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Abstract

A recent line of work has focused on training
machine learning (ML) models in the perfor-
mative setting, i.e. when the data distribution
reacts to the deployed model. The goal in this
setting is to learn a model which both induces
a favorable data distribution and performs
well on the induced distribution, thereby min-
imizing the test loss. Previous work on finding
an optimal model assumes that the data dis-
tribution immediately adapts to the deployed
model. In practice, however, this may not
be the case, as the population may take time
to adapt to the model. In many applications,
the data distribution depends on both the cur-
rently deployed ML model and on the “state”
that the population was in before the model
was deployed. In this work, we propose a
new algorithm, Stateful Performative Gradi-
ent Descent (Stateful PerfGD), for minimizing
the performative loss even in the presence of
these effects. We provide theoretical guar-
antees for the convergence of Stateful Per-
fGD. Our experiments confirm that Stateful
PerfGD substantially outperforms previous
state-of-the-art methods.

1 INTRODUCTION

A recent line of work has sought to study how to ef-
fectively train machine learning (ML) models in the
presence of performative effects (Perdomo et al., 2020).
Performativity describes the scenario in which our de-
ployed model or algorithm effects the distribution of the
data or population which we are studying. Such effects
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can be expected when our model is used to make con-
sequential decisions concerning the population. As ML
becomes ever more ubiquitous across fields, considering
these performative effects also grows in importance.

For example, suppose a bank uses a ML model which
considers user features—e.g. income, number of open
credit lines, etc.—to decide which user should be
granted a loan. Based on the original data distribution,
the model learns that people with more credit lines open
are more likely to repay their loans. After the model
is deployed, some users may open more credit lines in
order to improve their chances of receiving a loan. In
this case, the data distribution has changed as a direct
consequence of deploying a specific model. More impor-
tantly, the distribution of the outcome—whether or not
the person repays his or her loan—given the features
has changed, leading to degraded model performance.

Formally, we assume that deploying a model induces
a new distribution over test data. The goal of model
training under performative distribution shift is to min-
imize performative risk, i.e., the model’s loss on the
distribution it induces. Recently, Izzo et al. (2021)
proposed a “meta-algorithm” (performative gradient
descent or PerfGD) to accomplish this when the in-
duced data distribution depends only on the deployed
model. This amounts to assuming that the data dis-
tribution immediately adapts to the deployed model,
irrespective of any other conditions. In practice, such a
model of performative effects may be overly simplistic.
It is likely that the induced distribution will depend not
only on the deployed model, but also some notion of
the “state” that the population was in when the model
was deployed. In the loan example, for instance, it
will take loan applicants some time to open new credit
lines, so we can expect the distribution to change grad-
ually as applicants have more time to adapt, before
finally settling to some steady-state distribution for the
deployed model. Optimizing the test loss in the state-
dependent performative case has been understudied in
the literature, and the addition of a state (which can-
not be controlled explicitly, only implicitly) increases
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the difficulty of the optimization. We propose a novel
algorithm and analysis to fill this important gap.

1.1 Our Contributions

In this work, we introduce a new algorithm for min-
imizing the performative risk in the state-dependent
performative setting. Our approach is similar in spirit
to that of Izzo et al. (2021), in that it amounts to esti-
mating an appropriate gradient and using it to perform
gradient descent. However, unlike Izzo et al. (2021),
we no longer have even direct sample access to the dis-
tribution that we care about (the “long-term” induced
distribution, i.e. the distribution which the population
will finally settle to over time), and this added technical
challenge makes previous algorithms for optimizing the
performative risk ineffective. Indeed, the only way to
apply previous approaches directly is to wait for many
time steps after each model deployment so that the
induced distribution stabilizes to its long-term limit.
Our algorithm overcomes this limitation by “simulating”
waiting, without actually needing to do so. We show
theoretically that this method accurately captures the
behavior of the long-term distribution. Experiments
confirm our theory and also show its improvement over
existing methods which are not specifically adapted to
the stateful setting.

1.2 Related Work

It has long been known that changes between training
and test distributions can lead to catastrophic failure
for many ML models. The general problem of non-
identical training and test distributions is known as
distribution shift or dataset shift, and there is an ex-
tensive literature which seeks to address these issues
when training models (Quionero-Candela et al., 2009;
Storkey, 2009; Moreno-Torres et al., 2012). Much of
the work in this area has been devoted to dealing with
shifts due to external factors outside of the modeler’s
control, and developing methods to cope with these
changes is still a highly active area of research (Koh
et al., 2021).

