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Abstract

Hamiltonian Monte Carlo (HMC) has be-
come a go-to family of Markov chain Monte
Carlo (MCMC) algorithms for Bayesian in-
ference problems, in part because we have
good procedures for automatically tuning its
parameters. Much less attention has been
paid to automatic tuning of generalized HMC
(GHMC), in which the auxiliary momentum
vector is partially updated frequently instead
of being completely resampled infrequently.
Since GHMC spreads progress over many it-
erations, it is not straightforward to tune
GHMC based on quantities typically used
to tune HMC such as average acceptance
rate and squared jumped distance. In this
work, we propose an ensemble-chain adap-
tation (ECA) algorithm for GHMC that au-
tomatically selects values for all of GHMC’s
tunable parameters each iteration based on
statistics collected from a population of many
chains. This algorithm is designed to make
good use of SIMD hardware accelerators such
as GPUs, allowing most chains to be up-
dated in parallel each iteration. Unlike typ-
ical adaptive-MCMC algorithms, our ECA
algorithm does not perturb the chain’s sta-
tionary distribution, and therefore does not
need to be “frozen” after warmup. Empir-
ically, we find that the proposed algorithm
quickly converges to its stationary distribu-
tion, producing accurate estimates of poste-
rior expectations with relatively few gradient
evaluations.
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1 INTRODUCTION

Hamiltonian Monte Carlo (HMC; Duane et al., 1987;
Neal, 2011) is a workhorse of Bayesian inference. Its
use of gradients and auxiliary momentum variables al-
lows it to sample from high-dimensional, poorly condi-
tioned distributions relatively efficiently. Automatic-
differentiation systems such as Stan (Carpenter et al.,
2017) eliminate the need to manually code gradients,
and adaptive HMC variants such as the no-U-turn
sampler (NUTS; Hoffman and Gelman, 2011) elim-
inate hard-to-tune parameters.

Generalized HMC (GHMC; Horowitz, 1991) has re-
ceived less attention. Where HMC uses many leapfrog
steps to generate a single Metropolis proposal, GHMC
can use as little as one leapfrog step per iteration, and
suppresses random-walk behavior by only partially up-
dating the auxiliary momentum vector. This makes
GHMC cheaper to interleave with other algorithms; for
example, Neal (2020) interleaves GHMC updates with
Gibbs updates for discrete latent variables, and Sohl-
Dickstein and Culpepper (2012) use GHMC within an-
nealed importance sampling (Neal, 2001) to allow for
a finer annealing schedule. GHMC is also interest-
ing for its connection with the underdamped Langevin
SDE, which has received much attention from the-
orists and practitioners recently (e.g., Dalalyan and
Riou-Durand, 2020; Wenzel et al., 2020, among many
others). Finally, GHMC’s SGD-like structure makes
it well suited to modern vectorized hardware accelera-
tors and software, unlike the control-flow-heavy NUTS
algorithm.

One downside to the original GHMC scheme proposed
by Horowitz (1991) is that it requires a much smaller
step size than standard HMC, but recently Neal (2020)
proposed a non-reversible slice-sampling scheme that
makes GHMC much more competitive.

But there is another issue standing between GHMC
and widespread adoption: it is not clear how to auto-
matically tune its parameters. This is the problem we
tackle in this work.

We consider a version of GHMC with tunable pa-
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rameters controlling step size, damping, slice drift
speed, and a diagonal preconditioning matrix. Work-
ing within the framework of ensemble-chain adapta-
tion (ECA; Gilks et al., 1994), which allows for tuning
of MCMC parameters while maintaining the correct
stationary distribution, in Section 4 we derive heuris-
tics for setting all of GHMC’s parameters. In Sec-
tion 5, we demonstrate that the resulting algorithm is
competitive with other turnkey HMC methods such as
ChEES-HMC (Hoffman et al., 2021) and NUTS (Hoff-
man and Gelman, 2011). In summary, our contribu-
tions include:

• We discuss how to derive ECA-MCMC algorithms
that can take full advantage of parallel-compute
resources such as GPUs. These algorithms can
automatically select appropriate values for their
tunable parameters while maintaining the correct
stationary distribution.

• We propose ECA-friendly heuristics for select-
ing appropriate step size, damping, and slice
drift speed parameters for GHMC with the slice-
sampling scheme of Neal (2020). We also show
how to apply the heuristics in conjunction with
ECA preconditioning.

• We propose a heuristic for estimating the largest
eigenvalue of a matrix from a noisy, low-rank es-
timate of that matrix.

• Putting these pieces together, we demonstrate
empirically that the proposed tuning-free algo-
rithm can compete with strong adaptive-HMC al-
gorithms like NUTS and ChEES-HMC.

2 BACKGROUND AND RELATED
WORK

In this section we review the tools we will build on
to derive a self-tuning generalized HMC (GHMC) al-
gorithm: HMC and GHMC; a slice-sampling exten-
sion that makes GHMC much more efficient; and the
framework of ensemble-chain adaptation, which lets
an ensemble of states inform each others’ proposals.
Throughout, we will assume that we are interested in
sampling from an differentiable unnormalized distri-
bution p(θ) over some θ ∈ RD.

2.1 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC; Duane et al., 1987;
Neal, 2011) generates proposals by first introducing an
auxiliary vector of “momentum” variables m such that
p(θ,m) = p(θ)N (m; 0, I). Interpreting θ as the posi-
tion of a hypothetical particle and treating − log p(θ)

as a potential energy function and − logN (m; 0, I) as
a kinetic energy, we can simulate the Hamiltonian dy-
namics of that particle. Since Hamiltonian dynamics
are reversible, preserve volume, and conserve energy
(and therefore conserve log p(θ,m)), evolving the state
θ, m according to the exact dynamics and negating
the momentum would yield a reversible, determinis-
tic Metropolis proposal (Metropolis et al., 1953) with
acceptance probability 1. We can then resample the
momentum m from its standard-normal distribution,
and repeat.

