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1 INTRODUCTION

While the choice of loss function is a fundamental part
of the daily workflow of most users of machine learning
systems, the question of which risk to use receives far
less attention. This is likely due to a tacit acceptance
that the abstract notion of “good generalization ability”
is best formulated by the expected loss EP L(w;Z),
where Z ∼ P is a random observation, and w character-
izes some decision rule. While the influential learning
models of Vapnik (1999) and Haussler (1992) are cen-
tered around the expected loss, it can be argued that
prioritizing average off-sample performance is a sub-
stantial value judgement that requires more serious
consideration, both by stakeholders involved in the
practical side of machine learning systems, and by the
theoretician interested in providing learning algorithms
with formal guarantees, stated in terms of whatever
“risk” is chosen.

In the last few years, notable progress has been made
in terms of learning under non-traditional risks. By far
the most well-studied variant is the conditional value-
at-risk (CVaR) of the loss distribution. Numerous ap-
plications to CVaR-based sequential learning problems
have been studied (Galichet et al., 2013; Tamar et al.,
2015; Prashanth et al., 2020). More recently, under
convex losses, finite-sample excess (CVaR) risk bounds
for stochastic gradient-based learning algorithms have
been obtained under essentially any loss distribution
(Holland and Haress, 2021; Soma and Yoshida, 2020),
while adaptive sampling strategies have been used to
improve robustness to distributional shift, without re-
lying on convexity (Curi et al., 2020). Unfortunately,
despite its practical utility, CVaR is very restrictive in
terms of expressible risk preferences; all losses beyond
a pre-fixed threshold are given the exact same weight.
A well-known generalization is the class of spectral risks
(Acerbi, 2002), which utilize a non-constant weighting
function. This dramatically improves flexibility, but
comes at the cost of more complicated form, which is
expensive to estimate and difficult to optimize using
traditional first-order stochastic descent methods.

To address this issue, we start by taking a derivative-

free approach to learning with spectral risks. Using a
stochastic smoothing technique, we first derive finite-
sample excess spectral risk bounds in expectation for
the proposed procedure (section 4), and show how con-
fidence boosting can be used to obtain high-probability
guarantees under loss distributions assuming just finite
variance (section 5). In section 6, we propose a simple
modification to the derivative-free procedure that lets
us integrate gradient information from the losses for
faster convergence, and we empirically verify that this
procedure efficiently achieves a small spectral risk, with
the interesting side-effect of out-performing empirical
risk minimizers in terms of misclassification error as
well, uniformly across several benchmark datasets.

2 RELATED WORK

Risk and learning While the expected value of the
loss distribution is central to statistical learning theory
(Haussler, 1992; Vapnik, 1999), more diverse notions of
risk have been studied in broader contexts, in particular
notions of financial risk (Artzner et al., 1999; Rock-
afellar and Uryasev, 2000; Acerbi, 2002; Ruszczyński
and Shapiro, 2006) and risks which capture human
psychological tendencies of aversion or affection to risk
in uncertain decision-making situations (Tversky and
Kahneman, 1992). In the classical theory of port-
folio optimization, the mean-variance notion of risk
plays a central role (Markowitz, 1952), and variance-
regularized stochastic learning algorithms have been
studied by Duchi and Namkoong (2019). As described
earlier, originally borrowed from the financial litera-
ture, CVaR has seen many direct applications to learn-
ing problems, offers a natural interpretation to the
ν-SVM algorithm (Takeda and Sugiyama, 2008), and
appears less explicitly in algorithms designed to min-
imize worst-case losses (Shalev-Shwartz and Wexler,
2016; Fan et al., 2017). More recently, classes of gener-
alized location-deviation risks have been studied (Lee
et al., 2020; Holland, 2021), though this goes beyond
the traditional setting of coherent risks (Artzner et al.,
1999). In contrast, our study of learning under spec-
tral risks here lets us go well beyond CVaR while still
retaining the properties of coherent risks.
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Derivative-free methods There are some objec-
tive functions which are differentiable, but for which
computation of the derivatives is not computationally
tractable. In such situations, learning algorithms which
attempt to approximate first-order information using
just function information are of great use; see Larson
et al. (2019) for a broad survey on the topic. The basic
idea that we rely upon in this work is that of designing
a learning algorithm to tackle an alternative objective
function which is sufficiently close to the original, but
with the added benefit that (stochastic) gradient in-
formation is readily available. The 0th-order gradient
estimator that we use follows the seminal work of Flax-
man et al. (2004); there have been many refinements
to this technique over the years (Larson et al., 2019,
Sec. 4), in the form of alternative gradient estimators,
but the core ideas remain the same, and the refined
methods just add an additional layer of notational and
expositional complexity. Plugging in more advanced
estimators (Balasubramanian and Ghadimi, 2021) to
our general strategy is a mechanical exercise; we use
the simplest possible estimator to illustrate the efficacy
of our approach in a transparent way.

Spectral risks in machine learning The research
on learning with spectral risks is still very limited. Re-
cent work from Bhat and Prashanth (2019) and Pandey
et al. (2019) provides estimators for the spectral risk
under sub-Gaussian and sub-Exponential loss distri-
butions, but these results are “pointwise” in that they
can only be applied to pre-fixed candidates (e.g., pre-
dictors, clusters, etc.), and do not extend to learning
algorithms which consider many candidates in a data-
driven fashion. Work from Khim et al. (2020) includes
uniform convergence for empirical spectral risks (under
the name “L-risks”), though their analysis is restricted
to bounded losses, and does not lead to excess spectral
risk guarantees for any particular class of learning al-
gorithms. Our approach in this work does not build
directly upon these results, since instead of a traditional
empirical risk minimization (ERM) approach, we take
the alternative route of optimizing a smoothed variant,
whose distance from the desired risk can be readily con-
trolled. This lets us obtain excess risk bounds for an
explicit procedure (section 4, Algorithm 1), with much
weaker assumptions on the underlying loss distribution.

Robustness to heavy-tailed losses A problem of
importance both theoretically and in practice is that
spectral risks inherit the sensitivity of CVaR to (un-
bounded) heavy-tailed losses (Bhat and Prashanth,
2019). This means that naive empirical estimates have
extremely high variance, and the previously-cited con-
centration results (Pandey et al., 2019; Khim et al.,
2020) no longer hold. In recent years, an active line

of research has studied the problem of designing al-
gorithms with near-optimal guarantees (in terms of
the traditional risk) under heavy-tailed losses; in our
section 5, we show how for an important sub-class
of spectral risk tasks, we can utilize standard confi-
dence boosting techniques (Holland and Haress, 2021),
integrating them with the Algorithm 1 to obtain high-
probability guarantees for a procedure that does not
use first-order information, and admits heavy-tailed
loss distributions.