Perdomo et al. (2020) proposed studying distribution
shifts which arise due to the deployed model itself,
referred to as performative distribution shift. They
gave two simple algorithms—repeated risk minimiza-
tion (RRM) and repeated gradient descent (RGD)—
which converge to a stable point, i.e. a model which
is optimal for the distribution it induces. Other early
work in this area also explored stochastic algorithms
for finding stable points (Mendler-Dünner et al., 2020;
Drusvyatskiy and Xiao, 2020).

State-dependence in the performative setting was intro-
duced by Brown et al. (2020). A notion of optimality in

this setting is the minimization of the long-term perfor-
mative loss—that is, finding a model which minimizes
the average risk over an infinite time horizon, assuming
that we keep deploying that same model. Brown et al.
(2020) showed that the RRM procedure introduced by
Perdomo et al. (2020) converges to long-term stable
points. RRM and RGD rely on population-level quanti-
ties (e.g., minimization of the population-level risk or a
population-level gradient). Li and Wai (2021) extended
these results to show that stochastic optimization al-
gorithms also find a performatively stable point in the
stateful setting. We remark that these works differ
from ours in that they both seek to find a stable point
rather than an optimal point (i.e. one which minimizes
the test loss), and in general stable points can be far
from optimal (Izzo et al., 2021; Miller et al., 2021).

Izzo et al. (2021) proposed a method (PerfGD) for
computing the performative optimum in the non-state-
dependent case. Under parametric assumptions on
the performative distribution, they show how to con-
struct an approximate gradient of the performative loss
and then use it to perform gradient descent. Miller
et al. (2021) also studied optimizing the (stateless)
performative loss. The authors quantified when the
performative loss is convex and proposed using black-
box derivative-free optimization methods to find the
performative optimum. For certain classes of performa-
tive effects, they also propose a model-based approach
to minimizing the performative loss.

A related line of work studies the setting of strategic
classification (Hardt et al., 2016), which is a subclass of
the general performative setting. In this setting, it is as-
sumed that individual datum react to a deployed model
by a best-response mechanism, inducing a population-
level distribution shift. Dong et al. (2018) considered
optimizing the performative risk in an online version
of this problem and for a certain class of best-response
dynamics. Other recent work in this area includes de-
veloping practically useful tools for modeling strategic
behavior, such as differentiable surrogates for strategic
responses and regularizers for inducing socially advan-
tageous strategic responses (Levanon and Rosenfeld,
2021); incorporating more realistic limitations on the
best-response behavior of the agents (Ghalme et al.,
2021; Jagadeesan et al., 2021); examining the effects of
the relative frequency of updates between the modeler
and the agents (Zrnic et al., 2021); and studying the
statistical and computational complexity of strategic
classification in a PAC framework (Sundaram et al.,
2021). While strategic classification offers a wealth of
important examples of performative effects, the per-
formative setting is more general as the change in the
data need not arise from a best-response mechanism.

The original performative optimization problem can be
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framed as a derivative-free optimization (DFO) (Flax-
man et al., 2005) problem with a noisy function value
oracle. In the stateful case, however, we no longer even
have an unbiased noisy oracle for the function we wish
to optimize (the long-term performative risk), making
black-box DFO algorithms ineffective.

2 PROBLEM SETUP

We refer readers unfamiliar with the performative lit-
erature to the introductory sections of Perdomo et al.
(2020) and Izzo et al. (2021) for a complete discussion of
the original (stateless) performative prediction setting.

We consider a generalization of the performative pre-
diction problem (Perdomo et al., 2020), introduced
by Brown et al. (2020) and referred to as “state-
ful” performativity. Let Θ denote the set of admis-
sible model parameters and Z denote the data sample
space. We assume that there is a distribution map
D : Θ×M(Z)→M(Z), whereM(Z) denotes the set
of probability measures on Z. If ρt denotes the data
distribution at time t and θt denotes the model that
we deploy at time t, then we have

ρt = D(θt, ρt−1).

