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Abstract

Triangular flows, also known as Knöthe-
Rosenblatt measure couplings, comprise an
important building block of normalizing flow
models for generative modeling and density
estimation, including popular autoregressive
flows such as real-valued non-volume preserv-
ing transformation models (Real NVP). We
present statistical guarantees and sample com-
plexity bounds for triangular flow statistical
models. In particular, we establish the statis-
tical consistency and the finite sample conver-
gence rates of the minimum Kullback-Leibler
divergence statistical estimator of the Knöthe-
Rosenblatt measure coupling using tools from
empirical process theory. Our results highlight
the anisotropic geometry of function classes at
play in triangular flows, shed light on optimal
coordinate ordering, and lead to statistical
guarantees for Jacobian flows. We conduct
numerical experiments to illustrate the prac-
tical implications of our theoretical findings.

1 INTRODUCTION

Triangular flows are popular generative models that al-
low one to define complex multivariate distributions via
push-forwards from simpler multivariate distributions
(Kobyzev et al., 2020). Triangular flow models tar-
get the Knöthe-Rosenblatt map (Spantini et al., 2018),
which originally appeared in two independent papers
by Knöthe (1957) and Rosenblatt (1952). The Knöthe-
Rosenblatt map is a multivariate function S∗ from Rd
onto itself pushing a Lebesgue probability density f
onto another one g:

S∗#f = g
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The Knöthe-Rosenblatt map has the striking property
of being triangular in that its Jacobian is an upper tri-
angular matrix. This map and its properties have been
studied in probability theory, nonparametric statistics,
and optimal transport, under the name of Knöthe-
Rosenblatt (KR) coupling or rearrangement.

KR can be used to synthesize a sampler of a probability
distribution given data drawn from that probability
distribution. Moreover, any probability distribution
can be well approximated via a KR map. This key
property has been an important motivation of a number
of flow models (Dinh et al., 2015, 2017; El Moselhy and
Marzouk, 2012; Kingma and Dhariwal, 2018; Kobyzev
et al., 2020; Marzouk et al., 2016; Spantini et al., 2018;
Huang et al., 2018; Papamakarios et al., 2017; Wehenkel
and Louppe, 2019; Germain et al., 2015) in machine
learning, statistical science, computational science, and
AI domains. Flow models or normalizing flows have
achieved great success in a number of settings, allowing
one to generate images that look realistic as well as
texts that look as if they were written by humans. A
general theory of normalizing flows is yet a huge under-
taking as many challenges arise at the same time: the
recursive construction of a push forward, the learning
objective to estimate the push forward, the neural net-
work functional parameterization, and the statistical
modeling of complex data.

We focus in this paper on the Knöthe-Rosenblatt cou-
pling, and more generally triangular flows, as it can be
seen as the statistical backbone of normalizing flows.
Spantini et al. (2018) showed how to estimate KR from
data by minimizing a Kullback-Leibler objective. The
estimated KR can then be used to sample at will from
the probability distribution at hand. The learning ob-
jective of Spantini et al. (2018) has the benefit of being
statistically classical, hence amenable to detailed anal-
ysis compared to adversarial learning objectives which
are still subject to active research. The sample com-
plexity or rate of convergence of this KR estimator is
however, to this day, unknown. On the other hand, KR
and its multiple relatives are frequently motivated from
a universal approximation perspective (Huang et al.,
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2018; Kobyzev et al., 2020), which underscores their ex-
pressiveness yet also only considers the approximation
theory viewpoint. Indeed, while universal approxima-
tion holds for many proposed models, slow rates of
statistical convergence can occur.

Contributions We present a theoretical analysis of
the Knöthe-Rosenblatt coupling, from its statistical
framing to convergence rates. We put forth a simple
example of slow rates showing the limitations of a view-
point based on universal approximation only. This leads
us to identify the function classes that the KR maps
belong to and bring to light their anisotropic geometry.
We then establish finite sample rates of convergence
using tools from empirical process theory. Our analysis
delineates different regimes of statistical convergence,
depending on the dimension and the sample. Our theo-
retical results hold under general conditions. Assuming
that the source density is log-concave, we establish
fast rates of Sobolev-type convergence in the smooth
regime. We outline direct implications of our results
on Jacobian flows. We provide numerical illustrations
on synthetic data to highlight potential implications of
our theoretical results. Additional details can be found
in the longer version (Irons et al., 2021).

2 TRIANGULAR FLOWS

Knöthe-Rosenblatt Rearrangement KR origi-
nated from independent works of M. Rosenblatt and H.
Knöthe and has spawned fruitful applications in diverse
areas. Rosenblatt (1952) studied the KR map for statis-
tical purposes, specifically multivariate goodness-of-fit
testing. Knöthe (1957), on the other hand, elegantly
utilized the KR map to extend the Brunn-Minkowski
inequality, which can be used to prove the celebrated
isoperimetric inequality. More recently, triangular flows
have been proposed as simple and expressive building
blocks of generative models, for the problems of sam-
pling and density estimation, among others (Kobyzev
et al., 2020; Spantini et al., 2018; Marzouk et al., 2016;
El Moselhy and Marzouk, 2012). A triangular flow can
be used to approximate the KR map between a source
density and a target density from their respective sam-
ples.

Consider two Lebesgue probability densities f and g
on Rd. The Knöthe-Rosenblatt map S∗ : Rd → Rd
between f and g is the unique monotone non-decreasing
upper triangular measurable map pushing f forward to
g, written S∗#f = g (Spantini et al., 2018). The KR
map is upper triangular in the sense that its Jacobian

is an upper triangular matrix, since S∗ takes the form

S∗(x) =


S∗1 (x1, . . . , xd)
S∗2 (x2, . . . , xd)

...
S∗d−1(xd−1, xd)

S∗d(xd)

 .

Furthermore, S∗ is monotone non-decreasing in the
sense that the univariate map xk 7→ S∗k(xk, . . . , xd)
is monotone non-decreasing for any (xk+1, . . . , xd) ∈
Rd−k for each k ∈ {1, . . . , d} =: [d]. The compo-
nents of the KR map can be defined recursively via
the monotone transport between the univariate con-
ditional densities of f and g. Let Fk(xk|x(k+1):d) de-
note the cdf of the conditional density fk(xk|x(k+1):d).
Similarly, let Gk(yk|y(k+1):d) denote the conditional
cdf of g. In particular, when k = d we obtain
Fd(xd), the cdf of the d-th marginal density fd(xd) =∫
f(x1, . . . , xd)dx1 · · · dxd−1, and similarly for g.

Assuming g(y) > 0 everywhere, the maps yk 7→
Gk(yk|y(k+1):d) are strictly increasing and therefore
invertible. The dth component of S∗ is defined as the
monotone transport between fd(xd) and gd(yd) that is
S∗d(xd) = G−1

d (Fd(xd)) (Santambrogio, 2015).

From here the kth component of S∗ is given by

S∗k(xk, . . . , xd)

= G−1
k

(
Fk(xk|x(k+1):d)

∣∣∣∣S∗(k+1):d(x(k+1):d)

)
for k ∈ [d− 1], where x(k+1):d = (xk+1, . . . , xd) and

S∗(k+1):d(x(k+1):d) = (S∗k+1(x(k+1):d), . . . , S
∗
d(xd)).

That S∗ is upper triangular and monotonically non-
decreasing is clear from the construction. Under tame
assumptions on f and g discussed below, S∗ is invert-
ible. We denote T ∗ = (S∗)−1, which is the KR map
from g to f . In this paper, we shall be interested
in the asymptotic and non-asymptotic convergence of
statistical estimators towards S∗ and T ∗, respectively.

From The Uniform Distribution To Any Distri-
bution In his seminal paper, Rosenblatt (1952) con-
sidered the special case in which g is the uniform density
on the hypercube [0, 1]d. This implies that the condi-
tional cdfs are identity maps, Gk(yk|yk+1, . . . , yd) = yk,
and so the KR map from f to g consists simply of
the conditional cdfs, with S∗d(xd) = P (Xd ≤ xd),
S∗d−1(xd−1, xd) = P (Xd−1 ≤ xd−1|Xd = xd), and
S∗1(x1, . . . , xd) = P (X1 ≤ x1|X2 = x2, . . . , Xd = xd).
Figure 1 exhibits heat maps of the target density
f(x1, x2) and the first component of the KR map
F1(x1|x2) for the choice µ1 = µ2 = 0, σ1 = σ2 = 1, with
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Figure 1: Left: Heat map of standard bivariate Gaussian density f(x1, x2) with correlation ρ = 0 (leftmost)
and the first component of the KR map F1(x1|x2) from f to g, the uniform density on [0, 1]2. Right: Bivariate
Gaussian density with ρ = 0.7 and first component of the KR map F1(x1|x2) (rightmost).

ρ = 0 (left panels) and ρ = 0.7 (right panels), where f

is a bivariate Gaussian N
([
µ1

µ2

]
,

[
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

])
.

Kullback-Leibler Objective Spantini et al. (2018)
proposed to estimate the KR map using a minimum
distance approach based on the Kullback-Leibler diver-
gence. Since S∗ is the unique monotone upper trian-
gular map satisfying S#f = g, it is the unique such
map satisfying KL(S#f |g) = 0, where KL denotes the
Kullback-Leibler divergence,

KL(p|q) =

∫
p(x) log

p(x)

q(x)
dx

for Lebesgue densities p, q on Rd. As such, S∗ uniquely
solves the variational problem minS∈T KL(S#f |g),
where T denotes the convex cone of monotone non-
decreasing upper triangular maps S : Rd → Rd. The
change of variables formula for densities states that

(S−1#g)(x) = g(S(x))|det(JS(x))|, (1)

where JS(x) denotes the Jacobian matrix of S eval-
uated at x. Applying this formula to KL(S#f |g) =
KL(f |S−1#g), we rewrite minS∈T KL(S#f |g) as

min
S∈T

E

{
log

[
f(X)

g(S(X))

]
−

d∑
k=1

logDkSk(X)

}
, (2)

where X is a random variable on Rd with density f
and Dk is shorthand for differentiation with respect to
the kth component ∂

∂xk
. By monotonicity, DkSk(x) is

defined Lebesgue almost everywhere for every S ∈ T .
The relation (2) is proved in the Supplement.

2.1 Statistical Estimator Of The KR Map

We shall study an estimator Sn of S∗ derived from the
sample average approximation to (2), which yields the

minimization problem (Spantini et al., 2018)

min
S∈S

1

n

n∑
i=1

{
log

[
f(Xi)

g(S(Xi))

]
−

d∑
k=1

logDkSk(Xi)

}
,

(3)
where X1, . . . , Xn is an i.i.d random sample from f
and S is a hypothesis function class. In generative
modeling, we have a finite sample from f , perhaps an
image dataset, that we use to train a map that can
generate more samples from f . In this case, f is the
target density and g, the source density, is a degree of
freedom in the problem. In practice, g should be chosen
so that it is easy to sample from, e.g., a multivariate
normal density. The target density f could be also
unknown in practice, and if necessary we can omit the
terms involving f from the objective function in (3),
since they do not depend on the argument S.

With an estimator Sn in hand, which approximately
solves the sample average problem (3), we can generate
approximate samples from f by pulling back samples
from g under Sn, or equivalently by pushing forward
samples from g under Tn = (Sn)−1. As Sn is de-
fined via KL projection, it can also be viewed as a
non-parametric maximum likelihood estimator (MLE).
Universal approximation is insufficient to reason about
nonparametric estimators, since slow rates can happen,
as we shall show next. In practice, Sn can be esti-
mated by parameterizing the space of triangular maps
via neural networks or some basis expansion.

Figure 2 illustrates the problem at hand in the case
where the target density f is an unbalanced mixture
of three bivariate normal distributions centered on the
vertices of an equilateral triangle with spherical covari-
ance. Panel (a) of Figure 2 displays level curves of f .
The source density g is a standard bivariate normal
density. We solved for Sn by parametrizing its compo-
nents via a Hermite polynomial basis, as described by
Marzouk et al. (2016). Since g is log-concave, the opti-
mization problem (3) is convex and can be minimized
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efficiently using standard convex solvers. By the change
of variables formula, f(x) = g(S∗(x))|det(JS∗(x)|,
where |det(JS∗(x))| denotes the Jacobian determi-
nant of the KR map S∗ from f to g. Hence we take
fn(x) = g(Sn(x))|det(JSn(x))| as an estimate of the
target density. Panels (b)-(d) of Figure 2 display the
level curves of fn as the sample size n increases from
1500 to 5000. The improving accuracy of the density
estimates fn as the sample size grows is consistent with
our convergence results in Section 3.

Slow Rates Without combining both a tail condi-
tion (e.g., common compact support) and a smooth
regularity condition (e.g., uniformly bounded deriva-
tives) on the function class F of the target density f ,
we show that convergence of any estimator Tn of the
direct map T from g to f can occur at an arbitrarily
slowly rate.
Theorem 2.1. Let F denote the class of infinitely
continuously differentiable Lebesgue densities supported
on the d-dimensional hypercube [0, 1]d and uniformly
bounded by 2, i.e., supf∈F ‖f‖∞ ≤ 2. Let g be any
Lebesgue density on Rd.

For any n ∈ N, the minimax risk in terms of KL
divergence is bounded below as

inf
Tn

sup
f∈F

Ef [KL(f |fn))] ≥ 1/2,

where Tn : Rd → [0, 1]d is any estimate of the KR map
from g to f based on an iid sample of size n from f ,
and fn = Tn#g is the density estimate of f .