3 PRELIMINARIES

3.1 Setup

Denoting the underlying data space by Z, we denote
by L : Rd × Z → R a generic loss function, assumed
to satisfy L(w; z) ∈ R for all w ∈ R

d and z ∈ Z.
Our general-purpose random data is Z ∼ P, and the
resulting random loss values L(w;Z) have a distribution
function denoted by Fw(u) ..= P{L(w;Z) ≤ u}, for all
w ∈ R

d and u ∈ R. When we make use of data-
driven estimates of the distribution function, we shall
denote this by F̂. For indexing purposes, we write
[k] ..= {1, . . . , k} for any positive integer k. For any
sequence (Ut) of random objects, we shall denote sub-
sequences by U[t]

..= (U1, . . . , Ut).

The traditional choice of risk function in loss-driven
machine learning tasks is the expected value. Written
explicitly, this is

R(w) ..= EP L(w;Z) ..=

∫
Z
L(w; z)P(dz). (1)

Another important risk function is the conditional value
at risk, defined for β ∈ [0, 1) by

CVaRβ(w) ..=
1

1− β

∫ 1

β

VaRu(w) du (2)

= EP L(w;Z) I{L(w;Z)≥VaRβ(w)},

where VaRβ(w) ..= inf {u : Fw(u) ≥ β}, the β-level
quantile of L(w;Z). In this work, our focus will be on
a class of risk functions which can be given in terms of
VaRβ modulated by a user-specified density function.
More concretely, let σ : [0, 1] → R+ be a non-negative,
non-decreasing function that integrates to 1. We then
define the spectral risk of w induced by σ as

Rσ(w) ..=

∫ 1

0

VaRβ(w)σ(β) dβ. (3)

From the definition (2) of CVaR, we see that setting
σ(u) = I{β<u≤1} /(1− β), one recovers the special case
of Rσ(w) = CVaRβ(w). A direct attack on Rσ presents
difficulties, in particular with respect to computing first-
order (stochastic) estimates that might in principle



Matthew J. Holland, El Mehdi Haress

drive an iterative learning algorithm. In the vein of
alleviating such difficulties, using insights going back
to the influential work of Flaxman et al. (2004), we
introduce the smoothed spectral risk

R̃σ(w) ..= Eν [Rσ (w + γU)] , (4)

where U ∼ ν is uniformly distributed over the unit ball
{u ∈ R

d : ‖u‖ ≤ 1}, and the parameter controlling the
degree of shift satisfies 0 < γ < 1.

3.2 Basic properties

As long as the loss distribution has a positive density,
spectral risks can be expressed in a more convenient
form, as follows.
Lemma 1. Let Fw be invertible and differentiable for
w ∈ R

d. Then, we have

Rσ(w) = EP L(w;Z)σ (Fw(L(w;Z))) , (5)

where Rσ is the spectral risk defined in (3).

Proof. Since Fw is invertible and continuous, we have
VaRβ(w) = F−1

w (β) for any w ∈ R
d and 0 < β < 1.

We then see that∫ 1

0

F−1
w (β)σ(β) dβ

=

∫ ∞

−∞
F−1
w (Fw(u))σ(Fw(u)) F

′
w(u) du

=

∫ ∞

−∞
uσ(Fw(u)) Fw(du),

noting that the first equality uses integration by substi-
tution. The right-most expression is none other than
EP L(w;Z)σ(Fw(L(w;Z))).

With Lemma 1 as context, the following stochastic
estimators will be of interest:

rσ(w;Z) ..= L(w;Z)σ (Fw(L(w;Z))) (6)

r̂σ(w;Z) ..= L(w;Z)σ
(
F̂w(L(w;Z))

)
. (7)

If the distribution function Fw were known, then access
to a random sample of Z ∼ P would immediately imply
access to an unbiased estimator of Rσ. Unfortunately,
in practice Fw will never be known, and thus must be
estimated based on observable data. We are denoting
this empirical estimator as F̂w. Since r̂σ can be com-
puted based on observable data, it will play a central
role in the algorithms we study in the following section.

The following lemma gives a useful representation of any
spectral risk in terms of CVaR, which using linearity
of the integral lets us inherit some useful properties of
the latter.

Lemma 2 (Shapiro (2013), Rmk. 3, Eqn. 42). For the
spectral risk Rσ given by (3), we can write

Rσ(w) =

∫ 1

0

CVaRβ(w)μσ(dβ), w ∈ R
d (8)

where μσ is a measure on the unit interval that does
not depend on w.

Introducing the smoothed risk R̃σ is only going to
be fruitful if it is easier to optimize than the original
non-smooth risk. Fortunately, as the following result
shows, it is straightforward to obtain unbiased first-
order information for the smoothed risk.

Lemma 3. In contrast with ν used in definition (4),
let ν1 denote the uniform distribution over the unit
sphere {u ∈ R

d : ‖u‖ = 1}, taking random direction
U ∼ ν1, we have

d

γ
Eν1

[Rσ(w + γU)U ] = ∇ R̃σ(w) (9)

for any w ∈ R
d and 0 < γ < 1.

Proof. Follows from Flaxman et al. (2004, Lem. 1),
using our smoothed risk (4).

Remark 4 (Difficulties with differentiation). From the
form given in Lemma 1, it is clear that using a suffi-
ciently smooth σ, assuming we can take the derivative
under the integral, then the spectral risk is indeed a dif-
ferentiable function. That said, while it is differentiable
in principle, we would like to emphasize to the reader
that differentiation in practice is extremely unwieldy.
Even in the ideal situation in which Fw is known, the
derivative with respect to w depends on a compound
of two functions that both depend on w, namely the
loss w 	→ L(w; ·) being computed, and the distribution
function w 	→ Fw of the random loss L(w;Z). As a
toy exercise that illustrates this difficulty, consider the
case in which Fw represents the CDF of a Normal dis-
tribution, with mean 0 and standard deviation ‖w‖2.
While in principle possible, many applications of the
chain rule lead to complicated expressions, even in this
ideal setting. Compounding this with the fact that
we can never know Fw in practice, the derivative-free
approach taken here provides a practical, principled,
and flexible alternative.