In practice, we must discretize the Hamiltonian dy-
namics, and we typically use the leapfrog integra-
tor, which requires one evaluation of the gradient
∇ log p per integrator step (with gradient caching),
is reversible, and preserves volume. However, it does
not conserve energy exactly, and so we must apply a
Metropolis correction to ensure detailed balance; if we
propose a new state θ′,m′, then we reject this move

with probability max{0, 1 − p(θ′,m′)
p(θ,m) }. Using smaller

step sizes ε leads to smaller energy changes and higher
acceptance rates, but increases the number of steps we
must take to make a given amount of progress.

While the standard leapfrog integrator has a scalar
step-size parameter ε, one can also implement it using
per-dimension step sizes ε1:D; this is the integrator de-
scribed in Algorithm 1. Neal (2011) shows that this is
equivalent to either using a diagonal covariance matrix
(sometimes called a mass matrix) for p(m) or linearly
rescaling the dimensions of θ to θ̃d = θd/εd. Such a
rescaling can improve HMC’s efficiency if it improves
the conditioning of log p(θ) (Langmore et al., 2019).

HMC’s performance also depends strongly on the
number of leapfrog steps taken between momentum-
resampling steps. Too few steps and the chain will ex-
plore the space by a slow random walk; too many and
we waste computation. A popular extension of HMC,
the no-U-turn sampler (NUTS; Hoffman and Gelman,
2011) automatically decides when to resample the mo-
mentum based on when the dynamics start to double
back and make a “U turn”. However, Hoffman et al.
(2021) observe that NUTS chains can be expensive
to run in parallel on modern hardware accelerators
such as GPUs and TPUs, and propose an alterna-
tive adaptive-MCMC strategy (called ChEES-HMC)
to tune HMC’s number-of-leapfrog-steps parameter.

2.2 Generalized Hamiltonian Monte Carlo

Horowitz (1991) developed a generalization of HMC
(GHMC) in which the momentum is only partially
updated each iteration. At the beginning of each it-
eration, instead of resampling m ∼ N (0, I), we apply
the update m ∼ N (m

√
1− α, αI), where α ∈ (0, 1]
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is a scalar that controls how much m changes. This
leaves the standard-normal distribution over m invari-
ant, since it effectively adds a zero-mean normal with
variance α to one with variance 1− α.

Next, as in HMC, we propose updating the state θ, m
by applying one or more leapfrog updates and then
negating the momentum (to make the proposal re-
versible), and accept or reject this move according to
the usual Metropolis ratio. Finally, we uncondition-
ally negate the momentum; if we accepted the leapfrog
move, this will undo the negation from the previous
step, but if we rejected the leapfrog move then it will
make the chain “bounce” and reverse course. In stan-
dard HMC (α = 1) this would be unnecessary, since
m would immediately be completely resampled. But
in GHMC, where we only partially update the mo-
mentum, allowing the momentum to be negated would
cause the chain to reverse direction and undo some of
the progress that it made on the previous iteration.

If we take one leapfrog step per iteration (as we will
assume from here onward), in the limit where the step
size ε and update amount α become small, all propos-
als are accepted and the dynamics simulate the under-
damped Langevin SDE:

dθ = mdt; dm = (∇ log p(θ)− γm)dt+
√

2γdW (t),
(1)

where we define the damping coefficient γ = α
2ε . Dis-

cretizations of underdamped Langevin dynamics re-
semble sampling analogs of gradient descent with mo-
mentum, and have receieved much positive attention
from theorists recently (e.g., Cheng et al., 2018;
Dalalyan and Riou-Durand, 2020; Ma et al., 2021).
Like HMC, underdamped Langevin dynamics use mo-
mentum to suppress inefficient random-walk behavior.

So why is GHMC not as widely used in practice as
HMC variants that completely resample the momen-
tum each iteration? One answer has to do with rejec-
tions. Suppose both HMC and GHMC must simulate
their dynamics for T leapfrog steps without a rejec-
tion to make optimal progress, and suppose that for
both algorithms the energy after t steps is Et. HMC
faces a single accept-reject decision based on the to-
tal energy, whereas GHMC must endure a gauntlet of
possible rejections:

Paccept
GHMC =

∏
t min{1, eEt−1−Et}

= min{1,
∏
t min{1, eEt−1−Et}}

= min{1, exp{
∑
t min{0, Et−1 − Et}}}

≤ min{1, exp{
∑
tEt−1 − Et}}

= min{1, eE0−ET } = Paccept
HMC .

(2)

So GHMC pays a price each time the energy increases,
even if that energy is offset by a subsequent decrease,

whereas HMC is robust to energy fluctuations around
a stable mean. Symplectic integrators such as the
leapfrog are celebrated for their tendency to produce
stable fluctuations over long trajectories rather than
accumulating energy errors (Hairer et al., 2006). Un-
like HMC, GHMC must aggressively control these fluc-
tuations by using a very small step size if it is to avoid
random-walk behavior caused by rejections.

Fortunately, Neal (2020) recently proposed a solution
to this problem based on slice sampling (Neal, 2003).
We can augment the system with an auxiliary scalar
slice variable s ∼ Uniform (0, p(θ,m)), so that the joint
probability is uniform: p(θ,m, s) ∝ I[s ≤ p(θ,m)].