Theorem 2.1 underscores the importance of going be-
yond universal approximation results to study the sam-
ple complexity and statistical performance of KR es-
timation. The proof of this “no free lunch” theorem
follows an idea of Birgé (1986); see also Birgé (1983);
Bousquet et al. (2004); Devroye (1983, 1995); Devroye
et al. (1996); Györfi et al. (2002). We construct a
family of densities in F built from rapidly oscillating
perturbations of the uniform distribution on [0, 1]d.
Such densities are intuitively difficult to estimate. As
is evident from the construction, however, a suitable
uniform bound on the derivatives of the functions in
F would preclude the existence of such pathological
examples. As such, in what proceeds we aim to derive
convergence rate bounds under the assumption that
the target and source densities f and g, respectively,
are compactly supported and sufficiently regular, in
the sense that they lie in a Sobolev space of functions
with continuous and uniformly bounded partial deriva-
tives up to order s for some s ≥ 1. For simplicity, our
theoretical treatment assumes that f and g are fixed,
but our convergence rate bounds as stated also bound
the worst-case KL risk over any f and g lying in the

L∞ Sobolev ball F =
{
h :
∑
|α|≤s ‖Dαh‖∞ ≤ B

}
for

any fixed B > 0.

Theorem 2.1 provides a lower bound on the minimax
KL risk of KR estimation over the hypothesis class
of target densities F . The following stronger result,
based on work of Devroye (1983, 1995); Devroye et al.
(1996), demonstrates that convergence can still occur
arbitrarily slowly for the task of estimating a single
target density.

Theorem 2.2. Let g be any Lebesgue density on Rd
and {an}∞n=1 any sequence converging to zero with
1/512 ≥ a1 ≥ a2 ≥ · · · ≥ 0. For every sequence of
KR map estimates Tn : Rd → Rd based on a random
sample of size n, there exists a target distribution f on
Rd such that

Ef [KL(f |fn)] ≥ an,

where fn = Tn#g is the density estimate of f .

3 STATISTICAL CONSISTENCY

Setting the stage for the theoretical results, let us
introduce the main assumptions.

Assumption 3.1. The Lebesgue densities f and g
have convex compact supports X ,Y ⊂ Rd, respectively.

Assumption 3.2. The densities f, g are bounded away
from 0, i.e., infx∈X ,y∈Y{f(x), g(y)} > 0

Assumption 3.3. Let s ≥ 1 be a positive integer. The
densities f and g are s-smooth on their supports, in
the sense that

Dαf(x) :=
∂|α|

∂xα1
1 · · · ∂xαdd

f(x)

is continuous for every multi-index α = (α1, . . . , αd) ∈
Zd+ satisfying |α| := ∑d

k=1 αk ≤ s and similarly for g.

It is well known that the KR map S∗ from f to g is
as smooth as the densities f and g, but not smoother
(Santambrogio, 2015). As such, under Assumptions
3.1-3.3 we can restrict our attention from T , the set of
monotone non-decreasing upper triangular maps, to the
smaller function class of monotone upper triangular
maps that are s-smooth, of which the KR map S∗

is an element. That is, we can limit our search for
an estimator Sn solving (3) to a space of functions
with more structure. This restriction is crucial to
establishing a rate of convergence of the estimator Sn,
as we can quantitatively bound the complexity of spaces
of smooth maps. We discuss these developments in
further detail below. Proofs of all results are included
in the Supplement.
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Figure 2: (a) Level curves of the normal mixture density f(x) = g(S∗(x))|det(JS∗(x))|; (b)-(d) Level curves of
the density estimates fn(x) = g(Sn(x))|det(JSn(x))| trained on n = 1500, 3000, 5000 samples, respectively.

3.1 Upper Bounds On Metric Entropy

We first derive useful estimates of the metric entropy
of function classes previously introduced. Assumptions
3.1-3.3 allow us focus on smooth subsets of the class of
monotone upper triangular maps T .
Definition 3.1. Let M > 0. For s ∈ Zd+ and k ∈ [d],
let s̃k = (sk + 1, sk+1, . . . , sd). Define T (s, d,M) ⊂
T as the convex subset of strictly increasing upper
triangular maps S : X → Y satisfying:

1. infk∈[d],x∈X DkSk(x) ≥ 1/M ,

2. ‖DαSk‖∞ ≤M for all k ∈ [d] and αk:d � s̃k.

For s ∈ N, we also define the homogeneous smoothness
class T (s, d,M) = T ((s, . . . , s), d,M).

Condition 1 guarantees that the Jacobian term in (3) is
bounded, and condition 2 guarantees smoothness of the
objective. In Section 4 below we consider densities with
anisotropic smoothness, in which case the number of
continuous derivatives sk varies with the coordinate xk.
For simplicity and clarity of exposition, we first focus
on the case when f and g are smooth in a homogeneous
sense, as in Assumption 3.3, and we work in the space
T (s, d,M). As remarked above, the KR map S∗ from
f to g lies in T (s, d,M∗) under Assumptions 3.1-3.3
when M∗ is sufficiently large. The same is true of the
direct map T ∗ from g to f . In fact, all of the results
stated here for the sampling map S∗ also hold for the
direct map T ∗, possibly with minor changes (although
the proofs are generally more involved). For brevity,
we mainly discuss S∗ and direct the interested reader
to the Supplement.

Henceforth, we consider estimators Sn lying in
T (s, d,M∗) that minimize the objective in (3). We
leave the issue of model selection, i.e., determining
a sufficiently large M∗ such that T (s, d,M∗) con-
tains the true KR map S∗, for future work. In
the Supplement, we calculate explicit quantitative

bounds on the complexity of this space as measured
by the metric entropy in the d-dimensional L∞ norm
‖S‖∞,d := maxk∈[d] ‖Sk‖∞. The compactness of
(T (s, d,M∗), ‖ · ‖∞,d) derived as a corollary of this
result is required to establish the convergence of a se-
quence of estimators Sn to S∗, and the entropy bound
on the corresponding class of Kullback-Leibler loss func-
tions over T (s, d,M∗) in Proposition 3.3 below allows
us to go further by deriving bounds on the rate of
convergence in KL divergence. This result builds off
known entropy estimates for function spaces of Besov
type (Birgé, 1983, 1986; Nickl and Pötscher, 2007).

Definition 3.2. For a map S ∈ T , define the loss
function ψS : X → R by

ψS(x) = log f(x)− log g(S(x))−
d∑
k=1

logDkSk(x).

We also define the class Ψ(s, d,M∗) of loss functions
over T (s, d,M∗) as

Ψ(s, d,M∗) := {ψS : S ∈ T (s, d,M∗)}.

By (2) we have E[ψS(X)] = KL(S#f |g), where X ∼ f .
Similarly, the sample average of ψS is the objective
in (3). Hence, to derive finite sample bounds on the
expected KL loss, we must study the sample complexity
of the class Ψ(s, d,M∗). Define N(ε,Ψ(s, d,M∗), ‖·‖∞)
as the ε-covering number of Ψ(s, d,M∗) with respect
to the uniform norm ‖ · ‖∞, and the metric entropy

H(ε,Ψ(s, d,M∗), ‖·‖∞) = logN(ε,Ψ(s, d,M∗), ‖·‖∞).

Proposition 3.3. Under Assumptions 3.1-3.3, the
metric entropy of Ψ(s, d,M∗) in L∞(X ) is bounded as

H(ε,Ψ(s, d,M∗), ‖ · ‖∞) . ε−d/s.

Consequently, Ψ(s, d,M∗) is totally bounded and there-
fore precompact in L∞(X ).
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Here, for functions a(ε), b(ε) (or sequences an, bn) we
write a(ε) . b(ε) (resp. an . bn) if a(ε) ≤ Cb(ε) (resp.
an ≤ Cbn) for all ε (resp. n) for some constant C > 0.
For brevity, in this result and those that follow, we
suppress scalar prefactors that do not depend on the
sample size n. As our calculations in the Supplement
demonstrate, the constant prefactors in this and sub-
sequent bounds are polynomial in the ‖ · ‖∞ radius
M∗ and exponential in the dimension d. This depen-
dence resembles other results on sample complexity of
transport map estimators (Hütter and Rigollet, 2021).

3.2 Statistical Consistency

For the sake of concision, we introduce empirical pro-
cess notation (Dudley, 1967, 1968; van der Vaart and
Wellner, 1996; Wainwright, 2019). LetH be a collection
of functions from X ⊆ Rd → R measurable and square
integrable with respect to P , a Borel probability mea-
sure on Rd. Let Pn denote the empirical distribution
of an iid random sample X1, . . . , Xn drawn from P .
For a function h ∈ H we write Ph := E[h(X)], Pnh :=
1
n

∑n
i=1 h(Xi), and ‖Pn − P‖H := suph∈H |(Pn − P )h|.

Let P denote the probability measure with density
f . With these new definitions, the sample average
minimization objective in (3) can be expressed PnψS ,
while the population counterpart in (2) reads as PψS =
KL(S#f |g). Suppose the estimator Sn of the sampling
map S∗ is a random element in T (s, d,M∗) obtained
as a near-minimizer of PnψS . Let

Rn = PnψSn − inf
S∈T (s,d,M)

PnψS ≥ 0

denote the approximation error of our optimization
algorithm. Our goal is to bound the loss PψSn . Fix ε >
0 and let S̃ be any deterministic element of T (s, d,M∗)
that nearly minimizes PψS , i.e., suppose

PψS̃ ≤ inf
S∈T (s,d,M∗)

PψS + ε.

It follows that

PψSn − inf
S
PψS ≤ 2‖Pn − P‖Ψ(s,d,M∗) +Rn + ε.

As ε > 0 was arbitrary, we conclude that

PψSn − inf
S
PψS ≤ 2‖Pn − P‖Ψ(s,d,M∗) +Rn. (4)

Controlling the deviations of the empirical process
‖Pn−P‖Ψ(s,d,M∗) as in Lemma 3.4 allows us to bound
the loss of the estimator Sn and establish consistency
and a rate of convergence in KL divergence.
Lemma 3.4. Under Assumptions 3.1-3.3, we have

E‖Pn − P‖Ψ(s,d,M∗) .


n−1/2, d < 2s,

n−1/2 log n, d = 2s,

n−s/d, d > 2s.

Remark 3.5. Consider the case where 2s > d, for
example when both f, g are the densities of the stan-
dard normal distribution, then we have by the cen-
tral limit theorem that for any S ∈ T (s, d,M∗),√
n [PnψS − PψS ] converge in law towards a cen-

tered Gaussian distribution. Therefore, for any S ∈
T (s, d,M∗), E‖Pn − P‖Ψ(s,d,M∗) is at least as large as

sup
S∈T (s,d,M∗)

E [|PnψS − PψS |] & n−1/2

which shows that our results are tight at least in the
smooth regime.

The proof of Lemma 3.4 relies on metric entropy
integral bounds established by Dudley (1967) and
van der Vaart and Wellner (1996). Although we have
phrased the sample complexity bounds in Lemma 3.4
in terms of the expectation of the empirical process
‖Pn − P‖Ψ(s,d,M), high probability bounds can be ob-
tained similarly (Wainwright, 2019).

Hence, the following KL consistency theorem is ob-
tained as a direct result of Lemma 3.4 and the risk
decomposition (4).

Theorem 3.6. Suppose Assumptions 3.1-3.3 hold. Let
Sn be a near-optimizer of the functional S 7→ PnψS on
T (s, d,M∗) with remainder Rn given by

Rn = PnψSn − inf
S∈T (s,d,M∗)

PnψS = oP (1).

Then PψSn
p→ PψS∗ = 0, i.e., Sn is a consistent

estimator of S∗ with respect to KL divergence.

Moreover, if Rn is bounded in expectation as

E[Rn] . E‖Pn − P‖Ψ(s,d,M∗),

then the expected KL divergence of Sn is bounded as

E[PψSn ] .


n−1/2, d < 2s,

n−1/2 log n, d = 2s,

n−s/d, d > 2s.

Remark 3.7. Note that, as we work on a compact
set, we also obtain the rates of convergence of Sn with
respect to the Wasserstein metric thanks to Pinsker’s
inequality:

E[W (Sn#f, g)] .


n−1/4, d < 2s,

n−1/4 log n, d = 2s,

n−s/2d, d > 2s.

where for any probability measures µ and ν on Rd
with finite first moments, we denote W (µ, ν) the
Wasserstein-1 distance between µ and ν.
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Uniform Convergence Although Theorem 3.6 only
establishes a weak form of consistency in terms of the
KL divergence, we leverage this result to prove strong
consistency, in the sense of uniform convergence in prob-
ability, in Theorem 3.8. The proof requires understand-
ing the regularity of the KL divergence with respect to
the topology induced by the ‖ · ‖∞,d norm. In the Sup-
plement, we establish that KL is lower semicontinuous
in ‖ · ‖∞,d utilizing the weak lower semicontinuity of
KL proved by Donsker and Varadhan (1975).

Theorem 3.8. Suppose Assumptions 3.1-3.3 hold. Let
Sn be any near-optimizer of the functional S 7→ PnψS
on T (s, d,M∗), i.e., suppose

PnψSn = inf
S∈T (s,d,M∗)

PnψS + oP (1).

