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Abstract

Principal stratification is a popular frame-
work for addressing post-randomization com-
plications, often in conjunction with finite
mixture models for estimating the causal ef-
fects of interest. Unfortunately, standard
estimators of mixture parameters, like the
MLE, are known to exhibit pathological be-
havior. We study this behavior in a simple
but fundamental example, a two-component
Gaussian mixture model in which only the
component means and variances are un-
known, and focus on the setting in which the
components are weakly separated. In this
case, we show that the asymptotic conver-
gence rate of the MLE is quite poor, such as
O(n−1/6) or even O(n−1/8). We then demon-
strate via both theoretical arguments and ex-
tensive simulations that the MLE behaves
like a threshold estimator in finite samples,
in the sense that the MLE can give strong
evidence that the means are equal when the
truth is otherwise. We also explore the be-
havior of the MLE when the MLE is non-
zero, showing that it is difficult to estimate
both the sign and magnitude of the means
in this case. We provide diagnostics for all of
these pathologies and apply these ideas to re-
analyzing two randomized evaluations of job
training programs, JOBS II and Job Corps.
Our results suggest that the corresponding
maximum likelihood estimates should be in-
terpreted with caution in these cases.
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1 INTRODUCTION

Finite mixture models are notorious for giving patho-
logical results [Redner and Walker, 1984]; indeed,
Larry Wasserman has called finite mixtures the “Twi-
light Zone of Statistics” [Wasserman, 2012]. Our moti-
vation for this paper is to understand how the patho-
logical features of weakly separated finite mixture mod-
els affect inference for component means, especially
with respect to estimating causal effects in the princi-
pal stratification framework, an important example of
such inference. Principal stratification is a widely used
approach for addressing post-randomization compli-
cations, including noncompliance with treatment as-
signment [Frangakis and Rubin, 2002]. Typically, the
goal is to estimate causal effects within partially latent
subgroups known as principal strata. While there are
many possible ways to estimate these principal causal
effects, the most common approach is via finite mix-
ture models, treating the unknown principal strata as
mixture components [Imbens and Rubin, 1997]. To
date, scores of applied and methodological papers have
relied on finite mixtures to estimate causal effects,
both explicitly and implicitly.

To present our main results, we construct a simple two-
parameter model that captures the essential features of
the problem: maximum likelihood estimation for the
component means and variances in a two-component
location-scale mixture of Gaussian distributions,

Yi
i.i.d.∼ πN(µ0, σ0) + (1− π)N(µ1, σ1), (1)

where the mixing proportion, π ∈ (0, 1), is assumed
to be known. While the two-component finite mix-
ture model in (1) is a toy example in some settings,
it is a fundamental structure in many causal inference
problems. For instance, in the canonical example of
noncompliance in a randomized trial [Angrist et al.,
1996], individuals randomly assigned to the control
group who do not receive the treatment are a mixture
of Compliers and Never Takers. Assuming that indi-
vidual outcomes follow a Normal distribution yields
the mixture model in (1). Thus understanding the
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difficulties of component-specific inference are vital to
estimating parametric principal stratification models.

The asymptotic properties of the MLE for the com-
ponent means in Equation (1) are well established in
two settings. First, when the difference in means,
∆ ≡ µ1−µ0, is fixed, the MLE has strong asymptotic
guarantees, including consistency and parametric con-
vergence [Everitt and Hand, 1981, Chen, 2017]. Sec-
ond, when the mixture is degenerate, i.e., ∆ = 0, the
MLE has at most O(n−1/4) convergence [Chen, 1995,
Heinrich and Kahn, 2018]. This is closely related to
the problem of testing the number of components in a
finite mixture [McLachlan and Peel, 2004].

In this paper, we focus on the behavior of the MLE
when ∆ is small but not zero. This “intermediate sam-
ple size regime" is an important case in practice and
is especially relevant for principal stratification mod-
els. To set the stage, Figure 1 shows the distribution
of the MLE of ∆ for 1000 synthetic data sets gener-
ated from Equation (1) for two settings. The sample
sizes and mixing proportions match those in our two
key principal stratification examples, JOBS II and Job
Corps. The assumed difference in component means is
∆ = 0.5 standard deviations, which is quite large for
many social science applications but smaller than in
textbook examples of well-separated components. In
both cases, the distribution of the simulated MLEs is
markedly non-Normal. Both distributions have three
notable features. First, there is a large point mass
at zero. Second, a considerable portion of simulated
MLEs have the opposite sign from the truth. Finally,
simulated MLEs that are non-zero and have correct
sign are not centered at the true value. To emphasize,
these features are not due to model mis-specification:
we estimate the MLE using the true model.

Contribution: In this paper, we give theoretical ex-
planations for some of the practical difficulties encoun-
tered in estimation in two component finite mixture
models, as shown in Figure 1, and, based on our find-
ings, suggest guidance for practice. We first, in Sec-
tion 2, study the asymptotic properties of the MLE
of the two component model (1) in the “intermediate
sample size regime” when ∆ → 0 as n → ∞. This
framework adequately captures weakly separated mix-
ture components in relation to the sample size. Even
for the basic model (1), not much seems to be known
about the convergence rate of the MLE in this regime,
especially when σ0 and σ1 are unknown. We first es-
tablish the convergence rate of the MLE, resulting in
several interesting findings for the model in (1) when
σ0 = σ1. When σ ≡ σ0 = σ1 is known and π 6= 1

2 ,
the convergence rate can and does reach O(n−1/6) up
to logarithmic factors. This is worse than the rate set
for the degenerate case where ∆ = 0, suggesting that

small but non-zero separations are particularly diffi-
cult to estimate well. In such scenarios, our theoretical
results explain the empirically observed difficulties in
estimating ∆ shown in Figure 1. For π = 1

2 , we can
only estimate the difference up to a sign due to iden-
tifiability issues. In this case, the convergence rate for
estimating the magnitude of the parameter is a more
rapid — yet still slow — O(n−1/4).

When σ is not known the worse-case convergence rate
of the MLE remains O(n−1/6) for the π 6= 1

2 setting
but falls to O(n−1/8) for the π = 1

2 setting — an order
of magnitude worse than when σ was assumed known.
These results are quite novel and delicate to derive,
as we have to carefully account for the interaction be-
tween the location and scale parameters. Interestingly,
the results together show that while the convergence
is faster for the symmetric case than the asymmetric
case in the known variance regime, it is slower in the
unknown variance regime.

After presenting our convergence results, we turn to
the practical difficulties in estimating ∆ and formal-
ize the phenomenon of the large point mass at zero
shown in Figure 1. We call this phenomenon pile up.
Specifically, we show via a mix of simulations and the-
oretical arguments that, in certain intermediate sam-
ple size regimes, ∆̂mle = 0 with very high probability
even though ∆ 6= 0. Thus, the MLE behaves like a
threshold estimator analogous to the classic Hodges
estimator [Van der Vaart, 2000]. We then show that
pile up occurs when the overall mixture variance is
less than the within-component variance. To the best
of our knowledge, we are the first to document this
pile-up phenomenon in finite mixtures.

Next, we turn to using higher-order mixture moments
for diagnosing pathologies with the MLE. First, we
use these moments to bound the probability of pile up
given either the realized data set or population param-
eters. We then discuss the classic problem of choosing
the correct mode in a bimodal likelihood and argue
that it is particularly difficult here. We show that
this problem corresponds to estimating the sign of ∆
(i.e., the relative ordering of µ0 and µ1) and demon-
strate how to use the third moment of the mixture
distribution to assess the probability that this occurs.
We combine these results with extensive simulations to
show that, across a range of reasonable settings, the
sign of the MLE for ∆ is no better at predicting the
true sign than a coin flip.

We finally apply these mixture results to estimating
principal stratification models in two randomized eval-
uations of job training programs, JOBS II [Vinokur
et al., 1995] and JobCorps [Schochet et al., 2008].
These two examples have been the focus of several
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Figure 1. Distribution of ∆̂mle for 1000 fake data sets designed to reflect the JOBS II and JobCorps studies.
Data sets were generated from the two-component homoskedastic Normal mixture model in Equation (1) with
∆ = 0.5 and, respectively, (a) N = 132 and π = 0.45 and (b) N = 3, 371 and π = 0.06.

prominent papers using finite mixtures for principal
stratification [Zhang et al., 2009, Mealli and Pacini,
2013, Frumento et al., 2012] and highlight two main
use cases for this framework. For both data sets, we
slightly simplify the problem to isolate the pathologies
of the finite mixtures. We then assess the observed
mixture distributions using the diagnostics we pro-
pose and find that pathologies are quite likely. Conse-
quently, we do not have high confidence in the quality
of the maximum likelihood estimates of ∆̂mle = 0 for
JOBS II and an implausibly large ∆̂mle for JobCorps.
Our overall findings suggest that finite mixture models
should be used with caution in settings such as these.

Related work. There is a vast literature on inference
in finite mixture models, dating back to the seminal
work of Pearson [1894]. For thorough reviews, see for
example Everitt and Hand [1981], Redner and Walker
[1984], Titterington et al. [1985], McLachlan and Peel
[2004], McLachlan et al. [2019]. We briefly highlight
several relevant aspects of this literature.

First, there has been extensive research on the asymp-
totic behavior of finite mixtures models. Chen [2017]
gives a comprehensive review. Much of this literature,
however, is about the problem of testing the order of
the finite mixture [McLachlan and Peel, 2004]. There
are several recent papers that instead address estima-
tion. Chen et al. [2014] focus on estimating the mix-
ing proportion when components are only weakly sep-
arated. Ho and Nguyen [2016, 2019] give results for the
over-specified location-scale Gaussian mixtures. Gadat
et al. [2016] study the convergence rate of L2-norm es-
timators for a few settings of two component mod-
els. Davies et al. [2021] study the convergence rate
of location parameters in symmetric two component

Gaussian mixtures. Manole and Ho [2022] refine the
convergence rate of MLE under finite mixture models.
Finally, Anandkumar et al. [2012], Hardt and Price
[2015], Wu and Yang [2018] explore the asymptotic
properties of method of moments estimators in rather
general settings of Gaussian mixtures while Dwivedi
et al. [2020b,a] establish the non-asymptotic guar-
antees of Expectation-Maximization algorithm under
weakly separated settings of Gaussian mixtures. Sec-
ond, the problem of weak separation is a special case
of the weak identification problem especially common
in econometrics. There are many examples of weak
identification in other settings, including the weak in-
struments problem [Staiger and Stock, 1997] and the
moving average unit root problem, which is the source
of the term pile up [Shephard and Harvey, 1990, An-
drews and Cheng, 2012]. Finally, although the tech-
nical discussion focuses narrowly on finite mixtures,
our motivation remains the broader question of infer-
ence for causal effects within principal strata. To date,
only a handful of papers have directly addressed the
finite sample properties of mixtures for causal infer-
ence. Griffin et al. [2008] conduct extensive simulations
and conclude that principal stratification models are
generally impractical in social science settings. Mattei
et al. [2013] caution that univariate mixture models
often yield poor results and suggest jointly estimat-
ing effects for multiple outcomes, such as by assuming
multivariate Normality. Mercatanti [2013] proposes an
approach for inference with a multimodal likelihood
in the principal stratification setting. Frumento et al.
[2016] explore methods for quantifying uncertainty in
principal stratification problems when the likelihood
is non-ellipsoidal. See also Chung et al. [2004], Zhang
et al. [2008], Richardson et al. [2011].
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2 PHASE TRANSITION OF MLE

In this section, we study the asymptotic behavior of
the MLE under the setting of known equal variances
of (1). The result for the setting when the variances
σ0 and σ1 are unknown but assumed to be equal is in
Appendix A.

Motivated by the illustrative simulations in Figure 1,
we now explore the properties of the MLE, ∆̂mle, when
∆ is small but non-zero. In the classical asymptotic
regime, where ∆ is fixed as in Equation (1), it is im-
mediate that ∆̂mle has a parametric rate of conver-
gence in this simple example (cf. [Redner and Walker,
1984, Chen, 1995]). However, as shown in Figure 1(a),
this asymptotic regime can be a poor approximation
to reality when components only have moderate sepa-
ration. We therefore consider an asymptotic regime in
which ∆n shrinks as n increases. Our core finding is
that, under this regime in which the two components
are only slightly separated and the variance is known,
the convergence rate of the MLE for the difference in
means is quite poor.

Under the assumption that variances are known, we
re-parametrize Equation (1) and assume that Yi, i ∈
{1, . . . , n}, are i.i.d. samples from the model:

Yi
i.i.d.∼ πN (µ− δn, σ) + (1− π)N (µ+ cδn, σ) , (2)

where c := π
1−π and δn ∈ Θ is a free parameter that

varies with n. We assume the equal variance case of
σ0 = σ1 = σ for a known σ. Relative to Equation (1),
µ0 = µ − δn, µ1 = µ + cδn, ∆ = (1 + c)δn, and µ
is the overall mean, E[Yi] = µ. For simplicity, we set
µ = 0; all of the results in this section are applicable
for any µ ∈ R. When µ = 0 then the δn parameter
is both the (negative) location of the first component
as well as scaling of the separation of components ∆;
it thus corresponds to both a location and a separa-
tion parameter. We focus on this separation param-
eter δn for ease of mathematical derivations; because
∆ from Equation (1) is a constant re-scaling of δ, all
the asymptotic results equally apply. We further as-
sume that δn ∈ Θ where Θ is a compact subset of R
and 0 ∈ Θ. Finally, define δ̂mle

n as the MLE for δn for
the model in model (2). The following result shows the
convergence rates of MLE for known variances setting:
Theorem 1. (a) (Asymmetric regime) When π ∈

(0, 1/2), then

C1(ε)

(
1

n

)1/6

≤ sup
δn∈Θ1,n(ε)

Eδn
(
|δ̂mle
n − δn|

)
≤ C2(ε)

(
log n

n

)1/6

,

where Θ1,n(ε) =
{
δ : |δ| ≤ n−1/6+ε

}
.

(b) (Symmetric regime) When π = 1/2, then

C1(ε)

(
1

n

)1/4

≤ sup
δn∈Θ2,n(ε)

Eδn
(∣∣∣|δ̂mle

n | − |δn|
∣∣∣)

≤ C2(ε)

(
log n

n

)1/4

,

where Θ2,n(ε) =
{
δ : |δ| ≤ n−1/4+ε

}
.

Here, Eδn denotes the expectation taken with respect to
the product measure with mixture density of Y1, . . . , Yn
under the model (2). Furthermore, C1(ε) and C2(ε)
are two positive constants depending only on ε. Sym-
metry gives an analogous result for π ∈ (1/2, 1).

The proof of Theorem 1 is in Appendix G.1. The vari-
ance parameter, σ is subsumed in the constants and
does not impact the rates. Prior work [Chen, 1995]
has shown that when δn = 0 the rate is of order n−1/4

for the asymmetric case; the above therefore shows
that there exists some δn 6= 0 in a neighborhood of 0
where convergence is even worse than this degenerate
case. In particular, an immediate consequence of this
theorem is that, for π 6= 1/2, there exists a sequence
of δn going to 0 at no more than a n−1/6 rate such
that the error of the MLE is also of order n−1/6. For
the symmetric regime we are simply looking at differ-
ence in magnitude, not sign. This is because when
π = 1/2 the sign of δn is not identifiable, and we
find that sup

δn∈Θ
Eδn |δ̂mle

n − δn| & n−1/r for any r ≥ 2

and for any fixed parameter space Θ. Here, Eδn de-
notes the expectation taken with respect to product
measure with mixture density of Y1, . . . , Yn under the
model (2); see the Appendix G.3 for the proof. See our
discussion in Appendix A for a connection between the
results of Theorem 1 to Wasserstein metric that have
been used in previous works [Ho and Nguyen, 2016,
Heinrich and Kahn, 2018]. Finally, we note in pass-
ing that even though the result of Theorem 1 is only
for two-component Gaussian mixtures, it also sheds
light on the behavior of the MLE for general Gaussian
mixtures. Indeed, the MLE rates under the specific
setting of Gaussian mixtures are determined by the
solvability of a system of polynomial equations, which
are consistent with the results from [Ho and Nguyen,
2016] when we over-specify the number of components
in general Gaussian mixtures. We conjecture that such
phenomenon may also hold for the rates of MLE un-
der general Gaussian mixtures, and leave that for the
future work.
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3 PROPERTIES OF THE MLE:
PILE UP

Thus far, we have established rigorous asymptotic
(minimax) behaviors of MLE under the asymmet-
ric and symmetric cases of known equal variances
model (2) (see also the theory for unknown equal vari-
ances model in Appendix A). The goal of this section is
to shed some light on the non-asymptotic sample prop-
erties of the MLE. To facilitate the discussion, we focus
solely on the known variances setting (2), i.e., we want
to analyze the non-asymptotic behavior of MLE when
δn is near zero. We work with the likelihood function
of our re-parameterized model (again, setting µ = 0).
This allows us to directly obtain statements regarding
the points of the maximum likelihood, which in turn
allows for the characterization of the MLE’s behavior.
In particular, we first show that under our parame-
terization, zero (corresponding to no separation) will
always be an inflection point if not a local mode. Fi-
nally, we show that, in general, the local mode is in
fact the MLE when the estimated overall variance is
less than σ, the assumed component variance.

