data. For the models with mixed effects,
we used half as many inducing points as the models
without mixed effects. For IMC and LMC, we set the
number of latent GPs to about 10% of the number of
tasks, and for translated and doubly mixed-effects GPs,
we set the number of inducing points m¢g to half of
the number of latent GPs in IMC and LMC. For all
methods, increasing the number of inducing points did
not significantly increase the performance.

United States COVID-19 We obtained the daily
confirmed cases of COVID-19 from the COVID-19 Data
Repository of the Center for Systems Science and En-
gineering at Johns Hopkins University (Dong et al.,
2020). We used the case counts for 3,091 counties in
the United States over 273 days from July 2020 to
March 2021. We fit all models to this data, treating
days as samples and counties as tasks, and predicted
the confirmed cases in all counties for the last 63 days
given the first 210 days. We performed the same anal-
ysis on the transposed data, treating days as tasks and
counties as samples.

In the decomposition, the doubly mixed-effects GP
captured how the pandemic evolved in the most mean-
ingful way (Fig. 4). For doubly mixed-effects GP,
the fixed effects shared across time captured the re-
gions in California and Florida known for elevated case
counts throughout the pandemic (Fig. 4(a) top left),
the time-specific random effects recovered the short-
term surge in Wisconsin (Oct 2020) and Louisiana and
Massachusetts (Jan 2021) (Fig. 4(a) bottom), the fixed
effects shared across all counties showed the nation-
wide fluctuation in cases over time (Fig. 4(a) top right,
black curve), and the county-specific random effects
recovered the changes in cases over time for each county
(Fig. 4(a) top right, red/blue curves). The elevated
cases in California and Florida were not captured by

——Los Angeles, CA
- - -~Miami, FL
T

-2
2020 Jul  Oct 2021 Jan

Daily Count

i
T i =\
i i
=== |
g i
T i

-2
2020 Jul  Oct 2021 Jan

Figure 4: Decomposition of fixed and random effects
by different methods for COVID-19 data. (a) Dou-
bly mixed-effects GP, (b) translated mixed-effects GP,
and (c) mixed-effects GP, with days as samples and
counties as tasks. (d) Translated mixed-effects GP and
(e) mixed-effects GP, with the transposed data with
counties as samples and days as tasks. In each panel,
fixed effects shared across time (top left), time-specific
random effects on two days, one in October 2020 and
the other in January 2021 (bottom), and fixed effects
shared across counties and county-specific random ef-
fects for 2% of the counties (black and blue, top right)
are shown, if available from the given method.
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Table 1: Prediction accuracy on real-world data.

MAE NLPD

Dataset (n,p)
DMGP TMGP MGP IMC LMC COGP CVGP DMGP TMGP MGP IMC LMC COGP CVGP
COVID-19 (273, 3091) 0.3624 0.5086 0.5028 0.6302 0.6578 0.5164 0.7127 10026  1.0045 1.3261 1.3691  56.0848
COVID-19 (3091, 273) 0.3686  0.5872 0.6188 0.5872 0.5815 0.5964 0.7209 11427 11844 1.1404 1.1321  9.4386
NASA Air  (72,576) 0.2235 05688 0.5487 0.5849 0.6133 05375 06281 0.3682 11721  1.1281 1.2003 1.2643 549.5703  2.7537
UK House  (36,2290) 0.1934 02144 0.2332 02474 02446 03075 05944 0.1758 02318 02807 1.1459 1.1473  6.8704  6.6488
Taxi Time (102,9) 01731 0.1723 0.1730 0.1788 0.1793 0.6866 0.3723 0.1324 0.1310 0.1232  0.1492 0.1424 700.5208 51.4264
Taxi Fare (102,9) 0.0955 0.0959 0.0963 0.0999 0.0991 0.7916 0.2187 -0.4934 -0.5046 -0.5053 -0.4860 -0.4906 434.8118 48.0812
2 . . . . .