4 GUARANTEES IN
EXPECTATION ON R

d

In this section, we specify a concrete learning algorithm,
and seek excess spectral risk bounds in expectation.
This procedure and its guarantees will act as a key
building block to be utilized in the following section.
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4.1 Algorithm analysis

Learning algorithm We essentially consider a
stochastic mirror descent update, with first-order esti-
mates using the form suggested by Lemmas 1 and 3.
Making this more explicit, let Φ : Rd → R be a strictly
convex function, and let DΦ denote the Bregman diver-
gence induced by Φ. Modulated by positive step sizes
(αt), we generate a sequence of iterates (wt) using the
following update rule:

wt+1 = argmin
w∈W

[
〈Ĝt, w〉+ 1

αt
DΦ(w;wt)

]
. (10)

The key stochastic “gradients” used here are defined as

Ĝt
..=

d

γ
r̂σ (wt + γUt;Zt)Ut, (11)

where underlying sequences (Ut) and (Zt) are assumed
to be iid, with Ut ∼ ν1 and Zt ∼ P for all integer
t > 0, and r̂σ is as defined in (7). The full procedure is
summarized in Algorithm 1.

Technical conditions Letting W ⊂ R
d be closed,

bounded, and convex, denote any minimizer of Rσ over
W by w∗. Denote the diameter of W , measured respec-
tively using the underlying norm ‖ · ‖ and the Bregman
divergence DΦ, as Δ ..= sup{‖w−w′‖ : w,w′ ∈ W} and
ΔΦ

..= sup{DΦ(w;w
′) : w,w′ ∈ W}. Since the random

perturbations may take us to points outside W , let us
define C ..= {w + u : w ∈ W, ‖u‖ ≤ 1} to cover all such
possibilities. Let Φ be κ-strongly convex on C (e.g.,
Φ(u) = ‖u‖22/2, with κ = 1). On the underlying loss
distribution, we assume the following moment bounds
are finite:

λR
..= sup

v∈C
R(v)

s21
..= sup

v∈C
Eν1,P

[‖ rσ(v;Z)U −Eν1,P [rσ(v;Z)U ] ‖2]
s22

..= sup
v∈C

EP |L(v;Z)|2.

Finally, we assume that the conditions of Lemmas 1–3
hold, the loss is such that w 	→ L(w;Z) is convex and
continuous on C, and that the spectral density σ(·) is
λσ-Lipschitz.

Theorem 5 (Spectral risk bounds in expectation).
Under the preceding assumptions, let wT be the output
of Algorithm 1 run for T steps, using M points for dis-
tribution estimates, and step sizes αt = κ/(λR + 1/cT )
with cT ..= (γ/d)

√
2ΔΦκ/(T (s21 + (λσs2)2)), fixed for

all t. Then we have

E [Rσ(wT )− Rσ(w
∗)]

≤ 2λRγ +
d

γ

[√
2ΔΦ(s21 + (λσs2)2)

Tκ

+
λRΔΦ

Tκ
+ λσλRΔ

√
π

2M

]
for any choice of 0 < γ < 1, where expectation is taken
over U[T ], Z[T ], and the ancillary data.

The proof of Theorem 5 is composed of several simple
steps, but due to its length, we just give a sketch
(section 4.2), and relegate the full proof details of this
and subsequent results to the supplementary materials.

Sample complexity The guarantee given by The-
orem 5 is quite general, since the parameters γ, T ,
and M are free to be set as desired. Let us consider
the important situation in which we are constrained
to at most n iid samples from the data distribution
P. In running Algorithm 1, for a simple and concrete
example, let us set M = 
√n� to specify a precision
level. Since each step uses M + 1 points, the number
of steps T can thus be no greater than n/(1 + 
√n�),
and setting T = �n/(1 + 
√n�)� we will always be
on budget, i.e., T (M + 1) ≤ n. Plugging these val-
ues in for T and M , and subsequently minimizing the
bound from Theorem 5 as a function of γ, we get
E [Rσ(wT )− Rσ(w

∗)] ≤ ε1(n), where we define

ε1(n) ..=

2

(
2λRd

[√
2ΔΦ(s21 + (λσs2)2)

�n/(1 + 
√n�)�κ

+
λRΔΦ

�n/(1 + 
√n�)�κ + λσλRΔ

√
π

2
√n�
])1/2

(12)

and thus to achieve E [Rσ(wT )− Rσ(w
∗)] ≤ ε, the

sample complexity is O(ε−8).

Discussion of rates in the derivative-free liter-
ature Here we try to place the sample complexity
derived from (12) into some context. For a convex
objective, the main result of Flaxman et al. (2004,
Thm. 1) yields a sample complexity of O(ε−6) for a
derivative-free update analogous to the one used here.
The reason for the slower O(ε−8) rate here is clear:
while Flaxman et al. (2004) consider traditional risks,
for our setup using spectral risks, we allocate (most)
data to estimate Fwt

at each step, a requirement that
does not arise in the traditional setting. To obtain
faster rates, there are several natural routes. First,
one could optimize the bound in Theorem 5 with re-
spect to ancillary dataset size M ; we set M =

√
n
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Algorithm 1 Derivative-free stochastic mirror descent under spectral risks.

inputs: initial point w0 ∈ W, step sizes (αt), data set size M , and max iterations T .

for t ∈ {0, . . . , T − 1} do
Get ancillary sample {Z ′

t,1, . . . , Z
′
t,M}, setting F̂wt

(u) ..= (1/M)
∑M

i=1 I{L(wt;Z′
t,i)≤u}.

Sample Ut and Zt, compute gradient Ĝt via (11).
Update wt 	→ wt+1 via (10).

end for
return: wT

..= (1/T)
∑T

t=1 wt.

here for simplicity and readability. Second, our choice
of the gradient estimator (11) was to maximize the
ease of exposition; many alternative approaches have
been studied over the past decade (Saha and Tewari,
2011; Belloni et al., 2015; Gasnikov et al., 2017; Bala-
subramanian and Ghadimi, 2021), and can readily be
adapted to our problem setting to further improve the
sample complexity; see Larson et al. (2019, Sec. 4.2)
for a survey of relevant methods. The contribution of
our work is showing a general strategy for constructing
spectral-risk minimizing algorithms with guarantees
(plus practical variants), which is why our results are
stated using the simplest possible gradient estimator.
Refining these rates further beyond our initial results
is a straightforward exercise of plugging in the afore-
mentioned estimators into our protocol.
Remark 6 (Faster rates for CVaR). Our Lipschitz as-
sumption on σ in Theorem 5 precludes CVaR from
the class of risks for which the performance guarantee
holds. This is justifiable since sub-gradient informa-
tion is easily computed for the special case of CVaR,
and O(ε−2) rates have already been proved in that re-
stricted setting for stochastic sub-gradient algorithms
(Soma and Yoshida, 2020; Holland and Haress, 2021).