3.1 Zero as a local mode of the likelihood

Given an observation Y = y from the mixture model
(2), the log-likelihood for δn is

`(δn|Y = y) = log
(
πe−0.5(y−δn)2 + (1− π)e−0.5(y−cδn)2

)
,

where we set σ = 1, though these results immediately
extend to arbitrary σ. Since c = π

1−π with π ∈ (0, 1/2],
direct calculation shows that

`′(0|Y = y) = 0, for all y ∈ R. (3)

Given the samples Yn = (Y1, Y2, . . . Yn) from model
(2), equation (3) yields the following approximation of
the log-likelihood given samples Yn:

`(δn|Yn) = `(0|Yn) +
1

2
`′′(0|Yn)δ2

n +O(δ2
n). (4)

In the event that `′′(0|Yn) < 0, zero is a local mode for
the log-likelihood function `(δn|Yn); we call this event

E ≡ {`′′(0|Yn) < 0}. (5)

Direct calculation yields that

`′′(0|Yn) = c

(
n∑
i=1

Y 2
i − n

)
, (6)

and thus `′′(0|Yn) < 0 when
∑n
i=1 Y

2
i < n. Equiv-

alently, `′′(0|Yn) < 0 when m̂2 < 1, where m̂2 ≡
1
n

∑n
i=1 Y

2
i is the observed second moment of the mix-

ture distribution, and the assumed within-component
variance is 1. We return to this connection to higher-
order moments below.

3.2 Zero as the global mode of the likelihood

After establishing that zero is a local mode of the like-
lihood when `′′(0|Yn) < 0, an important question is
whether zero is also a global mode in this case. Let
F ≡ {δ̂mle

n = 0} be the event that zero is also the global
mode for the likelihood function `(δ|Y ), where δ̂mle

n is
the MLE under the setting of model (2). We refer to
the event F as pile up throughout the paper. While
it is clear that F ⊂ E , the reverse implication is not
trivial. We divide our analysis into two cases: π = 1/2
and π ∈ (0, 1/2). We again denote m̂2 := 1

n

∑n
i=1 Y

2
i .

Symmetric case: When π = 1
2 , conditioning on the

event E (equivalently m̂2 < 1), we can check that
`′′(δ|Yn) ≤ m̂2 − 1 < 0. The above inequality im-
plies that the log-likehood function `(δ|Yn) is strictly
concave under the event E . Therefore, zero is the
global maximum of the log-likelihood function under
the event E . This leads to the following result regard-
ing pile up.

Proposition 1. Under the symmetric setting of
location-scale Gaussian mixtures with known vari-
ances, E ≡ F , i.e., pile up occurs as long as 0 is a
local maxima of the log-likelihood function.

The result of Proposition 1 suggests that we can
rewrite the representation of MLE under symmetric
setting with known variances as

δ̂mle
n =

{
0, if m̂2 < 1

Op(n
−1/4), if m̂2 ≥ 1

.

Thus, at least in the symmetric case, the MLE be-
haves like a threshold estimator analogous to the clas-
sic Hodges estimator [cf., Van der Vaart, 2000].

Asymmetric case: Unlike the symmetric case, we
can see via simulations that there are instances for
which E 6= F in relatively small samples. Nonetheless,
these counter-examples are fairly rare; for ∆ = (1 +
c)δn = 0.25, {E ∩Fc} occurs in fewer than 3 percent of
simulation draws with sample sizes less than N = 500,
decreasing to below 1 percent with samples sizes of
N = 1000 or more. Extensive simulation studies seem
to imply that Pn(F) ↗ Pn(E).1 We do not have a
rigorous proof of this and state it as a conjecture:

Conjecture 1. Under the asymmetric setting of
location-scale Gaussian mixtures with known vari-
ances, if δn = Op(n

−1/6), then limn→∞ Pn(E∩F) = 1.

Thus Conjecture 1, if true, implies that, for the asym-
metric setting of location-scale Gaussian mixtures with
known variances, the probability that pile up occurs,

1The index n denotes the fact that the sampling distri-
bution in (2) changes with n.
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Figure 2. Two example likelihoods for component means, with data generated via Equation (1) with parameters
N = 200, π = 0.35, and ∆ = 0.6. The ‘+’ denotes the true component means. (a) Bimodal likelihood; (b)
Unimodal likelihood.

i.e., δ̂n = 0, can be well approximated by the event
{`′′(0|Yn) < 0}. In other words, we can safely ig-
nore the case in which zero is a local but not a global
mode of the likelihood. Figure 2 shows this pile up
phenomenon in practice. Specifically, Figures 2(a)
and 2(b) show the likelihood surfaces for two data sets
generated via Equation (1), with N = 200, π = 0.35,
and ∆ = (1 + c)δ = 0.6. In Figure 2(a), the likelihood
is bimodal and the global mode is close to the truth,
albeit more extreme.2 In Figure 2(b), the likelihood is
unimodal and centered at zero.

4 DIAGNOSTICS FOR MLE
PATHOLOGIES AND
APPLICATIONS

The results above suggest that the higher-order mo-
ments of the mixture distribution play an important
role in the finite sample properties of the MLE. We
now construct diagnostics for the MLE using these
moments. First, we use these higher-order moments to
construct diagnostics for pile up for the MLE, specif-
ically the probability that pile up will occur given a
set of moments, either observed moments or assumed
moments. We then construct similar diagnostics for
the relative order of the components, as captured by
the sign of ∆. Throughout, we consider the setting

2The characterization of δ̂mle
n as a Hodges-like estimator

suggests that the MLE will be biased away from zero when
δ̂mle
n 6= 0. This is closely related to the bias induced by
introducing identifiability constraints, such as δ > 0 [Jasra
et al., 2005, Frühwirth-Schnatter, 2006]. In both cases, the
MLE is the maximum of a truncated likelihood surface,
truncated at the line δ = 0.

with known variances, since the corresponding mo-
ment equations are tractable in this case.

4.1 Probability of pile up

The probability of pile up can be characterized by us-
ing the sampling distribution of the second moment,
Y 2. In particular, we can determine P{m̂2 < 1} using
the first three moments of Y 2:

m2 = E[Y 2] = 1 + cδ2
n, (7)

v2 = V[Y 2] = 3 + 3(π + c4(1− π))δ4
n −m2

2, (8)

Γ2 =
1

v
3/2
2

E|Y 2 −m2|3, (9)

where we can obtain Γ2 via Monte Carlo methods. Us-
ing the Berry-Essen theorem for the convergence rates
of a CLT, and assuming Conjecture 1, we can obtain
the following bound for the probability of pile up:

|Pn(E)− Φ(bn)| ≤ 0.7915
Γ2√
n
. (10)

As we show in simulations, Φ(bn) appears to be an
excellent approximation to the empirical pile up prob-
ability, even though the bound, which depends on the
sixth mixture moment, can be wide in practice. See
supplementary materials.

We can use this result for practical diagnostics, both
for planning a future analysis and for assessing a par-
ticular data set. Figure 3(a) shows the pile up proba-
bility computed via simulation and via Equation (10),
with π = 0.325, ∆ = (1 + c)δn = 0.25, and vary-
ing n. First, there is excellent agreement between the
simulations and the Normal approximation, though
Φ(bn) slightly under-states the probabilities obtained
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via simulation. Second, while the probability of pile up
is decreasing in both n and ∆, it is hardly a “small sam-
ple” issue. For ∆ = 0.25, which would be quite large
in many social science applications, pile up remains a
meaningful possibility even with sample sizes in the
thousands. For ∆ = 1.0, which would be an implausi-
bly large separation in many settings, the probability
of pile up is still greater than 1 in 4 for n = 5, 000. Fi-
nally, Figure 3(b) shows similar results for a moderate
sample size of N = 200 but varying mixing propor-
tions. In this case, the probability of pile up decreases
as π approaches 0.5. We believe that figures such as
these are useful diagnostics before observing the mix-
ing distribution itself.

We can also incorporate information from the observed
mixture distribution. First, we can plug in the ob-
served empirical moments, m̂2 and v̂2, to calculate b̂ =
1−m̂2√
v̂2/n

and Φ(̂b). This relies on the Normal approxi-

mation for the sampling distribution as well as pre-
cisely estimating v̂2, which is the fourth moment of the
observed mixture distribution and might be noisy in
practice. Alternatively, we could use a case-resampling
bootstrap to estimate P{m̂2 < 1}. Note that this is
not the same as using the case-resampling bootstrap to
estimate standard errors, which we advise against (see
supplementary materials). Rather, this is analogous to
the use of the bootstrap as a diagnostic tool in finite
mixtures; see, for example, Grün and Leisch [2004].
Finally, we note that an estimated MLE of zero still
provides some information about the unknown param-
eter. For instance, if ∆̂mle = (c+ 1)δ̂n = 0, ∆ = 0.2 is
a much more plausible value than ∆ = 2.0. We discuss
this in the supplementary materials.

4.2 Probability of a sign error

We now turn to the sign of ∆̂mle when π 6= 1/2 (the
sign is not estimable when π = 1/2). Specifically, we
define a sign error as sgn

(
∆̂mle

)
6= sgn (∆). This is

a well-studied issue in mixture modeling; for example,
choosing the true mode in a multimodal likelihood is
a classic problem (cf. [Gan and Jiang, 1999, Biernacki,
2005]). Redner and Walker [1984] give a foundational
review of asymptotic versus local identifiability in mix-
tures. For a more recent perspective, see Kim and
Lindsay [2015], who introduce the concept of empiri-
cal identifiability.

As with pile up, we use higher order moments for diag-
nosis. This is slightly more complicated than for pile
up because sgn

(
∆̂
)
is undefined when ∆̂ = 0. Thus,

we need to consider the joint sampling distribution of
both the second and third moments. In the setting
with known, equal variances in Equation (2), we have

the following moment equations:

m2 = E[Y 2] = 1 + π(1− π)∆2,

m3 = E[Y 3] = π(1− π)(1− 2π)∆3.

Following [Tan and Chang, 1972], the corresponding

sample moments
(
m̂2

m̂3

)
have the Gaussian distri-

bution with mean
(
m2

m3

)
and covariance matrix

1
n

(
κ11∆4 + 2m2

2 κ12∆5 + 6m2m3

κ22a∆6 + κ22bm2∆4 + 6m3
2

)
with constants κ11 = π(1 − π)(1 − 6π(1 − π));
κ12 = π(1− π)(1− 2π)(1− 12π(1− π)); κ22a = π(1−
π)(1−30π(1−π)+120π2(1−π)2)+9π2(1−π)2(1−2π)2;
and κ22b = 9π(1 − π)(1 − 6π(1 − π)). Thus, we can
approximate the joint probability of pile up, sign
error, or neither for a given ∆, n, and π, where we set
∆ > 0 for illustration:

P ({pile up; sign error; neither}) ≈ (11)
P ({m̂2 < 1; m̂2 > 1 ∩ m̂3 < 0; m̂2 > 1 ∩ m̂3 > 0}) .

If desired, we could apply a similar Berry-Essen bound
for these probabilities, as in Equation (10). Instead,
we simply invoke the Central Limit Theorem and use
the above Normal approximation.

Figure 4 shows the conditional probability of sign error
given no pile up across values of N and ∆ found by
two methods: (1) direct simulation (simulations are
restricted to draws in which ∆̂mle 6= 0); and (2) the
tail probability of Equation (11). While the proba-
bility of a sign error decreases in both n and ∆, it
remains remarkably high over plausible parameter val-
ues. Indeed, for ∆ = 0.25 the sign of ∆ is essentially
a coin flip, even with a sample size of 5,000. Impor-
tantly, conventional approaches for standard errors in
the MLE [McLachlan and Peel, 2004] typically ignore
this uncertainty. For additional discussion, see [Kim
and Lindsay, 2015]. As in Section 4.1, we can assess
the probability of sign error in practice. Based only
on the sample size and mixing proportion, we can re-
create Figure 4 across plausible parameter values. Al-
ternatively, we can count the proportion of bootstrap
replicates in which the sign of the bootstrapped third
moment differs from the observed sign and m̂2 > 1.

4.3 Alternative estimators

Finally, in the supplementary materials, we describe
two alternative estimation approaches. Building off
Equations (7)-(9), Appendix D outlines more robust
moment estimators, such as by using m̂2 to estimate
the magnitude of ∆. Proposition 2 shows that these
moment-based estimators have comparable asymp-
totic rates to the MLE, but are not susceptible to the
same finite-sample issues.



Weak Separation in Mixture Models and Implications for Principal Stratification

100 200 500 1000 2000 50000
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Sample Size

P
ro

b
a
b
ili

ty
 o

f 
P

ile
 U

p

∆ = 0.25

∆ = 0.5

∆ = 1

(a)

−1.5 −1.0 −0.5 0.0 0.5 1.0 1.50
.0

0
.1

0
.2

0
.3

0
.4

0
.5

Assumed ∆

P
ro

b
a
b
ili

ty
 o

f 
P

ile
 U

p

π = 0.05

π = 0.25

π = 0.45

(b)

Figure 3. Probability of pileup given sample size and separation of means. Dotted lines are simulated values
across 5,000 simulations; solid lines use the Normal approximation, Φ(bn). (a) π = 0.25; (b) N = 200.
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based on simulations (solid line) and the method
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π = 0.25 and 1000 simulations at each set of pa-
rameter values.

Following similar proposals in the weak identification
literature, Appendix E discusses robust confidence sets
via inverting a sequence of tests, such as via a grid
bootstrap. While this leads to good coverage proper-
ties, it does not necessarily yield good point estimates.

5 APPLICATION TO JOBS II

We now apply these ideas to the use of finite mix-
tures in principal stratification. For our primary run-
ning example, we consider the Job Search Intervention
Study (JOBS II), a randomized field experiment of
a mental health and job training intervention among
unemployed workers [Vinokur et al., 1995] that has
been extensively studied in the causal inference litera-
ture [Jo and Stuart, 2009, Mattei et al., 2013]. This is
an example of one-sided noncompliance and is a simple
but non-trivial example of the principal stratification
setup. See Appendix B for additional details; and Ap-
pendix C for an analysis of Job Corps. Our goal is to
estimate the effect of the intervention on a (standard-

ized) measure of depression six months after random-
ization, among a subset of N = 410 high-risk individ-
uals, with N1 = 278 randomly assigned to treatment.
The main complication is that only 55% of those indi-
viduals assigned to treatment actually enrolled.

Under the principal stratification framework, there are
two (partially latent) subgroups of interest: Compli-
ers, who would enroll in the program if offered, and
Never Takers, who would never enroll. We directly ob-
serve stratum membership for individuals assigned to
treatment, and therefore observe the outcome mean for
each stratum under the treatment condition. To esti-
mate the causal effects of interest, we need to estimate
the corresponding outcome means under the control
condition. Stratum membership, however, is unknown
for the N0 = 132 individuals assigned to control. As-
suming that the outcome distribution in each stratum
is Normally distributed leads to the two-component
Gaussian mixture model. The goal is therefore to es-
timate the component-specific means of this mixture.

First, we consider the expected performance of the
mixture MLE based solely on the observed sample size
and mixing proportion. Figure 5(a) gives the proba-
bility of pile up and sign error over a range of plausible
values of ∆ using the Normal approximation and the
observed JOBS II values of N = 132 and π̂ = 0.45.
The pattern is striking. For values of ∆ < 0.5, the
most likely estimate of the MLE is zero, regardless of
the true value of ∆. If the MLE is non-zero, the prob-
ability of correctly estimating the sign of ∆ is only
slightly better than a coin flip. Second, we incorporate
information from the mixture distribution itself. The
observed second and third moments are m̂2 = 0.96 and
m̂3 = 0.17 (after centering the mixture distribution).
When we plug the observed values into the Normal ap-
proximations, the probability of pile up is 0.63 and the
probability of a sign error is 0.31. The corresponding
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Figure 5. Quality of Maximum Likelihood Estimation for the finite mixture model in JOBS II, with parameters
N = 132 and π = 0.45. Panel (a) shows the probability of MLE pathology; Panel (b) shows the observed likelihood
for the JOBS II mixture, with a maximum at µc0 = µn0.

probabilities based on the case-resampling bootstrap
are nearly identical, 0.64 and 0.29 respectively. Thus,
prior to any estimation, we believe that the probabil-
ity of a pathological MLE is high. Finally, Figure 5(b)
shows the observed likelihood surface for Equation (1)
fit to the JOBS II data. The likelihood is unimodal
and centered at zero, which is consistent with the uni-
variate results in Mattei et al. [2013]. Given the high
probability of pile up, our analysis suggests that we
should interpret the MLE of ∆̂mle = 0 with caution.