Then ‖Sn − S∗‖∞,d p→ 0, i.e, Sn is a consistent esti-
mator of S∗ with respect to the uniform norm ‖ · ‖∞,d .

Inverse Consistency We have proved consistency
of the estimator Sn of the sampling map S∗, pushing
forward the target f to the source g. We can also get
the consistency and an identical rate of convergence
of Tn = (Sn)−1 estimating T ∗ = (S∗)−1, although
the proof of the analog to Theorem 3.8 establishing
uniform consistency of Tn is much more involved. We
defer to the Supplement for details.

4 LOG-CONCAVITY, DIMENSION
ORDERING, JACOBIAN FLOWS

Sobolev-type Rates Under Log-concavity Sup-
pose the source density g is log-concave. Then
minS∈T (s,d,M) PnψS is a convex problem; moreover if
g is strongly log-concave, strong convexity follows. The
user can choose a convenient g, such as a multivariate
Gaussian with support truncated to a compact convex
set. In this case, we can establish a bound on the rate
of convergence of Sn to S∗ in the L2 Sobolev-type norm

‖S‖2
H1,2
f (X )

:=

d∑
k=1

{
‖Sk‖2L2

f (X ) + ‖DkSk‖2L2
f (X )

}
.

Here ‖ · ‖L2
f (X ) denotes the usual L2 norm integrating

against the target density f .

Theorem 4.1. Suppose Assumptions 3.1-3.3 hold. As-
sume further that g is m-strongly log-concave. Let Sn
be a near-optimizer of the functional S 7→ PnψS on
T (s, d,M∗) with remainder Rn satisfying

E[Rn] . E‖Pn − P‖Ψ(s,d,M∗).

Then Sn converges to the true sampling map S∗ with

respect to the norm H1,2
f (X ) norm with rate

E‖Sn − S∗‖2
H1,2
f (X )

.


n−1/2, d < 2s,

n−1/2 log n, d = 2s,

n−s/d, d > 2s,

With more work, we can establish Sobolev convergence
rates of the same order in n for Tn = (Sn)−1 to T ∗ =
(S∗)−1, yet now in the appropriate norm ‖ · ‖H1,2

g (Y);
see details in the Supplement.

Remark 4.2. Note that here we obtain the rates with
respect to the H1,2

f (X ) norm from which we deduce
immediately similar rates for the H1,p

f (X ) norm with
p ≥ 2. In addition, for fixed p, under Assumptions 3.1-
3.3, the H1,p

f (X ) norm is equivalent to H1,p(X ) norm
with the Lebesgue measure as the reference measure.
Finally, here we show the rates of the strong consistency
of our estimator with respect H1,·

f (X ) norm as we do
not require any additional assumptions on the higher
order derivatives of the maps living in T (s, d,M∗).
Additional assumptions on these derivatives may lead
to the convergence rates of higher order derivatives of
our estimate with respect to the Hk,p

f (X ), k > 1 norm
which is beyond the scope of the present paper.

Dimension Ordering Suppose now that the
smoothness of the target density f is anisotropic. That
is, assume f(x1, . . . , xd) is sk-smooth in xk for each
k ∈ [d]. As there are d! possible ways to order the co-
ordinates, the question arises: how should we arrange
(x1, . . . , xd) such that the estimator Sn converges to
the true KR map S∗ at the fastest possible rate? Papa-
makarios et al. (2017) provide a discussion of this issue
in the context of autoregressive flows in Section 2.1
therein; they construct a simple 2D example in which
the model fails to learn the target density if the wrong
order of the variables is chosen.

This relates to choices made in neural architectures
for normalizing flows on images and texts. Our results
suggest here that one would rather start with the coor-
dinates (i.e. data parts) that are the least smooth and
make their way through the triangular construction to
the most smooth ones. We formalize the anisotropic
smoothness of the KR map as follows.

Assumption 4.1. Let s = (s1, . . . , sd) ∈ Zd+ be a
multi-index with sk ≥ 1 for all k ∈ [d]. The density f
is s-smooth on its support, in the sense that

Dαf(x) :=
∂|α|

∂xα1
1 · · · ∂xαdd

f(x)

exists and is continuous for every multi-index α =
(α1, . . . , αd) ∈ Zd+ satisfying α � s, i.e., αk ≤ sk
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for every k ∈ [d]. Furthermore, we assume that
g(y) is (‖s‖∞, . . . , ‖s‖∞)-smooth with respect to y =
(y1, . . . , yd) on Y.

As the source density g is a degree of freedom in the
problem, we are free to impose this assumption on g.
Note that (‖s‖∞, . . . , ‖s‖∞)-smoothness of g is equiva-
lent to ‖s‖∞-smoothness of g as defined in Assumption
3.3. The results that follow are slight variations on
those in Sections 3.1 and 3.2 adapted to the anisotropic
smoothness of the densities posited in Assumption 4.1.

Under Assumptions 3.1, 3.2, and 4.1, there exists some
M∗ > 0 such that the KR map S∗ from f to g lies in
T (s, d,M∗); see the Supplement for a proof. We also
define the class of loss functions

Ψ(s, d,M∗) = {ψS : S ∈ T (s, d,M∗)},

which appear in the objective PnψS . Hence, we can
proceed as above to bound the metric entropy and
obtain uniform convergence and Sobolev-type rates for
estimators in the function class T (s, d,M∗). Appealing
to metric entropy bounds for anisotropic smoothness
classes (Birgé, 1986, Proposition 2.2), we have the
following analog of Lemma 3.4.

Lemma 4.3. For k ∈ [d], let dk = d − k + 1 and

σk = dk

(∑d
j=k s

−1
j

)−1

. Under Assumptions 3.1, 3.2,
and 4.1, we have

E‖Pn − P‖Ψ(s,d,M∗) .
d∑
k=1

cn,k.

where we define

cn,k =


n−1/2, dk < 2σk,

n−1/2 log n, dk = 2σk,

n−σk/dk , dk > 2σk.

Lemma 4.3 is proved via a chain rule decomposition
of relative entropy which relies upon the triangular-
ity of the hypothesis maps T (s, d,M∗). From here we
can repeat the analysis in Section 3.2 to obtain con-
sistency and bounds on the rate of convergence of the
estimators Sn and Tn = (Sn)−1 of the sampling map
S∗ and the direct map T ∗ = (S∗)−1, respectively, in
the anisotropic smoothness setting of Assumption 4.1.
All the results in these Sections are true with

∑
k cn,k

replacing the rate under isotropic smoothness.

In order to minimize this bound to obtain an optimal
rate of convergence, we should order the coordinates
(x1, . . . , xd) such that σk is as large as possible for each
k ∈ [d]. Inspecting the definition of σk in Lemma 4.3,
we see that this occurs when s1 ≤ · · · ≤ sd.

Theorem 4.4. The bound on the rate of convergence∑
k cn,k is minimized when s1 ≤ · · · ≤ sd, i.e., when

the smoothness of the target density f in the direction
xk increases with 1 ≤ k ≤ d.

Our result on the optimal ordering of coordinates com-
plements the following theorem of Carlier et al. (2010).
Theorem 4.5. Let f and g be compactly supported
Lebesgue densities on Rd. Let ε > 0 and let γε be an
optimal transport plan between f and g for the cost

cε(x, y) =

d∑
k=1

λk(ε)(xk − yk)2,

for some weights λk(ε) > 0. Suppose that for all k ∈
{1, . . . , d − 1}, λk(ε)/λk+1(ε) → 0 as ε → 0. Let S∗
be the Knöthe-Rosenblatt map between f and g and
γ∗ = (id× S∗)#f the associated transport plan. Then
γε  γ∗ as ε → 0. Moreover, should the plans γε be
induced by transport maps Sε, then these maps would
converge to S∗ in L2(f) as ε→ 0.

With this theorem in mind, the KR map S∗ can be
viewed as a limit of optimal transport maps Sε for
which transport in the dth direction is more costly
than in the (d − 1)th, and so on. The anisotropic
cost function cε(x, y) inherently promotes increasing
regularity of Sε in xk for larger k ∈ [d]. Theorem 4.4
establishes the same heuristic for learning triangular
flows based on KR maps to build generative models.

In particular, our result suggests that we should order
the coordinates such that f is smoothest in the xd
direction. Intuitively, this is because the component
maps S∗k , k ∈ [d] all depend on the dth coordinate of the
data. As such, we should leverage smoothness in xd to
stabilize all of our estimates as much as possible. If not,
we risk propagating error throughout. In comparison,
only the estimate of the first component S∗1 depends on
x1. Since our estimator depends comparatively little
on x1, we should order the coordinates so that f is
least smooth in the x1 direction.

Jacobian Flows Suppose now we solve

inf
S

KL(S#f |g) = inf
S
PψS

where the candidate map S is a composition of smooth
monotone increasing upper triangular maps U j and
orthogonal linear transformations Σj for j ∈ [m], i.e.,

S(x) = Um ◦ Σm ◦ · · · ◦ U1 ◦ Σ1(x). (5)

We call S a Jacobian flow of order m. This model
captures many popular autoregressive flows (Kobyzev
et al., 2020), such as Real NVP (Dinh et al., 2017), in
which the Σj are “masking” permutation matrices.
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For simplicity, in this section we assume that f and
g are supported on the unit ball Bd(0, 1) ⊂ Rd cen-
tered at the origin. Since Σj are orthogonal, we have
Σj(Bd(0, 1)) = Bd(0, 1). Hence, to accommodate the
setup of the preceding sections, we can guarantee that
S maps from X = Bd(0, 1) to Y = Bd(0, 1) by requiring
supx∈Bd(0,1) ‖U j(x)‖2 ≤ 1 for j ∈ [m].
Definition 4.6. Define the class Jm(Σ, s,M) of s-
smooth Jacobian flows of order m to consist of those
maps S of the form (5) such that

1. Σ = (Σ1, . . . ,Σm) are fixed orthogonal matrices,

2. supx∈Bd(0,1) ‖U j(x)‖2 ≤ 1 for j ∈ [m],

3. U j ∈ T (s, d,M) for j ∈ [m].

We also define Ψm(Σ, s,M) = {ψS : S ∈ Jm(Σ, s,M)}.

By expanding our search to Jm(Σ, s,M), we are not tar-
geting the KR map S∗ and we are no longer guaranteed
uniqueness of a KL minimizer. Nevertheless, we can
study the performance of estimators Sn ∈ Jm(Σ, s,M)
as compared to minimizers of KL in Jm(Σ, s,M), which
are guaranteed to exist by compactness of Jm(Σ, s,M)
and lower semicontinuity of KL in ‖ · ‖∞,d.
Since the Σj are orthogonal, we have |det(JΣj(x))| =
|det(Σj)| = 1, and therefore

ψS(x) = log[f(x)/g(S(x))]−
m∑
j=1

d∑
k=1

logDkU
j
k(xj),

where we define

xj = Σj ◦ U j−1 ◦ Σj−1 ◦ · · · ◦ U1 ◦ Σ1(x), j ∈ [m].

Hence, with a loss decomposition mirroring that in
Definition 3.2, we can apply the methods of the pre-
ceding sections to establish quantitative limits on the
loss incurred by the estimates Sn in finite samples.
Theorem 4.7. Suppose f, g are s-smooth and sup-
ported on Bd(0, 1). Let Sn be a near-optimizer of the
functional S 7→ PnψS on Jm(Σ, s,M) with

Rn = PnψSn − inf
S∈Jm(Σ,s,M)

PnψS = oP (1).

Further, let S0 be any minimizer of S 7→ PψS on
Jm(Σ, s,M). It follows that

PψSn
p→ PψS0 .

Moreover, if Rn is bounded in expectation as

E[Rn] . E‖Pn − P‖Ψm(Σ,s,M),

then the expected KL divergence of Sn is bounded as

E[PψSn ]− PψS0 .


n−1/2, d < 2s,

n−1/2 log n, d = 2s,

n−s/d, d > 2s.

5 DISCUSSION

Related Work Previous work on KR couplings has
focused on existence and approximation questions in
relation to universal approximation (Bogachev et al.,
2005; Alexandrova, 2006; Huang et al., 2018). This
universal approximation property of KR maps has fre-
quently motivated normalizing flows from a theoretical
viewpoint; see Sec. 3 in Kobyzev et al. (2020). KR
maps have been used for various learning and inference
problems (Kobyzev et al., 2020; Spantini et al., 2018;
Marzouk et al., 2016; El Moselhy and Marzouk, 2012).

Kong and Chaudhuri (2020) study the expressiveness
of basic types of normalizing flows, such as planar flows,
Sylvester flows, and Householder flows. For d = 1, they
show that such flows are universal approximators. How-
ever, when the distributions lives in a d-dimensional
space with d ≥ 2, the authors provide a partially neg-
ative answer to the universal approximation power of
these flows. For example, they exhibit cases where
Sylvester flows cannot recover the target distributions.
Their results can be seen as complementary to ours as
we give examples of arbitrary slow statistical rates and
we develop the consistency theory of KR-type flows.

Jaini et al. (2020) investigate the properties of the in-
creasing triangular map required to push a tractable
source density with known tails onto a desired target
density. Then they consider the general d-dimensional
case and show similarly that imposing smoothness con-
dition on the increasing triangular map will result in
a target density with the same tail properties as the
source. Such results suggest that without any assump-
tion on the target distribution, the transport map might
be too irregular to be estimated. These results echo
our assumptions on the target to obtain fast rates and
complement ours by focusing on the tail behavior while
we focus on the consistency and the rates.