4.2 Proof sketch for Theorem 5

In the detailed proof of Theorem 5, we have divided the
argument into seven distinct steps covering different
technical aspects of the problem. Here we provide an
overview of the essential points of these steps.

Step 1. First, we establish that the modified spectral
risk R̃σ is indeed smooth and convex. Under convex
and continuous losses, both convexity and continuity
are carried over by CVaRβ , which in turn is passed
on to Rσ by the representation (8). This implies a
Lipschitz property for Rσ, which in turn implies a Lips-
chitz property for the gradients of R̃σ, i.e., smoothness.
Step 2. Using the key link (9) between the original
and modified risks, we can establish that if we knew
the true distribution function and could thus sample
Gt

..= (d/γ) rσ (wt + γUt;Zt)Ut as our stochastic feed-
back, then this feedback is unbiased in the sense that

E [Gt] = E
[
∇ R̃σ(wt)

]
. While this ideal quantity can-

not be observed, knowledge of this unbiasedness will
be useful, once we have a sufficiently good approxima-
tion of the distribution function. Step 3. Since we
have established convexity and smoothness of R̃σ, we
will eventually use this as the objective in a stochastic
mirror descent program, and to set up for the analysis
of those iterates, we start by bounding the differences
R̃σ(wt+1)− R̃σ(wt) in terms of 〈Ĝt, wt+1−wt〉 and the
gradient “errors” ‖Gt − Ĝ‖ and ‖∇ R̃σ(wt)−Gt‖.
Controlling these three terms represents the bulk of
the work done in the next two steps. Using standard
mirror descent analysis techniques, combined with an
argument critically utilizing the Lipschitz continuity
of σ, we can control the first of these terms using the
estimation error of the empirical distribution function,
which enjoys sharp error bounds (Step 4). In Step 5,
we note that the second of these terms only requires
bounded second moments of the losses, and the third
term can be controlled by taking advantage of the
unbiased property established three steps earlier.

From here, a bit of cleanup is required to establish
excess risk bounds in terms of the smoothed risk (Step
6). This essentially amounts to plugging in the bounds
obtained in the previous two steps into the key upper
bound obtained in Step 3, plus cleanup of telescoping
sums by using basic properties of Bregman divergences;
this part is rather typical for mirror descent procedures.
Finally in Step 7 we just need to derive excess spectral
risk bounds from those obtained for the smoothed
spectral risk, a process which is aided by the strong
continuity properties of the spectral risk established in
Step 1, plus the fact that the size of the expected norm
of the noise used in smoothing is under our control.
Essentially, the strong continuity properties of σ allows
us to control key error terms using the error incurred by
the empirical distribution function, which is congenial
to control as long as we have the data for it. We make
liberal use of expectations here, and obtaining high-
probability control either requires stronger assumptions
or a more sophisticated learning procedure. We treat
this point in some detail in the next section.
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5 HIGH-PROBABILITY
GUARANTEES FOR
UNBOUNDED LOSSES

Theorem 5 only provides guarantees in expectation, and
thus it is natural to consider the output of Algorithm
1 as an inexpensive but “weak” candidate. If we split
up the data, obtaining multiple weak candidates and
setting aside some data for careful validation, then we
can apply a robust confidence-boosting technique, as
follows.

If n is our budget for sampling from P, and we want
k independent candidates, run Algorithm 1 k times
independently, using �n/(k + 1)� points each time. De-
note the output of these sub-processes by w(1), . . . , w(k).
Having computed these, we still have �n/(k+1)� points
left, and this data will be needed to determine which of
the k candidates to use. One half of this remaining data
is used to construct F̂w, distinct from the estimates
used within Algorithm 1 to get each w(j). The other
half, denoted Z ′′

i for i = 1, . . . , �n/(k + 1)�/2, is used
to compute a robust location estimate. As a concrete
example, for each j compute

R̂
(j)

σ
..= argmin

a∈R

�n/(k+1)	/2∑
i=1

ρ

(
a− L(w(j);Z ′′

i )σ(F̂i,j)

b

)
,

(13)

where we have set F̂i,j
..= F̂w(j)(L(w(j);Z ′′

i )) for read-
ability, ρ is a differentiable strictly convex function, and
b > 0 is a scaling parameter. For an appropriate choice
of ρ and b, this is an M-estimator of the spectral risk
incurred by w(j) (Catoni, 2012; Devroye et al., 2016).
For each j, we introduce the key intermediate quantity

R(j)
σ

..= EP

[
L(w(j);Z)σ(F̂w(j)(L(w(j);Z)))

]
. (14)

For comparison, let write R(j)
σ

..= Rσ(w
(j)) for the

spectral risk incurred by the jth candidate. Assuming
the spectral density is bounded as σ(·) ≤ σ < ∞, then
we can obtain the following upper bounds:

|R̂(j)

σ − R(j)
σ |

≤ |R̂(j)

σ − R(j)
σ |+ |R(j)

σ − R(j)
σ |

≤ |R̂(j)

σ − R(j)
σ |

+ λσ EP |L(w(j);Z)|
[
sup
u∈R

| F̂w(j)(u)− Fw(j)(u)|
]

≤ ε2(n; k, δ)

..= 2σs2

√
2(1 + log(2δ−1))

�n/(k + 1)� + λσs2

√
log(4δ−1)

�n/(k + 1)� ,
(15)

where (15) holds with probability no less than 1−δ, over
the random draw of the data points used to compute
F̂w and R̂

(j)

σ here, conditioned on w(j) (detailed proof
in the appendix). Algorithmically, all we need to do is
choose the best candidate based on the above robust
estimates, namely

w∗ ..= w(�), where � ..= argmin
j∈[k]

R̂
(j)

σ . (16)

This “boosted” choice enjoys a high-probability guar-
antee, as desired.

Theorem 7. For confidence parameter 0 < δ < 1,
if we set the number of weak candidates to k =

log(2
log(δ−1)�δ−1)� and compute w∗ as in (16), then
we have

Rσ(w
∗)− Rσ(w

∗) ≤ e ε1

(
n

k + 1

)
+ 2ε2(n; k, δ)

with probability no less than 1 − 3δ, where ε1 and ε2
are as defined in (12) and (15).

Due to limited space, the proof of this result is relegated
to the supplementary materials.