Now, holding s fixed, we can propose a new θ′,−m′ =
leapfrog(θ,m; ε), which we will accept as long as s ≤
p(θ′,m′). If we resampled s each iteration, this would
be equivalent to the usual GHMC proposal. But if
we leave s fixed for T steps, then we will accept all
T steps as long as the energy never increases so much
that Et −E0 ≥ log p(θ,m)− log s. This will cause our
accept and reject decisions to cluster in time—when
we sample a relatively “permissive” s (i.e., when s is
significantly less than p(θ,m)), we will tend to accept
many steps in a row even with a large step size.

Rather than fully resample s periodically, Neal (2020)
proposes a non-reversible update scheme for the repa-
rameterized slice variable u , s

p(θ,m) that in the ab-

sence of energy fluctuations will cause u to trace out a
triangle wave whose frequency is controlled by a free
parameter δ. A GHMC update using Neal’s persistent-
Metropolis scheme is outlined in algorithm 1.

Algorithm 1 Persistent-MH Generalized HMC

1: function leapfrog(θ,m; ε)
2: For each d, set m′d := md + εd

2 ∇θd log p(θ).
3: For each d, set θ′d := θd + εdm

′
d.

4: For each d, set m′′d := m′d + εd
2 ∇θd log p(θ′).

5: return θ′, m′′.
6: end function
7:

8: function pers ghmc(θ,m, u; ε, α, δ)
9: Sample m̃ ∼ N (m

√
1− α, αI).

10: Set ũ := ((u+ 1 + δ) mod 2)− 1.
11: Set θ′,m′ := leapfrog(θ, m̃; ε).

12: if |ũ| ≤ p(θ′)N (m′;0,I)
p(θ)N (m̃;0,I) then

13: return θ′, m′, ũ p(θ)N (m̃;0,I)
p(θ′)N (m′;0,I) .

14: else
15: return θ, −m̃, ũ.
16: end if
17: end function

While this scheme makes GHMC competitive with
standard HMC, there is another barrier to GHMC’s
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wide adoption: the need to manually tune its pa-
rameters ε (step size), α (damping), and now δ (slice
drift). Heuristics used to tune HMC do not immedi-
ately translate to GHMC. In HMC, the step size ε is
adapted to achieve some target acceptance rate, but
if the damping α is small then GHMC may require a
much higher nominal acceptance rate than HMC; the
persistent-Metropolis scheme further complicates the
interpretation of acceptance rate. Heuristics used to
control HMC’s trajectory length such as NUTS and
ChEES look at variants on expected squared jumped
distance (ESJD; Pasarica and Gelman, 2010), but this
must be computed with respect to a reference state at
the beginning of a leapfrog trajectory; it is not clear
what the analogous reference state is for GHMC. Fi-
nally, the slice-drift parameter δ is not needed in HMC.

In Section 4 we derive principled ways of setting all of
these parameters based on statistics aggregated across
multiple chains. But first, we will review a frame-
work that lets us do this tuning without perturbing
the chains’ stationary distribution.

2.3 Ensemble-chain adaptation

In MCMC, using the state of a Markov chain to con-
trol the parameters φ of an transition kernel T is
not generally valid; formally, the invariance relation∫
θ
p(θ)T (θ′ | θ;φ)dθ = p(θ′) with φ fixed does not im-

ply that
∫
θ
p(θ)T (θ′ | θ;φ(θ))dθ = p(θ′) when φ(θ) is

a function of the current state θ.

However, if we are running multiple chains in parallel,
we are allowed to update one of those chains using
parameters that depend on the other chains. Such
updates can be justified by treating the ensemble of
chains as a single meta-chain. Formally, if we denote
the kth chain’s state θk and the set of other chains θ\k,
and we want to sample from the product distribution
p(θ1:K) =

∏
k p(θk), then each update to a chain θk |

θ\k leaves the stationary distribution invariant:∫
θ
(
∏
i p(θi))T (θ′k | θk;φ(θ\k))dθ

=
∫
φ
p(φ)

∫
θk
p(θk)T (θ′k | θk;φ)dθdφ = p(θ′k).

(3)

MCMC procedures with this flavor have a long his-
tory, going back at least to Gilks et al. (1994) and the
snooker algorithm, and termed “ensemble-chain adap-
tation” (ECA) by Zhang and Sutton (2011). In the
context of (G)HMC algorithms, they have mostly been
used to obtain preconditioners (e.g., Zhang and Sut-
ton, 2011; Leimkuhler et al., 2018) (the methods in this
paper are complementary to and could be integrated
with such quasi-Newton-inspired methods).

ECA algorithms clearly require that we run multiple
chains. ECA therefore seems well positioned to exploit

θ1,1 θ2,1 θ3,1 θ4,1

θ1,4 θ2,4 θ3,4 θ4,4

θ1,1 θ2,1 θ3,1 θ4,1

θ1,2 θ2,2 θ3,2 θ4,2

θ1,3 θ2,3 θ3,3 θ4,3

θ1,4 θ2,4 θ3,4 θ4,4

Figure 1: Graphical models illustrating two equiva-
lent ECA procedures. θk,t denotes state k at notional
iteration t. Solid black lines denote a transition ker-
nel that leaves p(θk) invariant. This kernel may be
controlled by some parameters φk(θ1, . . . , θk−1) that
depend on other states; this dependence is denoted by
dashed blue lines. Dotted gray lines denote an identity
map between θk,t and θk,t+1. In the example above,
we can perform the three updates (left) that take us
from the joint state θ1:K,1 to θ1:K,4 in parallel (right).

the availability of vectorized hardware (such as GPUs
and TPUs) and software (such as TensorFlow (Abadi
et al., 2016), PyTorch (Paszke et al., 2019), and JAX
(Bradbury et al., 2018)), which can cheaply run many
chains in parallel. However, if we really must update
each state θk holding the other states θ\k fixed, then
these parallel resources are wasted. In the next sec-
tion, we consider the question of how to design ECA
algorithms to enable maximum parallelism.