That is, the data distribution at time t is a function of
the model we deployed, as well as the previous state
that the population was in (encoded by the previous
distribution ρt−1). Note that this setting is strictly
more general than the original setup of Perdomo et al.
(2020), in which ρt = D(θt) depended only on the
deployed model. This generalization captures the fact
that in practice, it is unlikely that the population we are
modeling will immediately snap to a new distribution
upon deployment of a new model. In general, it will
take the distribution some time to adapt.

Under reasonable regularity conditions on D, if we
define θt ≡ θ for all t, then there exists a limiting
distribution ρ∗(θ) = limt→∞ ρt. (See Claim 1 of Brown
et al. (2020) for sufficient conditions.) That is, ρ∗(θ)
describes the limiting distribution if we continue to
deploy θ for all time steps t, and it is assumed that
this distribution is independent of the initial state.
If we define the long-term performative loss L∗(θ) =
Eρ∗(θ)[`(z; θ)], then a sensible goal is to compute the
long-term optimum

θOPT
∆
= argmin

θ∈Θ
L∗(θ).

This is similar to the problem addressed in Izzo et al.
(2021), except now we do not even have direct sample
access to ρ∗(θ).

Throughout the paper, we will assume that ρt belongs
to a parametric family with (unknown) parameter µt

and corresponding density p(·, µt). For concreteness,
one may think of the distribution as a mixture of Gaus-
sian with fixed covariances Σ but unknown means µ,
but we remark that our techniques should be viewed
more as a “meta-algorithm” whose details can be di-
rectly applied to other parametric distributions. In
this setting, rather than the distribution map D, we
can equivalently consider the parameter map m, where
µt = m(θt, µt−1), and then ρt corresponds to the para-
metric distribution with parameter µt (i.e., ρt has den-
sity p(·, µt)). Analogously to the long-term distribu-
tion assumption, we will assume that for every fixed
θ and any starting µ, there is a long-term parameter
µ∗(θ) = limk→∞m(k)(θ, µ), where m(0)(θ, µ) = µ and
m(k)(θ, µ) = m(θ,m(k−1)(θ, µ)) for k ≥ 1. That is,
m(k)(θ, µ) denotes the distribution parameters after
model θ has been deployed for k steps, starting from
the distribution with parameters µ. For simplicity, we
will assume that the model parameters θ as well as
the distribution parameters µ are both d-dimensional
vectors: θ, µ ∈ Rd, but we emphasize that this is for
notational convenience and is not required.

Algorithm 1 describes the interaction model for our
problem in terms of the parameterized distribution.
Here we have assumed that, given a sample Z = {zi}ni=1

from the distribution with parameter µ, there is some
method (e.g. maximum likelihood) for estimating µ̂(Z).
Since there is a large literature on parametric inference,
we consider µ̂ as provided.

Algorithm 1 Deployment and sampling model

procedure Deploy&Sample(θt, µt−1)
Deploy θt
Population reacts: µt ← m(θt, µt−1)

Collect samples: Zt ← {z(t)
i }

nt
i=1, z

(t)
i

i.i.d.∼ Pµt
Estimate µt: µ̂t ← µ̂(Zt)
return µ̂t

end procedure

Lastly, we will use ∂if to denote the derivative of
a function f with respect to its i-th argument. So
for instance, ∂1m(θ,m(θ, µt)) means the derivative of
m(θ,m(θ, µt)) only with respect to the θ appearing in
the first argument (before the comma) even though θ
appears in m in the second argument as well.

2.1 Why is the State-Dependent Case More
Challenging?

As mentioned above, adding state-dependence to the
performative dynamics presents a much more realistic
model of performative effects likely to arise in reality.
However, this added realism makes the optimization
problem significantly more challenging. Indeed, we no
longer even have direct access to an unbiased estimate
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for the function that we wish to minimize—the long-
term performative loss—, as we cannot observe the
long-term performative loss simply by deploying our
model once. The increase in problem complexity is akin
the gap between bandit problems and reinforcement
learning/Markov decision processes. Thus although our
setting may seem similar to that of Izzo et al. (2021) at
face value, the state-dependent case is in fact a highly
nontrivial advancement both in terms of the practi-
cal validity of the model and the technical/theoretical
difficulty of solving the problem. Therefore, the prob-
lem demands novel algorithms and analysis, which we
introduce here.