6 DISCUSSION

We find that maximum likelihood estimates for
component-specific means in finite mixtures can yield
pathological results in a range of practical settings.
These pathologies are particularly relevant for esti-
mating causal effects in principal stratification mod-
els, which are often based on estimates of component
means. Echoing previous work [Griffin et al., 2008], we
therefore caution researchers on the use and interpre-
tation of model-based estimates of component-specific
parameters, especially for causal inference.

First, we suggest that researchers consider alternative
approaches to inference that do not rely on model-
based estimation. In the context of principal stratifi-
cation, these alternatives often rely on constant treat-
ment effect assumptions or on conditional indepen-
dence across multiple outcomes [Jo, 2002, Jo and Stu-
art, 2009, Ding et al., 2011]. When such restrictions
are not possible, we recommend that researchers com-
pute nonparametric bounds [Zhang and Rubin, 2003,
Grilli and Mealli, 2008, Miratrix et al., 2018].

Second, researchers might nonetheless be interested in

leveraging parametric assumptions for estimation. In
this case, we suggest that researchers use our results to
assess the probability of pathological results for differ-
ent parameter values. Similar to design analysis, these
calculations can provide practical guidance on whether
mixture modeling will yield useful inference. One pos-
sibility is to incorporate multiple outcomes, such as
in [Mattei et al., 2013]. This can greatly improve in-
ference; intuitively, the distance between components
will be greater in multivariate space, in effect, giving
larger ∆ and easier separation [Mercatanti et al., 2015].

Third, we have focused on maximum likelihood es-
timation rather than Bayesian methods [Frühwirth-
Schnatter, 2006]. The Bayesian approach offers some
distinct advantages over likelihood-based inference.
For example, the Bayesian can incorporate informative
prior information, which can be especially important
in finite mixture modeling [Aitkin and Rubin, 1985,
Hirano et al., 2000, Chung et al., 2004, Lee et al., 2009,
Gelman, 2010]. Moreover, our concern about sign er-
ror is trivial in the Bayesian setting: the global mode
is simply a poor summary of a multi-modal posterior.
Nonetheless, we argue that our results are highly rel-
evant for Bayesians who are interested in good fre-
quency properties [Rubin, 1984]. In the supplementary
materials, we show that the pathological behaviors of
MLE also hold for the posterior mean and median with
some “default” prior values. In this sense, we conduct
a frequentist evaluation of a Bayesian procedure [Ru-
bin, 2004] and find poor frequency properties overall.
More generally, we agree that informative prior infor-
mation can be a powerful tool for improving inference
in this setting. Finding suitable priors for finite mix-
ture models is a topic for future research.
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Supplementary Materials for “Weak separation in mixture models and
implications for principal stratification”

In this supplement, we first provide the results for unknown equal variances setting in Appendix A. Applications
of our results to principal stratification are in Appendices B and C. We present more discussion about validation
of normal approximations, confidence sets, failure of resampling methods in Appendices F.1-F.2. Finally, the
proofs of all the results in the paper are in Appendix G.

A Unknown equal variances setting

We now show that our previous results in the main text still generally hold when we relax the restriction that
the variances are known. For the unknown equal variances setting, we assume that Y1, . . . , Yn are i.i.d. samples
from a two component location-scale Gaussian mixture with density

Yi
iid∼ πN (µ− δn, σn) + (1− π)N (µ+ cδn, σn) . (12)

Here, δn and σn change with the sample size n and converge to some limit points. We assume σn ∈ Ω, a compact
subset of R+. We set the overall mean of µ = 0 for convenience as before; δn is again a scaling of the gap between
the two mixture means. We define (δ̂mle

n , σ̂mle
n ) as the MLE for the separation and scale parameters for the model

in (12). Unlike the previous convergence results with δ̂n in the case with known variance, the convergence rates
of δ̂n and σ̂n are much harder to establish due to the strong dependence between the seperation parameter δ and
scale parameter σ, which is determined by the following partial differential equation (PDE):

∂2f

∂δ2
(x, δ, σ) = 2

∂f

∂σ2
(x, δ, σ), (13)

for all x, δ, σ and Normal density f . This dependence leads to worse convergence rates for parameter estimation
for over-fit location-scale Gaussian mixtures [Ho and Nguyen, 2016] and for hypothesis testing for the number
of components of location-scale Gaussian mixtures [Chen and Chen, 2003]. Under the specific setting that we
consider, this dependence leads to a new characterization of the asymptotic behavior of δ̂mle

n , |δ̂mle
n |, and σ̂mle

n

under the two regimes π ∈ (0, 1/2) and π = 1/2. To the best of our knowledge, these have not been previously
addressed in the literature.

Theorem 2. Take π ∈ (0, 1/2]. Under the unknown equal variances setting (12), the following holds

(a) (Asymmetric regime) When π ∈ (0, 1/2), then

C1(ε)

(
1

n

)1/3

≤ sup
(δn,σn)∈S1,n(ε)

E(δn,σn)

(
|δ̂mle
n − δn|2 + |(σ̂mle

n )2 − σ2
n|
)
≤ C2(ε)

(
log n

n

)1/3

,

where S1,n(ε) =
{

(δn, σn) : |δn|2 + |(σn)2 − (σ)2| ≤ n−1/3+ε
}
for any ε > 0 and some positive constant σ.

(b) (Symmetric regime) When π = 1/2, then

C1(ε)

(
1

n

)1/4

≤ sup
(δn,σn)∈S2,n(ε)

E(δn,σn)

(∣∣∣∣|δ̂mle
n | − |δn|

∣∣∣∣2 + |(σ̂mle
n )2 − σ2

n|
)
≤ C2(ε)

(
log n

n

)1/4

,

where S2,n(ε) =
{

(δn, σn) : |δn|2 + |(σn)2 − (σ)2| ≤ n−1/4+ε
}
for any ε > 0 and some positive constant σ.

Here, E(δn,σn) denotes the expectation taken with respect to a product measure with a mixture density of Y1, . . . , Yn
under the unknown equal variances setting (12). Furthermore, C1(ε) and C2(ε) are two positive constants de-
pending only on ε.

The proof of Theorem 1 is provided in Appendix G.2.

A few comments are in order. First, under the asymmetric regime, the convergence rate of the separation
parameter δ̂mle

n to δn is of an order no more than n−1/6 (due to the squared term within the expectation) while
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that of scale parameter (σ̂mle
n )2 to (σn)2 is no more than order n−1/3, as long as the true parameters δn and σn

belong to S1,n(ε). The PDE of the distribution in (13) suggests the faster apparent convergence rate of the scale
parameter relative to the separation parameter.

Second, under the symmetric regime, the worse-case convergence rate of |δ̂mle
n | to |δn| is n−1/8, which is slower

than the worst-case rate n−1/4 of (σ̂mle
n )2 to (σn)2, when the true parameters δn and σn belong to S2,n(ε). Here,

we consider the absolute value of the separation parameter for the convergence as the sign of separation parameter
is not identifiable under the symmetric setting. Furthermore, in contrast to the know variance setting (2), the
worse-case convergence rate of separation parameter under the symmetric regime is slower than that of separation
parameter under the asymmetric regime. That fundamental difference can be again explained by the PDE of
the location-scale Gaussian distribution.

Connections to the Wasserstein metric: We now would like to briefly discuss the connection between
our results and Wasserstein metric, which has recently been used to study parameter estimation in mixture
models [Ho and Nguyen, 2016, Heinrich and Kahn, 2018]. To simplify the discussion, we consider the known
variance setting in the main text and offer an additional interpretation of the results in Theorem 1. In partic-
ular, let Ĝmle

n denote a probability measure (or equivalently mixing measure) with two atoms (−δ̂mle
n , cδ̂mle

n )
whose weights are (π, 1 − π) and Gn a probability measure with two atoms (−δn, cδn) whose weights are
(π, 1 − π), then we the results of Theorem 1 are equivalent to C1(ε)n−1/6 ≤ sup

δn∈Θ1,n(ε)

Eδn
(
W3(Ĝmle

n , Gn)
)
�

sup
δn∈Θ1,n(ε)

Eδn
(
|δ̂mle
n − δn|

)
≤ C2(ε)

(
logn
n

)1/6

for the asymmetric regime. Furthermore, we have C1(ε)n−1/4 ≤

sup
δn∈Θ2,n(ε)

Eδn
(
W2(Ĝmle

n , Gn)
)
� sup

δn∈Θ2,n(ε)

Eδn
(∣∣∣∣∣∣δ̂mle

n

∣∣∣− |δn|∣∣∣) ≤ C2(ε)
(

logn
n

)1/4

for the symmetric regime.

Here, Wp(Ĝn, Gn) is the p-th order Wasserstein metric between Ĝn, Gn.

B Finite Mixture Modeling for Principal Stratification

We now motivate the use of finite mixtures in principal stratification. For our primary running example, we
consider the Job Search Intervention Study (JOBS II), a randomized field experiment of a mental health and
job training intervention among unemployed workers [Vinokur et al., 1995] that has been extensively studied
in the causal inference literature [Jo and Stuart, 2009, Mattei et al., 2013]. This is an example of one-sided
noncompliance and is a simple but non-trivial example of the principal stratification setup. In Appendix C, we
also re-analyze a randomized evaluation of JobCorps, the largest job training program in the US [Schochet et al.,
2008]. We briefly discuss these results at the end of this section.

B.1 Setup

We begin with the canonical example of a randomized experiment with noncompliance, such as JOBS II, and set
up the problem using the potential outcomes framework [Neyman, 1923, Rubin, 1974]. We observe N individuals
who are randomly assigned to a treatment group, Ti = 1, or control group, Ti = 0, with observed outcome, Y . For
JOBS II, the primary outcome is a measure of depression six months after randomization. As usual, we assume
that randomization is valid and that the Stable Unit Treatment Value Assumption (SUTVA) holds [Rubin, 1980,
Imbens and Rubin, 2015]. This allows us to define potential outcomes for individual i, Yi(0) and Yi(1), under
control and treatment respectively, with observed outcome, Y obs

i = TiYi(1) + (1 − Ti)Yi(0). The fundamental
problem of causal inference is that we observe only one potential outcome for each unit. Finally, we define the
Intent-to-Treat (ITT) effect as the impact of randomization on the outcome, ITT = E[Yi(1)−Yi(0)]. Throughout,
we take expectations and probabilities to be over a hypothetical super-population.

The main complication is that only 55% of those individuals assigned to treatment actually enrolled in the
program. Let Di be an indicator for whether individual i receives the treatment, with corresponding compliance
Di(0) and Di(1) for control and treatment respectively. For simplicity, we assume that only individuals assigned
to treatment can receive the active intervention (i.e., there is one-sided noncompliance), which is the case in the
JOBS II evaluation. Formally, Di(0) = 0 for all i. This gives two subgroups of interest: Never Takers, Di(1) = 0,
and Compliers, Di(1) = 1. Following Angrist et al. [1996] and Frangakis and Rubin [2002], we refer to these
subgroups interchangeably as compliance types or principal strata, Ui ∈ {c, n}, with “c” denoting Compliers and
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“n” denoting Never Takers. Table 1 shows the relationship between observed groups and principal strata.

The two main estimands are the ITT effects for Compliers and Never Takers:

ITTc = E[Yi(1)− Yi(0) | Ui = c] = µc1 − µc0,

ITTn = E[Yi(1)− Yi(0) | Ui = n] = µn1 − µn0,

in which µut represents the outcome mean for Ui = u and Ti = t. We are primarily interested in ITTc, the impact
of randomization on Compliers, which measures the impact of actually enrolling in JOBS II. Since we observe
stratum membership for individuals assigned to treatment, we can immediately estimate µc1 and µn1. Moreover,
due to randomization, the observed proportion of Compliers in the treatment group is, in expectation, equal to
the overall proportion of Compliers in the population, π ≡ P{Ui = c}. Thus, we treat π as essentially known or,
at least, directly estimable. The main inferential challenge is that we do not observe stratum membership in the
control group. Rather we observe a mixture of Compliers and Never Takers assigned to control:

Y obs
i | Ti = 0 ∼ πfc0(yi) + (1− π)fn0(yi), (14)

where fu0(y) is the distribution of potential outcomes for individuals in stratum u assigned to control.

The standard solution for this problem is to invoke the exclusion restriction for Never Takers, which states that
ITTn = 0, or equivalently, µn1 = µn0. Substantively, this states that the only impact of randomization on
the outcome is by changing the intermediate variable, D. This is often a reasonable assumption, since actual
program participation—rather than the randomization itself—is typically the important factor in practice. With
this assumption, we can then estimate ITTc with the usual instrumental variables approach [Angrist et al., 1996].
In JOBS II, however, there is a concern that randomization has a negative impact on depression levels for Never
Takers [Mattei et al., 2013]. Thus, assuming that ITTn = 0 could lead to biased estimates for ITTc.

B.2 Model-based estimation

In a seminal paper, Imbens and Rubin [1997] outlined a model-based instrumental variables framework, proposing
a parametric model for the outcome distribution conditional on stratum membership and treatment assignment,
such as fut(yi) = N (µut, σ

2
ut). While the exclusion restriction can strengthen inference in this setting, it is not

strictly necessary. Instead, identification is based entirely on standard results for mixture models.

Since Imbens and Rubin [1997], dozens of papers have used finite mixtures for estimating causal effects.3 For one-
sided noncompliance, we can write the observed data likelihood with mean-shifted standard Normal component
distributions as:

Lobs(θ) =
∏

i: Ti=1, Dobs
i =1

πφ(yi;µc1) ×
∏

i: Ti=1, Dobs
i =0

(1− π)φ(yi;µn1) ×

∏
i: Ti=0

[πφ(yi;µc0) + (1− π)φ(yi;µn0)] ,

where θ represents the vector of parameters and φ(yi;µ) is the Normal density with mean µ and variance 1.
In practice, we often relax the assumption of known, common variance. Since the observed data likelihood for
individuals with Ti = 1 immediately factors into the likelihood for the Compliers and the likelihood for the Never
Takers, we can directly estimate µc1 and µn1. With one-sided noncompliance, we can also directly estimate π
among individuals assigned to treatment.

The challenge is therefore to estimate µc0 and µn0 via a two-component homoskedastic Gaussian mixture with
known mixing proportion, π.4 See Mattei et al. [2013] for further discussion of parametric mixture modeling in
this setting.

3Some examples of other relevant papers are [Little and Yau, 1998, Hirano et al., 2000, Barnard et al., 2003, Ten Have
et al., 2004, Gallop et al., 2009, Zhang et al., 2009, Elliott et al., 2010, Zigler and Belin, 2011, Frumento et al., 2012, Page,
2012, Schochet, 2013].

4Note that there is a very small amount of information about π from the mixture model among those assigned to the
control group. Given the other complications that arise in mixture modeling, we ignore this and regard π as if it were
estimated directly from the treatment group.
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Table 1: Summary statistics for observed groups in JOBS II
Z Dobs Observed Mean Observed SD Possible Principal Strata
1 1 -0.16 1.03 Compliers
1 0 0.05 0.96 Never Takers
0 0 0.14 0.99 Compliers and Never Takers

Table 2: Summary statistics for observed groups in Job Corps
Z Sobs Observed Mean Observed SD Possible Principal Strata
1 1 0.03 1.013 EE and EN
1 0 — — NN
0 1 -0.05 1 EE
0 0 — — NN and EN

B.3 JOBS II

Table 1 shows summary statistics for the three observed groups. We standardize the outcome by subtracting off
the grand mean and dividing by σ̂1 =

√
πσ̂2

n1 + (1− π)σ̂2
c1, the estimated within-component standard deviation

under treatment. Based on the group means, it is clear that workers who are observed to enroll in the program
have lower depression, on average, than those who do not. Note that the point estimates for σ̂c1 and σ̂n1 are
quite close, which is consistent with the equal variance assumption.