3 PARALLELIZABLE
ENSEMBLE-CHAIN
ADAPTATION

We would like to design ECA algorithms that can make
use of parallel resources by updating multiple states in
parallel, but ECA is justified as a one-state-at-a-time
serial procedure1. However, we will show that we are
free to perform ECA updates on many states in paral-
lel as long as these updates obey a certain conditional
independence requirement.

Figure 1 illustrates the idea. Conceptually, we do stan-
dard one-at-a-time ECA, updating each state θk con-
ditioned on information from the k − 1 states θ1:k−1

(the graphical model on the left). But because each
update only depends on information from states with
a lower index, we have all the information we need to
compute the K − 1 notionally sequential updates for
θ2:K in parallel. Discarding theK−2 notional interme-

1One might be tempted to go ”hogwild” (Niu et al.,
2011) and update all states in parallel, but this can lead to
incorrect results; see Appendix D for a simple example.
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diate states, we are left with an update that updates
all but one of the states (the graphical model on the
right2). We can then permute the states and repeat
the procedure to ensure that all states are updated.

Sometimes we may want to cut some connections from
the general update structure in Figure 1. In this work,
we use the “K-fold” update structure illustrated in
Figure 2, in which we break the states into K “folds”
of N states each, compute parameters based on each
fold, and share those parameters across all updates
in the neighboring fold3. We skip one fold’s update
each iteration to maintain the correct conditional inde-
pendence structure. After K iterations, we randomly
reshuffle the states into K new folds.

This scheme has two main advantages over the denser
graphical model in Figure 1: it ensures that the pa-
rameters φ are always computed based on the same
number of states N , which facilitates efficient batch-
ing, and it ensures that no parameters are estimated
from less than N states, which might lead to undesir-
able behavior (e.g., momentum-negating rejections in
GHMC, which are worse than standing still). Its main
downside is that it skips updates for 1/K of the states
each iteration, possibly reducing utilization of parallel
resources. This can be mitigated by increasing K, at
the expense of possibly increasing the variance of the
kernel parameters φ. We use K = 4 as a compromise,
which incurs at most a 25% slowdown; in Appendix A
we empirically explore the effect of adjusting K.

4 ECA-FRIENDLY HEURISTICS
FOR GHMC

In this section, we derive ECA-compatible heuristics
for automatically tuning parameters of GHMC: a diag-
onal preconditioning matrix, a step size ε, a damping
coefficient α, and a slice-drift coefficient δ. Putting
these pieces together yields Algorithm 3, which we
call Maximum-Eigenvalue Adaptation of Damping and
Step-size (MEADS).

4.1 Diagonal preconditioning

(G)HMC algorithms can benefit from preconditioning,
and one common practice is to scale each dimension
by the inverse of an estimate of the posterior stan-
dard deviation in that dimension (e.g.; Carpenter

2This graphical model resembles that of inverse autore-
gressive flows (Kingma et al., 2016), which are also de-
signed to permit efficient parallel sampling.

3Leimkuhler et al. (2018) consider a related scheme, up-
dating only one fold at a time conditioned on all other folds,
which reduces the number of states that can be updated in
parallel by a factor of K − 1.

θ1,2,3,4

t=0 t=1 t=2 t=3 t=4

θ5,6,7,8

θ9,10,11,12

θ13,14,15,16

Figure 2: Graphical model illustrating K-fold ECA.
The states are split into K folds of N states each,
and each fold k is updated using parameters computed
from its neighbor fold k + 1 mod K. Each iteration
we skip the update for a different fold. Solid black
lines denote MCMC updates, dashed blue lines denote
dependence through kernel parameters, dashed gray
lines denote skipping an update.

et al., 2017; Langmore et al., 2021). This can be im-
plemented by giving the leapfrog integrator a vector
of per-dimension step sizes scaled by that dimension’s
standard deviation (Neal, 2011). In MEADS, we sim-
ply compute an estimate σ̂d of the marginal standard
deviations σd from each fold’s states and multiply the
neighboring fold’s step size accordingly.

In the following sections, we use the transformed
variables and gradients θ̄d , θd/σ̂d and ḡd ,
∇θ̂d log p(θ) = ∇θd log p(θ)σ̂d to compute step-size and
damping parameters. This yields parameters that are
properly adapted to the transformed dynamics.

4.2 Step size

When applied to quadratic potential functions 1
2θ
>Hθ

(corresponding to multivariate-Gaussian target distri-
butions with covariance H−1), the stability of the
leapfrog integrator requires that the step size ε and
largest eigenvalue λmax of H satisfy ε ≤ 2√

λmax

(Leimkuhler and Reich, 2004). More generally, the ac-
curacy of uncorrected underdamped Langevin MCMC
likewise depends on keeping the step size inversely pro-
portional to the square root of the largest eigenvalue of
the negative Hessian of the log-density (Dalalyan and
Riou-Durand, 2020). This suggests trying to set

ε := 1
2

1√
λmax(−H̄)

; H̄ ,
∫
θ
p(θ)∇2 log p(θ)dθ,

where λmax(A) is defined as the largest eigenvalue of A.
We use the average Hessian H̄, since we will estimate
λmax from states that may be far from the states we
are updating. The 1

2 is there to give us some margin
of error; in Appendix A we show that MEADS is not
very sensitive to this factor.