3 STATEFUL PERFGD

Our approach is to estimate the (long-term) performa-
tive gradient and then use this estimate to do approxi-
mate gradient descent. In an ideal world, we wish to
compute the gradient

∇θL∗(θ) = ∇θ
[∫

`(z; θ)p(z;µ∗(θ)) dz

]
=

∫
∇θ`(z; θ)p(z;µ∗(θ)) dz

+

∫
`(z; θ)

dµ∗

dθ

>
∇µp(z;µ∗(θ)) dz.

(Note: ∇µp denotes the gradient of the density p with
respect to its µ argument. In terms of the ∂i notation,
we have ∇µp = ∂2p

>.) There are two unknown quan-

tities in this expression: µ∗(θ) and dµ∗

dθ . The various
subroutines in the algorithm are all aimed at estimating
these unknown quantities. As we no longer have direct
sample access to the long-term distribution µ∗(θ), the
steps needed to estimate the long-term performative
gradient are different from Izzo et al. (2021), and the
error analysis is more involved. There are two main
components in the algorithm. First, we use the most
recent H steps in the training trajectory to estimate
the derivatives of the update function m (Algorithm 2),

which can then be used to estimate dµ∗

dθ (Equation (2)).
With this estimate in hand, we can compute an esti-
mate of the total gradient of the long-term loss and take
a gradient descent step (Equation (1) and Algorithm 3).
The precise steps for the algorithm are given below. In
the following, ψt = [θ>t , µ

>
t−1]> denotes the full input

to m at time t, and for any collection of vectors vi, vi:j
denotes the matrix with columns vi, vi+1, . . . , vj .

The other estimation functions EstLTJac and Es-

Algorithm 2 Estimating ∂im

Require: Estimation horizon H
procedure EstPartials(ψt−H:t, µ̂t−H:t)

∆ψ ← ψt−H:t−1 − ψt1>H
∆µ← µ̂t−H:t−1 − µ̂t1>H
[∂̂1m, ∂̂2m]← (∆µ)(∆ψ)†

return ∂̂1m, ∂̂2m
end procedure

Algorithm 3 Stateful PerfGD

Require: Estimation horizon H, perturbation size σ2,
learning rate η
Initialize for d steps and record µ̂t−1, θt, and µ̂t
while not converged do

µ̂t ←Deploy&Sample(θt, µt−1)

∂̂1m, ∂̂2m←EstPartials(ψt−H:t, µ̂t−H:t)
d̂µ∗

dθ ← EstLTJac(∂̂1m, ∂̂2m)

∇̂L∗t ← EstLTGrad(θt, µ̂t,
d̂µ∗

dθ )

θt+1 ← θt − η(∇̂L∗t + gt), gt ∼ N (0, σ2I)
t← t+ 1

end while

tLTGrad are given by

EstLTJac(∂̂1m, ∂̂2m) = (I − ∂̂2m)−1∂̂1m (1)

EstLTGrad(θt, µ̂t,
d̂µ∗

dθ
) = (2)∫

∇θ`(z; θt)p(z; µ̂t) dz +

∫
`(z; θt)

d̂µ∗

dθ

>

∇µp(z; µ̂t) dz

Next, we give the basic motivation for each step of this
algorithm. Algorithm 2 estimates the derivatives of m
using finite difference approximations gathered from
the optimization trajectory so far. The columns ∆ψ
are the differences in the input of m, and the columns
of ∆µ are the corresponding differences in the output
of m. We then estimate the derivatives of m by solving
the matrix equation (∆output) ≈ (Jacobian)·(∆input).
The estimation horizon H is a hyperparameter which
should be tuned via standard techniques. In our proofs,
we require that H be polynomially larger than the
dimension d, but in practice we find that choosing
H ∈ [2d, 3d] or just using the entire previous trajectory
for this step works well. We also note that H ≥ 2d
should be enforced so that the “input difference matrix”
∆ψ ∈ R2d×H will have a right inverse.

The formula for EstLTJac arises from the recursive
definition of m(k) (see Section 2). Taking a derivative
with respect to θ, unrolling the recursion, and sending
k →∞ leads to the formula (2).