06 : : short-term surge in Wisconsin, Louisiana, and Mas-

s g ; : sachusetts. This suggests that mixed effects across

02 S0 g samples and tasks should be considered jointly as in

o + T
0 §,1 ! ' doubly mixed-effects GPs to accurately identify all
02 meaningful spatial/temporal effects on the case counts.
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Year

L
995 1996 1997 1998 1999 2000
Year

—
o
~—

o/___/—'\_,

-1

Temperature

-2

L

1995 1996 1997 1998 1999 2000
Year

Figure 5: Decomposition of fixed and random effects on
the NASA temperature data. (a) Doubly mixed-effects
GP, (b) translated mixed-effects GP, and (c) mixed-
effects GP. In each panel, the fixed effects shared across
time (top left), time-specific random effects for the
summer and winter months in the northern hemisphere
(bottom), and fixed effects across grids and 2% of grid-
specific random effects (black and red/blue, top right)
are shown, if available from the given method.

the translated mixed-effects GP (Fig. 4(b) top left)
and mixed-effects GP (Fig. 4(c) top left). Only for the
transposed data, the translated mixed-effects GP was
able to identify these regions (Fig. 4(d) left). Only
the doubly mixed-effects GP was able to identify the

NASA Central America Air Temperature We
analyzed air temperature data from the NASA Langley
Research Center Atmospheric Sciences Data Center
(Murrell, 2010). We obtained air temperature data on
a 24-by-24 grid covering Central America, collected for
72 months from 1995 to 2000. With n = 72 samples
for time points and p = 24 x 24 tasks for grid points,
our goal is to predict the temperature of the last 12
months at all grid locations given the data for the first
60 months.

In the decomposition, again, the doubly mixed-effects
GP extracted interpretable patterns in temperature
change that the other methods failed to model (Fig. 5).
For the doubly mixed-effects GP, fixed effects shared
across all time points (Fig. 5(a), top left) captured
the general trend in the temperature: warmer near the
equator and cooler away from the equator. The time-
specific random effects (Fig. 5(a), bottom) captured
the seasonal effects: the opposite seasons in the south-
ern and northern hemispheres. The fixed effects shared
across locations (Fig. 5(a), top right, black curve) did
not show notable effects; however, the random effects
specific to the Amazon rainforest in Brazil (Fig. 5(a),
top right, red curves) showed the location-specific rise
in temperature over time due to deforestation. The
translated mixed-effects GP (Fig. 5(b)) and mixed-
effects GP (Fig. 5(c)) were unable to model the effects
from the opposite seasons in the different hemispheres;
in fact, the temperature fluctuations in the fixed ef-
fects shared across locations (Figs. 5(b) and (c), right,
black curves) were not meaningful, as they either corre-
sponded to seasons only in the northern hemisphere or
did not correspond to seasons at all, suggesting all four
components should be modeled jointly to adequately
uncover each component.

New York City Taxi Trip and United Kingdom
House Price We provide the experimental details
and decompositions in Supplementary Material B.
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Prediction Accuracy Doubly mixed-effects GPs
achieved higher accuracy than the other methods on
most datasets (Table 1). Translated mixed-effects GPs
and mixed-effects GPs yielded lower NLPD on NYC
taxi datasets, because the taxi trips from Midtown
to Upper Manhattan have strong task-wise mixed ef-
fects over the streets with increasing fare and time
but only weak sample-wise mixed effects over avenues.
CVGP ran out of memory even with 5 inducing points
on COVID-19 data, so we were unable to obtain the
prediction accuracy.

5 CONCLUSION

We introduced doubly and translated mixed-effects
GPs as multi-task nonparametric Bayesian regression
methods that model mixed effects for samples and tasks,
using direct-sum kernels for fixed effects and Kronecker-
sum kernels for random effects. We demonstrated that
our approach can obtain an interpretable decomposition
of input effects on outputs.

There are several limitations of our proposed methods
that remain as future work. To handle datasets without
task descriptors, doubly mixed-effects GPs could be
extended such that they learn the model and latent
task descriptors jointly or work with free-form task
correlation matrices as in IMC and LMC. In order to
allow the model to flexibly learn more complex fixed
effects over samples and tasks, the doubly and trans-
lated mixed-effects GPs could be generalized to work
with mixtures of GPs instead of a single GP. Addition-
ally, our implementation could be extended to handle
a non-block design. Finally, to improve the accuracy
and efficiency of our stochastic variational inference
strategy, our implementation could be extended to use
natural gradients for optimization of the variational
parameters.
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Supplementary Material: Doubly Mixed-Effects Gaussian Process
Regression

A PROOF OF THEOREMS

In this section, we present detailed proofs of Theorems 1 and 2.