C Analysis of Job Corps

C.1 Setup

Following Zhang et al. [2009], we use the principal stratification framework to define the impact of Job Corps
on hourly wages. Let S be an indicator for employment, with corresponding potential outcomes Si(0) and Si(1)
and observed employment status Sobs

i for individual i. We then define principal strata, U , based on the joint
distribution, {Si(0), Si(1)}:

Ui =


EE if Si(1) = 1, Si(0) = 1

EN if Si(1) = 1, Si(0) = 0

NE if Si(1) = 0, Si(0) = 1

NN if Si(1) = 0, Si(0) = 0

.

We are interested in the impact of randomization on the always employed strata, EE. This is sometimes known
as a Survival Average Causal Effect and is closely related to the idea of “truncation due to death” [see Zhang
et al., 2009]. Finally, following Lee [2009], we invoke the monotonicity assumption, which states that random
encouragement to enroll in a job training program can only increase employment, Si(1) ≥ Si(0); thus the NE
group does not exist.5

Table 2 shows the relationship between principal strata and the observed groups, based on Z and Sobs. Under
monotonicity, we directly observe always employed individuals (EE) assigned to the control group. We can
therefore directly estimate the average outcome for this group, µEE0. We can also directly estimate the proportion
of EE individuals via π̂EE = P[S | Zi = 0], the proportion of never employed individuals (NN) via π̂NN =
1−P[S | Zi = 1], and the proportion of the induced to employment individuals (EN) via π̂EN = 1− π̂NN− π̂EE.
Without additional assumptions, however, we cannot estimate µEE1, instead observing a mixture of EE and EN
individuals. Consistent with Zhang et al. [2009] and Frumento et al. [2012], we therefore assume that log-hourly
wages follow a mixture of Gaussians with known mixing proportion, as in Equation (1) in the main text. Note
that this mixture is much simpler than the full model considered in Zhang et al. [2009], which accounts for some
important additional complications.

5While this simplifies the analysis and allows us to highlight the role of finite mixture modeling, Zhang et al. [2009]
argue against this assumption. In particular, they argue that enrolling in a job training program might raise an individual’s
reservation wage and, as a result, make that individual less likely to accept a lower paying job. We merely note that relaxing
this assumption further complicates the analysis, since the mixing proportions are no longer identified non-parametrically.
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Figure C.6. Quality of Maximum Likelihood Estimation for the finite mixture model in Job Corps, with param-
eters N = 3, 371 and π = 0.06. Panels (a) and (b) show the probability of MLE pathology and expected bias of
the MLE if non-zero; Panel (c) shows the observed likelihood for the Job Corps mixture, with a global mode and
a local mode. The dotted line denotes equal component means.

C.2 Diagnostics

We focus on a complete case subset used by Lee [2009] of N = 9, 145 individuals, with N1 = 5, 546 randomly
assigned to treatment and N0 = 3, 599 to control. The mixture model consists of the N11 = 3, 371 individuals
assigned to treatment who are employed, with mixing proportion π̂ = 0.06.

Table 2 shows summary statistics for observable groups. We standardize the outcome by subtracting off the
grand mean and dividing by σ̂0, the estimated standard deviation for individuals assigned to control who are
employed. This is also the standard deviation for EE individuals assigned to control. Since hourly wage is only
defined for employed workers, the rows with Sobs = 0 have undefined outcomes.

Figure 6(a) gives the probability of pile up and sign error over a range of plausible values of ∆ using the Normal
approximation and the observed Job Corps mixtures parameters of N = 3, 371 and π̂ = 0.06. As in Figure 5(a),
pile up is a major concern, though the probability of a sign error is somewhat less ex ante, in part because the
mixing proportion is much closer to 0. Figure 6(b) shows the bias of the MLE if the MLE is non-zero and the
sign is correct. As with JOBS II, the bias can be severe.

We can also incorporate the higher order moments of the mixture distribution. In this case, the observed second
and third moments are m̂2 = 1.03 and m̂3 = −0.87, respectively (after centering the mixture distribution).
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Plugging the observed values into the Normal approximations, the pile up probability of 0.34 and the sign error
probability is 0.03. The corresponding probabilities based on the case-resampling bootstrap are nearly identical,
0.34 and 0.04 respectively.

Figure 6(c) shows the observed likelihood for the mixture model. The MLE is at µ̂mle
EE1 = 0.09 and µ̂mle

NE1 = −4.40,
which implies ∆̂mle = −4.49 standard deviations. This is clearly an extreme estimate. Transforming these
estimates to $ per hour shows that µ̂mle

EE1 = $8.24 per hour and µ̂mle
NE1 = $0.09 per hour, which is far below feasible

hourly wages in this sample. This estimate is also outside the minimax bounds, ∆ ∈ [−2.4, 2.2].6 There is also
a local mode centered at µ̂mle

EE1 = −0.01 and µ̂mle
NE1 = 0.59, which implies ∆̂mle = 0.60 standard deviations. In

units of $ per hour, this is µ̂mle
EE1 = $7.47 per hour and µ̂mle

NE1 = $13.64 per hour. While far more feasible than the
global mode, these estimates are still worrisome, since it is unlikely that the group induced to employment by Job
Corps would have hourly wages nearly twice those of the always employed group; see Figure 6(b). Regardless, the
likelihood at the MLE is considerably higher than at the local mode, with −2∗ (`(+0.60|Y )− `(−4.49|Y )) = 296.
Taken together, these results suggest that maximum likelihood does not give practically useful results in this
example.

In practice, the simplest explanation for these results is that the simple Normal mixture model in Equation (1)
in the main text is a poor fit to the data. At the same time, however, it is difficult to imagine a more plausible
parametric mixture model in this setting. Thus parametric finite mixtures might not be an effective strategy in
this example.

D Robust estimation via method of moments

Rather than use higher order moments as diagnostics, we can instead use the method of moments directly for
estimation. Several recent papers have highlighted the attractive properties of method of moment estimators
for general mixture models [Anandkumar et al., 2012, Wu and Yang, 2018]. Applying these results, we show
that the method of moments approach has similar asymptotic properties to the MLE but better finite sample
properties; in particular, the method of moments is not susceptible to pile up.

First, in the setting with known, equal variances in Equation (2), we have the following moment equations:

m1 = E[Y ] = µ

m2 = E[Y 2] = 1 + cδ2 (15)

m3 = E[Y 3] =
1− 2π

1− π
cδ3,

where ∆ = (1 + c)δ. Since there is no information in the first moment about δ, we consider two estimators based
on the second and third moments:7

|δ̂m2
| :=

∣∣∣∣m̂2 − 1

c

∣∣∣∣1/2 δ̂m3
:=

[
(1− π)

c (1− 2π)
m̂3

]1/3

,

where m̂2 and m̂3 are the sample second and third (non-central) moments, respectively. First, the absolute value
for |δ̂m2 | is necessary because there is no information about sign of δ in the second moment. Thus, δ̂m2 is a
natural estimator when π = 1/2. By contrast, when π ∈ (0, 1/2), δ̂m3

will estimate both the magnitude and sign
of δ.

The following result establishes that these estimators have asymptotic behavior similar to the MLE, as described
in Theorem 1.

Proposition 2. Given the formulations of estimators δ̂m2 and δ̂m3 , for the setting of known equal variances (2),
the following holds

6Following Lee [2009], we calculate minimax bounds via trimmed means of the mixture distribution. Specifically, we
bound µNE1 via the mean of the π = 0.06 individuals with, respectively, the lowest and highest values of hourly wages,
with similar bounds for µEE1.

7In principle, we could also consider a generalized method of moments estimator based on both the second and third
moments, though this is less transparent than the estimators we discuss below. See Anandkumar et al. [2012], Hardt and
Price [2015], Wu and Yang [2018].
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(a) (Asymmetric regime) When π ∈ (0, 1/2), then

sup
δn∈Θ

∣∣∣∣∣∣δ̂m2

∣∣∣− |δn|∣∣∣ = Op

(
n−1/4

)
, (16)

sup
δn∈Θ

∣∣∣δ̂m3
− δn

∣∣∣ = Op

(
n−1/6

)
. (17)

(b) (Symmetric regime) When π = 1/2, then

sup
δn∈Θ

∣∣∣∣∣∣δ̂m2

∣∣∣− |δn|∣∣∣ = Op

(
n−1/4

)
, (18)

where δ̂m3 is undefined when π = 1/2.

While these simple estimators have the same asymptotic behavior as the MLE, neither δ̂m2
nor δ̂m3

are susceptible
to pile up. It suggests that the moment estimators under the simple setting of known equal variances are more
robust than the MLE.

E Confidence sets via inverting tests

Given the poor performance of the MLE, we are interested in methods that perform well even when ∆ is
small. Based on the large literature on weak identification in other settings, we presume that many such
methods are possible. As a starting point, we suggest an approach to construct confidence intervals based on
inverting a sequence of tests. This approach is widely used in other weak identification settings, namely weak
instruments [Staiger and Stock, 1997, Kang et al., 2015] and the unit root moving average problem [Mikusheva,
2007]. It is also closely related to the method of constructing confidence intervals for causal effects by inverting
a sequence of Fisher Randomization Tests [Rosenbaum, 2002].

At the same time, this approach has its drawbacks. First, while test inversion yields confidence sets with good
coverage properties, it does not necessarily yield good point estimates. In particular, it is possible to construct
a Hodges-Lehmann-style estimator via the point on the grid with the highest p-value [Hodges and Lehmann,
1963]. But since pile up and sign error remain issues, any point estimator in this case should be interpreted with
caution. Second, the coverage guarantees hold only when the model is correctly specified; under even moderate
mis-specification, the resulting estimator can cease to exist [Gelman, 2011]. Importantly, the MLE performs
poorly even when the model is correctly specified. Alternatively, researchers uninterested in test inversion for
confidence intervals might nonetheless be interested in using this approach to assess model fit. If the proposed
procedure rejects everywhere, this is evidence that the Normal mixture model is a poor fit.

We discuss two basic approaches here. Our first approach is a version of the grid bootstrap of Andrews [1993]
and Hansen [1999], which generates Monte Carlo p-values by simulating fake data sets from the null hypothesis.
While the grid bootstrap is conceptually straightforward and enjoys theoretical guarantees [Mikusheva, 2007],
it is also computationally intensive. Our second approach is therefore a fast approximation that directly uses
the Normal sampling distribution of the main text to derive a χ2 test at each grid point. To demonstrate these
methods, we first outline inference for ∆ alone and then extend this to inference for the component-specific
means, µ0 and µ1.

E.1 Overview of grid bootstrap

To conduct a grid bootstrap, we first need a grid. Define ∆ = {∆0,∆1, . . . ,∆n} with ∆i > ∆j for i > j. The
immediate goal is then to obtain a p-value for the following null hypotheses for each value ∆j ∈ ∆:

H0 : ∆ = ∆j vs. H1 : ∆ 6= ∆j . (19)

For convenience we first center the data (i.e., we set µ = 0 as in the main text). Next, we need a test statistic,
t(y,∆j), that is a function of the observed (or simulated) data and the value of ∆ under the null hypothesis,
∆ = ∆j . For a given N , and initially assuming π and σ2 are known, we then obtain exact p-values through
simulation with the following procedure:
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• For each ∆j ∈ ∆

– Calculate the observed test statistic, tnj = t(yn,∆j).
– Generate B data sets of size N from the model

y∗j
iid∼ πN

(
∆j

2
, σ2

)
+ (1− π)N

(
−∆j

2
, σ2

)
.

– For each simulated y∗j , compute t∗j = t(y∗j ,∆j).
– Calculate the empirical p-value of tnj as a function of the null distribution, t∗j .

• Calculate the confidence set, CSα(∆) = {∆j : p(∆j) > 1 − α} for a specified significance level α, where
p(∆j) is the empirical p-value of ∆̂mle assuming that ∆ = ∆j .

Note that the resulting confidence set might not be continuous, which could occur if the sampling distribution
is strongly bimodal.

E.2 Constructing a test statistic

So long as the model is correctly specified, this approach yields an exact p-value for any valid test statistic, up
to Monte Carlo error [Mikusheva, 2007]. We propose a test statistic based on the joint distribution of m̂2 and
m̂3.8 The joint distribution of m̂2 and m̂3 suggests a natural combination of the estimated cumulants:

tm(y,∆j) = (d2, d3)Var(m2,m3)−1(d2, d3)T , (20)

where dk = m̂k − mk, and we use the assumed null of ∆ = ∆j to obtain (m2,m3) and Var(m2,m3). As we
saw, the Normal approximation of m̂2 and m̂3 in the main text is excellent, even for modest sample sizes (say
N > 100). This implies:

tm(y,∆j)
a∼ χ2

2.

We can therefore obtain a p-value via a Wald test, rather than via simulation, at each grid point, which is much
faster computationally.

Finally, to use these approaches to estimate component means, we need to (1) expand the grid, and (2) expand
the test statistic. A natural choice for a grid of points is the two-dimensional grid over µ0 and µ1. To expand
the test statistic, we directly use the first three cumulants and from Tan and Chang [1972] to obtain a joint test
statistic as in Equation (20):

tm(y,∆j) = (d1, d2, d3)Var(κ1, κ2, κ3)−1(d1, d2, d3)T ∼ χ2
3. (21)

As above, we can obtain p-values via the grid bootstrap rather than via the χ2 distribution. Figure E.7 shows
the distribution of p-values for three different examples from the same data generating process, with N = 1000,
π = 0.325, σ2 = 1, µ0 = + 1

8 , µ1 = − 1
8 .

9

Figure E.8 shows the 95% coverage for the confidence sets obtained through this fast approximation. As ex-
pected, the coverage is essentially exact. In particular, 95% coverage for this procedure is far better than the
corresponding coverage based on the MLE.

E.3 Grid bootstrap for principal stratification model

In the full principal stratification model, we directly estimate the outcome means for Compliers and Never Takers
assigned to treatment, µ̂c1 and µ̂n1, and use the finite mixture model to estimate corresponding outcome means
for Compliers and Never Takers assigned to control, µ̂c0 and µ̂n0. Our goal is inference for ITTc = µ̂c1− µ̂c0 and

8There are many possible alternatives. For example, Frumento et al. [2016] suggest test statistics based on scaled
log-likelihood ratios. Another option is to use univariate test statistics based on m̂2 or m̂3.

9Note that the χ2 distribution no longer holds when µ0 = µ1. While we can use a univariate Normal distribution to
obtain a valid p-value in this case, this additional complication is generally unnecessary in practice.
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Figure E.7. Three examples of the grid of Wald test p-values from Equation 21. The three simulated data sets
were drawn from Equation (1) in the main text with N = 1000, π = 0.325, σ2 = 1, µ0 = 1

8
, µ1 = − 1

8
. The dark

line shows the cutoff for p = 0.05. The red dot shows the true value. Note that the Wald test is undefined when
µ0 = µ1.

ITTn = µ̂n1 − µ̂n0. While this is straightforward given estimates for µc0 and µn0, we only have confidence sets
for these means.

We therefore propose the following approach to obtaining (1− α)100% confidence sets for ITTc and ITTn:

• Use a grid bootstrap or test inversion to obtain a joint (1−α/2)100% confidence set for µc0 and µn0, which
we can project into univariate confidence sets, CSα/2(µc0) and CSα/2(µn0)

• Directly obtain (1−α/2)100% confidence intervals via the Normal distribution for µc1 and µn1, CSα/2(µc1)
and CSα/2(µn1)

• For ITTc (repeat for ITTn):
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Figure E.8. Coverage for 95% confidence sets based on the test inversion algorithm described in Section E. The
results for the MLE are for the standard finite mixtures estimator.

– If CSα/2(µc0) is not disjoint, obtain a (1− α)100% confidence interval for ITTc:

CSUBα (ITTc) = CSUBα/2(µc1)− CSLBα/2(µc0)

CSLBα (ITTc) = CSLBα/2(µc1)− CSUBα/2(µc0)

– If CSα/2(µc0) is disjoint, repeat the above calculations for each separate segment and then take the
union

This yields valid confidence sets for both treatment effects of interest. If desired, we could incorporate an
additional Bonferroni correction to account for the two separate intervals.

Finally, if desired, we can extend this procedure to account for uncertainty in π and σ, which are nuisance
parameters for the desired hypothesis tests. We can therefore use results from Berger and Boos [1994] to obtain
valid p-values in this context. First, we obtain a (1 − γ)-level joint confidence set for CSγ(π, σ2), such as via
case-resampling bootstrap, with γ very small, such as γ = 0.001. We obtain a valid p-value for, say, ∆, by taking
the maximum p-value over CSγ(π, σ2) plus a correction for the added uncertainty:

pγ(∆0) = sup
(π,σ2)∈CSγ(π,σ2)

p(∆0) + γ.