6 FAST IMPLEMENTATION AND
EMPIRICAL ANALYSIS

The procedure outlined by Algorithm 1 yields clear
formal guarantees for a wide class of spectral risks
where exact gradient computations are infeasible, as
described in Theorems 5 and 7. On the other hand, in
the interest of practical utility, we would like to improve
the slow convergence rates using even approximate first-
order information, since in many cases both L and σ will
be at least sub-differentiable. In this section, we outline
a simple modified procedure which makes more direct
use of the first-order information we have, empirically
comparing it with both Algorithm 1 and traditional
ERM, as natural benchmarks.

Modified procedure Issues with differentiability
arise chiefly because the form of Fw is unknown. Ar-
guably the simplest way to circumvent this difficulty is
to introduce a parametric model to approximate the
loss CDF. Our modified procedure takes Algorithm 1
as a starting point, and makes the following changes.
First, at each step in the main loop, instead of F̂wt

,
we use a folded Normal distribution, with mean and
standard deviation parameters set using empirical esti-
mates based on the ancillary sample, evaluated at wt.
Denote this parametric estimate of Fwt by F̂t, and its
derivative by f̂t. Next, conditioned on F̂t, a few appli-
cations of the chain rule lets us compute the partial
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Figure 1: Error trajectories for each method and dataset, on both training (dashed) and testing (solid) data. Top
row: empirical spectral risks. Bottom row: misclassification rates. Horizontal axis denotes elapsed epochs.

derivatives of w 	→ L(w;Z)σ(F̂t(L(w;Z))) easily. At
each step t we will use the following gradient estimate:

G̃t
..=
[
σ(F̂t(Lt)) + Lt σ

′(F̂t(Lt)) f̂t(Lt)
]
∇L(wt;Zt),

(17)

where we have written Lt
..= L(wt;Zt) for readability.

Our modified procedure is completed by using the
update (10), replacing Ĝt with G̃t just specified.

Experimental design We compare three methods:
derivative-free Algorithm 1 (called default in the fig-
ures), the modified procedure described in the previous
paragraph (called fast), and traditional empirical risk
minimization (called off). We mean “traditional” in
terms of the risk, and thus off amounts to running (10)
and simply replacing Ĝt with the original loss gradient
∇L(wt;Zt), and using all data for training (no ancillary
set needed). All methods are run using the Euclidean
norm for distance computation, and thus (10) is just
a standard steepest descent update with step size αt,
plug projection onto W . We apply each of these meth-
ods to classification tasks on a number of standard
benchmark datasets, using standard multi-class logis-
tic regression. For default, we fix αt = 2γ/(d

√
n),

where d is the total number of parameters to be de-
termined, and n is the number of training samples.
The extra factor γ/d is to account for the coefficient in
(11); this approach mirrors other derivative-free proce-
dures (Flaxman et al., 2004, Thm. 1). For fast and

off, we simply fix αt = 2/
√
n. These settings were

selected before running any experiments. For each
dataset, 10 independent trials are run, in which the
full dataset is randomly shuffled before starting, with
each method randomly initialized to the same point,
and run for 50 epochs. Finally, as an illustrative ex-
ample for our tests, we set σ(·) to the exponential risk
spectrum σ(u) = c e−c(1−u)/(1− e−c), fixing c = 1, a
well-established standard from the literature (Dowd
and Blake, 2006; Pandey et al., 2019).

Additional details Our empirical tests have been
implemented in Python (v. 3.8) with the following
open-source software: matplotlib (v. 3.4.1), PyTables
(v. 3.6.1), Jupyter notebook, NumPy (v. 1.20.0), and
SciPy (v. 1.6.2, for special functions). See Table 1 for
URLs to online documentation for each of the datasets
used in our experiments. As discussed in the main
text, we use multi-class logistic regression, with one
linear model for each class, so the number of param-
eters to be determined is the number of classes (e.g.,
2 for adult, 47 for emnist_balanced) multiplied by
the number of input features (e.g., 105 for adult, 784
for emnist_balanced). Categorical features are given
a one-hot representation, and all input features are
standardized to take values on the unit interval [0, 1].

Software In order to ensure our empirical analysis
and results can be readily reproduced, we provide all
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Figure 2: Completely analogous to Figure 1, for four additional datasets.

the necessary code for pre-processing the data, execut-
ing the experiments, and re-creating the figures in this
paper at an following online repository.1

Results and discussion Plots of empirical spectral
risk and misclassification rates are shown in Figures
1–2. The plotted trajectories represent averages taken
over all trials, and the shaded area around the test error
is the average ± standard deviation. The horizontal
axis represents epochs, i.e., the number of passes made
over the training data set. Plot titles (e.g., cifar10)
refer to the datasets used. Additional data details
are given in the appendix. One key observation that
can be made is that the proposed modification fast
achieves an appealing balance of performance in terms
of spectral risk and misclassification error. Depending
on the dataset, we see that without tuning the step
size parameter, off may outperform fast in terms
of the spectral risk, though the only stark difference
appears in the case of cifar10, and additional testing
has shown this can be mitigated with more careful step
size setting. That said, it is quite remarkable that fast
maintains a superior misclassification rate across all
datasets tested. On the other hand, as suggested by
the results of section 4, default is slow to converge,
and also quite sensitive to step size settings. For sim-
plicity and transparency we have used a fixed step size
for each method, and though it should be noted that
dataset-specific tuning of the step size does allow us
to ensure default converges at close to the expected
rate, the clear differences in sensitivity and speed make
fast the first choice for practical spectral risk-based
learning tasks. To further refine default, introducing

1https://github.com/feedbackward/spectral

multi-point derivative-free methods and update rules
that better utilize sparse inputs (Balasubramanian and
Ghadimi, 2021). As for fast, since the current model
is quite naive with respect to the form of the loss distri-
bution, introducing more robust modeling techniques
(Lange et al., 1989) is expected to have a major impact
on practical utility.

7 CONCLUDING REMARKS

We have studied a derivative-free learning procedure
(Algorithm 1) with excess spectral risk guarantees, un-
der losses that may be unbounded and heavy-tailed
(Theorems 5 and 7), and provided a fast implementa-
tion which on numerous real-world classification tasks
has been shown to be efficient without any hyperpa-
rameter tuning. Given the existing work on spectral
risk estimation (Pandey et al., 2019) and ERM for spec-
tral risks (Khim et al., 2020), our results contribute to
the literature by providing a transparent algorithmic
solution for spectral risk-based learning, which is easy
to implement and comes with lucid formal guarantees,
plus a modified procedure that scales better to larger
tasks.