Fortunately, we can estimate λmax from gradients
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without computing second derivatives. In Appendix
E, we show that under mild technical conditions,

−
∫
θ
p(θ)∂

2 log p
∂θ∂θ>

dθ =
∫
θ
p(θ)(∂ log p

∂θ )> ∂ log p
∂θ dθ. (4)

That is, at stationarity, the expected negative Hes-
sian of the log-density is the expected outer prod-
uct of the gradient of the log-density. So, given the
(transformed) gradients ḡk,1:N for theN (transformed)
states θ̄k,1:N from fold k, we can approximate the av-
erage negative Hessian as the outer-product matrix
−Ĥ , 1

N

∑
n ḡk,nḡ

>
k,n.

4.3 Damping factor and slice drift

The damping coefficient α controls how many itera-
tions it takes to forget the current value of our mo-
mentum m. To see this, note that value of mt+i is
roughly (ignoring initial and final leapfrog half-steps)

(1− α)i/2mt +
∑i
j=1 ε∇ log p(θt+j) +

√
αξj , (5)

where ξj ∼ N (0, I). mt’s influence on future states
mt+i decays exponentially with i.

We want this influence to decay slowly enough that
the chain can move far before forgetting its old mo-
mentum (since accelerating such motion is why HMC
introduced momentum in the first place), but not so
slowly that the chain takes too long to forget its pre-
vious states (since this forgetting drives mixing). As
in standard HMC, we want to forget our momentum
once we’ve had a chance to travel the full length of the
highest-variance direction.

When applied to a Gaussian target with covari-
ance Σ, the leapfrog integrator with step size ε
takes O(λmax(Σ)/ε) steps to progress along the least-
constrained direction; this suggests that we should
choose a damping factor α such that − 1

2 log(1 −
α) ∝ ε/λmax(Σ) so that the contraction of m after
λmax(Σ)/ε steps is neither too large nor too small. If
α is relatively small (as it should be for difficult prob-
lems), then this suggests setting

γ := 1/λmax(Σ̂); α = 1− e−2εγ , (6)

where Σ̂ is the empirical covariance of a neighboring
fold’s states θ̄. We use 1− e−x to constrain α < 1.

Similar logic applies to the slice-drift parameter δ. We
want u to remain stable long enough that we can
travel far without rejecting, but not so long that u
mixes more slowly than θ and m. We therefore set
δ := α/2. This yields a period for u of 4/α steps,
after which the exponential-decay term in Equation 5
(1 − α)2/α ≈ e−2 ≈ 0.14, implying that the previous
period’s momentum has mostly been forgotten.

Algorithm 2 Estimating Largest Eigenvalues

1: function max eig(X)
2: S := XX>

3: λ· := tr(S)
N .

4: λ2
· := 1

N(N−1)

∑
n,n′ 6=n S

2
n,n′ .

5: return λ2
· /λ·.

6: end function

For stability, we put a floor on the damping in early
iterations to enforce γt ≥ 1

tεt
. The logic is that, if the

optimal damping would have us forget our momentum
after more than t steps, and we have not yet taken t
steps, then we have probably not converged to a point
where we accurately estimate the appropriate γ. While
the chains are far from convergence, the empirical co-
variance can be large due to differences in how quickly
the chains approach the target distribution’s typical
set; these differences must be damped away before we
can safely use a very small damping factor.

4.4 Estimating largest eigenvalues

So far, we have ignored the question of how to estimate
the largest eigenvalues of the gradient and covariance
matrices from Sections 4.2 and 4.3. This turns out
to be a bit delicate; the largest eigenvalue of an unbi-
ased estimate Σ̂ of a matrix Σ can be a highly biased
estimate of the largest eigenvalue of Σ.

Instead, we propose an estimator based on the ratio

tr(Σ2)/tr(Σ) =
∑
d λ

2
d/
∑
d λd, (7)

which only relies on our ability to get reasonable esti-
mates of traces, not individual eigenvalues. In the ex-
treme case where all eigenvalues are either 0 or λmax,
tr(Σ2)
tr(Σ) = λmax. In less-extreme cases, this ratio ap-

proximates λmax well unless there are many “small-
but-not-tiny” eigenvalues that are large enough to in-
fluence the sums, but small enough that they are dis-
tinguishable from λmax. We explore the properties of
this ratio in Appendix C.

The ratio in Equation 7 can be estimated for ma-
trices of the form X>X in O(N2D) operations for
X ∈ RN×D; Algorithm 2 shows how. The estimator
of the trace of E[X>X]2 in line 4 is based on the iden-
tity E[S2

n,n′ ] = E[x>n xn′x
>
n′xn] = E[tr(xnx

>
n xn′x

>
n′) =

tr(E[X>X]2) for n 6= n′. This cost will be dominated
by the cost of computing N gradient evaluations for
all but very simple target distributions.

5 EFFICIENCY EXPERIMENTS

In this section, we evaluate MEADS’s ability to effi-
ciently estimate posterior expectations. We compare
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Algorithm 3 Maximum-Eigenvalue Adaptation of Damping and Step-size (MEADS)

Input: K folds of N initial states θ0,1:K,1:N .
Output: Chain of T states θ1:T,1:K,1:N

1: Initialize u0,1:K,1:N ∼ Uniform((−1, 1)).
2: Initialize m0,1:K,1:N ∼ N (0, I).
3: for t = 1 to T do
4: for k = 1 to K, excluding k = t mod K do
5: Estimate means µ̂t,k,1:D and standard deviations σ̂t,k,1:D from θt−1,(k−1) mod K,1:D.
6: Set θ̄t,k,n,d := (θt−1,(k−1) mod K,n,d − µ̂t−1,k,d)/σ̂t,k,d.
7: Set ḡt,k,n,d := ∇θd log p(θt−1,(k−1) mod K,n) · σ̂t,k,d.
8: Set εt,k := min{1, 0.5/

√
max eig(ḡt,k)}.