See [Nolen and Hudgens, 2011] and Ding et al. [2016] for further discussion of the validity of this approach.
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Figure F.9. Probability that the diagnostic based on the second moment (1{m̂2 < 1}) agrees with whether or
not pile up was observed in simulation. The dotted red line perfect correspondence at each tested N . The blue
line is the average agreement probability over 1000 simulated data sets.

F Simulations and other computer experiments

F.1 Validating the Normal approximations

We present figures testing the agreement of the moment-based Normal approximations with their corresponding
pathologies assessed via simulation. Figure F.9 compares the incidence of pile up and m̂2 < 1 for a range of
values of π,∆, and N . The blue line indicates the probability the method of moments estimator indicator of
pile up (1{m̂2 < 1}) agrees with whether or not pile up was observed in simulation. The results are averaged
over 1000 simulated data sets. Unsurprisingly, the correspondence improves as N increases and is worst when
π = 0.1, the case in which the mixture is its most asymmetric. Overall, however, the Normal approximation
provides an excellent estimator for whether pile up has occurred in the sample.

Figure F.10 shows the corresponding plots for assessing the sign of ∆. Here, due to the extra noise in m3, the
correspondence is much less sharp. The discrepancies are most noticeable when π is close to 0 and ∆ is small.
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Figure F.10. Probability that the diagnostic based on the third moment agrees with whether or not the wrong
sign pathology was observed in simulation. The dotted red line perfect correspondence at each tested N . The
blue line is the average agreement probability over 1000 simulated data sets.

F.2 Failure of resampling methods

Resampling methods, such as the case-resampling bootstrap, are common in finite mixture model settings. For
example, McLachlan and Peel [2004] recommend using the bootstrap to improve estimation of standard errors
when the Fisher information yields a poor approximation [Grün and Leisch, 2004]. Others have suggested
subsampling in similar settings [Andrews, 2000]. Figure G.1 shows the coverage for 95% confidence sets based
on the case-resampling and subsampling intervals. Clearly, the coverage is far from nominal.

The form of ∆̂mom shows why the performance of these methods is so poor. As the work [Bickel and Freedman,
1981] proved, for the bootstrap to be consistent in the iid context, the mapping from the underlying distribution
of the data to the distribution of the statistic must be continuous [Andrews, 2000]. Clearly,

∆̂mom = sgn(m̂3)

√
m̂2 − 1

π(1− π)

is not a continuous mapping from the sample to ∆̂mom, with a boundary at m2 ≥ 1 and a discontinuity at
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Figure F.11: Berry-Essen bound for probability of pile up for π = 0.35 and a range of values of N and ∆.

m3 = 0.10 In the related case of the unit root problem, Mikusheva [2007] shows that other resampling methods
also fail, including subsampling and the m of n bootstrap. In the context of principal stratification, Zhang et al.
[2009] note that confidence intervals based on the bootstrap often fail when the likelihood is multimodal. Frumento
et al. [2016] offer additional discussion in this setting.

G Proofs

In this appendix, we provide detailed proofs for the key asymptotic results in Section 2 and Appendix A. We
first start with the proof regarding convergence rates of δ̂mle

n and
∣∣∣δ̂mle
n

∣∣∣ under the asymmetric and symmetric
setting of model (2).

G.1 PROOF OF THEOREM 1

Throughout this proof, for the ease of presentation, we denote

g(x, δ) := πφ(x,−δ) + (1− π)φ(x, cδ),

for any δ ∈ Θ where {φ(x, δ)} denotes the family of Gaussian distribution with location parameter δ and scale is
fixed to be 1. Additionally, we also remind that c = π/(1− π), with this quantity thus being a known constant.
To streamline the argument, we divide the proof into two parts. In Section G.1.1, we provide the proof for the
upper bounds of the convergence rate of MLE. Then, in Section G.1.2, we present the proof for the lower bounds.

G.1.1 Proof for upper bounds

The proof technique for the upper bounds utilizes the strategy of comparing the convergence rate of density
estimation to that of parameter estimation in mixture models, which had been employed successfully in the
previous work [Chen, 1995, Ho and Nguyen, 2016, Heinrich and Kahn, 2018].

Convergence rate of density estimation The convergence rate of density estimation in Gaussian mixture
models had been studied rigorously in the literature [Ghosal and van der Vaart, 2001]. Regarding our model (2),

10In some promising recent work, Laber and Murphy [2011] explore bootstrap-type methods with non-continuous
mappings. We hope to explore this more in the future.
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Figure G.1. Coverage probabilities for 95% confidence sets based on the case-resampling and subsampling
intervals. The blue line represents the case-resampling coverage probability, while the blue line represents the
subsampling coverage probability.

we have the following result regarding the convergence rate of g(x, δ̂mle
n ) to g(x, δn) under Hellinger metric.

Proposition 3. Under the setting of model (2), the following holds

sup
δn∈Θ

Eδn
(
h
(
g(x, δ̂mle

n ), g(x, δn)
))

.

(
log n

n

)1/2

,

where Θ is a bounded (growing) parameter space. Here, Eδn denotes the expectation taken with respect to product
measure with mixture density of Y1, . . . , Yn under the model (2).

The proof of the above result follows from a standard application of Theorem 7.4 in van de Geer [2000]; therefore,
it is omitted.

From density estimation to parameter estimation Equipped with (log n/n)1/2 rate of density estimation
in Proposition (3), to achieve the convergence rates of δ̂mle

n and
∣∣∣δ̂mle
n

∣∣∣ under the asymmetric and symmetric
setting of model (2), it is sufficient to demonstrate the following result:
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Lemma 1. Given π ∈ (0, 1/2] and Θ = [−1, 1], the following holds

(a) (Asymmetric regime) When π ∈ (0, 1/2), then

inf
δ(1),δ(2)∈Θ

h
(
g(x, δ(1)), g(x, δ(2))

)
/
∣∣∣δ(1) − δ(2)

∣∣∣3 > 0.

(b) (Symmetric regime) When π = 1/2, then

inf
δ(1),δ(2)∈Θ

h
(
g(x, δ(1)), g(x, δ(2))

)
/

∣∣∣∣|δ(1)| − |δ(2)|
∣∣∣∣2 > 0.

Proof. (a) Due to the basic inequality between total variational distance and Hellinger distance h ≥ V , it suffices
to prove that

inf
δ(1),δ(2)∈Θ

V
(
g(x, δ(1)), g(x, δ(2))

)
/|δ(1) − δ(2)|3 > 0. (22)

Assume that the conclusion of (22) does not hold. It implies that we can find two sequences
{
δ

(1)
n

}
and

{
δ

(2)
n

}
such that V (g(x, δ

(1)
n ), g(x, δ

(2)
n ))/|δ(1)

n − δ(2)
n |3 → 0 as n→∞. For the simplicity of the presentation, we only the

consider the most challenging setting of sequences
{
δ

(1)
n

}
and

{
δ

(2)
n

}
when δ(1)

n → 0, δ(2)
n → 0 as n → ∞. The

proof for other possibilities of these sequences can be argued in the similar fashion. Now, we have two distinct
cases regarding the convergence of δ(1)

n and δ(2)
n .

Case a.1: δ
(1)
n /δ

(2)
n 6→ 1 as n → ∞ (Here, the limit can be thought as that of some subsequence of δ(1)

n /δ
(2)
n .

However, we replace this subsequence by the whole sequence of δ(1)
n /δ

(2)
n for the simplicity of the presentation).

Under this case, we divide our argument into several steps.

Step 1 - Taylor expansion Now, the following equality holds

g(x, δ
(1)
n )− g(x, δ

(2)
n )

|δ(1)
n − δ(2)

n |3
=

π(φ(x,−δ(1)
n )− φ(x,−δ(2)

n ))

|δ(1)
n − δ(2)

n |3

+
(1− π)(φ(x, cδ

(1)
n )− φ(x, cδ

(2)
n ))

|δ(1)
n − δ(2)

n |3
.

Invoking Taylor expansion up to the third order, we obtain that

φ(x,−δ(1)
n )− φ(x,−δ(2)

n ) =

3∑
α=1

(δ
(2)
n − δ(1)

n )α

α!

∂αφ

∂δα
(x,−δ(2)

n ) +R1(x),

φ(x, cδ(1)
n )− φ(x, cδ(2)

n ) =

3∑
α=1

cα(δ
(1)
n − δ(2)

n )α

α!

∂αφ

∂δα
(x, cδ(2)

n ) +R2(x)

=

3∑
α=1

cα(δ
(1)
n − δ(2)

n )α

α!

( 3−α∑
τ=0

(c+ 1)τ (δ
(2)
n )τ

τ !

∂α+τφ

∂δα+τ
(x,−δ(2)

n )

+R2,α(x)

)
+R2(x),

whereR1(x), R2(x) are respectively the Taylor remainders up to the third order from performing Taylor expansion
around −δ(2)

n and cδ(2)
n while R2,α are Taylor remainders up to the order 3−α from performing Taylor expansion

around −δ2
n in

∂αφ

∂δα
(x, cδ

(2)
n ) as 1 ≤ α ≤ 3. Here, the Taylor remainders R1(x) and R2(x) satisfy

max{‖R1(x)‖∞, ‖R2(x)‖∞} = O
(
|δ(1)
n − δ(2)

n |3+γ
)
, (23)
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where γ > 0 is some positive constant. It implies that R1(x)/|δ(1)
n −δ(2)

n |3 → 0 and R2(x)/|δ(1)
n −δ(2)

n |3 → 0 for all
x ∈ R. Similarly, ‖R2,α(x)‖∞ = O(|δ(2)

n |3−α+γ) as 1 ≤ α ≤ 3. As δ(1)
n /δ

(2)
n 6→ 1, we have |δ(2)

n |/|δ(1)
n −δ(2)

n | 6→ +∞.
Therefore, we have |δ(2)

n |r−α+γ/|δ(1)
n − δ(1)

n |r−α → 0 as n→∞, which eventually leads to

(δ(1)
n − δ(2)

n )α‖R2,α(x)‖∞/|δ(1)
n − δ(2)

n |3 → 0 (24)

for all 1 ≤ α ≤ 3. Governed by the previous results, the following representation holds

g(x, δ
(1)
n )− g(x, δ

(2)
n )

|δ(1)
n − δ(2)

n |3
=

π

(
3∑

α=1

(δ
(2)
n − δ(1)

n )α

α!

∂αφ

∂δα
(x,−δ(2)

n ) +R1(x)

)
|δ(1)
n − δ(2)

n |3

+

(1− π)

(
3∑

α=1

cα(δ
(1)
n − δ(2)

n )α

α!

(
3−α∑
τ=0

(c+ 1)τ (δ
(2)
n )τ

τ !

∂α+τφ

∂δα+τ
(x,−δ(2)

n ) +R2,α(x)

)
+R2(x)

)
|δ(1)
n − δ(2)

n |3

:=

3∑
α=1

An,α
∂αφ

∂δα
(x,−δ(2)

n ) +R(x)

|δ(1)
n − δ(2)

n |3
, (25)

where R(x) = πR1(x) + (1 − π)
3∑

α=1

cα(δ
(1)
n − δ(2)

n )α

α!
R2,α(x) + (1 − π)R2(x) for all x ∈ R. Invoking the bounds

with Taylor remainders R1(x), R2(x), and R2,α(x) in (23), (24), we have ‖R(x)‖∞/|δ(1)
n − δ(2)

n |3 → 0 as n→∞.

Step 2 - Non-vanishing coefficients Assume that the coefficients An,α/|δ(1)
n − δ(2)

n |3 → 0 as n→∞ for all
1 ≤ α ≤ 3. From the formulations of An,α in (25), we can quickly compute that An,1 = 0 while

An,2 =
c

2
(δ(2)
n − δ(1)

n )(δ(1)
n + δ(2)

n ),

An,3 =
π(δ

(2)
n − δ(1)

n )3

3!
+ (1− π)c(c+ 1)2(δ(2)

n )2 (δ
(1)
n − δ(2)

n )

2!

+(1− π)(c+ 1)c2
(δ

(1)
n − δ(2)

n )2

2!
δ(2)
n + (1− π)c3

(δ
(1)
n − δ(2)

n )3

3!
.

As An,2/|δ(1)
n −δ(2)

n |3 → 0, it implies that (δ
(1)
n +δ

(2)
n )/|δ(1)

n −δ(2)
n |2 → 0, which leads to δ(1)

n /δ
(2)
n → −1 as n→∞.

Plugging this limit into An,3/|δ(1)
n − δ(2)

n |3 → 0 yields the following equation

8π

3!
− (1− π)c(c+ 1)2 + 2(1− π)c2(c+ 1)− 8(1− π)c3

3!
= 0,

which has only a unique solution π = 1/2, a contradiction to the assumption of asymmetric setting, i.e., π ∈
(0, 1/2). Therefore, not all the coefficients An,α/|δ(1)

n − δ(2)
n |3 → 0 when n→∞ as 1 ≤ α ≤ 3.

Step 3 - Fatou’s argument Denotemn = |δ(1)
n −δ(2)

n |3/ max
1≤α≤3

|An,α|. Since not all the coefficients An,α/|δ(1)
n −

δ
(2)
n |3 → 0 as 1 ≤ α ≤ 3, we have mn 6→ ∞. Therefore, we obtain that

mn
g(x, δ

(1)
n )− g(x, δ

(2)
n )

|δ(1)
n − δ(2)

n |3
= mn

3∑
α=1

An,α
∂αφ

∂δα
(x,−δ(2)

n ) +R(x)

|δ(1)
n − δ(2)

n |3
→

3∑
α=1

βα
∂αφ

∂δα
(x, 0),

for all x where An,α/ max
1≤α≤3

|An,α| → βα as 1 ≤ α ≤ 3 such that at least one of βα has absolute value to be 1.

Invoking Fatou’s lemma, the following holds

0 = lim
n→∞

mnV
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)

|δ(1) − δ(2)|3
≥
∫

lim inf
n→∞

mn

∣∣∣g(x, δ
(1)
n )− g(x, δ

(2)
n )
∣∣∣

|δ(1)
n − δ(2)

n |3
dx
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=

∫ 3∑
α=1

βα
∂αφ

∂δα
(x, 0)dx.

The above inequality leads to
3∑

α=1
βα
∂αφ

∂δα
(x, 0) = 0 for almost surely x. Nevertheless, due to the strong order

identifiability of location Gaussian distribution [Chen, 1995], the above equation implies that βα = 0 for all
1 ≤ α ≤ 3, which is a contradiction. Therefore, Case a.1 cannot holds.

Case a.2: δ
(1)
n /δ

(2)
n → 1 as n → ∞. It implies that |δ(2)

n |/|δ(1)
n − δ

(2)
n | → ∞ as n → ∞. As

V
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)
/|δ(1)

n − δ(2)
n |3 → 0, it implies that

V
(
g(x, δ(1)

n ), g(x, δ(2)
n )
)
/|δ(1)

n − δ(2)
n |2 → 0,

as n → ∞ for all x ∈ R. Similar to the Taylor expansion argument in Step 1 in Case a.1, by means of Taylor
expansion up to the second order, we obtain that

g(x, δ
(1)
n )− g(x, δ

(2)
n )

|δ(1)
n − δ(2)

n |2
=

π(φ(x,−δ(1)
n )− φ(x,−δ(2)

n )) + (1− π)(φ(x, cδ
(1)
n )− φ(x, cδ

(2)
n ))

|δ(1)
n − δ(2)

n |2

=

π

(
2∑

α=1

(δ
(2)
n − δ(1)

n )α

α!

∂αφ

∂δα
(x,−δ(2)

n ) +R′1(x)

)
|δ(1)
n − δ(2)

n |2

+

(1− π)

(
2∑

α=1

cα(δ
(1)
n − δ(2)

n )α

α!

(
2−α∑
τ=0

(c+ 1)τ (δ
(2)
n )τ

τ !

∂α+τφ

∂δα+τ
(x,−δ(2)

n ) +R′2,α(x)

)
+R′2(x)

)
|δ(1)
n − δ(2)

n |2

=

2∑
α=1

An,α
∂αφ

∂δα
(x,−δ(2)

n ) +R′(x)

|δ(1)
n − δ(2)

n |2
→ 0,

where ‖R′(x)‖∞ = O
(
|δ(2)
n |1+γ |δ(1)

n − δ(2)
n |
)
for some γ > 0. By means of the calculations with An,α in Case

a.1, we have

‖R′(x)‖∞
|An,2|

=

O

(∣∣∣δ(2)
n

∣∣∣1+γ ∣∣∣δ(1)
n − δ(2)

n

∣∣∣)∣∣∣δ(2)
n − δ(1)

n

∣∣∣ ∣∣∣δ(1)
n + δ

(2)
n

∣∣∣ → 0.