Moving forward, the approach via Lemma 3 relies cru-
cially on Stokes’ theorem on R

d, and lacks an analogue
on richer spaces. Function space representations are
useful in many learning methods (Dai et al., 2014; Ni-
tanda and Suzuki, 2018), and extending Theorem 5 to
general Hilbert spaces is a point of interest. How should
the noise be generated? How should derivatives be de-
fined? While a direct analogue using differential theory
(e.g., Fréchet differentials (Penot, 2012)) appears diffi-
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cult, key results in Malliavin calculus (Decreusefond,
2019) may open the door to a major generalization of
the initial results established here.
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DETAILED PROOFS

Proofs from section 4

Proof of Theorem 5. At a high level, we first control R̃σ(wT ), and then using the fact that the functions R̃σ

and Rσ are close to each other on W, we can cast performance in terms of Rσ. This closeness depends on the
perturbation factor γ; smaller is closer. On the other hand, the smoothness coefficient of R̃σ grows as γ gets
small, leading to a natural tradeoff. We begin the proof by showing this smoothness, which enables us to control
R̃σ(wT ) in a straightforward manner, using an argument that relies upon well-known properties of mirror descent
procedures.

Step 1: smoothness property of the smoothed spectral risk Recalling the expression (8) for Rσ, if the
map w 	→ L(w;Z) is convex and continuous on C, then so is w 	→ CVaRβ(w).2 From (8), this immediately implies
that w 	→ Rσ(w) is convex and continuous on C, and thus that there exists a constant 0 < λR ≤ supv∈C Rσ(v) < ∞
such that

|Rσ(v)− Rσ(v
′)| ≤ λR‖v − v′‖ (18)

for all v, v′ ∈ C.3 Now turning our attention to the smoothed spectral risk R̃σ, taking U ∼ ν1 and any w,w′ ∈ W ,
we write the resulting noisy parameters as W ..= w + γU and W ′ ..= w′ + γU . Using the key equality (9) along
with (18) just given, and the fact that ‖U‖ = 1 almost surely [ν1], we have

‖∇ R̃σ(w)−∇ R̃σ(w
′)‖ =

d

γ
‖Eν1

U [Rσ(W )− Rσ(W
′)]‖

≤ d

γ
|Rσ(W )− Rσ(W

′)|

≤ dλR

γ
‖w − w′‖. (19)

As such, we can conclude that the smoothed spectral risk R̃σ is indeed (dλR/γ)-smooth on W.

Step 2: idealized stochastic gradient As an idealized counterpart to Ĝt, we introduce Gt
..=

(d/γ) rσ (wt + γUt;Zt)Ut. This is an ideal quantity in the sense that it is the stochastic gradient that would
be obtained if the true distribution function Ft

..= Fwt
was known. Denote the ancillary datasets used in

Algorithm 1 by Z ′
t

..= {Z ′
t,1, . . . , Z

′
t,M}, for each step t, where M is the specified size. Denote sub-sequences as

U[t]
..= (U1, . . . , Ut) for all t > 0 (analogously for Z[t] and Z ′

[t]), and write E[t] to denote taking expectation jointly
over (U[t], Z[t],Z

′
[t]). With this notation in place, note that taking expectation over all random elements, we can

readily observe

E [Gt] = E[t] Gt

= E[t−1] Eν1,P

[
Gt |U[t−1], Z[t−1],Z

′
[t−1]

]
= E[t−1] Eν1

EP

[
Gt |U[t], Z[t−1],Z

′
[t−1]

]
= E[t−1] Eν1

(
d

γ

)
Rσ(wt + γUt)Ut

= E[t−1] ∇ R̃σ(wt)

= E
[
∇ R̃σ(wt)

]
. (20)

The first and last equalities hold because Gt and wt are independent of all random quantities with index t+ 1 or
larger. The second and third equalities use the law of total expectation.4 The rest just uses the definition of Rσ

2See for example Ruszczyński and Shapiro (2006, Prop. 3.1, Lem. 3.1)
3Since the closure of C is compact, continuity implies that Rσ is bounded above on C. The Lipschitz property follows

from standard results, such as Penot (2012, Prop. 3.8).
4See for example Ash and Doléans-Dade (2000, Thm. 5.3.3 and 5.5.4).
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and the unbiased property (9). This establishes that Gt provides us with an unbiased estimate of the gradient
of the smoothed spectral risk. Although the sequence (Gt) is not directly observable, this unbiasedness will be
technically useful.

Step 3: setup for mirror descent analysis As an intermediate step in the overall argument, we consider
stochastic minimization of R̃σ using the procedure specified by (10). Say we know that R̃σ is convex and λ-smooth
on C.5 Taking advantage of smoothness and convexity, the following series of inequalities will make for a good
starting point:

R̃σ(wt+1)− R̃σ(wt)

≤ 〈∇ R̃σ(wt), wt+1 − wt〉+ λ

2
‖wt+1 − wt‖2

= 〈Ĝt, wt+1 − wt〉+ 〈Gt − Ĝt, wt+1 − wt〉+ 〈∇ R̃σ(wt)−Gt, wt+1 − wt〉+ λ

2
‖wt+1 − wt‖2

≤ 〈Ĝt, wt+1 − wt〉+
(
‖Gt − Ĝt‖+ ‖∇ R̃σ(wt)−Gt‖

)
‖wt+1 − wt‖+ λ

2
‖wt+1 − wt‖2

≤ 〈Ĝt, wt+1 − wt〉+ c

2

(
‖Gt − Ĝt‖+ ‖∇ R̃σ(wt)−Gt‖

)2
+

(
λ

2
+

1

2c

)
‖wt+1 − wt‖2

≤ 〈Ĝt, wt+1 − wt〉+ c
(
‖Gt − Ĝt‖2 + ‖∇ R̃σ(wt)−Gt‖2

)
+

(
λ+

1

c

)
DΦ(wt+1;wt)

κ
. (21)

The first inequality uses a basic property of functions with Lipschitz-continuous gradients.6 The second inequality
is just Cauchy-Schwarz. The third inequality uses the elementary fact 2ab ≤ ca2 + b2/c for any c > 0. The final
inequality makes use of the fact that (a + b)2 ≤ 2(a2 + b2), and the fact that κ-strong convexity of Φ implies
DΦ(u; v) ≥ (κ/2)‖u− v‖2.