The formula for EstLTGrad is derived by taking a
derivative of the long-term performative loss, recalling
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that this is an expectation with respect to the known
density p with unknown parameter µ∗. As we do not
know µ∗ or its Jacobian dµ∗

dθ , we simply subsitute our

best approximations for each of these (µ̂t and d̂µ∗

dθ , re-
spectively) to obtain the formula (1). In Section 4, we
bound the error of our approximation and show that it
vanishes as the number of steps increases and as the
error in µ̂ goes to 0. This yields an estimate for the
long-term performative gradient, which we then use to
take an approximate gradient descent step. The Gaus-
sian perturbations gt are a technical necessity which
borrows ideas from smoothed analysis (Sankar et al.,
2006). They ensure that the optimization trajectory
has traveled enough in each direction so that the deriva-
tives of m can be estimated even in the presence of
errors in µ̂ and can often safely be omitted in practice.
See Appendix A for a full derivation of the algorithm.

3.1 Performativity through Low-Dimensional
Statistics

Performativity in ML is primarily concerned with
changes in human populations as the result of a de-
ployed model. Unless the population being model con-
sists mostly of data scientists, it is unlikely that the
constituent individuals will have a reaction based on
the particular parameters of the model. Instead, indi-
viduals (and therefore the distribution of the popula-
tion on the whole) likely modify their behavior based
on a low-dimensional proxy, such as a credit score or
classification probability. If it is the case that the dis-
tribution shift depends on a low-dimensional statistic,
then we can still apply stateful PerfGD for a very high-
dimensional model (e.g. a neural network) without
incurring a large error due to the high dimension.

We formalize this intuition as follows. Suppose that
the stateful parameter map actually takes the form
µt = m(θt, µt−1) = m̄(s(θt, µt−1), µt−1), where s
is a known score function with s(θ, µ) ∈ Rds and
ds � dim(θ). In this case, we may estimate the par-
tials of m̄ with respect to s and then use the chain rule
to compute the partial of m with respect to θ, yield-
ing ∂1m(θt, µt−1) = ∂1m̄(st, µt−1) ∂1s(θt, µt−1), where
st = s(θt, µt−1). Note that since s is known as a func-
tion of θ and µ, computing ∂1s(θt, µt−1) just requires
estimating µt−1 (which we have assumed is easy) and
we instead need only estimate the derivative ∂1m̄. This
is a derivative with respect to ds variables, whereas in
general for this step we must compute a derivative with
respect to dim(θ) variables. When ds � dim(θ), this
can make the derivative estimation task signficantly
easier. We can then plug this estimator for ∂1m into
Algorithm 3 and proceed as usual.

4 THEORETICAL GUARANTEES

In this section, we quantify the performance of Stateful
PerfGD theoretically. We require the following:

1. ‖∂1m(θ, µ)‖ ≤ B

2. ‖∂2m(θ, µ)‖ ≤ δ < 1

3. σmin(∂2m(θ, µ)) ≥ α

4. |`(z; θ)|, ‖∇θ`(z; θ)‖ ≤ `max

5. ‖∇2m‖ ≤ C, where ∇2m is the tensor of second
derivatives of m, and ‖∇2L∗(θ)‖ ≤ L.

6. diam({µ}) ≤ D, where {µ} denotes the set of all
possibile stateful distribution parameters.

7. The estimator µ̂ satisfies ‖µ̂t − µt‖ ≤ ε.

For simplicity we will also assume that the stateful
performative distribution is a Gaussian with unknown
mean, i.e. the distribution parameters µ are just the
mean of the Gaussian and p(z, µ) denotes the Gaussian
density of z. We will also assume that the covariance
is fixed and nondegenerate. The Gaussian assumption
simplifies some of the already extensive calculations,
but we remark that all of the results still hold for
any continuous distribution with sufficiently light (e.g.
sub-Gaussian) tails and smooth dependence on the
distribution parameter.

With the exception of Assumptions 2 and 3, the above
are all standard smoothness assumptions (Perdomo
et al., 2020; Brown et al., 2020; Izzo et al., 2021; Miller
et al., 2021). Assumption 2 is a sufficient condition
to guarantee that m(k)(θ, µ) → µ∗(θ) independent of
µ, and, when combined with Assumption 6, gives us a
bound on the speed of this convergence. On the other
hand, Assumption 3 ensures that we are able to perturb
µt by perturbing θt; without this, estimating ∂2m will
be impossible. Finally, we remark that Assumption 7
can easily be converted into a high-probability state-
ment depending on the size of the sample collected at
each step. For instance, in the case of a Gaussian mean,
we have ε = O(

√
log(T )/n) by a simple Gaussian con-

centration/union bound argument.