A.1 Proof of Theorem 1

Proof. We re-write T" using the Woodbury matrix identity as follows:

I'=(K+0%I,,)"!
— (Kx®1,,+Kx ©I,+0°L,,)""
2 @1, )I,(Kx @ 11,) + (Kx +0°I,) ® 1)

(
(1 -1

— (Kx +0°L) ' @I, — (Kx +0°L,) ' @ 1,1) (I, + pKx (Kx +0°L,) ") " (Kx (Kx + 0*L,) ' @1,,)
=(

= (

Kx+0*L) ' @I, — (Kx +0°I,) ' (I, + pKx (Kx + a2In)*1)*1KX(I~{X +0L,) ' e1,,
1 _ - .
Kx +0°L) " @I, + , ((pKX +Kx +0°L,)"" — (Kx + aQIn)—l) ® Lpp-
The Woodbury matrix identity was used in the third and the last equalities above. O

A.2 Proof of Theorem 2

Proof. We show that the objective of variational inference, ELBO, in Eq. (8) changes if {Sx, Sg, S’}ép, S’é”} are
substituted with {Sx + cl, Sg — c]l,g}( +cl,..., S’f( + cI,Sé —cl,.. ,S’g — cI'} for any ¢ € R. We show this
for each of the two terms in the ELBO in Eq. (8). For the first term in ELBO that corresponds to the expected
log-likelihood term, before this substitution, we have

E =Ey 7 |[logp(y | F)]

n p
=>> [1ogj\/<kzizx Ky mx + kg 2. Kz ma + ko2 K7 mk + kg, 7, K7 i, g2>
i=1 k=1
1

- 202

1 1= - -
T 9,2 (kX(wuwz) + kl zx K ;(S§( - KZX)KZ)I(kZXZ'i)

(kX(xz,wz) + ko, 24 _i(gx - I_(ZX)KE;EZXM)

1 /- _ T
- ﬁ(kG(gkvgk) + kg, 26 K GI(SG - KZG)KZGIkZng)

1 ) N .
2 Q(kG(gk?7gk)+k: kZG Zl(Sé_KZG)KZékZGQk)]>
whereas after the substitution, we have

C — — 4= C ~ ~ o~
E =F - ﬁ(inZXKZ;]lKZ;kZXIi) - ﬁ(inZXKZikzxmi)
C C ~ ~ o5~
+53 202 (k kZGK ]IK kZng) + ﬁ(kngcKZG%kZng)'
The additional terms in E’ compared to E do not cancel out with each other. For the second term in the ELBO
in Eq. (8) that corresponds to the KL divergence term, before the substitution, we have
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D =KL [qU) || pt1)]

P n

=KL [g(ax) || p(ux)] + Y KL [q(a%) || p(@k)] + KL [g(ac) || plac)] + > KL [g(ag) || p(ag)]
k=1 =
- % [ (tr(K;(lSm mi Ky 'mx +log ||I;§|> +; <tr(I~(§1S‘§() TRk 1 log |KX|>

K n
+ (tr(K S¢) + mEK; 'me + log | G') + Z <tr( o'SL) +miT K tmk, +log

+(p+1)mx — (n+ 1)mG] ,
and after the substitution, we have
1 _ ~ _ ~
D' =D+ 3 (e(tr(KX1]1 +pKy') —tr(K5'1 + nKG1)>

+lo —|—
gIS + 11| ; g|sk 2; gS’—cI|>

Again the additional terms in D’ compared to D do not cancel out with each other and change the value of
ELBO. Thus, the ELBO is minimized with a unique {Sx, Sq, SXp, St & O

B ADDITIONAL RESULTS ON REAL-WORLD DATA

We describe the experimental details for the New York City taxi trip and United Kingdom house price datasets,
and present the mixed-effects decomposition in these datasets by different mixed-effects GPs.

New York City Taxi Trip We obtained data on taxi trips in 2009 in New York City from the City website.
Given the travel time and fare of the 170,896,052 trips from Lower to Midtown Manhattan, we discretized the
latitude and longitude of the destination into 102 bins for latitude spaced between 23rd and 125th St. and 9 bins
for longitude between 1st and 11th Ave. Our goal is to predict the travel time and fare of taxi trips ending on
randomly chosen 20 streets given the data from trips that end in the other streets.

We show the decomposition of the mixed effects for the New York City taxi travel time data found by different
methods with mixed effects in Figure 6. For doubly mixed-effects GP (Fig. 6(a)), the fixed effects shared across
avenues that run from the lower left corner to the upper right corner on the map show the increase in travel time
as destinations get farther away from Lower Manhattan that is located in the lower left corner on the map (Fig.
6(a), Column 1). The avenue-specific random effects have their highest peaks in the middle because there are
limited-access highways along the east and west sides of Manhattan with exits near Central Park to reach areas
in Midtown Manhattan (Fig. 6(a), Column 2). The fixed and random effects over streets in doubly mixed-effects
GP have relatively small effect sizes (Fig. 6(a), Column 3 and 4). As avenue-wise mixed effects are stronger than
street-wise mixed effects, the mixed-effects GP and translated mixed-effects GP are able to capture the fixed and
random effects for avenues. For the same reason, the translated mixed-effects GP had higher prediction accuracy
than the doubly mixed-effects GPs in Table 1. We found similar results for the New York City travel fare data
(Fig. 7).