Conclusion We have established the uniform consis-
tency and convergence rates of statistical estimators
of the Knöthe-Rosenblatt rearrangement, highlighting
the anisotropic geometry of function classes at play in
triangular flows. Our results also lead to statistical
guarantees for Jacobian flows. Identifying other func-
tion classes of source densities that lead to faster rates
is an interesting venue for future work.
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This Supplement collects the numerical illustrations to illustrate the theoretical results in the main text, as well
as the detailed proofs of the theoretical results stated in the main text. Sec. B.1 details the derivations of the
Kullback-Leibler objective. Sec. B.2 details the proof of the slow rates in Sec. 2 of main text. Sec. B.3 provides
estimates of metric entropy from Sec. 3 of main text. Sec. B.4 provides the proofs of the statistical consistency
from Sec. 3 of main text. Sec. B.5 provides the proofs of the Sobolev rates under log-concavity of g from Sec. 4
of main text. Sec. B.6 expands on the dimension ordering from Sec. 4 of main text. Sec. B.7 expands on the
extension to Jacobian flow from Sec. 4 of main text.

A Numerical illustrations

We conducted numerical experiments to illustrate our theoretical results. Code to reproduce our experiments is
available at https://github.com/njirons/krc-stat.

To estimate the KR map, we used Unconstrained Monotonic Neural Networks Masked Autoregressive Flows
(UMNN-MAF), a particular triangular flow introduced in Wehenkel and Louppe (2019), with code to implement
the model provided therein. UMNN-MAF learns an invertible monotone triangular map targeting the KR
rearrangement via KL minimization

S(x; θ) =


S1(x1, . . . , xd; θ)
S1(x2, . . . , xd; θ)

...
Sd−1(xd−1, xd; θ)

Sd(xd; θ)

 ,

where each component Sk(xk:d; θ) is parametrized as the output of a neural network architecture that can learn
arbitrary monotonic functions. Specifically, we have

Sk(xk:d, θ) =

∫ xk

0

fk(t, hk(x(k+1):d;φk);ψk)dt+ βk(hk(x(k+1):d;φk);ψk), (6)

where hk(·;φk) : Rd−k−1 → Rq is a q-dimensional neural embedding of x(k+1):d and βk(·;ψk) : Rq → R is
parametrized by a neural network. Each fk is a strictly positive function parametrized by a neural network, which
guarantees that

∫ xk
0
fk is increasing in xk. Here the total parameter θ is defined as θ = {(ψk, φk)}dk=1. Further

details of the model are provided in Wehenkel and Louppe (2019). We note that UMNN-MAF is captured by the
model setup in our theoretical treatment of KR map estimation.

The model was trained via log-likelihood maximization using minibatch gradient descent with the Adam optimizer
(Kingma and Ba, 2015) with minibatch size 64, learning rate 10−4, and weight decay 10−5. The integrand network
architecture defined in equation (6) consisted of 4 hidden layers of width 100. Following Wehenkel and Louppe
(2019), the architecture of the embedding networks is the best performing MADE network (Germain et al.,
2015) used in NAF (Huang et al., 2018). We used 20 integration steps to numerically approximate the integral
in equation (6). The source density g is a bivariate standard normal distribution. The population negative
log-likelihood loss, which differs from the KL objective by a constant factor (namely, the negative entropy of the
target density f), was approximated by the empirical negative log-likelihood on a large independently generated
test set of size N = 105.

Figure 3 exhibits our results for UMNN-MAF trained on 8 two-dimensional datasets considered in Wehenkel and
Louppe (2019) and Grathwohl et al. (2019). Heatmaps of the target densities are displayed in the top rows, while
the bottom rows show the log-likelihood convergence rates as the sample size increases from n = 103 to n = 104

on a log-log scale. For each training sample size, we repeated the experiment 100 times. We report the mean of
the loss over the 100 replicates with 95% error bars.

These experiments highlight the impact of the ordering of coordinates on the convergence rate, as predicted by
Theorem 4.4. The blue curves correspond to first estimating the KR map along the horizontal x1 axis, then the
vertical axis conditional on the horizontal, x2|x1. The orange curves show the reverse order, namely estimating the
KR map along the vertical x2 axis first. The 5 densities in the top rows (2 spirals, pinwheel, moons, and banana)
and the bottom right (swiss roll) are asymmetric in (x1, x2) (i.e., f(x1, x2) is not exchangeable in (x1, x2)). These
densities exhibit different convergence rates depending on the choice of order. The remaining 3 densities in the

https://github.com/njirons/krc-stat
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Figure 3: Experimental comparison of convergence rates on 2D examples (top: density; bottom: rates) for the 8
datasets considered in Wehenkel and Louppe (2019); Grathwohl et al. (2019).
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Figure 4: Experimental comparison of convergence rates on 2D examples (top: density; bottom: rates) for the 3
datasets considered in Kong and Chaudhuri (2020) and the sine density with varying frequency k2 ∈ {3, 5, 7}.

bottom rows (8 gaussians, 2 circles, checkerboard) are symmetric in (x1, x2) and do not exhibit this behavior,
which is to be expected. We also note that a linear trend (on the log-log scale) is visible in the plots for smaller n,
which aligns with the convergence rates established in Theorem 3.6. For larger n, however, approximation error
dominates and the loss plateaus.

As an illustrative example, we focus in on the top right panel of Figure 3, which plots the banana density f(x1, x2)
corresponding to the random variables

X2 ∼ N(0, 1)

X1|X2 ∼ N(X2
2/2, 1/2).

It follows that f is given by

f(x1, x2) = f(x1|x2)f(x2)

∝ exp
{
−
(
x1 − x2

2/2
)2} · exp

{
−x2

2/2
}
.

Intuitively, estimating the normal conditional f(x1|x2) = N(x2
2/2, 1/2) and the standard normal marginal f(x2)

should be easier than estimating f(x2|x1) and f(x1). Indeed, as x1 increases, we see that f(x2|x1) transitions
from a unimodal to a bimodal distribution. As such, we expect that estimating the KR map S(21) from f(x2, x1)
to the source density g should be more difficult than estimating the KR map S(12) from f(x1, x2) to g. This is
because the first component of S(21) targets the conditional distribution f(x2|x1) and the second component
targets f(x1), while the first component of S(12) targets f(x1|x2) and the second component targets f(x2). Indeed,
this is what we see in the top right panels of Figure 3, which shows the results of fitting UMNN-MAF to estimate
S(12) (orange) and S(21) (blue). As expected, we see that estimates of S(21) converge more slowly than those of
S(12). These results are consistent with the findings of Papamakarios et al. (2017), who observed this behavior in
estimating the banana density with MADE (Germain et al., 2015).

In the first 3 panels of Figure 4, we repeat the experimental setup on the 3 normal mixture densities considered by
Kong and Chaudhuri (2020). The conclusions drawn from Figure 3 are echoed here. We observe no dependence
in the convergence rates on the choice of variable ordering, since the target densities f(x1, x2) are exchangeable
in (x1, x2). Furthermore, we observe a linear convergence rate as predicted by Theorem 3.6.

Inspired by the pathological densities constructed in the proof of the “no free lunch” Theorem 2.1, which are
rapidly oscillating perturbations of the uniform density on the hypercube, we now consider the sine density on
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the hypercube, defined as

f(x1, . . . , xd) = 1 +

d∏
j=1

sin(2πkjxj)

where kj ∈ Z for j ∈ [d], and x = (x1, . . . , xd) ∈ [0, 1]d. The smoothness of f , as measured by any Lp norm of its
derivative(s), decreases as the frequency |kj | increases. As such, f parametrizes a natural family of functions
to test our theoretical results concerning the statistical performance of KR map estimation as a function of the
sample size n, the smoothness of the underlying target density, and the order of coordinates. The rightmost
panels of Figure 4 plot the sine density with k1 = 1, k2 = 3 (top row) and convergence rates for the choices k1 = 1
and k2 ∈ {3, 5, 7} (bottom row). The dashed lines correspond to estimating the marginal x1 first, followed by
x2|x1; the solid lines indicate the reverse order. We again see an effect of coordinate ordering on convergence
rates. It is also apparent that convergence slows down as k2 increases and f becomes less smooth.

B Detailed proofs

B.1 Kullback-Leibler objective

Derivation of (2). By the change of variables formula (1), the density S#f is given by

(S#f)(y) = f(S−1(y))|det(J(S−1)(y))|.

Consequently, KL(S#f |g) rewrites as

KL(S#f |g) =

∫
Y

(S#f)(y) log

(
(S#f)(y)

g(y)

)
dy

=

∫
Y
f(S−1(y))|det(J(S−1)(y))| log

(
f(S−1(y))|det(J(S−1)(y))|

g(y)

)
dy

=

∫
Y
f(S−1(y))|det(JS(S−1(y)))|−1 log

(
f(S−1(y))

g(y)|det(JS(S−1(y)))|

)
dy (inverse function theorem)

=

∫
X
f(x)|det(JS(x))|−1 log

(
f(x)

g(S(x))|det(JS(x))|

)
· | det(JS(x))| dx (x := S−1(y))

=

∫
X
f(x) log

(
f(x)

g(S(x))|det(JS(x))|

)
dx

= EX∼f {log f(X)− log g(S(X))− log |det(JS(x))|}

= EX∼f

{
log f(X)− log g(S(X))−

d∑
k=1

logDkSk(X)

}
.

The last line follows because S is assumed to be upper triangular and monotone non-decreasing, and therefore

|det(JS(x))| =
d∏
k=1

DkSk(x).

Note that in the above calculation, we have also established that

KL(S#f |g) = KL(f |S−1#g),

for any diffeomorphism S : Rd → Rd, since

KL(S#f |g) =

∫
X
f(x) log

(
f(x)

g(S(x))|det(JS(x))|

)
dx

=

∫
X
f(x) log

(
f(x)

(S−1#g)(x)

)
dx (change of variables)

= KL(f |S−1#g).

This completes the proof.
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B.2 Slow rates

B.2.1 Proof of Theorem 2.1

Our proof follows the argument in Section V of Birgé (1986).

Proof of Theorem 2.1. For fixed ε ∈ (0, 1), let h̃(x; ε) be a C∞ bump function on R satisfying

1. 0 ≤ h̃(x; ε) ≤ 1 ∀x ∈ R,

2. h̃(x; ε) = 1 on the interval [ε/4, 1/2− ε/4],

3. h̃(x; ε) = 0 outside of the interval [0, 1/2].

Now for r ∈ N, define the function hε,r : [0, 1]d → [−1, 1] by

hε,r(x) = h̃(x1r; ε)− h̃(x1r − 1/2; ε).

It is clear that hε,r is smooth, supx∈[0,1]d |hε,r(x)| ≤ 1, and
∫
hε,r(x)dx = 0. Therefore, 1 + hε,r ∈ F is a smooth

Lebesgue density on [0, 1]d uniformly bounded by 2. Also note that |hε,r(x)| = 1 whenever [ε/4 ≤ x1r ≤ 1/2− ε/4]
or [1/2 + ε/4 ≤ x1r ≤ 1 − ε/4]. Furthermore, the support of hε,r is contained in the set [0, 1/r] × [0, 1]d−1. It
follows that

TV(1 + hε,r, 1− hε,r) =
1

2

∫
|(1 + hε,r(x))− (1− hε,r(x))|dx

=

∫
|hε,r(x)|dx

≥
∫

[ε/4≤x1r≤1/2−ε/4]∪[1/2+ε/4≤x1r≤1−ε/4]

1 dx1

=
1− ε
r

,

and

TV(1 + hε,r, 1− hε,r) =

∫
|hε,r(x)|dx

≤
∫

[0,1/r]

1 dx1

= 1/r.

As we will see, these bounds on the total variation imply that the perturbations 1 + hε,r, 1− hε,r are sufficiently
similar to make identification a challenging task, but sufficiently different to incur significant loss when mistaken
for each other.

Now define the translates hi(x; ε, r) = hε,r
(
x1 − i−1

r , x2, . . . , xd
)
, which are disjointedly supported with support

contained in Hi = [(i− 1)/r, i/r]× [0, 1]d−1 for i = 1, . . . , r. Hereafter, we suppress dependence of hi on ε, r for
notational convenience. Consider the family of densities

F(ε, r) =

{
1 +

r∑
i=1

δihi : δi = ±1

}
⊂ F

with cardinality 2r. For δ ∈ {±1}r we write

fδ = 1 +

r∑
i=1

δihi.
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The worst-case KL risk on F of any density estimate fn = Tn#g derived from a KR map estimate Tn can be
bounded below as

sup
f∈F

Ef [KL(f |fn)] ≥ sup
f∈F(ε,r)

Ef [KL(f |fn)]

≥ sup
f∈F(ε,r)

Ef [2TV(f, fn)2] (Pinsker’s inequality)

≥ sup
f∈F(ε,r)

2Ef [TV(f, fn)]2. (Jensen’s inequality)

We aim to lower bound the total variation risk on F(ε, r). We have

sup
f∈F(ε,r)

Ef [TV(f, fn)] ≥ 2−r
∑

f∈F(ε,r)

Ef [TV(f, fn)]

= 2−r
∑

δ∈{±1}r
Efδ [TV (fδ, fn)] ,

i.e, the worst-case risk is larger than the Bayes risk associated to the uniform prior on F(ε, r). Now note that

TV (fδ, fn) =
1

2

∫
|fn(x)− fδ(x)|dx

=
1

2

∫ ∣∣∣∣∣fn(x)−
(

1 +

r∑
i=1

δihi(x)

)∣∣∣∣∣ dx
=

1

2

r∑
i=1

∫
Hi

|fn(x)− (1 + δihi(x))|dx. ({Hi} are disjoint)

Define
`i(fn) =

1

2

∫
Hi

|fn(x)− (1 + hi(x))|dx, `′i(fn) =
1

2

∫
Hi

|fn(x)− (1− hi(x))|dx

and note that, by the triangle inequality,

`i(fn) + `′i(fn) ≥ 1

2

∫
Hi

|(1 + hi(x))− (1− hi(x))|dx =

∫
|hi(x)|dx ≥ 1− ε

r
.