9: Set γt,k := max{ 1
tεt,k

, 1/
√

max eig(θ̄t,(k−1) mod K)}.
10: Set αt,k := 1− e−2εt,kγt,k , δt,k := αt,k/2.
11: Set θt,k,n, mt,k,n, ut,k,n := pers ghmc(θt−1,k,n,mt−1,k,n, ut−1,k,n; εt,kσ̂t,k, αt,k, δt,k).
12: end for
13: end for

MEADS with two baseline HMC algorithms: ChEES-
HMC (Hoffman et al., 2021) and NUTS (Hoffman
and Gelman, 2011). We implemented MEADS and
ChEES-HMC in JAX (Bradbury et al., 2018) on top of
the FunMC API (Sountsov et al., 2020), and used Ten-
sorFlow Probability’s NUTS implementation (Lao and
Dillon, 2019). Our MEADS implementation will be
open-sourced as part of TensorFlow Probability (Dil-
lon et al., 2017). All experiments were run on TPU
v2s with precision set to HIGHEST to avoid bfloat16
matrix multiplication. All algorithms were evaluated
on a set of target distributions from the Inference Gym
(Sountsov et al., 2020). Table 1 summarizes the target
distributions and their dimensionalities.

We let all algorithms adapt per-dimension step
sizes. MEADS uses standard-deviation estimates from
neighboring folds. For ChEES-HMC and NUTS, we
use an exponential moving average of the previous first
and second moments with decay rate β = t/(t+ 8).

To adapt step sizes for ChEES-HMC and NUTS, we
use Adam (Kingma and Ba, 2015) with a learning
rate of 0.05 to tune the average across iterations of
the cross-chain harmonic-mean acceptance rate to be
approximately 0.8. To adapt trajectory lengths for
ChEES-HMC, we use Adam with a learning rate of
0.025 following Hoffman et al. (2021).

For each target distribution, we ran MEADS for 15,000
iterations, thinning the chain by a factor of 10 to save
memory. We ran ChEES-HMC and NUTS for 500 it-
erations, freezing the step-size and (for ChEES-HMC)
trajectory-length parameters after 400 iterations. All
algorithms were run with 128 chains; MEADS split
these 128 chains into four folds. We repeated each ex-
periment 32 times. The initial state θ0,k,n of all chains
of all algorithms is obtained by running 100 iterations

Figure 3: Squared bias estimate versus number of
gradients for ChEES, NUTS, and MEADS. Dashed
horizontal lines are thresholds of 0.01 and 0.002.

of Adam on − log p(θ) with learning rate 0.05.

We then estimated the transient bias of each chain
as a function of number of iterations; that is, the
squared error (E[f(θt,d)] − E[f(θ∞,d)])

2 between the
expected value of (a function of) the state of the chain
in dimension d after t steps and its expected value
at stationarity. To estimate E[f(θt,d)], we computed
the average across experiments s ∈ {1, . . . , 32} and

chains n ∈ {1, . . . , 128} to get E[f(θt,d)] ≈ f̂t,d ,
1
SN

∑
s,n f(θs,n,t,d). Assuming independence between

the chains’ errors and invoking the central limit theo-
rem, this estimate will have squared error on the order

of
σ2
f,d

4096 , where σ2
f,d is the posterior variance of f(θd).

To estimate E[f(θ∞,d)], we averaged across the last
100 samples and across all 128 chains and 32 runs of
NUTS. We summarize the total bias at iteration t as

bias2
f,t = max

d
(f̂t,d − E[f(θ∞,d)])

2/σ2
f,d, (8)
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Full Name Short Name Dimensionality
Banana Banana 2
IllConditionedGaussian Gaussian 100
GermanCreditNumericLogisticRegression Logistic 25
GermanCreditNumericSparseLogisticRegression Sparse 51
RadonContextualEffectsHalfNormalIndiana Radon 91
BrownianMotionUnknownScalesMissingMiddleObservations Brownian 32
SyntheticItemResponseTheory IRT 501
VectorizedStochasticVolatilityLogSP500 Volatility 2519

Table 1: Target distributions used in Section 5.

Grads to low bias Grads to very low bias Grads/ESS
Target NUTS ChEES MEADS NUTS ChEES MEADS NUTS ChEES MEADS
Banana 220 164 290 425 253 420 156 448 386
Gaussian 9746 5038 5420 13710 7180 8430 3230 1316 941
Logistic 40 29 20 56 43 30 25 10 25
Sparse 2616 1068 510 4200 1334 1040 888 716 634
Radon 2229 1422 1470 3164 1721 2040 874 183 517
Brownian 2059 500 310 2447 682 380 580 582 309
IRT 1062 437 690 1801 659 840 398 373 588
Volatility 4073 2980 2760 - - - 146 180 315

Table 2: Number of gradient evaluations needed to achieve bias2
t ≤ 0.01 (“Grads to low bias”), number of

gradient evaluations needed to achieve bias2
t ≤ 0.002 (“Grads to very low bias”), and number of gradient

evaluations divided by effective sample size (“Grads/ESS”). Results within 10% of best across algorithms are in
bold. “-” entries denote unavailable results on the stochastic volatility target due to the high dimensionality
making it difficult to estimate bias.

that is, the maximum bias across dimensions normal-
ized by posterior variance.