United Kingdom House Price We analyzed data for house prices over 36 months from 2018 to 2020 in 2,085
locations in the United Kingdom, provided by the UK government website!. Our goal is to predict the house
prices at all locations in the last 6 months given those in the first 30 months.

Tt contains HM Land Registry data © Crown copyright and database right 2021. This data is licensed under the
Open Government Licence v3.0. Available at https://www.gov.uk/government /collections/price-paid-data
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The mixed-effects decomposition of the United Kingdom house price dataset is shown in Figure 8. The doubly
mixed-effects GP recovers the overall distribution of house prices in the United Kingdom. London has the highest
peak in the fixed effects shared across time (Fig. 8(a), left), but has relatively small seasonal effects on prices in
time-specific random effects (Fig. 8(a), middle). The fixed effects shared across all regions are small (Fig. 8(a),
right, black curve), but the region-specific random effects show consistently high housing prices in the London
area (Fig. 8(a), right, red curves). In the translated mixed-effects GP (Fig. 8(b)), because the time-specific
random effects were not modeled, the pattern of consistently high housing prices in London is weaker (Fig. 8(b),
right). The mixed-effects GP can capture only the fixed effects shared by all regions and region-specific random
effects (Fig. 8(c)).

C SOFTWARE

The software is available at https://github.com/SeyoungKimLab/DMGP.


https://github.com/SeyoungKimLab/DMGP

Doubly Mixed-Effects Gaussian Process Regression

S TN
#..&&:l"/
ity A

S
7/

i f
iy Y Rt
!S\\\\\Q\w\. \

)
2SS, '\\.&»{ TG TN
18 %\\\ &«YNQ"#QN\\\\

Sl
i
oS 7
AN S
el

Wilnie, \\«\h.\ Q\v
~§~\\~0\~0¢\ &g
¢ oy

AT
i
(7 NI T A\
TUSEa D
S S e A
R S R Sers o 14/ g
Gl
oS 21y
b
OARNY
U
Wil Sy s
o / C\w\\ 4 «&&wh%
il oy i
i LI

X

S
>4
~1

{7

',

<7

o

&

7y Vs

=

DA
W8S
Lo

S
K
Rl

N

S ST/INS
Rt
S

7L
I&

\/z
&

1'773

Y, 2y

\\\M\:@é
]
S
/$l¢ 4 \\N\ “oy
g A,
£

ey o .A
L 2
\k«\w\\m\\\ o

‘ h', {/
s, /a8

iy
DI ON
s
sy
t@uw@%%#
%%
oS s AL
2% ~ Vi@ |
‘ W /4
e &

) )
& Vi
'5§~r§§m

Y
L
Y

4

e Ly

P TN
2 *O\WM

R
:\\\\\\\\\ %

2

AR Q'
S

7 AR
LIS S5

!

~ ‘
QN
i N

2y s
LY LT
S,

il Py ISSS 4
ol s Y
47 S
§ Y/l
nw?w.\\\\\\\\\\ é\i’/‘
il A /[[.&&W{
NN, Pt
7 , 5 Y
/ \#'. \ g, . N
LIEININT S I /TR
Crmii) @y
\Q 7505 Z e
L W

&t LR
Sl \\*\ s&mu:%i
0! 532

9
sl %

Al
s

Ll 4
o T 4
&

Y8
Ly,
2

0/

fd
% 7 V5
. /il Y./
0 [S)
o

— —

o) o

S— S~—

effects models on the NYC taxi

Figure 6: Decomposition of fixed and random effects from different mixed-
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Figure 8: Decomposition of fixed and random effects on the UK house price data. (a) Doubly mixed-effects GP,
(b) translated mixed-effects GP, and (c) mixed-effects GP. The decomposed fixed and random effects are shown
in each of the three columns, if available from the given method. Left: fixed effects shared across time. Middle:
time-specific random effects for two months marked by the black dashed lines in the figure on the right. Right:
fixed effects across regions (black) and 2% of region-specific random effects.
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