Writing Fnδ to denote the cdf of an iid sample of size n from fδ, we then have

2−r
∑
δ

Efδ [TV (fδ, fn)] = 2−r
r∑
i=1

{∑
δi=1

Efδ [`i(fn)] +
∑
δi=−1

Efδ [`′i(fn)]

}

=
1

2

r∑
i=1

{∫
`i(fn)d

[
21−r

∑
δi=1

Fnδ

]
+

∫
`′i(fn)d

[
21−r

∑
δi=−1

Fnδ

]}

≥ 1

2

r∑
i=1

{∫
[`i(fn) + `′i(fn)]d

(
21−r

∑
δi=1

Fnδ ∧ 21−r
∑
δi=−1

Fnδ

)}

≥ 1− ε
2r

r∑
i=1

∫
d

(
21−r

∑
δi=1

Fnδ ∧ 21−r
∑
δi=−1

Fnδ

)

:=
1− ε

2r

r∑
i=1

π

(
21−r

∑
δi=1

Fnδ , 2
1−r

∑
δi=−1

Fnδ

)
,

where x ∧ y = min(x, y). In the last line we defined the testing affinity π between two distribution functions
Fp, Fq with Lebesgue densities p, q,

π(Fp, Fq) =

∫
d(Fp ∧ Fq) =

∫
(p ∧ q)dx,
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which satisfies the well known identity
π(Fp, Fq) = 1− TV(p, q).

Since min is concave, Jensen’s inequality implies that

π

(
21−r

∑
δi=1

Fnδ , 2
1−r

∑
δi=−1

Fnδ

)
≥ 21−r

∑
(δ,δ′)∈∆i

π(Fnδ , F
n
δ′),

where ∆i = {(δ, δ′) : δi = 1, δ′i = −1, δj = δ′j ∀j 6= i}. For any (δ, δ′) ∈ ∆i, we have

π(Fnδ , F
n
δ′) = 1− TV(fδ, f

′
δ)

= 1− 1

2

∫
|fδ(x)− fδ′(x)|dx

= 1−
∫
|hi(x)|dx

≥ 1− 1

r
.

Hence, we conclude that

π

(
21−r

∑
δi=1

Fnδ , 2
1−r

∑
δi=−1

Fnδ

)
≥ 21−r

∑
∆i

(
1− 1

r

)
= 1− 1

r
.

Thus, putting this all together, we have shown that

sup
f∈F(ε,r)

Ef [TV(f, fn)] ≥ 1− ε
2r

r∑
i=1

(
1− 1

r

)
=

1− ε
2

(
1− 1

r

)
.

Sending ε→ 0 and r →∞, it follows that

sup
f∈F(ε,r)

Ef [TV(f, fn)] ≥ 1/2,

and hence
sup
f∈F

Ef [KL(f |fn)] ≥ sup
f∈F(ε,r)

2Ef [TV(f, fn)]2 ≥ 1/2.

This completes the proof. Note that, with a little extra work, the lower bound can be improved to d/2 using the
chain rule of entropy, since we have considered here perturbations hε,r varying only in the x1 dimension.

B.2.2 Proof of Theorem 2.2

Proof. Let hn denote the first marginal of the density estimate fn = Tn#g. Note that hn is a density on R.
Defining π1 : Rd → R to be the projection along the first factor, we have

hn = π1#fn = (π1 ◦ Tn)#g.

By Problem 7.5 in Devroye et al. (1996), for any positive sequence 1/16 ≥ b1 ≥ b2 · · · converging to zero and any
density estimate hn there exists a density h on R such that

E
{∫
|h(x)− hn(x)|dx

}
≥ bn.

Letting TV denote the total variation distance, this inequality can be rewritten as

2E[TV(h, hn)] ≥ bn.
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Setting an = b2n/2, which satisfies a1 ≤ 1/512, we find that

E[KL(h|hn))] ≥ E[2 · TV(h, hn)2] (Pinsker’s inequality)

≥ 2E[TV(h, hn)]2 (Jensen’s inequality)

≥ b2n/2
= an.

Finally, let f = h⊗d be the density on Rd defined as a d-fold product of h. By the chain rule of relative entropy,
it follows that

E[KL(f |fn)] ≥ E[KL(h|hn)] ≥ an.

This completes the proof. Note that, with a little extra work, the lower bound can be improved to d · an by
looking at the univariate conditional densities of fn and using the chain rule of entropy, since we have only
considered the first marginal of fn here.

B.3 Upper bounds on metric entropy

We begin by defining relevant Sobolev function spaces, for which metric entropy bounds are known.
Definition B.1. For X ⊆ Rd, define the function space

Ds(X ) = {φ : Dαφ are uniformly continuous for all |α| ≤ s}.

and its subset

Cs(X ) =

φ : X → R :
∑

0≤|α|≤s

‖Dαφ‖∞ <∞

 ∩Ds(X ).

endowed with the Sobolev norm
‖φ‖Hs,∞(X ) =

∑
|α|≤s

‖Dαφ‖∞.

Proposition B.2 (Corollary 3, Nickl and Pötscher (2007)). Assume X ⊂ Rd is compact and let F be a bounded
subset of Cs(X ) with respect to ‖ · ‖Hs,∞(X ) for some s > 0. The metric entropy of F in the L∞ norm is bounded
as

H(ε,F , ‖ · ‖∞) . ε−d/s.

With this result in hand, we can proceed to the proof of Proposition 3.3.

Proof of Proposition 3.3. This is a direct consequence of Proposition B.2. Indeed, under Assumptions 3.1-3.3 and
Definition 3.1, for every S ∈ T (s, d,M), every term in exp(ψS(x)) is bounded away from 0 and s-smooth with
uniformly bounded derivatives. Since log is smooth away from 0, it follows that that every ψS ∈ Ψ(s, d,M) is
s-smooth with uniformly bounded derivatives. Consequently, Ψ(s, d,M) is a bounded subset of Cs(X ) for every
M > 0.

We also provide a metric entropy bound for the space T (s, d,M), which in particular establishes compactness of
T (s, d,M) with respect to ‖ · ‖∞,d (although this can also be proved with the Arzelà-Ascoli theorem).

Proposition B.3. Let s = (s1, . . . , sd) ∈ Zd+, dk = d − k + 1, and σ̃k = dk

(
(sk + 1)−1 +

∑d
j=k+1 s

−1
j

)−1

for
k ∈ [d]. Under Assumptions 3.1, 3.2, and 4.1 the space T (s, d,M) is totally bounded (and therefore precompact)
with respect to the uniform norm ‖ · ‖∞,d with metric entropy satisfying

H(ε, T (s, d,M), ‖ · ‖∞,d) ≤
d∑
k=1

ck(ε/2M)−dk/σ̃k

for some positive constants ck, k ∈ [d] independent of ε and M .
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This result relies on known metric entropy bounds for anisotropic smoothness classes.

Proposition B.4 (Prop. 2.2, Birgé (1986)). Let s = (s1, . . . , sd) ∈ Zd+ and σ = d
(∑d

j=1 s
−1
j

)−1

. Assume that

Φ is a family of functions Rd → R with common compact convex support of dimension d and satisfying

sup
φ∈Φ,α�s

‖Dαφ‖∞ <∞.

The metric entropy of Φ in the L∞ norm is bounded as

H(ε,Φ, ‖ · ‖∞) . ε−d/σ.

We now proceed to the proof of Proposition B.3.

Proof of Proposition B.3. For every k ∈ [d], define the set of functions Xk:d → R given by

Tk = {Sk : S ∈ T (s, d,M)}.

By Definition 3.1, for each k ∈ [d] we have that Tk/M satisfies the assumptions of Proposition B.4, and hence

nk := H(ε, Tk, L∞) ≤ ck(ε/M)−dk/σ̃k ,

for some ck > 0 independent of ε and M .

Now note that T (s, d,M) ⊆ ∏d
k=1 Tk. For each k ∈ [d], let {gk,1, . . . , gk,nk} be a minimal ε-cover of Tk with

respect to the L∞ norm, and define the subset

E = {fi1,...,id = (g1,ii , . . . , gd,id) : 1 ≤ ik ≤ nk} ⊂
d∏
k=1

Tk

which has cardinality
∏d
k=1 nk. Now fix an arbitrary f ∈∏d

k=1 Tk. For each k ∈ [d], we can find some gk,ik such
that ‖fk − gk,ik‖∞ ≤ ε. It follows that

‖f − fi1,...,id‖∞,d = max
k∈[d]

‖fk − gk,ik‖∞ ≤ ε.

Hence, E is an ε-cover of
∏d
k=1 Tk and so

H

(
ε,

d∏
k=1

Tk, ‖ · ‖∞,d
)
≤ log

(
d∏
k=1

nk

)
=

d∑
k=1

nk.

To conclude the proof, we claim that T (s, d,M) ⊆∏d
k=1 Tk implies that

H (ε, T (s, d,M), ‖ · ‖∞,d) ≤ H
(
ε/2,

d∏
k=1

Tk, ‖ · ‖∞,d
)
.

Indeed, suppose {f1, . . . , fm} ⊆
∏d
k=1 Tk is a finite (ε/2)-cover of

∏d
k=1 Tk. For each j = 1, . . . ,m, if T (s, d,M)∩

B∞(fj , ε/2) is non-empty, we define gj to be an element of this intersection. Here B∞(fj , ε/2) denotes the ball of
radius ε/2 in

∏d
k=1 Tk centered at fj with respect to the norm ‖ · ‖∞,d. Now let g ∈ T (s, d,M) be arbitrary. Since

g ∈∏d
k=1 Tk, there is some j ∈ {1, . . . ,m} such that ‖g− fj‖∞,d ≤ ε/2. This implies that gj is defined and hence

‖g − gj‖∞,d ≤ ‖g − fj‖∞,d + ‖fj − gj‖∞,d ≤ ε/2 + ε/2 = ε.

It follows that {gj} is a finite ε-cover of T (s, d,M) with respect to ‖ · ‖∞,d, which establishes the claim and
completes the proof.
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B.4 Statistical consistency

B.4.1 Proof of Lemma 3.4

Proof of Lemma 3.4. Assume d < 2s. By Theorem 2.14.2 in van der Vaart and Wellner (1996), since functions in
Ψ(s, d,M) are by definition uniformly bounded there exist positive constants C1, C2 such that

E‖Pn − P‖Ψ(s,d,M) ≤
C1C2√
n

∫ 1

0

√
1 +H(C2ε,Ψ(s, d,M), ‖ · ‖∞)dε

.
1√
n

∫ 1

0

√
1 + ε−d/sdε (Proposition 3.3)

. n−1/2. (d < 2s)

The last line follows since d < 2s implies that the integral on the right side is finite.

When d ≥ 2s, the metric entropy integral above is no longer finite. In this case, we appeal to Dudley’s metric
entropy integral bound (Dudley, 1967) (see also Theorem 5.22 in Wainwright (2019)), which states that there
exists positive constants C3, D > 0 for which

E‖Pn − P‖Ψ(s,d,M) ≤ min
δ∈[0,D]

{
δ +

C3√
n

∫ D

δ

√
H(ε,Ψ(s, d,M), ‖ · ‖∞)dε

}

≤ min
δ∈[0,D]

{
δ +

C3
√
c√

n

∫ D

δ

ε−d/2sdε

}
. (Proposition 3.3)

First assume d = 2s. Evaluating the integral in Dudley’s bound, we obtain

E‖Pn − P‖Ψ(s,d,M) ≤ min
δ∈[0,D]

{
δ +

C3
√
c√

n
[logD − log δ]

}
.

To minimize the expression on the right side in δ, we differentiate with respect to δ and find where the derivative
vanishes. The bound is optimized by choosing δ proportional to n−1/2, which implies that E‖Pn − P‖Ψ(s,d,M) .
n−1/2 log n.

Now assume d > 2s. Evaluating the integral in Dudley’s bound, we obtain

E‖Pn − P‖Ψ(s,d,M) ≤ min
δ∈[0,D]

{
δ +

C3
√
c√

n

∫ ∞
δ

ε−d/2sdε

}
= min
δ∈[0,D]

{
δ +

C4√
n
δ1−d/2s

}
.

We optimize this bound by choosing δ proportional to n−s/d, which implies that E‖Pn −P‖Ψ(s,d,M) . n−s/d.