Now, if An,α/|δ(1)
n − δ(2)

n |2 → 0 for all 1 ≤ α ≤ 2, we have |δ(1)
n + δ

(2)
n |/|δ(1)

n − δ(2)
n | → 0, which implies that

δ
(1)
n /δ

(2)
n → −1, a contradiction to the assumption of Case a.2. According to the argument in Step 3 in Case a.1,

by denoting m′n = |δ(1)
n − δ(2)

n |2/ max
1≤α≤2

|An,α|, we have m′n 6→ ∞. Therefore, we have

m′n
g(x, δ

(1)
n )− g(x, δ

(2)
n )

|δ(1)
n − δ(2)

n |2
→

2∑
α=1

τα
∂αφ

∂δα
(x, 0),

for all x for some coefficients τα such that at least one of them has absolute value to be 1. By virtue of Fatou’s

lemma in Step 3 in Case a.1 with lim
n→∞

V
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)
/|δ(1)

n −δ(2)
n |2, we achieve that

2∑
α=1

τα
∂αφ

∂δα
(x, 0) = 0

for almost surely x. However, the strong identifability of location Gaussian distribution implies that τα = 0 for
all 1 ≤ α ≤ 2, which is a contradiction. Therefore, Case a.2 cannot happen.

Combining the results from Case a.1 and Case a.2, we achieve the conclusion of (22). As a consequence, the
conclusion of part (a) of Lemma 1 follows.
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(b) Similar to the proof strategy of part (a), to obtain the conclusion of this result, it is sufficient to demonstrate
that

inf
δ(1),δ(2)∈δ

V
(
g(x, δ(1)), g(x, δ(2))

)
/

∣∣∣∣|δ(1)| − |δ(2)|
∣∣∣∣2 > 0. (26)

Assume that the conclusion of (26) does not hold. It implies that we can find two sequences
{
δ

(1)
n

}
and

{
δ

(2)
n

}
such that

V
(
g(x, δ(1)

n ), g(x, δ(2)
n )
)
/

∣∣∣∣|δ(1)
n | − |δ(2)

n |
∣∣∣∣2 → 0

as n→∞. Similar to the proof argument of part (a), we only consider the possibility that δ(1)
n → 0 and δ(2)

n → 0

as n→∞. Now, we have two different settings of δ(1)
n and δ(2)

n .

Case b.1: δ
(1)
n /δ

(2)
n 6→ 1 as n→∞ and δ(1)

n δ
(2)
n ≥ 0 for all n (Here, the limit and the inequality can be thought

as those of some subsequence of δ(1)
n and δ(2)

n . However, we replace this subsequence by the whole sequence of
δ

(1)
n and δ(2)

n for the simplicity of the presentation). Under that setting, we have

V
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)

∣∣∣∣|δ(1)
n | − |δ(2)

n |
∣∣∣∣2

=
V
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)

|δ(1)
n − δ(2)

n |2
→ 0.

To ease the understanding, we divide our argument for Case b.1 into two separate steps.

Step 1 - Taylor expansion By means of Taylor expansion up to the second order as that of Case a.2 in the
proof of part (a), we obtain that

g(x, δ
(1)
n )− g(x, δ

(2)
n )

|δ(1)
n − δ(2)

n |2
=

2∑
α=1

An,α
∂αφ

∂δα
(x,−δ(2)

n ) +R′(x)∣∣∣δ(1)
n − δ(2)

n

∣∣∣2 → 0,

where R′(x) is a combination of Taylor remainders such that

‖R′(x)‖∞ = O

(∣∣∣δ(2)
n

∣∣∣1+γ ∣∣∣δ(1)
n − δ(2)

n

∣∣∣) ,
for some positive constant γ and An,α are defined as in that in Case a.2 when π = 1/2. Since δ(1)

n /δ
(2)
n 6→ 1, we

have |δ(2)
n |/|δ(1)

n − δ(2)
n | 6→ ∞. Therefore, it leads to

‖R(x)‖∞/|δ(1)
n − δ(2)

n | → 0

as n→∞.

Step 2 - Non-vanishing coefficients and Fatou’s argument Assume that An,α/|δ(1)
n − δ(2)

n |2 → 0 for all
1 ≤ α ≤ 2. From the formulation of An,2, we have

(δ(1)
n + δ(2)

n )/|δ(1)
n − δ(2)

n | → 0.

It implies that δ(1)
n /δ

(2)
n → −1 as n→∞, which is a contradiction to the condition that δ(1)

n δ
(2)
n ≥ 0. Therefore,

not all of the coefficients of An,α/|δ(1)
n − δ(2)

n |2 go to 0. From here, by means of the Fatou’s argument in Step 3
of Case a.1, we achieve the conclusion that Case b.1 cannot hold.
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Case b.2 δ
(1)
n /δ

(2)
n 6→ 1 and δ(1)

n δ
(2)
n < 0 for all n. Under that setting, we have

V
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)

∣∣∣∣|δ(1)
n | − |δ(2)

n |
∣∣∣∣2

=
V
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)

∣∣∣δ(1)
n + δ

(2)
n

∣∣∣2 → 0.

We also divide the argument of Case b.2 into two main key steps.

Step 1 - Taylor expansion By means of Taylor expansion up to the second order, we obtain

g(x, δ
(1)
n )− g(x, δ

(2)
n )

|δ(1)
n + δ

(2)
n |2

=

1

2
(φ(x,−δ(1)

n )− φ(x, δ
(2)
n )) +

1

2
(φ(x, δ

(1)
n )− φ(x,−δ(2)

n ))

|δ(1)
n + δ

(2)
n |2

=

1

2

(
2∑

α=1

(−δ(2)
n − δ(1)

n )α

α!

∂αφ

∂δα
(x, δ

(2)
n ) +R′′1 (x)

)
|δ(1)
n + δ

(2)
n |2

+

1

2

(
2∑

α=1

(δ
(1)
n + δ

(2)
n )α

α!

(
2−α∑
τ=0

2τ (−δ(2)
n )τ

τ !

∂α+τφ

∂δα+τ
(x, δ

(2)
n ) +R′′2,α(x)

)
+R′′2 (x)

)
|δ(1)
n + δ

(2)
n |2

:=

2∑
α=1

Bn,α
∂αφ

∂δα
(x, δ

(2)
n ) +R′′(x)

|δ(1)
n + δ

(2)
n |2

→ 0,

where R′′(x) is the combination of Taylor remainders such that

‖R′′(x)‖∞ = O
(
|δ(2)
n |1+γ |δ(1)

n + δ(2)
n |
)
,

which implies that ‖R′′(x)‖∞/|δ(1)
n + δ

(2)
n |2 → 0 as n→∞.

Step 2 - Non-vanishing coefficients and Fatou’s argument Assume that Bn,α/|δ(1)
n + δ

(2)
n |2 → 0 for all

1 ≤ α ≤ 2. Direct computation with Bn,2 implies that

(δ(1)
n − δ(2)

n )/|δ(1)
n + δ(2)

n | → 0

as n → ∞. It leads to δ(1)
n /δ

(2)
n → 1, which is a contradiction to the assumption that δ(1)

n δ
(2)
n < 0. From here,

the Fatou’s argument in Step 3 of Case a.1, we also obtain the conclusion that Case b.2 does not hold.

Case b.3 δ
(1)
n /δ

(2)
n → 1 as n → ∞. This implies that δ(1)

n δ
(2)
n > 0 when n is sufficiently large. From here, the

proof argument of this case is similar to that of Case a.2 in part (a), which also yields the contradiction.

As a consequence, we achieve the conclusion of part (b) of the lemma.

G.1.2 Proof for lower bounds

(a) Based on the proof technique of Theorem 3.2 in Heinrich and Kahn [2018], to achieve the conclusion with
the lower bound of part (a) of the theorem, it is sufficient to demonstrate that

inf
δ(1),δ(2)∈Θ1,n

h
(
g(x, δ(1)), g(x, δ(2))

)
/

∣∣∣∣δ(1) − δ(2)

∣∣∣∣r = 0 (27)

for any 1 ≤ r < 3. We divide the proof argument for the above result into several key steps.
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Step 1 - Constructing sequences In fact, we construct two sequences
{
δ

(1)
n

}
and

{
δ

(2)
n

}
such that δ(1)

n =

−δ(2)
n for all n ≥ 1 and δ(1)

n → 0 as n→∞. For any fixed r < 3, by means of Taylor expansion up to the second
order as that in Step 1 of Case a.1 in part (a) of Theorem 1 (cf. Equation (25)), the following holds

g(x, δ(1)
n )− g(x, δ(2)

n ) =

2∑
α=1

An,α
∂αφ

∂δα
(x,−δ(2)

n ) +R(x),

where R(x) is a combination of Taylor remainders where its detail formulation is postponed to later discussion.
Additionally, the formulations of An,α satisfy An,1 = 0 and

An,2 =
c

2
(δ(2)
n − δ(1)

n )(δ(1)
n + δ(2)

n ) = 0.

Step 2 - Hellinger bound and Taylor remainders Equipped with the above results, we have

h2
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)

∣∣∣δ(1)
n − δ(2)

n

∣∣∣2r =

∫ (
g(x, δ

(1)
n )− g(x, δ

(2)
n )
)2

2r
∣∣∣δ(2)
n

∣∣∣2r (√g(x, δ
(1)
n ) +

√
g(x, δ

(2)
n )

)2 dx

=

∫
(R(x))

2

2r
∣∣∣δ(2)
n

∣∣∣2r (√g(x, δ
(1)
n ) +

√
g(x, δ

(2)
n )

)2 dx.

To validate that the above term goes to 0, we will need to investigate the concrete formulation of R(x). In
particular, the formulation of R(x) is

R(x) = πR1(x) + (1− π)

2∑
α=1

cα(δ
(1)
n − δ(2)

n )α

α!
R2,α(x) + (1− π)R2(x),

where the formulations of Taylor remainders R1(x), R2,α(x), and R2(x) are as follows

R1(x) =
3
(
δ

(2)
n − δ(1)

n

)3

3!

1∫
0

(1− t)2 ∂
3φ

∂δ3

(
x,−δ(2)

n + t
(
δ(2)
n − δ(1)

n

))
dt,

R2(x) =
3c3
(
δ

(1)
n − δ(2)

n

)3

3!

1∫
0

(1− t)2 ∂
3φ

∂δ3

(
x, cδ(2)

n + t
(
cδ(1)
n − cδ(2)

n

))
dt,

R2,α(x) =
(3− α)(c+ 1)3−α

(
δ

(2)
n

)3−α

(3− α)!α!

1∫
0

(1− t)2−α ∂
3φ

∂δ3

(
x,−δ(2)

n + t(c+ 1)δ(2)
n

)
dt

for any 1 ≤ α ≤ 2.

Step 3 - Taylor remainders control Now, Holder’s inequality leads to

R2
1(x) ≤

(
δ

(2)
n − δ(1)

n

)6

4

1∫
0

(1− t)4

(
∂3φ

∂δ3

(
x,−δ(2)

n + t
(
δ(2)
n − δ(1)

n

)))2

dt.

Due to the formulation of location Gaussian kernel with variance 1, we can check that

sup
t∈[0,1]

∫ (
∂3φ

∂δ3

(
x,−δ(2)

n + t
(
δ

(2)
n − δ(1)

n

)))2

φ(x,−δ(2)
n )

dx <∞.
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Equipped with the above results, the following holds∫
R2

1(x)

2r−1
∣∣∣δ(2)
n

∣∣∣2r (√g(x, δ
(1)
n ) +

√
g(x, δ

(2)
n )

)2 dx ≤
∫

R2
1(x)

2r−1
∣∣∣δ(2)
n

∣∣∣2r πφ(x,−δ(2)
n )

dx

.
∣∣∣δ(2)
n

∣∣∣6−2r

→ 0 (28)

as n → ∞ where the first inequality is due to the inequality
(√

g(x, δ
(1)
n ) +

√
g(x, δ

(2)
n )

)2

≥ πφ(x,−δ(2)
n ). By

means of the similar argument, we also obtain that∫
R2

2(x)

2r−1
∣∣∣δ(2)
n

∣∣∣2r (√g(x, δ
(1)
n ) +

√
g(x, δ

(2)
n )

)2 dx ≤
∫

R2
2(x)

2r−1
∣∣∣δ(2)
n

∣∣∣2r (1− π)φ(x, cδ
(2)
n )

dx

.
∣∣∣δ(2)
n

∣∣∣6−2r

→ 0,

∫ (
δ

(1)
n − δ(2)

n

)α
R2

2,α(x)

2r−1
∣∣∣δ(2)
n

∣∣∣2r (√g(x, δ
(1)
n ) +

√
g(x, δ

(2)
n )

)2 dx ≤
∫ (

δ
(1)
n − δ(2)

n

)α
R2

2,α(x)

2r−1
∣∣∣δ(2)
n

∣∣∣2r πφ(x,−δ(2)
n )

dx

.
∣∣∣δ(2)
n

∣∣∣6−2r

→ 0. (29)

Invoking Cauchy-Schwarz’s inequality, the following inequality holds

R2(x) ≤ 3

(πR1(x))
2

+

(
(1− π)

2∑
α=1

cα(δ
(1)
n − δ(2)

n )α

α!
R2,α(x)

)2

+ ((1− π)R2(x))
2

 . (30)

Combining the results from (28), (29), and (30), we achieve that∫
R2(x)/

(
2r−1

∣∣∣δ(2)
n

∣∣∣2r (√g(x, δ
(1)
n ) +

√
g(x, δ

(2)
n )

)2
)
dx→ 0.

As a consequence, we achieve the conclusion with the lower bound of part (a) of the theorem.

(b) Similar to the proof argument of part (a), to achieve the conclusion of the lower bound of part (b), it is
sufficient to demonstrate that

inf
δ(1),δ(2)∈Θ2,n

h
(
g(x, δ(1)), g(x, δ(2))

)
/
∣∣∣∣∣∣δ(1)

∣∣∣− ∣∣∣δ(2)
∣∣∣∣∣∣r = 0 (31)

for any 1 ≤ r < 2. In particular, we choose two sequences
{
δ

(1)

n

}
and

{
δ

(2)

n

}
such that δ

(1)

n = 2δ
(2)

n for all n ≥ 1

and δ
(1)

n → 0 as n → ∞. For any r < 2, invoking Taylor expansion up to the first order as that of Case b.1 in
the proof of Theorem 1, we have

g(x, δ
(1)

n )− g(x, δ
(2)

n ) = R(x),

where the formulation of R(x) is

R(x) =
1

2
R1(x) +

1

2

(
δ

(1)

n − δ
(2)

n

)
R2,1(x) +

1

2
R2(x).

Here, the detail formulations of Taylor remainders R1(x), R2,1(x), and R2(x) are

R1(x) =
2
(
δ

(2)

n − δ
(1)

n

)2

2!

1∫
0

(1− t)∂
2φ

∂δ2

(
x,−δ(2)

n + t
(
δ

(2)

n − δ
(1)

n

))
dt,
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R2(x) =
2
(
δ

(1)

n − δ
(2)

n

)2

2!

1∫
0

(1− t)∂
2φ

∂δ2

(
x, δ

(2)

n + t
(
δ

(1)

n − δ
(2)

n

))
dt,

R2,1(x) = 2δ
(2)

n

1∫
0

∂2φ

∂δ2

(
x,−δ(2)

n + 2tδ
(2)

n

)
dt.

With the choice that δ
(1)

n = 2δ
(2)

n → 0 and the same argument as Step 3 in part (a), we can argue that∫
R

2
(x)
/(

2r−1
∣∣∣δ(2)

n

∣∣∣2r (√g(x, δ
(1)

n ) +

√
g(x, δ

(2)

n

)2
)
→ 0

as n→∞. Therefore, for any 1 ≤ r < 2, we achieve

h
(
g(x, δ

(1)

n ), g(x, δ
(2)

n )
)
/

∣∣∣∣ ∣∣∣δ(1)

n

∣∣∣− ∣∣∣δ(2)

n

∣∣∣∣∣∣∣r → 0.

As a consequence, we achieve the conclusion of part (b) of the theorem.

G.2 PROOF OF THEOREM 2

For the sake of presentation, we denote v := σ2 and g(x, δ, v) := πf(x,−δ, v)+(1−π)f(x, cδ, v) for all δ ∈ Θ, σ ∈ Ω
where f(x, δ, v) is the density of location-scale Gaussian distribution with location δ and scale v. For the simplicity
of the proof argument, we only focus on the proof for the upper bounds of the theorem. The proof for the lower
bounds can be argued similarly as that of the lower bounds in Theorem 1 in Section G.1.2.