Step 4: bounding intermediate terms Taking the first term in (21), fixing any w̃∗ ∈ R
d we trivially have

〈Ĝt, wt+1 − wt〉 = 〈Ĝt, wt+1 − w̃∗〉+ 〈Gt, w̃
∗ − wt〉+ 〈Ĝt −Gt, w̃

∗ − wt〉. (22)

Taking the right-hand side one term at a time, the first term is bounded by

〈Ĝt, wt+1 − w̃∗〉 ≤ At

αt

..=
DΦ(w̃

∗;wt)−DΦ(wt+1;wt)−DΦ(w̃
∗;wt+1)

αt
, (23)

a fact which holds from standard mirror descent analysis.7 Next, taking expectation over the second term, using
(20) and the convexity of R̃σ, we have

E
[
〈Gt, w̃

∗ − wt〉+ R̃σ(wt)
]
= E

[
〈∇ R̃σ(wt), w̃

∗ − wt〉+ R̃σ(wt)
]
≤ R̃σ(w̃

∗). (24)

Finally, to deal with the remaining gradient difference term, note that

‖Ĝt −Gt‖ ≤ d

γ
‖Ut‖Lt |σ(Ft(Lt))− σ(F̂t(Lt))|

≤
(
dλσ Lt

γ

)
sup
u∈R

|Ft(u)− F̂t(u)|.

Write E′
t to denote taking expectation with respect to Z ′

t, and for readability, write the distribution function
estimation error as ‖Ft − F̂t ‖ ..= supu∈R

|Ft(u)− F̂t(u)|. If we take the expectation of the inequality just derived

5In (19) we have already been proved this holds with λ = dλR/γ.
6See for example Nesterov (2004, Thm. 2.1.5).
7See Bubeck (2015, Ch. 4, 6) or Orabona (2020, Ch. 6) for a highly readable background.
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and use Cauchy-Schwarz, we obtain

E
[
〈Ĝt −Gt, w̃

∗ − wt〉
]
≤ E

[(
dλσ Lt

γ

)
‖w̃∗ − wt‖‖Ft − F̂t ‖

]
= E[t]

[(
dλσ Lt

γ

)
‖w̃∗ − wt‖‖Ft − F̂t ‖

]
=

(
dλσ

γ

)
E
[
E′

t

[
Lt ‖w̃∗ − wt‖‖Ft − F̂t ‖

∣∣∣ U[t−1], Z[t],Z
′
[t−1]

]]
=

(
dλσ

γ

)
E
[
Lt ‖w̃∗ − wt‖E′

t

[
‖Ft − F̂t ‖

∣∣∣ U[t−1], Z[t−1],Z
′
[t−1]

]]
.

The above equalities follow from applying the law of total expectation and noting that conditioned on
U[t−1], Z[t−1],Z

′
[t−1], wt is no longer random, and conditioned on U[t−1], Z[t],Z

′
[t−1], Lt is no longer random.

To clean up this upper bound, first note that

E′
t

[
‖Ft − F̂t ‖

∣∣∣ U[t−1], Z[t−1],Z
′
[t−1]

]
=

∫ ∞

0

P
{
‖Ft − F̂t ‖ > ε

∣∣∣ U[t−1], Z[t−1],Z
′
[t−1]

}
dε

≤ 2

∫ ∞

0

exp
(−2Mε2

)
dε

=

√
π

2M
.

The first equality is a basic probability result.8 The inequality is just an application of the refined DKW
inequality.9 In a similar fashion, using Δ to bound the diameter of the hypothesis class W, we have that

E
[
〈Ĝt −Gt, w̃

∗ − wt〉
]
≤
(
dλσ

γ

)√
π

2n
ELt ‖w̃∗ − wt‖

≤
(
dλσΔ

γ

)√
π

2n
E
[
EP

[
L(wt;Z) |U[t−1], Z[t−1],Z

′
[t−1]

]]
=

(
dλσΔ

γ

)√
π

2n
E [R(wt)]

≤
(
dλσλRΔ

γ

)√
π

2n
. (25)

The final inequality uses the definition of λR and the fact that W ⊂ C. This covers the first term in (21).

Step 5: more intermediate terms For the second term in (21), we need control of E ‖Gt − Ĝt‖2 and
E ‖∇ R̃σ(wt)−Gt‖2. As a simple bound on the first of these, noting that ‖Ft − F̂t ‖ ≤ 1, we have

E ‖Gt − Ĝt‖2 ≤
(
dλσ

γ

)2

sup
v∈C

EP |L(v;Z)|2.

For the remaining term, we have

Eν1,P ‖∇ R̃σ(wt)−Gt‖2 =

(
d

γ

)2

Eν1,P

[
‖Eν1,P [rσ(wt + γU ;Z)U ]− rσ(wt + γU ;Z)U‖2

]
≤
(
d

γ

)2

sup
v∈C

Eν1,P

[
‖Eν1,P [rσ(v;Z)U ]− rσ(v;Z)U‖2

]
.

The preceding inequality holds because 0 < γ < 1 implies wt + γU ∈ C almost surely [ν1]. Taking expectation
over all elements and using the definitions of s1 and s2, we have

E
[
c
(
‖Gt − Ĝt‖2 + ‖∇ R̃σ(wt)−Gt‖2

)]
≤ c

(
d

γ

)2 (
(λσs2)

2
+ s21

)
. (26)

8See Lo (2018) for a lucid elementary background on this fact.
9See for example Kosorok (2008, Thm. 11.6).
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Step 6: cleanup to bound smoothed spectral risk To start the cleanup process, taking inequalities
(23)–(26) back to (21) and taking expectation, we can immediately deduce

E
[
R̃σ(wt+1)− R̃σ(w̃

∗)
]
≤ E

[
At

αt
+

(
λ+

1

c

)
DΦ(wt+1;wt)

κ

]
+

(
dλσλRΔ

γ

)√
π

2M
+ c

(
d

γ

)2 (
s21 + (λσs2)

2
)
.

For the first term in the preceding inequality, since At is composed of a difference of Bregman divergences, note
that

At

αt
+

(
λ+

1

c

)
DΦ(wt+1;wt)

κ

=
DΦ(w̃

∗;wt)−DΦ(w̃
∗;wt+1)

αt
+DΦ(wt+1;wt)

(
1

κ

(
1

c
+ λ

)
− 1

αt

)
=

DΦ(w̃
∗;wt)−DΦ(w̃

∗;wt+1)

α(c)
. (27)

The last equality holds via the setting of αt = α(c) ..= κ(λ+ 1/c)−1 for all t, causing the extra term to vanish.
Next, leveraging Jensen’s inequality and cancelling terms via the telescoping sum, we have

E

[
R̃σ

(
1

T

T∑
t=1

wt

)
− R̃σ(w̃

∗)

]

≤ E

[
1

T

T∑
t=1

(
R̃σ(wt)− R̃σ(w̃

∗)
)]

≤ DΦ(w̃
∗;w1)−DΦ(w̃

∗;wT+1)

Tα(c)
+

(
dλσλRΔ

γ

)√
π

2M
+ c

(
s21 + (λσs2)

2
)

≤ ΔΦ

Tκ

(
λ+

1

c

)
+

(
dλσλRΔ

γ

)√
π

2M
+ c

(
d

γ

)2 (
s21 + (λσs2)

2
)
.