Figure 3 shows the results for the sparse logistic regres-
sion target; plots for other targets are in Appendix B.
The bias decays roughly exponentially until it falls be-
low the level that we can detect with 4096 samples. Ta-
ble 2 summarizes the number of gradient evaluations
it takes each algorithm to reach low (one hundredth of
posterior variance) and very low (two thousandths of
posterior variance) levels of bias when estimating the
second moment (i.e., E[θ2

∞,d], which is sensitive to er-
rors in both mean and variance). These are the levels
of bias that will have little impact on estimates based
on a total effective sample size of 100 or 500 (respec-
tively). Because it is hard to estimate small biases, the
time-to-very-low-bias statistic may be noisy. MEADS
generally performs well on these metrics.

We also estimated each algorithm’s asymptotic ef-
ficiency at generating large effective sample sizes
(ESS) per chain using TensorFlow Probability’s
tfp.mcmc.effective sample size implementa-
tion. ESS was estimated using cross-chain statistics
from the last 100 samples. We report the median
across runs of the minimum ESS across dimensions

and statistics f(θd) = θd and f(θd) = θ2
d.

Asymptotic ESS efficiency is arguably less impor-
tant for many-chain Bayesian inference workflows than
rapid convergence, since the Monte Carlo error of our
estimates scales inversely with both per-chain ESS and
number of chains, and there is little point in reduc-
ing Monte Carlo error far past the point where it is
dominated by posterior uncertainty. Nonetheless, it
is interesting to compare the cost of generating larger
ESS by running chains for longer to the cost of run-
ning more chains in parallel. These costs are generally
of the same order—“Grads/ESS” is generally compa-
rable to “Grads to very low bias”, although in some
cases (e.g., ChEES on Radon), it is substantially lower,
likely reflecting poor early preconditioning.

6 DISCUSSION

We have developed MEADS, an ECA tuning scheme
that makes turnkey GHMC competitive with existing
turnkey HMC algorithms. GHMC is a very flexible al-
gorithm, and we hope that MEADS encourages further
research into its applications and extensions. for exam-
ple, interleaving GHMC with Gibbs steps on discrete
latent variables (Neal, 2020) or exploring ways to ex-
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tend or improve on MEADS, for example using quasi-
Newton preconditioning schemes (Zhang and Sutton,
2011; Leimkuhler et al., 2018) or stochastic gradients.
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Supplemental Material for “Tuning-Free
Generalized Hamiltonian Monte Carlo”

A ABLATIONS

MEADS has three user-selectable parameters:

• A step-size multiplier, set to 0.5 in our main ex-
periments.

• A damping-slowdown parameter, set to 1.0 in our
main experiments.

• A number-of-folds parameter K, set to 4 in our
main experiments.

In this section, we examine the effect of different values
of these choices, and find that the default values per-
form well across all target distributions we consider.

A.1 Step-size multiplier

Figure 4 shows the number of steps needed to achieve
low-bias estimators when using MEADS with step-size
multipliers between 0.2 and 0.7 and the default four
folds and damping slowdown factor of 1. The recom-
mended default step-size multiplier of 0.5 is reason-
able across problems, although it is occasionally a little
conservative (for example, on the IRT and stochastic
volatility targets).

A.2 Damping slowdown

Figure 5 shows the number of steps needed to achieve
low-bias estimators when using MEADS with damp-
ing slowdown factors 0.5, 1, 2, and 5 and the default
four folds and step-size multiplier of 0.5. The rec-
ommended default damping slowdown factor of 1 is
reasonable across problems, although the stochastic
volatility model would seem to prefer a more conser-
vative ramping-up of momentum.

A.3 Number of folds

Figure 6 shows the number of steps needed to achieve
low-bias estimators when using MEADS with 2, 4, and
8 folds and the default step-size multiplier of 0.5 and
damping slowdown factor of 1. Four folds is consis-
tently better than two, since when only using two folds
half of the chains must sit idle (we conservatively as-
sign the same cost to idle chains as updating chains
on the assumption that enough parallel resources are
available that we could have computed gradients for

Figure 4: Number of gradient evaluations needed to
achieve squared bias less than 0.01 as a function of
step-size multiplier for MEADS. Lower is better.

Figure 5: Number of gradient evaluations needed to
achieve squared bias less than 0.01 as a function of
damping slowdown factor for MEADS. Lower is better.
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Figure 6: Number of gradient evaluations needed to
achieve squared bias less than 0.01 as a function of
number of folds for MEADS. Lower is better.

the idle chains at no cost in wallclock time). Increasing
the number of folds to eight generally has little effect.
(The effect looks large for the logistic-regression tar-
get, but this is a quantization artifact due to thinning
the MEADS chain by a factor of 10.)

B BIAS PLOTS

Figure 7 shows how the transient biases of ChEES,
NUTS, and MEADS evolve as a function of number of
gradient steps. As the true bias gets very small, the
squared error of the estimator becomes dominated by
variance and we are unable to get a good estimate of
the true bias.

C EIGENVALUE ESTIMATOR

In this section we consider the maximum-eigenvalue
estimator described in Section 4.4 and Algorithm 2.

Given a N -by-D matrix X such that

E[
1

N
X>X] = Σ, (9)

we are interested in estimating the largest eigenvalue
of Σ.