(a) By means of the proof argument with the upper bound of Theorem 1, in order to achieve the upper bound
of part (a), it is sufficient to demonstrate that

inf
δ(1),δ(2)∈Θ

v(1),v(2)∈Ω

V
(
g(x, δ(1), v(1)), g(x, δ(2), v(2))

)
|δ(1) − δ(2)|3 + |v(1) − v(2)|3/2

> 0, (32)

where Θ = [−1, 1] and Ω is a bounded set containing σ. Assume that the above inequality does not hold. It
implies that we can find sequences

{
δ

(1)
n

}
,
{
δ

(2)
n

}
,
{
v

(1)
n

}
, and

{
v

(2)
n

}
such that

V
(
g(x, δ

(1)
n , v

(1)
n ), g(x, δ

(2)
n , v

(2)
n )
)

|δ(1)
n − δ(2)

n |3 + |v(1)
n − v(2)

n |3/2
→ 0

as n → ∞. To simplify the presentation, we only consider the most challenging setting δ(1)
n → 0, δ

(2)
n → 0,

v
(1)
n → v0, v

(2)
n → v0 for some v0 ∈ Ω. Additionally, we denote

Dn = |δ(1)
n − δ(2)

n |3 + |v(1)
n − v(2)

n |3/2.

Now, we consider the following settings with δ(1)
n and δ(2)

n .

Case a.1: δ
(1)
n /δ

(2)
n 6→ 1 as n → ∞. Similar to the structure of the proof of Theorem 1, we also divide the

proof argument of this case into two key steps.

Step 1 - Taylor expansion Under this setting, by means of Taylor expansion up to the third order, we obtain
that

g(x, δ
(1)
n , v

(1)
n )− g(x, δ

(2)
n , v

(2)
n )

Dn
(33)
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=

π

(
f(x,−δ(1)

n , v
(1)
n )− f(x,−δ(2)

n , v
(2)
n )

)
+ (1− π)

(
f(x, cδ

(1)
n , v

(1)
n )− f(x, cδ

(2)
n , v

(2)
n )

)
Dn

=

π

( ∑
|α|≤3

(δ
(2)
n − δ(1)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!

∂|α|f

∂δα1∂vα2
(x,−δ(2)

n , v
(2)
n ) +R1(x)

)
Dn

+

(1− π)

( ∑
|α|≤3

cα1(δ
(1)
n − δ(2)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!

∂|α|f

∂δα1∂vα2
(x, cδ

(2)
n , v

(2)
n ) +R2(x)

)
Dn

=

π

( ∑
|α|≤3

1

2α2

(δ
(2)
n − δ(1)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!

∂α1+2α2f

∂δα1+2α2
(x,−δ(2)

n , v
(2)
n ) +R1(x)

)
Dn

+

(1− π)

( ∑
|α|≤3

1

2α2

cα1(δ
(1)
n − δ(2)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!

∂α1+2α2f

∂δα1+2α2
(x, cδ

(2)
n , v

(2)
n ) +R2(x)

)
Dn

,

where the last equality is due to the PDE structure of location-scale Gaussian distribution, which is given by

∂2f

∂δ2
(x, δ, σ) = 2

∂f

∂σ2
(x, δ, σ).

Additionally, R1(x) and R2(x) are Taylor remainders that satisfy the following inequality

max{‖R1(x)‖∞, ‖R2(x)‖∞} = O
(
|δ(1)
n − δ(2)

n |3+γ + |v(1)
n − v(2)

n |3+γ
)

for some γ > 0. It implies that R1(x)/Dn → 0 and R2(x)/Dn → 0 for all x as n→∞. Now, by means of Taylor
expansion up to the third order, we further have

∂α1+2α2f

∂δα1+2α2
(x, cδ(2)

n , v(2)
n ) =

3−|α|∑
τ=0

(c+ 1)τ (δ
(2)
n )τ

τ !

∂α1+2α2+τf

∂δα1+2α2+τ
(x,−δ(2)

n , v(2)
n ) +R2,α(x) (34)

for each α = (α1, α2) such that 1 ≤ |α| ≤ 3. Here, R2,α(x) is a Taylor remainder that satisfies ‖R2,α(x)‖∞ =

O
(
|δ(2)
n |3−|α|+γ

)
for all α. By plugging equations (34) into (33), the following holds

g(x, δ
(1)
n , v

(1)
n )− g(x, δ

(2)
n , v

(2)
n )

Dn

=

π

( ∑
|α|≤3

1

2α2

(δ
(2)
n − δ(1)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!

∂α1+2α2f

∂δα1+2α2
(x,−δ(2)

n , v
(2)
n )

)
Dn

+

(1− π)

( ∑
|α|≤3

3−|α|∑
τ=0

1

2α2

cα1(c+ 1)τ (δ
(2)
n )τ (δ

(1)
n − δ(2)

n )α1(v
(1)
n − v(2)

n )α2

τ !α1!α2!

∂α1+2α2f

∂δα1+2α2
(x,−δ(2)

n , v
(2)
n )

Dn

+

πR1(x) + (1− π)R2(x) +
∑
|α|≤3

1

2α2

cα1(δ
(1)
n − δ(2)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!
R2,α(x)

Dn

=

6∑
l=1

An,l
∂lf

∂δl
(x,−δ(2)

n , v
(2)
n ) +R(x)

Dn
,
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where the detail formulations of An,l and R(x) are as follows

An,l = π
∑
α1,α2

1

2α2

(δ
(2)
n − δ(1)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!

+(1− π)
∑

α1,α2,τ

1

2α2

cα1(c+ 1)τ (δ
(2)
n )τ (δ

(1)
n − δ(2)

n )α1(v
(1)
n − v(2)

n )α2

τ !α1!α2!
,

R(x) = πR1(x) + (1− π)R2(x) +
∑
|α|≤3

1

2α2

cα1(δ
(1)
n − δ(2)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!
R2,α(x)

for any 1 ≤ l ≤ 6 and x ∈ R. Here, the ranges of α1, α2 in the first sum of An,l satisfy α1 + 2α2 = l, 1 ≤ |α| ≤ 3
while the ranges of α1, α2, τ in the second sum of An,l satisfy α1 + 2α2 + τ = l, 0 ≤ τ ≤ 3− |α|, and 1 ≤ |α| ≤ 3.
According to the hypothesis δ(1)

n /δ
(2)
n 6→ 1, we have

|δ(2)
n |/|δ(1)

n − δ(2)
n | 6→ ∞.

Therefore, we have

|δ(1)
n − δ(2)

n |α1 |v(1)
n − v(2)

n |α2‖R2,α(x)‖∞
Dn

=
O
(
|δ(1)
n − δ(2)

n |α1 |v(1)
n − v(2)

n |α2 |δ(2)
n |3−|α|+γ

)
Dn

→ 0.

As a consequence, we have ‖R(x)‖∞/Dn → 0 as n→∞.

Step 2 - Non-vanishing coefficients and Fatou’s argument Assume that all the coefficients An,l/Dn → 0
for all 1 ≤ l ≤ 6 as n→∞. We denote the following key term

Mn := max
{
|δ(1)
n − δ(2)

n |, |v(1)
n − v(2)

n |1/2
}
.

As |δ(2)
n |/|δ(1)

n − δ(2)
n | 6→ ∞, we also have |δ(2)

n |/Mn 6→ ∞. Now, we denote δ(2)
n /Mn → x, (δ

(2)
n − δ(1)

n )/Mn → y,
and (v

(1)
n − v(2)

n )/M2
n → z as n→∞. From the definition of Mn, at least one among y and z is different from 0.

By dividing both the numerator and the denominator of An,l/Dn by M
l

n as 1 ≤ l ≤ 3, as n → ∞, we have the
following system of polynomial equations

cy2 + z − 2cxy = 0,

π(1− 2π)

3!(1− π)2
y3 +

1

2
xz +

c2

2
xy2 − π

2(1− π)2
x2y = 0.

The above system of polynomial equations leads to π(1−2π)y(y2−3xy+3x2) = 0, which only holds when y = 0.
Therefore, it leads to z = 0, which is a contradiction. It implies that not all the coefficients An,l/Dn → 0 as
n→∞. Denote mn = Dn/ max

1≤l≤6
|An,l|. According to the previous result, we have mn 6→ ∞. Now, we have that

mn
g(x, δ

(1)
n , v

(1)
n )− g(x, δ

(2)
n , v

(2)
n )

Dn
→

6∑
l=1

τl
∂lf

∂δl
(x, 0, v0)

for some coefficients τl such that not all of them are 0. Similar to the proof argument of Theorem 1, by invoking
Fatou’s lemma with V

(
g(x, δ

(1)
n , v

(1)
n ), g(x, δ

(2)
n , v

(2)
n )
)
/Dn → 0, the following equation holds

6∑
l=1

τl
∂lf

∂δl
(x, 0, v0) = 0

for almost surely x. However, due to the linear independence of
{
∂lf

∂δl
(x, 0, v0)

}
, we have τl = 0 for all 1 ≤ l ≤ 6,

which is a contradiction. Therefore, Case a.1 does not hold.



Weak Separation in Mixture Models and Implications for Principal Stratification

Case a.2: δ
(1)
n /δ

(2)
n → 1 as n → ∞. It implies that |δ(2)

n |/|δ(1)
n − δ

(2)
n | → ∞. Similar to Case a.2 in the

proof of Theorem 1, the main challenge with that setting is that R(x)/Dn does not converge to 0; therefore, we
cannot hinge upon the previous argument in Case a.1 to argue the contradiction with this case. To be able to
deal with that problem, we will demonstrate two key properties under that setting: max

1≤l≤6
{|An,l|} /Dn 6→ 0 and

‖R(x)‖∞/ max
1≤l≤6

|An,l| → 0. Indeed, we have the following possibilities regarding δ(1)
n , δ

(2)
n , v

(1)
n , and v(2)

n .

Case a.2.1: |v(1)
n − v(2)

n |/
{
|δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n |
}
→ ∞. Assume by the contrary that the following term

max
1≤l≤6

{|An,l|} /Dn → 0. From the formulation of An,2, we have

|An,2| =
1

2

∣∣∣∣(v(1)
n − v(2)

n )− c(δ(2)
n − δ(1)

n )(δ(2)
n + δ(1)

n )

∣∣∣∣ & |v(1)
n − v(2)

n |,

as n is sufficiently large due to the assumption of Case a.2.1. Since An,2/Dn → 0, it implies that (v
(1)
n −

v
(2)
n )/Dn → 0. Therefore, it leads to (δ

(1)
n − δ(2)

n )(δ
(2)
n + δ

(1)
n )/Dn → 0. As |δ(2)

n |/|δ(1)
n − δ(2)

n | → ∞, the previous
limit implies that |δ(1)

n − δ(2)
n |2/Dn → 0. These results mean that

1 =
|v(1)
n − v(2)

n |3/2 + |δ(1)
n − δ(2)

n |3

Dn
→ 0,

which is a contradiction. Therefore, we have max
1≤l≤6

{|An,l|} /Dn 6→ 0. Now, for any 1 ≤ |α| ≤ 3, as n is sufficiently

large, we have

|δ(1)
n − δ(2)

n |α1 |v(1)
n − v(2)

n |α2‖R2,α(x)‖∞
max
1≤l≤6

{|An,l|}
≤ O(|δ(1)

n − δ(2)
n |α1 |v(1)

n − v(2)
n |α2 |δ(2)

n |3−|α|+γ)

|v(1)
n − v(2)

n |
→ 0.

Hence, we achieve that ‖R(x)‖∞/ max
1≤l≤6

{|An,l|} → 0 for all x ∈ R.

Case a.2.2: |v(1)
n − v(2)

n |/
{
|δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n |
}
→ c 6= c. Under that assumption, we have

|An,2| =
1

2

∣∣∣∣(v(1)
n − v(2)

n )− c(δ(2)
n − δ(1)

n )(δ(2)
n + δ(1)

n )

∣∣∣∣ & |δ(1)
n − δ(2)

n ||δ(1)
n + δ(2)

n |

when n is sufficiently large. If we have max
1≤l≤6

{|An,l|} /Dn → 0, then |An,2| /Dn leads to both (v
(1)
n −v(2)

n )/Dn → 0

and
(
δ

(1)
n − δ(2)

n

)(
δ

(1)
n + δ

(2)
n

)
/Dn → 0, which does not hold according to the argument of Case a.2.1. Therefore,

max
1≤l≤6

{|An,l|} /Dn 6→ 0. On the other hand, for any 1 ≤ |α| ≤ 3, as n is sufficiently large, we have

|δ(1)
n − δ(2)

n |α1 |v(1)
n − v(2)

n |α2‖R2,α(x)‖∞
max
1≤l≤6

{|An,l|}
≤

O
(
|δ(1)
n − δ(2)

n |α1 |v(1)
n − v(2)

n |α2 |δ(2)
n |3−|α|+γ

)
|δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n |

=
O
(
|δ(1)
n − δ(2)

n ||α||δ(2)
n |3−α1+γ

)
|δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n |

→ 0.

Hence, we achieve that ‖R(x)‖∞/ max
1≤l≤6

{|An,l|} → 0 for all x ∈ R.

Case a.2.3: |v(1)
n − v(2)

n |/
{
|δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n |
}
→ c. Without loss of generality, we assume that (v

(1)
n −

v
(2)
n )/(δ

(1)
n − δ(2)

n )(δ
(1)
n + δ

(2)
n )→ c as the argument when this ratio goes to −c is similar. Under this assumption,

we have
|An,3|

|δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n ||δ(2)

n |
→
∣∣∣∣ c2 − (1− π)c(c+ 1)2

4

∣∣∣∣ > 0.
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Therefore, as n is sufficiently large, we have |An,3| & |δ(1)
n −δ(2)

n ||δ(1)
n +δ

(2)
n ||δ(2)

n |. If we have max
1≤l≤6

{|An,l|} /Dn → 0,

then |An,3| /Dn → 0 leads to |δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n ||δ(2)

n |/Dn → 0. Therefore, the following holds

|v(1)
n − v(2)

n |3/2/
{
|δ(1)
n − δ(2)

n ||δ(1)
n + δ(2)

n ||δ(2)
n |
}
→∞,

which means |v(1)
n − v

(2)
n |/|δ(2)

n |2 → ∞ — a contradiction to the assumption of Case a.2.3. Hence,
max
1≤l≤6

{|An,l|} /Dn 6→ 0. On the other hand, for any 1 ≤ |α| ≤ 3, as n is sufficiently large, we have

|δ(1)
n − δ(2)

n |α1 |v(1)
n − v(2)

n |α2‖R2,α(x)‖∞
max
1≤l≤6

{|An,l|}
≤

O
(
|δ(1)
n − δ(2)

n |α1 |v(1)
n − v(2)

n |α2 |δ(2)
n |3−|α|+γ

)
|δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n ||δ(2)

n |

=
O
(
|δ(1)
n − δ(2)

n ||α||δ(2)
n |3−α1+γ

)
|δ(1)
n − δ(2)

n ||δ(1)
n + δ

(2)
n ||δ(2)

n |
→ 0.

Thus, we obtain that ‖R(x)‖∞/ max
1≤l≤6

{|An,l|} → 0 for all x ∈ R.

Governed by the results from Case a.2.1, Case a.2.2, and Case a.2.3, we finally achieve that max
1≤l≤6

{|An,l|} /Dn 6→ 0

and ‖R(x)‖∞/ max
1≤l≤6

|An,l| → 0. Denote m′n = Dn/ max
1≤l≤6

{|An,l|}. Then, we will have m′n 6→ ∞. Thus, the

following limit holds

m′n
g(x, δ

(1)
n , v

(1)
n )− g(x, δ

(2)
n , v

(2)
n )

Dn
→

6∑
l=1

τ ′l
∂lf

∂δl
(x, 0, v0),

for some coefficients τ ′l such that not all of them are 0. By means of Fatou’s lemma with the ratio
V
(
g(x, δ

(1)
n , v

(1)
n ), g(x, δ

(2)
n , v

(2)
n )
)
/Dn → 0, we obtain that

6∑
l=1

τ ′l
∂lf

∂δl
(x, 0, v0) = 0.

However, due to the linear independence of
{
∂lf

∂δl
(x, 0, v0)

}
, we will have τ ′l = 0 for all 1 ≤ l ≤ 6, which is a

contradiction. Therefore, Case a.2 does not hold. As a consequence, we achieve the conclusion with the upper
bound of part (a) of the theorem.