In all of the following statements, O hides depedence
on any of the problem-specific constants introduced in
the assumptions, as well as dependence on the problem
dimension and the failure probability γ. Our concern
is how the error of the method behaves as the time
horizon T → ∞ and the estimation error ε → 0. Õ
hides these same constants as well as log factors in T .
Our main theoretical result is the following convergence
theorem for Stateful PerfGD:
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Theorem 1. Let T be the number of deployments of
Stateful PerfGD, and for each t let ∇L∗t = ∇L∗(θt).
Then for any γ > 0, there exist intervals [ηmin, ηmax]
and [σmin, σmax] (which depend on T and the estima-
tion error ε) such that for any learning rate η in the
former and perturbation size σ in the latter interval,
with probability at least 1− γ, the iterates of Stateful
PerfGD satisfy

min
1≤t≤T

‖∇L∗t ‖2 = Õ(T−1/5 + ε1/5).

Theorem 1 shows that Stateful PerfGD finds an ap-
proximate critical point. As Stateful PerfGD can be
viewed as instantiating gradient descent on the long-
term performative loss, and gradient descent is known
to converge to minimizers (Lee et al., 2016), Stateful
PerfGD will converge to an approximate local mini-
mum. In the case that the long-term performative is
convex, Stateful PerfGD will converge to the optimal
point.

While the full proof of Theorem 1 requires extensive
calculation, the structure of the proof is intuitive and
we outline it below. We begin by bounding the error
of the finite difference approximation in Algorithm 2.

Lemma 2. Suppose that ‖∇̂L∗s‖ are bounded by a con-
stant for s < t. Let dm

dψ denote the true Jacobian of

m with respect to its input, and let d̂m
dψ = [∂̂1m, ∂̂2m]

denote the estimator from Algorithm 2. Then for ap-
propriate choices of η, σ, and H, we have∥∥∥∥∥ d̂mdψ − dm

dψ

∥∥∥∥∥ ≤ Õ
(
η

σ
+

ε

ησ2

)
≡ Em.

Here, a smaller step size results in smaller error from
the finite difference approximation, but magnifies any
error in µ̂. Next, we analyze how the error on our
estimate of the short-term derivatives translates to
error on our estimates of the long-term derivatives.

Lemma 3. The long-term Jacobian estimate d̂µ∗

dθ from
Eq. 2 satisfies∥∥∥∥∥ d̂µ∗dθ − dµ∗

dθ

∥∥∥∥∥ = Õ(η + Em) ≡ Eµ∗ ,

where Em is the upper bound on the error in estimating
the Jacobian of m from Lemma 2.

Note that the error on the long-term Jacobian estimate
also depends on the distances ‖µt − µ∗(θt)‖. A smaller
learning rate gives the distribution time to adapt during
training but without needing to wait, making these
distances shrink. This can be thought of as similar
to multiscale considerations in the study of PDEs (E,

2011). Next, we show that the estimation errors on
d̂µ∗

dθ and µ̂t remain small when we use them to estimate
∇L∗t .

Lemma 4. The estimator ∇̂L∗t from Eq. (1) satisfies

‖∇̂L∗t −∇L∗t ‖ = Õ(η + Eµ∗),

where Eµ∗ is the error bound on d̂µ∗

dθ from Lemma 3.

We show that the errors Em and Eµ∗ from Lemmas 2
and 3 vanish at a polynomial rate as T → ∞ and
ε→ 0, so that the error in our long-term loss gradient
also vanishes as the step size decreases. Finally, we use
a standard analysis of gradient descent on L-smooth
functions which allows for error in the gradient oracle.

Lemma 5. Let h be any L-smooth function and let

∇̂h be a gradient oracle with bounded error: ‖∇̂h(x)−
∇h(x)‖ ≤ e, and assume that e = o(1). Then for η
sufficiently small, the iterates xt of gradient descent

with gradient oracle ∇̂h satisfy

min
1≤t≤T

‖∇h(xt)‖2 = O
(

1

Tη
+ e

)
.