Throughout this section, we will consider the simple
case where Xn,d ∼ N (0, σd), so that Σ = diag(σ2) and
the largest eigenvalue is maxd σ

2
d. We will examine

four specific values for σ, each of which has maximum
eigenvalue 1 and D = 100 dimensions:

1. Identity: σd = 1 for all d.

2. Log-spaced: Logarithmically spaced σd with
σ1 = 0.1 and σD = 1.

3. Linear-spaced: Linearly spaced σd with σ1 =
0.1 and σD = 1.

4. Bimodal: σd = 0 for d <= D/2, σd = 1 for
d > D/2.

Figure 8 shows the result of directly computing the
largest eigenvalue of X>X (“Naive Estimator”) and

instead computing the ratio tr(X>XX>X)
tr(X>X)

(“Ratio Es-

timator”) as the number of observations N goes up.
For small sample sizes, the estimates are biased up-
wards; this bias decays faster for the ratio estimator
than for the naive estimator. This faster decay comes
at the price of a small asymptotic bias for the log-
spaced and linear-spaced spectra; as N →∞ the ratio
estimator converges to (

∑
d σ

4
d)/(

∑
d σ

2
d), which is a

bit lower than σ2
max when there exist eigenvalues less

than σ2
max but not so small that they make only a small

contribution to the trace
∑
d σ

2
d.

D AN EXAMPLE OF THE
DANGERS OF HOGWILD
ADAPTATION

In this section we provide a simple example of
an ensemble-chain adaptation (ECA) MCMC kernel
which gives correct results when applied to one state
at a time, but catastrophically wrong results when ap-
plied “hogwild” to all states in parallel.

There are two independent, uniformly distributed
states x0 ∈ {0, 1} and x1 ∈ {0, 1}, so that p(x) = 1

4 .
Our MCMC kernel to update one of the states given
the other is the XOR function: x′i = XOR(xi, x1−i).
If we update xi holding x1−i fixed, this update sat-
isfies detailed balance, since the two possible updates
(x′i = XOR(xi, 0) = xi and x′i = XOR(xi, 1) = 1− xi)
are both reversible with respect to the uniform distri-
bution on {0, 1}. So if we alternate between updating
x1 holding x0 fixed and x0 holding x1 fixed, then the
chain will correctly leave the uniform distribution in-
variant.

However, if we go “hogwild” and apply the update
simultaneously to both states, then x′0 = XOR(x0, x1)
and x′1 = XOR(x1, x0) = XOR(x0, x1) = x′0. So after
one iteration, the two states will be identical. Once the
states are identical, another iteration will ensure that
they are both zero, since XOR(0, 0) = XOR(1, 1) = 0.
So after two iterations the chain will be stuck in the
absorbing state x0 = x1 = 0, rather than leaving the
uniform distribution invariant.
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Figure 7: Squared bias estimate versus number of gradients for ChEES, NUTS, and MEADS. Dashed horizontal
lines are thresholds of 0.01 and 0.002.

The one-at-a-time version of this chain is neither er-
godic nor aperiodic, but this can be fixed by occa-
sionally (say, with probability 0.01) instead applying

a kernel that resamples x0 and x1 from their uniform
target distribution. Since the uniform resampling is
applied relatively rarely, the stationary distribution of
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Figure 8: Naive estimates of the square root of the largest eigenvalue of E[ 1
NX

>X] as a function of the number
of samples N . For each value of N we computed estimates based on five draws of X. “Naive Estimator”
denotes directly computing the largest eigenvalue of 1

NX
>X; “Ratio Estimator” denotes computing the ratio

tr(X>XX>X)
tr(X>X)

= tr(XX>XX>)
tr(XX>)

. The orange line denotes (
∑
d σ

4
d)/(

∑
d σ

2
d), the asymptotic value of the ratio

estimator as N →∞.

the hogwild version of this kernel will still be highly
biased towards the state x0 = x1 = 0.

E PROOF OF EQUATION 4

Our goal is to show that

−
∫
θ
p(θ)∇2 log p(θ)dθ =

∫
θ
p(θ)

(
∂ log p
∂θ

)>
∂ log p
∂θ dθ.

(10)

We note that

∇2p(θ) =
∂

∂θ
(p(θ)∇ log p(θ))

= p(θ)

((
∂ log p

∂θ

)>
∂ log p

∂θ
+∇2 log p(θ)

)
.

(11)

So if, for all indices i and j,
∫
θ
∇2
θi,θj

p(θ)dθ = 0,

then Ep[(∂ log p
∂θ )> ∂ log p

∂θ ] = Ep[−∇2 log p(θ)]. We as-
sume that p is twice differentiable almost everywhere
and continuous, and that for all i ∈ {1, . . . , D}, p(θi |
θ\i) → 0 as |θi| → ∞. By the fundamental theorem

of calculus,
∫∞
−∞∇θip(θi | θ\i)dθi = 0 and, since the

derivatives of p(θi | θ\i) also go to 0 as |θi| → ∞,∫∞
−∞∇θi∇θip(θi | θ\i)dθi = 0. First, we show that

∫
θ
∇2
θi,θj

p(θ)dθ = 0 when i 6= j:

∫
θ
∇2
θi,θj

p(θ)dθ =

∫
θ

∇θi∇θjp(θ)dθ

=

∫
θ\i,j

p(θ\i,j)

∫
θi

∇θip(θi | θ\i,j)

×
∫ ∞
−∞
∇θjp(θj | θ\j)dθjdθ\j = 0,

(12)

since
∫∞
−∞∇θip(θi | θ\i)dθi = 0. Likewise,∫

θ

∇θi∇θip(θ)dθ

=

∫
θ\i

p(θ\i)

∫ ∞
−∞
∇θi∇θip(θi | θ\i)dθidθ\i = 0. �

(13)
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