(b) Similar to the proof argument of part (a), it is sufficient to demonstrate that

inf
δ(1),δ(2)∈Θ

v(1),v(2)∈Ω

V
(
g(x, δ(1), v(1)), g(x, δ(2), v(2))

)∣∣∣∣|δ(1)| − |δ(2)|
∣∣∣∣4 + |v(1) − v(2)|2

> 0,

where Θ = [−1, 1] and Ω is a bounded set containing σ. Assume that the above inequality does not hold. It
implies that we can find sequences

{
δ

(1)
n

}
,
{
δ

(2)
n

}
,
{
v

(1)
n

}
, and

{
v

(2)
n

}
such that

V
(
g(x, δ

(1)
n , v

(1)
n ), g(x, δ

(2)
n , v

(2)
n )
)

∣∣∣∣|δ(1)
n | − |δ(2)

n |
∣∣∣∣4 + |v(1)

n − v(2)
n |2

→ 0

as n→∞. Similar the proof argument of part (a), we only consider the most challenging setting δ(1)
n → 0, δ

(2)
n →

0, v(1)
n → v0, v

(2)
n → v0 for some v0 ∈ Ω. For the convenience of presentation, we denote

Dn =

∣∣∣∣|δ(1)
n | − |δ(2)

n |
∣∣∣∣4 + |v(1)

n − v(2)
n |2.

Now, we have three settings with δ(1)
n and δ(2)

n in the proof of part (b).
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Case b.1: δ
(1)
n /δ

(2)
n 6→ 1 as n→∞ and δ(1)

n δ
(2)
n ≥ 0 for all n. Under this case, we have

Dn = |δ(1)
n − δ(2)

n |4 + |v(1)
n − v(2)

n |2.

To facilitate the proof argument of this case, we also divide it into two key steps.

Step 1 - Taylor expansion Using the similar argument as that of part (a), by means of Taylor expansion up
to the fourth order, we get the following representation

g(x, δ
(1)
n , v

(1)
n )− g(x, δ

(2)
n , v

(2)
n )

Dn

=

8∑
l=1

Bn,l
∂lf

∂δl
(x,−δ(2)

n , v
(2)
n ) +R(x)

Dn

,

where the formulations of Bn,l and R(x) are as follows

Bn,l =
1

2

∑
α1,α2

1

2α2

(δ
(2)
n − δ(1)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!

+
1

2

∑
α1,α2,τ

1

2α2

2τ (δ
(2)
n )τ (δ

(1)
n − δ(2)

n )α1(v
(1)
n − v(2)

n )α2

τ !α1!α2!
,

R(x) =
1

2
R1(x) +

1

2
R2(x) +

∑
|α|≤4

1

2α2

(δ
(1)
n − δ(2)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!
R2,α(x).

Here, the ranges of α1, α2 in the first sum of Bn,l satisfy α1 + 2α2 = l, 1 ≤ |α| ≤ 4 while the ranges of α1, α2, τ
in the second sum of Bn,l satisfy α1 + 2α2 + τ = l, 0 ≤ τ ≤ 4 − |α|, and 1 ≤ |α| ≤ 4. Additionally, R1(x)

is a Taylor remainder from expanding f(x,−δ(1)
n , v

(1)
n ) around f(x,−δ(2)

n , v
(2)
n ) up to the fourth order, R2(x) is

Taylor remainder from expanding f(x, cδ
(1)
n , v

(1)
n ) around f(x, cδ

(2)
n , v

(2)
n ) up to the fourth order, and R2,α(x) is

Taylor remainder from expanding
∂α1+2α2f

∂δα1+2α2
(x, cδ

(2)
n , v

(2)
n ) around

∂α1+2α2f

∂δα1+2α2
(x,−δ(2)

n , v
(2)
n ) up to the order 4−|α|.

Similar to the argument of Case a.1, the assumption of Case b.1 is sufficient to guarantee that R(x)/Dn → 0.

Step 2 - Non-vanishing coefficients and Fatou’s argument Assume that all the coefficients Bn,l/Dn → 0
for all 1 ≤ l ≤ 8 as n→∞. Remind from part (a) that we denote

Mn := max
{
|δ(1)
n − δ(2)

n |, |v(1)
n − v(2)

n |1/2
}
.

Additionally, we also denote δ(2)
n /Mn → x, (δ

(2)
n − δ(1)

n )/Mn → y, and (v
(1)
n − v(2)

n )/M
2

n → z as n→∞ where at
least one from y and z is different from 0. Due to the assumption that δ(1)

n δ
(2)
n ≥ 0, we have x(x− y) ≥ 0. Now,

by dividing both the numerator and the denominator of Bn,l/Dn by M
l

n as 1 ≤ l ≤ 4, as n → ∞, we have the
following system of polynomial equations

y2 + z − 2xy = 0,

y4

4!
+
y2z

4
+
z2

8
− xyz

2
+
x2z

2
− xy3

6
+
x2y2

2
− 2x3y

3
= 0.

When x = 0, the above system of polynomial equations leads to y = z = 0, which is a contradiction with the
assumption that at least one of y, z is different from 0. When x 6= 0, the above system of polynomial equations
leads to y3 − 4xy2 + 6x2y− 4x3 = 0, which leads to y = 2x — a contradiction to the condition x(x− y) ≥ 0 and
x 6= 0. Therefore, not all of the coefficients Bn,l/Dn → 0 as n→∞. From here, using the same proof argument
as that of Case a.1 in part (a), we achieve the conclusion that Case b.1 cannot hold.

Case b.2: δ
(1)
n /δ

(2)
n 6→ 1 as n→∞ and δ(1)

n δ
(2)
n < 0 for all n. Under this case, we have

Dn = |δ(1)
n + δ(2)

n |4 + |v(1)
n − v(2)

n |2.
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By means of Taylor expansion up to the fourth order, we obtain the following representation

g(x, δ
(1)
n , v

(1)
n )− g(x, δ

(2)
n , v

(2)
n )

Dn

=

1

2
(f(x,−δ(1)

n , v
(1)
n )− f(x, δ

(2)
n , v

(2)
n )) +

1

2
(f(x, δ

(1)
n , v

(1)
n )− f(x,−δ(2)

n , v
(2)
n ))

Dn

=

8∑
α=1

Cn,l
∂lf

∂δl
(x, δ

(2)
n , v

(2)
n ) + R̃(x)

Dn

,

where the formulations of Cn,l and R1(x) are as follows

Cn,l =
1

2

∑
α1,α2

1

2α2

(−δ(2)
n − δ(1)

n )α1(v
(1)
n − v(2)

n )α2

α1!α2!

+
1

2

∑
α1,α2,τ

1

2α2

2τ (−δ(2)
n )τ (δ

(1)
n + δ

(2)
n )α1(v

(1)
n − v(2)

n )α2

τ !α1!α2!
,

R̃(x) =
1

2
R̃1(x) +

1

2
R̃2(x) +

∑
|α|≤4

1

2α2

cα1(δ
(1)
n + δ

(2)
n )α1(v

(1)
n − v(2)

n )α2

α1!α2!
R̃2,α(x).

Here, the ranges of α1, α2 in the first sum of Cn,l satisfy α1 + 2α2 = l, 1 ≤ |α| ≤ 4 while the ranges of α1, α2, τ

in the second sum of Cn,l satisfy α1 + 2α2 + τ = l, 0 ≤ τ ≤ 4 − |α|, and 1 ≤ |α| ≤ 4. Additionally, R̃1(x)

is a Taylor remainder from expanding f(x,−δ(1)
n , v

(1)
n ) around f(x, δ

(2)
n , v

(2)
n ) up to the fourth order, R̃2(x) is a

Taylor remainder from expanding f(x, δ
(1)
n , v

(1)
n ) around f(x,−δ(2)

n , v
(2)
n ) up to the fourth order, and R̃2,α(x) is a

Taylor remainder from expanding
∂α1+2α2f

∂δα1+2α2
(x,−δ(2)

n , v
(2)
n ) around

∂α1+2α2f

∂δα1+2α2
(x, δ

(2)
n , v

(2)
n ) up to the order 4−|α|.

Due to the assumption of Case b.2, we can check that ‖R̃(x)‖∞/Dn → 0 as n→∞.

Assume that all the coefficients Cn,l/Dn → 0 for all 1 ≤ l ≤ 8 as n→∞. We denote

M̃n := max
{
|δ(1)
n + δ(2)

n |, |v(1)
n − v(2)

n |1/2
}
.

From the definition of M̃n, we can denote δ(2)
n /M̃n → x1, (δ

(2)
n + δ

(1)
n )/M̃n → y1, and (v

(1)
n − v(2)

n )/M̃2
n → z1 as

n→∞ where at least one from y1 and z1 is different from 0. Due to the assumption that δ(1)
n δ

(2)
n < 0, we have

x1(y1 − x1) ≤ 0. Now, by dividing both the numerator and the denominator of Cn,l/Dn by M̃4
n as 1 ≤ l ≤ 4, as

n→∞, we have the following system of polynomial equations

y2
1 + z1 − 2x1y1 = 0,

y4
1

4!
+
y2

1z1

4
+
z2

1

8
− x1y1z1

2
+
x2

1z1

2
− x1y

3
1

6
+
x2

1y
2
1

2
− 2x3

1y1

3
= 0.

If x1 = 0, the above system leads to y1 = z1 = 0, which is a contradiction with the assumption of y1, z1.
As x1 6= 0, the above system of polynomial equations leads to y1 = 2x1 — a contradiction to the condition
x1(y1 − x1) ≤ 0 and x1 6= 0. Therefore, not all of the coefficients Cn,l/Dn → 0 as n→∞. From here, using the
same proof argument as that of Case a.1 in part (a), we achieve the conclusion that Case b.2 cannot hold.

Case b.3: δ
(1)
n /δ

(2)
n → 1 as n → ∞. Under this assumption, we have δ(1)

n δ
(2)
n > 0 as n is sufficiently large.

Without loss of generality, we assume that δ(1)
n δ

(2)
n > 0 for all n. Therefore, we have

Dn = |δ(1)
n − δ(2)

n |4 + |v(1)
n − v(2)

n |2.

Remind from case b.1 that we have the following representation

g(x, δ
(1)
n , v

(1)
n )− g(x, δ

(2)
n , v

(2)
n )

Dn

=

8∑
l=1

Bn,l
∂lf

∂δl
(x,−δ(2)

n , v
(2)
n ) +R(x)

Dn

.
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The main challenge in Case b.3 is that ‖R(x)‖∞/Dn 6→ 0 as n → ∞. To avoid this issue, we will utilize
the technique in Case a.2 of the proof of Theorem 2. In particular, we will demonstrate two key properties:
‖R(x)‖∞/ max

1≤l≤8
|Bn,l| → 0 and max

1≤l≤8
|Bn,l|/Dn 6→ 0 as n→∞.

Under the settings of Case a.2.1 and Case a.2.2 in the proof of part (a), with the same argument as that in
these cases, we have |Bn,2|/Dn 6→ 0 and ‖R(x)‖∞/|Bn,2| → 0. Therefore, we have R(x)/ max

1≤l≤8
|Bn,l| → 0 and

max
1≤l≤8

|Bn,l|/Dn 6→ 0 under the settings of Case a.2.1 and Case a.2.2. It implies that we only need to focus on

the setting that

|v(1)
n − v(2)

n |/
{
|δ(1)
n − δ(2)

n ||δ(1)
n + δ(2)

n |
}
→ 1.

Without loss of generality, we assume that (v
(1)
n − v(2)

n )/

{
(δ

(1)
n − δ(2)

n )(δ
(1)
n + δ

(2)
n )

}
→ 1 as the argument for the

setting that this ratio goes to -1 is similar. Under this setting, we can easily check that

|Bn,4|/
{
|δ(1)
n − δ(2)

n ||δ(2)
n |3

}
→ 4.

Therefore, as n is sufficiently large, we have

|Bn,4| & |δ(1)
n − δ(2)

n ||δ(2)
n |3.

If we have max
1≤l≤8

|Bn,l|/Dn → 0, then |Bn,4| /Dn → 0 leads to |δ(1)
n −δ(2)

n ||δ(2)
n |3/Dn → 0. Therefore, the following

holds

|v(1)
n − v(2)

n |2/
{
|δ(1)
n − δ(2)

n ||δ(2)
n |3

}
→∞,

which means |v(1)
n − v(2)

n |/|δ(2)
n |2 → ∞, which is a contradiction to the assumption that (v

(1)
n − v(2)

n )/

{
(δ

(1)
n −

δ
(2)
n )(δ

(1)
n + δ

(2)
n )

}
→ 1. Thus, we have max

1≤l≤8
|Bn,l|/Dn 6→ 0. On the other hand, as n is sufficiently large, we

have

|δ(1)
n − δ(2)

n |α1 |v(1)
n − v(2)

n |α2‖R2,α(x)‖∞
max
1≤l≤8

{|Bn,l|}
≤

O
(
|δ(1)
n − δ(2)

n |α1 |v(1)
n − v(2)

n |α2 |δ(2)
n |4−|α|+γ

)
|δ(1)
n − δ(2)

n ||δ(2)
n |3

=
O
(
|δ(1)
n − δ(2)

n ||α||δ(2)
n |4−α1+γ

)
|δ(1)
n − δ(2)

n ||δ(2)
n |3

→ 0.

It implies that ‖R(x)‖∞/ max
1≤l≤8

{|Bn,l|} → 0. From here, using the same argument as that of Case a.2.3, we

obtain the contradiction, which leads to the conclusion that Case b.3 cannot hold. As a consequence, we achieve
the conclusion of part (b) of the theorem.

G.3 Proof of extra results

In this appendix, we provide proof for an additional result with the non-polynomial convergence rate of MLE
δ̂mle
n under the known variances setting (2).
Proposition 4. Under the symmetric regime of the true model (2), we have

sup
δn∈Θ

Eδn
∣∣∣δ̂mle
n − δn

∣∣∣ & n−1/r,

where Θ = [−1, 1]. Here, Eδn denotes the expectation taken with respect to product measure with mixture density
of Y1, . . . , Yn under the model (2).

Proof. We divide our argument for the proof of this result into two key parts.
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Part 1 - Upper bound of Hellinger distance between mixing densities in terms of their correspond-
ing parameters To obtain the conclusion for this inequality, we first prove the following key result

inf
δ(1),δ(2)∈Θ

h
(
g(x, δ(1)), g(x, δ(2))

)
/
∣∣∣δ(1) − δ(2)

∣∣∣r = 0 (35)

for any r ≥ 1. In fact, we construct two sequences
{
δ

(1)
n

}
and

{
δ

(2)
n

}
such that δ(1)

n = −δ(2)
n for all n ≥

1. Then, it is clear that h
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)

= 0 for all n ≥ 1. Therefore, it is straightforward that

h
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)
≤
∣∣∣δ(1)
n − δ(2)

n

∣∣∣r for any r ≥ 1. As a consequence, we achieve the conclusion of (35).

Part 2 - Le Cam’s argument for minimax lower bound Now, we follow the traditional Le Cam’s argument
for minimax lower bound to achieve the conclusion with non-polynomial convergence rate of δ̂mle

n to δn [Yu, 1997].
In particular, due to the result from (35), for any εn > 0 sufficiently small and any fixed r ≥ 1, we can find δ(1)

n

and δ
(2)
n such that

∣∣∣δ(1)
n − δ(2)

n

∣∣∣ = 2εn and h
(
g(x, δ

(1)
n ), g(x, δ

(2)
n )
)
≤ Cεrn where C is a fixed positive constant.

Invoking Lemma 1 from Yu [1997], the following inequality holds

sup
δn∈Θ

Eδn
∣∣∣δ̂mle
n − δn

∣∣∣ ≥ sup
δn∈

{
δ
(1)
n ,δ

(2)
n

}Eδn |δ̂n − δn| ≥ εn
[
1− V

(
gn
(
x, δ(1)

n

)
, gn

(
x, δ(2)

n

))]
, (36)

where gn
(
x, δ

(1)
n

)
denotes the density of n i.i.d. samples Y1, . . . , Yn. By means of classical inequality between

total variation distance and Hellinger distance V ≤ h, we obtain that

V
(
gn(x, δ(1)

n ), gn(x, δ(2)
n )
)
≤ h

(
gn(x, δ(1)

n ), gn(x, δ(2)
n )
)
≤
√

1− (1− C2ε2rn )
n
.

By choosing C2ε2rn = 1/n, it is clear that

εn

[
1− V

(
gn
(
x, δ(1)

n

)
, gn

(
x, δ(2)

n

))]
& εn & n−1/2r. (37)

Combining the results from (36) and (37), we achieve the conclusion that

sup
δn∈Θ

Eδn
∣∣∣δ̂mle
n − δn

∣∣∣ & n−1/r

for any r ≥ 2.
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