Combining Lemmas 3-5 yields a set of dependencies on
η, σ, ε, and T which can be balanced to prove Theo-
rem 1. All of the proofs can be found in Appendix B.

5 EXPERIMENTS

In this section, we conduct experiments for all of the
relevant methods, showing Stateful PerfGD’s improve-
ments over existing algorithms. First, we discuss the
algorithms against which we will compare.

5.1 Previous Algorithms

Repeated Gradient Descent (RGD) This
method was introduced by Perdomo et al. (2020) and
refers to simply taking a gradient of the loss assuming
that the distribution is fixed, then updating the model
with a gradient descent step and redeploying. Li and
Wai (2021) showed that RGD converges to a stable
point in the long run in the stateful performative
setting. Since the stateless performative problem is
a subclass of the stateful one, there are cases where
a stable point can be arbitrarily far from an optimal
point. (See §2.2 of Izzo et al. (2021).)

PerfGD (PGD) If we repeatedly deploy each model
θ until the induced distribution settles to its long-term
state, then we can directly apply PerfGD from Izzo et al.
(2021). While this method will eventually converge if
we wait long enough at each step, we will have to deploy
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many suboptimal models if the induced distribution
takes a long time to settle, leading to losses for the
user.

Black-Box Derivative-Free Optimization (DFO)
Black-box DFO seeks to optimize a function given only
a function value oracle and no direct access to gradi-
ents or higher-order derivatives of the function to be
optimized (Flaxman et al., 2005). The non-stateful
performative prediction setting is a special case of this
general problem, and black-box DFO algorithms can
obtain reasonable results for non-stateful performative
prediction (Miller et al., 2021). In the stateful setting,
however, we no longer have a function value oracle for
the long-term performative loss, so we expect black-
box DFO methods to have degraded performance (if
they work at all). We could take the same approach
as mentioned above with PerfGD, i.e. deploying each
model many times until the distribution settles to its
long-term state. We note that since this method de-
ploys perturbed versions of its best internal estimate,
the cost in terms of suboptimal model deployments
can be even greater than that incurred by adapting
PerfGD to the stateful setting.

In all of the following figures, the solid lines denote
the mean of the reported statistic and the shaded error
regions denote the standard error of the mean. OPT
denotes the long-term optimal loss, STAB denotes the
loss of the performatively stable point, and SPGD
denotes Stateful PerfGD. For details on the specific
constants and hyperparameters, refer to Appendix C.

5.2 Linear m

We begin with a simple case with a linear point loss
`(z, θ) = −z>θ. The long-term performative loss is
L∗(θ) = −µ∗(θ)>θ. We take the mean update function
to be m(θ, µ) = δµ∗(θ)+(1−δ)µ and set µ∗(θ) = Aθ+b
for some fixed δ ∈ (0, 1), a fixed matrix A and a fixed
vector b. When A ≺ 0, the long-term optimal point
can be computed exactly as θOPT = − 1

2A
−1b.

Figure 1 compares the performance of SPGD with the
other algorithms as the “amount of statefulness” varies.
The x-axis is the number of deployments required be-
fore 99% of the effect of the previous mean has been
removed, which corresponds to a particular δ. (If θ is
deployed for k steps starting from distribution mean
µ, then the mean is (1− (1− δ)k)µ∗(θ) + (1− δ)kµ, so
we want (1 − δ)k = 0.01 or δ = 0.011/k.) The y-axis
shows the best (over a grid search of hyperparameters
for each method) final performance as a fraction of
OPT achieved by each of the methods after 50 model
deployments. Note that since OPT is negative, a lower
final loss corresponds to a larger fraction of OPT.
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Figure 1: Fraction of optimal performance obtained
by each method (higher is better, blue line is the best
possible). SPGD is able to reach OPT even when
the short-term mean is highly state-dependent. The
other methods fail to find OPT, and their performance
degrades as the statefulness of the problem increases.

While PGD and DFO make some progress towards
OPT, their performance suffers even in the presence of
mild state-dependence and continues to degrade as the
“statefulness” of the dynamics increases. These methods
must choose between longer wait times or larger errors
in estimating the long-term distribution. By specifically
accounting for the state dependence of the problem,
SPGD maintains near-optimal performance even as the
distribution takes longer to settle. For comparison, in
the setting with k = 64 (the right-most point in Fig-
ure 1), the distribution takes 64 steps to settle, but we
have only allowed 50 deployments for optimization. By
simulating rather than waiting for the distribution to
adapt, SPGD still reaches a near-optimal point quickly.