B.4.2 Proof of Theorem 3.6

Before continuing on to the proof of Theorem 3.6, we first prove that indeed S∗ ∈ T (s, d,M∗) for M∗ > 0
sufficiently large, and similarly for T ∗.
Lemma B.5. Let s = (s1, . . . , sd) ∈ Zd+. Under Assumptions 3.1, 3.2, and 4.1, there exists some M∗ > 0 such
that the KR map S∗ from f to g lies in T (s, d,M) for all M ≥M∗.

By symmetry, if we switch the roles of f and g in Assumption 4.1, we see that the same is true for the KR map
T ∗ from g to f . In particular, if s = (s, . . . , s) for some s ∈ N, then we are in the case of Assumption 3.3. It then
follows from Lemma B.5 that S∗, T ∗ ∈ T (s, d,M∗) for M∗ > 0 sufficiently large.

The proof of Lemma B.5 requires an auxiliary result establishing the regularity of marginal and conditional pdfs
and quantile functions associated to a smooth density.
Lemma B.6. Let h be a density on Rd with compact support Z . Assume further that h is strictly positive on Z
and s-smooth in the sense of Assumption 4.1, where s = (s1, . . . , sd) ∈ Zd+. The following hold.
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1. For any index set J ⊆ [d], the marginal density h(xJ ) =
∫
Rd−|J| h(xJ , x−J )dx−J is sJ -smooth. Similarly, the

conditional density h(xJ |x−J) = h(xJ ,x−J )
h(x−J ) is s-smooth as a function of x = (xJ , x−J).

2. For any J ⊆ [d], k ∈ Jc, the univariate conditional cdf H(xk|xJ) =
∫ xk
−∞ h(yk|xJ)dyk is (sk + 1, sJ)-smooth

as a function of (xk, xJ).

3. Assume further that Z is convex. Then the conditional quantile function H−1(pk|xJ ) is (sk + 1, sJ )-smooth
as a function of (pk, xJ) for any J ⊆ [d], k ∈ Jc, pk ∈ [0, 1].

Proof. For (1), the regularity assumptions on h imply that we can differentiate under the integral. For any
multi-index α � s satisfying α−J = 0 we have

Dαh(xJ) =

∫
Dαh(xJ , x−J)dx−J .

Since Dαh(xJ , x−J) is continuous and compactly supported by hypothesis, the dominated convergence theorem
implies that for any sequence xJ,n → xJ we have

Dαh(xJ,n) =

∫
Dαh(xJ,n, x−J)dx−J →

∫
Dαh(xJ , x−J)dx−J = Dαh(xJ).

This proves that h(xJ) is sJ -smooth. Since h > 0 on its support and x 7→ 1/x is a smooth function for x > 0,
this implies that 1/h(x−J ) is s−J -smooth. As products of differentiable functions are differentiable, we conclude
that h(xJ |x−J) = h(xJ , x−J)/h(x−J) is s-smooth.

For (2), the result from (1) implies that the univariate conditional density h(xk|xJ) is (sk, sJ)-smooth. For
any multi-index α � s satisfying αk = 0, we can repeat the differentiation-under-the-integral argument above,
combined with the dominated convergence theorem, to see that DαH(xk|xJ) is continuous. If αk 6= 0, we
apply the fundamental theorem of calculus to take care of one derivative in xk and then recall that h(xk|xJ) is
(sk, sJ)-smooth to complete the proof, appealing to Clairaut’s theorem to exchange the order of differentiation.
Note that this shows that H(xk|xJ) is (sk + 1, sJ)-smooth as a function of (xk, xJ).

For (3), the assumption that Z is convex, combined with the fact that h > 0 on its support, implies that H(xk|xJ )
is strictly increasing in xk. As such, H−1(pk|xJ) is defined, strictly increasing, and continuous in pk. Since
H(xk|xJ) is differentiable in xk, we have

∂

∂pk
H−1(pk|xJ) =

1
∂
∂xk

H(H−1(pk|xJ)|xJ)
=

1

h(H−1(pk|xJ)|xJ)
,

which is continuous in pk as a composition of continuous functions. Continuing in this way, we see that H−1(pk|xJ )
is (sk + 1)-smooth in pk.

For the other variables, note that the following relation holds generally:

H(H−1(pk|xJ)|xJ) = pk.

Defining the function
u(pk, xJ , xk) = H(xk|xJ)− pk,

we see that u is (∞, sJ , sk + 1)-smooth in its arguments (pk, xJ , xk) and satisfies

u(pk, xJ , H
−1(pk|xJ)) = 0.

Furthermore ∂
∂xk

u > 0 by assumption, since h > 0 on its support. Hence we can appeal to the implicit function
theorem (stated precisely below) to conclude that H−1(pk|xJ ) is (sk + 1, sJ )-smooth in (pk, xJ ). For example, for
any j ∈ J we can evaluate the partial derivative in xj by implicitly differentiating the above relation. Letting
xk(pk, xJ) = H−1(pk|xJ) we obtain

∂

∂xj
H(xk(pk, xJ)|xJ) =

∂H

∂xk
(xk(pk, xJ)|xJ) · ∂xk

∂xj
(pk, xJ) +

∂H

∂xj
(xk|xJ)

=
∂pk
∂xj

= 0.
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Rearranging terms and noting that ∂xk
∂xj

(pk, xJ) = ∂
∂xj

H−1(pk|xJ), we find that

∂

∂xj
H−1(pk|xJ) = −

∂H
∂xj

(H−1(pk|xJ)|xJ)

h(H−1(pk|xJ)|xJ)
.

Theorem B.7 (Implicit function theorem (Rudin, 1976)). Let u : Rn+m → Rm be continuously differentiable
and suppose u(a, b) = 0 for some (a, b) ∈ Rn × Rm. For (x, y) ∈ Rn × Rm define the partial Jacobians

Jnu(x, y) =

[
∂

∂xj
ui(a, b)

]
(i,j)∈[m]×[n]

Jmu(x, y) =

[
∂

∂yj
ui(a, b)

]
(i,j)∈[m]×[m]

,

and suppose that Jmu(a, b) is invertible. Then there exists an open neighborhood V ⊆ Rn of a such that there
exists a unique continuously differentiable function v : V → Rm satisfying v(a) = b, u(x, v(x)) = 0 for all x ∈ V ,
and

Jv(x) = −Jmu(x, v(x))−1Jnu(x, v(x)).

We now proceed to the proof of Lemma B.5.

Proof of Lemma B.5. By definition of the KR map, for each k ∈ [d] we have

S∗k(xk|x(k+1):d) = G−1
k (Fk(xk|x(k+1):d)|S∗(k+1):d(x)).

The requisite smoothness in Definition 3.1 of S∗k:d then follows from the chain rule of differentiation, appealing
to Assumption 4.1, and an application of Lemma B.6. Note also that xk 7→ G−1

k (Fk(xk|x(k+1):d)|S∗(k+1):d(x))
is strictly increasing as a composition of strictly increasing functions, since f, g are bounded away from 0 on
their supports by assumption. Defining T (s, d) ⊂ T as the subset of strictly increasing triangular maps that
are s-smooth (although not necessarily with uniformly bounded derivatives), we see that S∗ ∈ T (s, d). Since
T (s, d) = ∪M>0T (s, d,M), there exists some M∗ > 0 for which S∗ ∈ T (s, d,M∗). Since T (s, d,M1) ⊆ T (s, d,M2)
for all M1 ≤M2 by definition, we conclude that S∗ ∈ T (s, d,M) for all M ≥M∗.

With Lemma B.5 in hand, we can now prove Theorem 3.6.

Proof of Theorem 3.6. The theorem is a direct result of inequality (4) and Lemma 3.4. Indeed, since S∗ ∈
T (s, d,M∗) by Lemma B.5, we have infS∈T (s,d,M∗) PψS = PψS∗ = 0, and therefore

E[PψSn ] = E
{
PψSn − inf

S∈T (s,d,M∗)
PψS

}
≤ E

{
2‖Pn − P‖Ψ(s,d,M∗) +Rn

}
(inequality (4))

. E‖Pn − P‖Ψ(s,d,M∗).

Appealing to Lemma 3.4 establishes the stated bound on E[PψSn ]. To conclude that PψSn
p→ 0, we apply

Markov’s inequality:
P (PψSn ≥ ε) ≤ ε−1E[PψSn ]→ 0.

As ε > 0 was arbitrary, this completes the proof.

B.4.3 Proof of KL lower semicontinuity

Although Theorem 3.6 only establishes a weak form of consistency in terms of the KL divergence, we leverage
this result to prove strong consistency, in the sense of uniform convergence of Sn to S∗ in probability, in Theorem
3.8. The proof requires understanding the regularity of the KL divergence with respect to the topology induced
by the ‖ · ‖∞,d norm. Lemma B.8 establishes that KL is lower semicontinuous with respect to this topology. It
relies on the weak lower semicontinuity of KL proved by Donsker and Varadhan using their dual representation in
Lemma 2.1 of Donsker and Varadhan (1975).
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Lemma B.8. Under Assumptions 3.1-3.3, the functional S 7→ PψS on the domain T is lower semicontinuous
with respect to the uniform norm ‖ · ‖∞,d.

Proof. Assume ‖Sn−S‖∞,d → 0 for fixed maps Sn, S ∈ T . We first claim that νn := Sn#µ S#µ =: ν for any
probability measure µ. We will show that

∫
h dνn →

∫
h dν for all bounded continuous functions h ∈ Cb(Rd).

Note that
∫
h dνn =

∫
h ◦ Sn dµ. By assumption, h ◦ Sn is bounded and measurable with ‖h ◦ Sn‖∞ ≤ ‖h‖∞

for all n. Furthermore, h ◦ Sn → h ◦ S pointwise, since h is continuous. Then by the dominated convergence
theorem,

∫
|h ◦ Sn − h ◦ S| dµ→ 0. In particular, this implies that

∫
h dνn =

∫
h ◦ Sn dµ→

∫
h ◦ S dµ =

∫
h dν.

This proves the claim.

Combining this fact with the weak lower semicontinuity of KL divergence (Donsker and Varadhan, 1975) proves
the lemma. Indeed, since ‖Sn − S‖∞,d → 0 implies that Sn#µ S#µ for any µ, it follows that

PψS = KL(S#f |g)

≤ lim inf
n→∞

KL(Sn#f |g) (KL is weakly lower semicontinuous)

= lim inf
n→∞

PψSn .

Thus, S 7→ PψS on T is lower semicontinuous with respect to ‖ · ‖∞,d.

As a corollary, we also obtain an existence result for minimizers of S 7→ PψS on T (s, d,M).

Corollary B.9. Under Assumptions 3.1-3.3, for any M > 0 the minimum inf
S∈T (s,d,M)

PψS is attained.

Proof. This follows from the direct method of calculus of variations, since T (s, d,M) is compact with respect to
‖ · ‖∞,d (Proposition B.3) and S 7→ PψS is bounded below and lower semicontinuous with respect to ‖ · ‖∞,d.

B.4.4 Proof of Theorem 3.8

Proof. Recall that T (s, d,M∗) is compact with respect to ‖ ·‖∞,d. Together, lower semicontinuity of KL in ‖ ·‖∞,d
and compactness guarantee that the KR map S∗, which is the unique minimizer of S 7→ PψS over T (s, d,M∗), is
well-separated in T (s, d,M∗). In other words, for any ε > 0,

PψS∗ < inf
S∈T (s,d,M∗):‖S−S∗‖∞,d≥ε

PψS .

Indeed, suppose to the contrary that we can find a deterministic sequence S̃n ∈ T (s, d,M∗) satisfying ‖S̃n −
S∗‖∞,d ≥ ε such that PψS̃n → PψS∗ . Since T (s, d,M∗) is precompact with respect to ‖ · ‖∞,d, we can extract a
subsequence S̃nk converging to some S̃∗ ∈ T (s, d,M∗), which necessarily satisfies ‖S̃∗ − S∗‖∞,d ≥ ε. By lower
semicontinuity of S 7→ PψS with respect to ‖ · ‖∞,d, it follows that

PψS̃∗ ≤ lim inf
k→∞

PψS̃nk = PψS∗ .

We have a contradiction, since the KR map S∗ is the unique minimizer of S 7→ PψS . This proves the claim that
S∗ is a well-separated minimizer.

Now fix ε > 0 and define
δ = inf

S∈T (s,d,M∗):‖S−S∗‖∞,d≥ε
PψS − PψS∗ > 0.

It follows that
{‖Sn − S∗‖∞,d ≥ ε} ⊆ {PψSn − PψS∗ ≥ δ}.

We have shown PψSn
p→ PψS∗ in Theorem 3.6. As a consequence,

P (‖Sn − S∗‖∞,d ≥ ε) ≤ P (PψSn − PψS∗ ≥ δ)→ 0.

As ε > 0 was arbitrary, we have ‖Sn − S∗‖∞,d p→ 0.
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B.4.5 Uniform consistency of the inverse map

We have proved consistency of the estimator Sn of the sampling map S∗, which pushes forward the target density
f to the source density g. However, we require knowledge of the direct map T ∗ = (S∗)−1 to generate new
samples from f by pushing forward samples from g under T ∗. In this section we prove consistency and a rate of
convergence of the estimator Tn = (Sn)−1 of the direct map T ∗.