Minimizing the preceding upper bound with respect to c > 0, one sets

c =
(γ
d

)√ 2ΔΦκ

T (s21 + (λσs2)2)

and obtains the bound

E

[
R̃σ

(
1

T

T∑
t=1

wt

)
− R̃σ(w̃

∗)

]
≤
(
d

γ

)√
2ΔΦ(s21 + (λσs2)2)

Tκ
+

λΔΦ

Tκ
+

(
dλσλRΔ

γ

)√
π

2M
. (28)

Again, we remark that this holds for any fixed choice of w̃∗.

Step 7: guarantees in terms of spectral risk Using (28) we have a bound in expectation on the smoothed
spectral risk R̃σ incurred by the (averaged) learning algorithm (10), so it remains for us to relate this to the original
objective of interest, namely the spectral risk Rσ. Denote a minimizer of this objective by w∗ ∈ argminw∈W Rσ(w),
and now let us fix w̃∗ that appears in (28) to be optimal in terms of R̃σ, that is, let w̃∗ ∈ argminw∈W R̃σ hold.
Using this optimality and continuity properties of convex Rσ, we see that

Rσ(wT )− Rσ(w
∗) =

[
Rσ(wT )− R̃σ(wT )

]
+
[
R̃σ(wT )− R̃σ(w̃

∗)
]
+
[
R̃σ(w̃

∗)− Rσ(w
∗)
]

≤ 2 sup
w∈W

∣∣∣Rσ(w)− R̃σ(w)
∣∣∣+ R̃σ(wT )− R̃σ(w̃

∗)

= 2 sup
w∈W

|Eν(Rσ(w)− Rσ(w + γU))|+ R̃σ(wT )− R̃σ(w̃
∗)

≤ 2λRγ + R̃σ(wT )− R̃σ(w̃
∗). (29)
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The first inequality follows due to the optimality of w̃∗, which implies R̃σ(w̃
∗) ≤ R̃σ(w

∗). The second equality
follows from the definition of R̃σ. The last inequality follows from (18) and the fact that Eν ‖U‖ ≤ 1. Taking
expectation of (29), a direct application of the bound (28) with λ set according to (19) yields the desired result.

Proofs from section 5

Proof of Theorem 7. We start by proving inequality (15), namely the key validation error bound. After bounding

|R̂(j)

σ − R(j)
σ | by the two difference terms, the second inequality follows immediately from the definition of the

spectral risk and the intermediate quantity R
(j)
σ , using the λσ-Lipschitz property of σ to get the error in terms of

the error between distribution functions.

The next step (leading to (15)) is comprised of a few parts. First, using Hölder’s inequality, for any w ∈ C we have
EP |L(w;Z)| ≤√EP |L(w;Z)|2 ≤ s2, by definition of s2. Next, for any fixed w, the DKW inequality (Kosorok,
2008, Thm. 11.6) implies

P

{
sup
u

| F̂w(u)− Fw(u)| > ε

}
≤ 2 exp(−2ε2�n/(k + 1)�).

Thus, conditioned on w(j), the bound on the second term in (15) holds with probability no less than 1− δ/2, over
the random draw of the points used to compute the estimate F̂w. This is the first “good event” of interest.

The second good event is with respect to the remaining data {Z ′′
i } used to compute the spectral risk estimates.

Let us denote the variance of the weighted loss by

v(j)σ
..= varP

[
L(w(j);Z)σ(F̂w(j)(L(w(j);Z)))

]
.

Conditioning on F̂w and w(j) for the moment, standard concentration inequalities for M-estimators tell us that

|R̂(j)

σ − R(j)
σ | ≤ 2

√
2v

(j)
σ (1 + log(2δ−1))

�n/(k + 1)� (30)

holds with probability no less than 1− δ/2; see for example Catoni (2012) or Devroye et al. (2016) for typical
examples of ρ and b settings. To get a bound free of the elements being conditioned upon, note that the variance
of the weighted loss can be bounded as

varP L(w;Z)σ(F̂w(L(w;Z))) ≤ σ2 EP |L(w;Z)|2 ≤ σ2s22 < ∞.

We can thus bound v
(j)
σ ≤ σ2s22 in (30), and this is our second good event of interest. Taking a union bound of

these two “good events” (each with probability at least 1− δ/2), we obtain (15) with probability at least 1− δ, as
desired.

With inequality (15) in hand for each of the sub-processes indexed by j = 1, . . . , k, we can combine this with the
key learning guarantees in expectation provided by Theorem 5. In particular, we use the excess expected spectral
risk bound ε1(·) in (12), but this time passed a sample of size n/(k + 1), since that is all that each sub-process
(each independent run of Algorithm 1) is allocated. The desired result then follows quite mechanically using a
generic robust confidence boosting argument, as follows. First, we plug in (12) and (15) to (Holland and Haress,
2021, Lem. 9) to obtain the desired good event for general k that holds with probability no less than 1− kδ− e−k.
To clean up this probability just requires careful setting of the number of partitions; defining kδ ..= 
log(δ−1)�
and δ∗ ..= δ/(2kδ) for any 0 < δ < 1, in the theorem statement we set k = kδ∗ = 
log(2
log(δ−1)�δ−1)�, under
which a straightforward but tedious argument shows that such as a setting of k implies10

1− kδ − e−k ≥ 1− 3δ.

This high-probability event using k = kδ∗ is precisely the result in our theorem statement.

DATASET INFORMATION

In Table 1, we have included names and URLs of the datasets used in our empirical tests.
10See Holland (2020, Proof of Thm. 7) for all the details.
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Dataset URL
adult https://archive.ics.uci.edu/ml/datasets/Adult
cifar10 https://www.cs.toronto.edu/~kriz/cifar.html
cod_rna https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
covtype https://archive.ics.uci.edu/ml/datasets/covertype
emnist_balanced https://www.nist.gov/itl/products-and-services/emnist-dataset
fashion_mnist https://github.com/zalandoresearch/fashion-mnist
mnist http://yann.lecun.com/exdb/mnist/
protein https://www.kdd.org/kdd-cup/view/kdd-cup-2004/Data

Table 1: Benchmark dataset summary.