First note that KL(S#f |g) = KL(f |S−1#g) for any diffeomorphism S : Rd → Rd, as we proved in Section
B.1. As such, the consistency and rate of convergence of KL(Sn#f |g) obtained in Theorem 3.6 yield the same
results for the estimator Tn in terms of KL(f |Tn#g) under identical assumptions. We can also establish uniform
consistency of Tn as we did for Sn in Theorem 3.8, although the proof of this fact requires a bit more work.
Theorem B.10. Suppose Assumptions 3.1-3.3 hold. Let Sn be any near-optimizer of the functional S 7→ PnψS
on T (s, d,M∗), i.e., suppose

PnψSn = inf
S∈T (s,d,M∗)

PnψS + oP (1).

Let Tn = (Sn)−1. Then ‖Tn − T ∗‖∞,d p→ 0, i.e, Tn is a uniformly consistent estimator of T ∗.

The proof of Theorem B.10 relies heavily on the bounds on Sn and its derivatives posited in Definition 3.1, which we
utilize in conjunction with the inverse function theorem to uniformly bound the Jacobian JTn(y) = (JSn(Tn(y)))−1

over y ∈ Y and n ∈ N, thereby establishing uniform equicontinuity of the family of estimators {Tn}∞n=1. We
combine this uniform equicontinuity with the uniform consistency of Sn from Theorem 3.8 to complete the proof.

First we establish a lemma that allows us to bound the derivatives of the inverse map estimates Tn.
Lemma B.11. Suppose A ∈ Rd×d is an invertible upper triangular matrix satisfying

max
i,j∈[d],i<j

|Aij | ≤ L and min
j∈[d]
|Ajj | ≥ 1/M

for some positive L,M > 0. Then A−1 is upper triangular and the diagonal entries are bounded as

max
j∈[d]
|A−1
jj | ≤M.

Furthermore, the superdiagonal terms i, j ∈ [d] with i < j are bounded as

|A−1
ij | ≤M2L(ML+ 1)j−i−1.

Proof. Let D = diag(A) denote the matrix with diagonal entries Djj = Ajj for j ∈ [d] and zeros elsewhere. Note
that D is invertible since A is, and D−1 is diagonal with entries D−1

jj = 1/Ajj for j ∈ [d]. Let U = A−D denote
the strictly upper triangular part of A. Now note that

A−1 = (D + U)−1 = [D(I +D−1U)]−1 = (I +D−1U)−1D−1.

To calculate (I +D−1U)−1 we make use of the matrix identity

(I −X)

[
d−1∑
k=0

Xk

]
= I −Xd.

We plug in X = −D−1U and note that D−1U is strictly upper triangular, which implies that it is nilpotent of
degree at most d, i.e., (D−1U)d = 0. Hence, we obtain

(I +D−1U)

[
d−1∑
k=0

(−D−1U)k

]
= I − (−D−1U)d = I,

which implies that (I +D−1U)−1 =
∑d−1
k=0(−D−1U)k. It follows that

A−1 =

d−1∑
k=0

(−D−1U)kD−1.
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This shows that A−1 is upper triangular as a sum of products of upper triangular matrices. Note also that the
terms in the sum with k > 0 are strictly upper triangular. Hence, we see that diag(A−1) = D−1 and therefore
the diagonal entries of A−1 satisfy |A−1

jj | = 1
|Ajj | ≤M by hypothesis.

Now we bound the superdiagonal entries. By repeated application of the triangle inequality and appealing to the
bounds on Aij , we can bound A−1

ij for i < j as

|A−1
ij | =

∣∣∣∣∣
d−1∑
k=0

[(D−1U)kD−1]ij

∣∣∣∣∣
=

∣∣∣∣∣
d−1∑
k=1

[(D−1U)kD−1]ij

∣∣∣∣∣ (i < j)

≤
d−1∑
k=1

|[(D−1U)kD−1]ij |

≤
d−1∑
k=1

|[(MU)kM ]ij | (|D−1
jj | = |A−1

jj | ≤M)

=

d−1∑
k=1

Mk+1|(Uk)ij |.

Now let V denote the d× d matrix with ones strictly above the diagonal and zeros elsewhere, i.e.,

Vij =

{
1, i < j,

0, i ≥ j.

We now claim that for k ≥ 1,

(V k)ij =

{(
j−i−1
k−1

)
, k ≤ j − i

0, else.

Our proof of the claim proceeds by induction. The statement is clearly true for the base case k = 1 by definition
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of V . Suppose the claim holds up to k. It follows that

(V k+1)ij = (V k · V )ij

=

d∑
`=1

(V k)i`V`j

=

d∑
`=1

(
`− i− 1

k − 1

)
1[k≤`−i] · 1[`<j] (inductive step)

= 1[k+1≤j−i]

j−1∑
`=i+k

(
`− i− 1

k − 1

)

= 1[k+1≤j−i]

j−i−2∑
p=k−1

(
p

k − 1

)
(p := `− i− 1)

= 1[k+1≤j−i]

1 +

j−i−2∑
p=k

(
p

k − 1

)
= 1[k+1≤j−i]

1 +

j−i−2∑
p=k

[(
p+ 1

k

)
−
(
p

k

)] (Pascal’s formula)

= 1[k+1≤j−i]

{
1 +

(
j − i− 1

k

)
−
(
k

k

)}
(telescoping sum)

= 1k+1≤j−i

(
j − i− 1

k

)
.

This proves the claim for k + 1. The result then follows by induction.

Note now that |Uij | ≤ LVij for all i, j ∈ [d] by hypothesis. Again applying the triangle inequality and the
assumption maxi<j |Aij | ≤ L, it follows that

|A−1
ij | ≤

d−1∑
k=1

Mk+1|(Uk)ij |

≤
d−1∑
k=1

Mk+1|((LV )k)ij |

=

d−1∑
k=1

Mk+1Lk
(
j − i− 1

k − 1

)
1[k≤j−i]

=

j−i∑
k=1

Mk+1Lk
(
j − i− 1

k − 1

)

= M2L

j−i−1∑
`=0

(ML)`1j−i−1−`
(
j − i− 1

`

)
(` := k − 1)

= M2L(ML+ 1)j−i−1. (binomial formula)

This completes the proof.

We now use this lemma to establish strong consistency of the direct map estimator.

Proof of Theorem B.10. First note that convexity of X along with positivity f > 0 on X implies that the inverse
KR map T ∗ = (S∗)−1 is well-defined and continuous, as noted in Lemma B.5. Furthermore, by definition of
T (s, d,M∗), the inverse maps Tn = (Sn)−1 exist and are continuous also.
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We first prove that the sequence {Tn}∞n=1 is uniformly equicontinuous with respect to the `∞ norm ‖ · ‖∞ on Rd.
For a function S : X → Y let JS(x) denote the Jacobian matrix at x ∈ X . For a matrix A : Rd → Rd let ‖A‖p
denote the operator norm induced by the `p norm on Rd, i.e.,

‖A‖p = sup
{
‖Ax‖p : x ∈ Rd, ‖x‖p = 1

}
.

When p =∞, this norm is simply the maximum absolute row sum of the matrix:

‖A‖∞ = max
1≤i≤d

d∑
j=1

|Aij |.

We aim to bound ‖JTn(y)‖∞ uniformly in y ∈ Y, n ∈ N. Since {Sn} ⊂ T (s, d,M∗), the Jacobian matrix JSn(x)
is upper triangular for every x ∈ X and

max
i<j

sup
x∈X
|[JSn(x)]ij | = max

i<j
‖DjS

n
i ‖∞ ≤M∗.

Similarly, we also have that

min
j∈[d]

inf
x∈X
|[JSn(x)]jj | = min

j∈[d]
inf
x∈X
|DjS

n
j (x)| ≥ 1/M∗.

It follows that for each x ∈ X , the Jacobian JSn(x) satisfies the hypotheses of Lemma B.11 with L = M∗.
Applying the inverse function theorem, we conclude from the lemma that the entries of JTn(y) = (JSn(Tn(y)))−1

are bounded as

max
i<j

sup
y∈Y
|[JTn(y)]ij | ≤ (M∗)3((M∗)2 + 1)j−i−1,

max
j∈[d]

sup
y∈Y
|[JTn(y)]jj | ≤M∗.

It follows that the `∞ operator norm is bounded as

sup
y∈Y
‖JTn(y)‖∞ ≤ M∗ +

d∑
j=2

(M∗)3((M∗)2 + 1)j−2

=

{
M∗ + (M∗)3 · 1−((M∗)2+1)d−2

1−((M∗)2+1) , d ≥ 2,

M∗, d = 1.
(partial geometric series)

=

{
M∗((M∗)2 + 1)d−2, d ≥ 2,

M∗, d = 1.

= M∗ ·max{1, ((M∗)2 + 1)d−2}
:= C(d,M∗).

Here we have used the convention that
∑1
j=2 aj = 0 for any sequence {aj}. Now we apply the mean value

inequality for vector-valued functions to deduce that the {Tn} are uniformly equicontinuous. Indeed, for any
y1, y2 ∈ Y, we have

‖Tn(y1)− Tn(y2)‖∞ ≤ sup
y∈Y
‖JTn(y)‖∞‖y1 − y2‖∞

≤ C(d,M∗)‖y1 − y2‖∞.

Now let y ∈ Y and note that y = S∗(x) for some x ∈ X . We then have

‖Tn(y)− T ∗(y)‖∞ = ‖Tn(y)− T ∗(S∗(x))‖∞
= ‖Tn(y)− x‖∞
= ‖Tn(S∗(x))− Tn(Sn(x))‖∞
≤ C(d,M∗)‖S∗(x)− Sn(x)‖∞
≤ C(d,M∗)‖S∗ − Sn‖∞,d.



Nicholas Irons, Meyer Scetbon, Soumik Pal, Zaid Harchaoui

Since y ∈ Y was arbitrary, we can take the supremum over y on the left side to obtain the desired result:

‖Tn − T ∗‖∞,d ≤ C(d,M∗)‖S∗ − Sn‖∞,d p→ 0. (Theorem 3.8)

B.5 Sobolev rates under log-concavity

B.5.1 Proof of Theorem 4.1

Suppose the source density g is log-concave, which implies that S 7→ PψS and S 7→ PnψS are strictly convex
functionals. Since T (s, d,M) is convex,

min
S∈T (s,d,M)

PψS , min
S∈T (s,d,M)

PnψS

are convex optimization problems. If in addition g is strongly log-concave, we obtain strong convexity of the
objective, as we show in Lemma B.12.

Lemma B.12. Suppose Assumptions 3.1-3.3 hold. Assume further that the source density g is m-strongly
log-concave for some m > 0:

[∇ log g(y1)−∇ log g(y2)]T (y1 − y2) ≤ m‖y1 − y2‖22 ∀y1, y2 ∈ Y.

Then the map S 7→ PψS on T (s, d,M) is min{m,M−2}-strongly convex with respect to the L2 Sobolev-type norm

‖S‖2
H1,2
f (X )

:= ‖S‖2L2
f (X ) +

d∑
k=1

‖DkSk‖2L2
f (X ).

Proof. We first calculate the Gâteaux derivative of S 7→ PψS in the direction A ∈ T (s, d,M).

∇PψS(A) = lim
t→0

PψS+tA − PψS
t

= lim
t→0
−t−1E

{
[log g((S + tA)(X))− log g(S(X))]

+

d∑
k=1

[logDk(Sk + tAk)(X)− logDkSk(X)]

}

= −E
{
∇ log g(S(X))TA(X) +

∑
k

DkAk(X)

DkSk(X)

}
.

We can differentiate under the integral by the dominated convergence theorem, since the integrand is smooth and
compactly supported by Assumptions 3.1-3.3.

Now note that ∇PψS(A) is a bounded linear operator in A. Furthermore, since the KR map S∗ is the global
minimizer of S 7→ PψS , we have ∇PψS∗(A) = 0 for all A ∈ T (s, d,M) satisfying S∗ + tA ∈ T (s, d,M) for all t
sufficiently small. We now check the strong convexity condition. Assume A,B ∈ T (s, d,M) for some M > 0. We



Triangular Flows for Generative Modeling

have

(∇PψA −∇PψB)(A−B) = ∇PψA(A−B)−∇PψB(A−B)

= E{[∇ log g(B(X))−∇ log g(A(X))]T (A(X)−B(X))

+
∑
k

[
Dk(Ak −Bk)(X)

DkBk(X)
− Dk(Ak −Bk)(X)

DkAk(X)

]
}

≥ E

{
m‖A(X)−B(X)‖22 +

∑
k

[
Dk(Ak −Bk)(X)

DkBk(X)
− Dk(Ak −Bk)(X)

DkAk(X)

]}
(strong log-concavity of g)

= E

{
m‖A(X)−B(X)‖22 +

∑
k

[Dk(Ak −Bk)(X)]2

DkAk(X)DkBk(X)

}

≥ E

{
m‖A(X)−B(X)‖22 +

1

M2

∑
k

[Dk(Ak −Bk)(X)]2

}
(A,B ∈ T (s, d,M))

= m‖A−B‖2L2(f) +
1

M2

∑
k

‖Dk(Ak −Bk)‖2L2(f)

≥ min{m,M−2}‖A−B‖2H1(f).

Hence, S 7→ PψS satisfies the first-order strong convexity condition.

We now proceed to prove Theorem 4.1.

Proof of Theorem 4.1. By Lemma B.12, strong convexity of S 7→ PψS with respect to ‖ · ‖H1,2
f (X ) implies that

PψSn = PψSn − PψS∗

≥ ∇PψS∗(Sn − S∗) +
min{m, (M∗)−2}

2
‖Sn − S∗‖2

H1,2
f (X )

=
min{m, (M∗)−2}

2
‖Sn − S∗‖2

H1,2
f (X )

,

since ∇PψS∗(Sn−S∗) = 0, as S∗ minimizes PψS . We complete the proof by appealing to the bound on E[PψSn ]
established in Theorem 3.6.

B.5.2 Sobolev rates for the inverse map

Now we prove a rate of convergence of the inverse map estimator in the L2 Sobolev norm ‖ · ‖H1,2
g (Y) assuming

strong log-concavity, as in Theorem 4.1.

Theorem B.13. Suppose Assumptions 3.1-3.3 hold. Assume further that g is m-strongly log-concave. Let Sn be
a near-optimizer of the functional S 7→ PnψS on T (s, d,M∗) with remainder Rn satisfying

E[Rn] = E
{
PnψSn − inf

S∈T (s,d,M∗)
PnψS

}
. E‖Pn − P‖Ψ(s,d,M∗).

Then Tn = (Sn)−1 converges to T ∗ = (S∗)−1 with respect to the norm ‖ · ‖H1,2
g (Y) with rate

min{m, (M∗)−2}
2

E‖Tn − T ∗‖2H1(g) .


n−1/2, d < 2s,

n−1/2 log n, d = 2s,

n−s/d, d > 2s.
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Proof. We aim to bound ‖Tn − T ∗‖H1,2
g (Y) by a multiple of ‖Sn − S∗‖H1,2

f (X ), which will establish the same rate
of convergence for the inverse map (up to constant factors) as derived for Sn in Theorem 4.1.

In the proof of Theorem B.10 we showed that we can bound the `∞ matrix norm of the Jacobian JTn(y) uniformly
as

sup
y∈Y
‖JTn(y)‖∞ ≤ C(d,M∗) := M∗ ·max{1, ((M∗)2 + 1)d−2}.

Since JTn(y) is upper triangular, we can use the exact same argument to arrive at the same bound on the `1
matrix norm, which equals the maximum absolute column sum of the matrix,

‖A‖1 = max
1≤j≤d

d∑
i=1

|Aij |.

Hence we conclude that supy∈Y ‖JTn(y)‖1 ≤ C(d,M∗). Now we apply Hölder’s inequality for matrix norms to
conclude that

sup
y∈Y
‖JTn(y)‖2 ≤ sup

y∈Y

√
‖JTn(y)‖1‖JTn(y)‖∞ ≤ C(d,M∗).

Consequently, we can bound the first term in ‖ · ‖H1,2
g (Y) as

‖Tn − T ∗‖2L2
g(Y) =

∫
‖Tn(y)− T ∗(y)‖22 g(y)dy

=

∫
‖Tn(S∗(x))− T ∗(S∗(x))‖22 |det JS∗(x)|g(S∗(x))dx (Change of variables)

=

∫
‖Tn(S∗(x))− T ∗(S∗(x))‖22 f(x)dx (g = T#f)

=

∫
‖Tn(S∗(x))− Tn(Sn(x))‖22 f(x)dx

≤
∫

sup
y∈Y
‖JTn(y)‖22‖S∗(x)− Sn(x)‖22 f(x)dx

≤ C(d,M∗)2

∫
‖S∗(x)− Sn(x)‖22 f(x)dx

= C(d,M∗)2‖S∗ − Sn‖2L2
f (X ).

To bound the deviations of the first derivatives, note that

|DkT
n
k (y)−DkT

∗
k (y)| =

∣∣∣∣ 1

DkSnk (Tn(y))
− 1

DkS∗k(T ∗(y))

∣∣∣∣
=

∣∣∣∣DkS
n
k (Tn(y))−DkS

∗
k(T ∗(y))

[DkSnk (Tn(y))][DkS∗k(T ∗(y))]

∣∣∣∣
≤ (M∗)2 |DkS

n
k (Tn(y))−DkS

∗
k(T ∗(y))| (S, Sn ∈ T (s, d,M∗))

≤ (M∗)2 |DkS
n
k (Tn(y))−DkS

n
k (T ∗(y))|

+ (M∗)2 |DkS
n
k (T ∗(y))−DkS

∗
k(T ∗(y))|

≤ (M∗)2 sup
x∈X
‖∇(DkS

n
k )(x)‖2‖Tn(y)− T ∗(y)‖2

+ (M∗)2 |DkS
n
k (T ∗(y))−DkS

∗
k(T ∗(y))| . (mean value inequality)

Now note that Snk depends only on (xk, . . . , xd), and therefore, since Sn ∈ T (s, d,M∗) implies that
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maxj∈[d] ‖DjDkS
n
k ‖∞ ≤M∗, we have

sup
x∈X
‖∇(DkS

n
k )(x)‖2 = sup

x∈X

√√√√ d∑
j=1

|DjDkSnk (x)|2

= sup
x∈X

√√√√ d∑
j=k

|DjDkSnk (x)|2

≤

√√√√ d∑
j=k

(M∗)2

= M∗
√
d− k + 1.

Hence, we conclude that

|DkT
n
k (y)−DkT

∗
k (y)|2 ≤ {(M∗)3

√
d− k + 1‖Tn(y)− T ∗(y)‖2

+ (M∗)2 |DkS
n
k (T ∗(y))−DkS

∗
k(T ∗(y))|}2

≤ 2(M∗)6(d− k + 1)‖Tn(y)− T ∗(y)‖22
+ 2(M∗)4 |DkS

n
k (T ∗(y))−DkS

∗
k(T ∗(y))|2 . ((a+ b)2 ≤ 2(a2 + b2))

Summing over k and integrating against the density g, we obtain

d∑
k=1

‖DkT
n
k −DkT

∗
k ‖2L2

g(Y) =

d∑
k=1

∫
|DkT

n
k (y)−DkT

∗
k (y)|2g(y)dy

≤
d∑
k=1

∫
2(M∗)6(d− k + 1)‖Tn(y)− T ∗(y)‖22 g(y)dy

+

d∑
k=1

∫
2(M∗)4 |DkS

n
k (T ∗(y))−DkS

∗
k(T ∗(y))|2 g(y)dy

= (M∗)6d(d+ 1)‖Tn − T ∗‖2L2
g(Y)

+ 2(M∗)4
d∑
k=1

∫
|DkS

n
k (x)−DkS

∗
k(x)|2 g(S∗(x))|det JS∗(x)|dx

= (M∗)6d(d+ 1)‖Tn − T ∗‖2L2
g(Y)

+ 2(M∗)4
d∑
k=1

∫
|DkS

n
k (x)−DkS

∗
k(x)|2 f(x)dx

= (M∗)6d(d+ 1)‖Tn − T ∗‖2L2
g(Y) + 2(M∗)4

d∑
k=1

‖Dk(Snk − S∗k)‖2L2
f (X )

≤ (M∗)6d(d+ 1)C(d,M∗)2‖Sn − S∗‖2L2
f (X ) + 2(M∗)4

d∑
k=1

‖Dk(Snk − S∗k)‖2L2
f (X )
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Putting all of these calculations together, we have shown that

‖Tn − T ∗‖2
H1,2
g (Y)

= ‖Tn − T ∗‖2L2
g(Y) +

d∑
k=1

‖Dk(Tnk − T ∗k )‖2L2
g(Y)

≤ C(d,M∗)2‖Sn − S∗‖2L2
f (X ) + (M∗)6d(d+ 1)C(d,M∗)2‖Sn − S∗‖2L2

f (X )

+ 2(M∗)4
d∑
k=1

‖Dk(Snk − S∗k)‖2L2
f (X )

≤ C̃(d,M∗)2‖Sn − S∗‖2
H1,2
f (X )

,

where we define
C̃(d,M)2 = max{C(d,M)2[1 +M6d(d+ 1)], 2M4}.

Finally, we appeal to the bound on ‖Sn − S∗‖2
H1,2
f (X )

derived in Theorem 4.1 to conclude the proof:

min{m, (M∗)−2}
2

E‖Tn − T ∗‖2
H1,2
g (Y)

≤ min{m, (M∗)−2}
2

C̃(d,M∗)2E‖Sn − S∗‖2
H1,2
f (X )

.


n−1/2, d < 2s,

n−1/2 log n, d = 2s,

n−s/d, d > 2s.

B.6 Dimension ordering

B.6.1 Proof of Lemma 4.3

Now we establish a rate of convergence in the anisotropic smoothness setting. Define

ψkS(x) = log fk(xk|x(k+1):d)− log gk(Sk(x)|S(k+1):d(x)) + logDkSk(x),

which is (sk, . . . , sd)-smooth in (xk, . . . , xd) whenever each Sk is (sk + 1, sk+1, . . . , sd)-smooth in (xk, xk+1, . . . , xd)
by Assumption 4.1 and Lemma B.6. Since

f(x) =

d∏
k=1

fk(xk|x(k+1):d)

by the chain rule of densities, and similarly for g, we have

(Pn − P )ψS =

d∑
k=1

(Pn − P )ψkS .

Note that ψkS is a function of Sk:d and the dk variables (xk, . . . , xd) only. Defining

Ψk(s, d,M) = {ψkS : S ∈ T (s, d,M)},

we have the following analog of Proposition 3.3.

Proposition B.14. Under Assumptions 3.1, 3.2, and 4.1, the metric entropy of Ψk(s, d,M) in the L∞ norm is
bounded as

H(ε,Ψk(s, d,M), ‖ · ‖∞) . ε−dk/σk .

Consequently, Ψk(s, d,M) is totally bounded and therefore precompact in L∞(Xk:d).

Hence, we obtain in Lemma 4.3 a bound on the supremum process analogous to Lemma 3.4 now applied to the
family Ψk(s, d,M) of (sk, . . . , sd)-smooth maps ψkS .
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Proof of Lemma 4.3. The metric entropy integral bounds utilized in the proof of Lemma 3.4, combined with the
entropy bound on Ψk(s, d,M) derived in Proposition B.14, yield the following rate

E‖Pn − P‖Ψk(s,d,M) = E

{
sup

S∈T (s,d,M)

|(Pn − P )ψkS |
}
. cn,k.

Applying the triangle inequality then yields

E‖Pn − P‖Ψ(s,d,M) = E

{
sup

S∈T (s,d,M)

|(Pn − P )ψS |
}

= E

{
sup

S∈T (s,d,M)

∣∣∣∣∣
d∑
k=1

(Pn − P )ψkS

∣∣∣∣∣
}

≤
d∑
k=1

E

{
sup

S∈T (s,d,M)

∣∣(Pn − P )ψkS
∣∣}

=
d∑
k=1

E‖Pn − P‖Ψk(s,d,M)

.
d∑
k=1

cn,k.

B.7 Jacobian flows

Proof of Theorem 4.7. The proof is practically identical to that of Theorem 3.6, since the functions in Ψm(Σ, s,M)
are s-smooth with uniformly bounded derivatives (analogous to Ψ(s, d,M)) by definition of Jm(Σ, s,M), the
chain rule of differentiation, and the relation

ψS(x) = log[f(x)/g(S(x))]−
m∑
j=1

d∑
k=1

logDkU
j
k(xj),

where we define
xj = Σj ◦ U j−1 ◦ Σj−1 ◦ · · · ◦ U1 ◦ Σ1(x), j ∈ [m].

Hence, the entropy estimates for Ψ(s, d,M) in Proposition 3.3 hold also for Ψm(Σ, s,M). Thus, we obtain similar
bounds on E‖Pn − P‖Ψm(Σ,s,M) as in Lemma 3.4. Combining this with the risk decomposition (4) and the
argument in Theorem 3.6 completes the proof.

B.8 On separability

Suppose the source g is a product density, i.e., g(y) =
∏d
k=1 gk(yk) for some smooth densities gk : R→ R. As the

source density g is a degree of freedom in our problem, we are free to choose g to factor as such. For example, g
could be the standard normal density in d-dimensions or the uniform density on a box Y ⊂ Rd. We will show
that the task of estimating the KR map S∗ is amenable to distributed computation in this case.

Assumption B.1. The source density g factors as a product: g(y) =
∏d
k=1 gk(yk).

Recall the minimization objective defining our estimator:

− 1

n

n∑
i=1

[
log g(S(Xi)) +

d∑
k=1

logDkSk(Xi)

]
,

where Xi = (Xi
1, . . . , X

i
d), i = 1, . . . , n is an iid random sample from f . Here we omit the entropy term involving

f that does not depend on S without loss of generality. For a general density g, we can simplify the above
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expression by appealing to the chain rule for densities

g(y) =

d∏
k=1

gk(yk|yk+1, . . . , yd),

where

gk(yk|yk+1, . . . , yd) =

∫
g(y1, . . . , yd)dy1 · · · dyk−1∫
g(y1, . . . , yd)dy1 · · · dyk

.

The objective then becomes

− 1

n

n∑
i=1

d∑
k=1

[
log gk(Sk(Xi)|Sk+1(Xi), . . . , Sd(X

i)) + logDkSk(Xi)
]
.

When g is a product density we have gk(yk|yk+1, . . . , yd) = gk(yk) and we obtain

d∑
k=1

{
− 1

n

n∑
i=1

[
log gk(Sk(Xi)) + logDkSk(Xi)

]}
,

which is a separable objective over the component maps Sk. In this case, we can find our estimator Sn =
(Sn1 , . . . , S

n
d ) by solving for the components Snk in parallel.