5.3 Nonlinear m

We alter the first example so that the rate of con-
vergence to the long-term mean depends on the cur-
rent mean and varies by coordinate. In particular, we
take m(θ, µ)[i] = δµ[i]2µ∗(θ)[i] + (1 − δµ[i]2)µ[i], with
µ∗(θ) = Aθ + b as before. Here v[i] denotes the i-th
component of a vector v. The long-term performative
loss and optimal point are the same as before since
m(k)(θ, µ)→ Aθ + b, but ∂im are more challenging to
estimate.

Refer to Figure 2. Here we plot the results for a fixed
δ so that we can see the training dynamics within a
given scenario. The x-axis is the training iteration and
the y-axis is the test loss at that iteration. In spite of
the increased complexity in the derivatives of m, we
see that SPGD manages to find θOPT, while the other
methods have poorer performance.
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Figure 2: Results for nonlinear map m. SPGD is able
to converge to θOPT, while the other methods fail to
cope with the state-dependence.

5.4 Classification

We next consider a more realistic spam classification
simulation which was studied by Izzo et al. (2021). The
dynamics for this experiment arise when the spammers
behave strategically according to the following (state-
dependent) cost function. Each spammer has some
original message, denoted by the features xorig, that
they would like to send. This should not be thought of
as an actual saved message, but rather encoding the
information (e.g. a virus, scam, etc.) that they want
to deliver to their victims. Their message also has a
current form, denoted by the features xcur. We follow
the strategic classification framework (Hardt et al.,
2016), where each spammer updates their message by
maximizing their utility minus a modification cost,
given by

max
x
−x>θ︸ ︷︷ ︸
Utility

− α

2
‖x− xorig‖2︸ ︷︷ ︸

Long-term cost

− β

2
‖x− xcur‖2︸ ︷︷ ︸

Short-term cost

.

The utility corresponds to the spammers’ desire to
receive a negative (non-spam) classification from our
deployed logistic model. If we take α = ε−1 and β =
ε−1(δ−1 − 1), we get the individual dynamics xcur 7→
δ(xorig−εθ)+(1−δ)xcur, which in turn yields the mean
map m(θ, µ) = δ(µorig − εθ) + (1− δ)µ. The point loss
for this experiment is ridge-regularized cross-entropy.

The results are shown in Figure 3. DFO, PGD, and
SPGD are all able to eventually find θOPT, but by simu-
lating the long-term change in the distribution, SPGD
is able to find this optimum in only 6 deployments.
PGD requires long waits for the mean to settle in order
to converge (leading to the flat regions in the training
curve), and DFO requires deploying highly perturbed
models to overcome the noise in the mean estimation.
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Figure 3: Results for spam classification. DFO (i)
denotes the internal estimate of DFO, while DFO (q)
denotes the models which are actually deployed by this
algorithm. While DFO and PGD both find the optimal
model, SPGD converges to it more rapidly. DFO must
also deploy perturbed models (red curve) in order to
find a good internal estimate. RGD converges to a
stable point, resulting in ∼ 10% higher final loss.

5.5 Low-Dimensional Score

Finally, we test SPGD’s performance in the setting de-
scribed in Section 3.1 where the distribution dynamics
are constrained by a low-dimensional bottleneck. The
point loss is `(z; θ) = −z>θ+ λ

2 ‖θ‖
2, the score function

is s(θ, µ) = θ>µ, and the stateful mean map is given
by m(θ, µ) = m̄(s(θ, µ)) = (1− θ>µ)µ0 for some fixed
µ0. Under some restrictions on the model space Θ and
the parameter µ0, there exists a long-term distribution
µ∗(θ). See Appendix C for a derivation.

Refer to Figure 4. BSPGD (Bottleneck SPGD) refers
to SPGD where we account for the one-dimensional
bottleneck in the dynamics. Both SPGD and BSPGD
are able to find θOPT, but by adapting the method to
the one-dimensional score, BSPGD converges faster.

6 CONCLUSION

We considered the stateful performative setting and
introduced Stateful PerfGD to optimize the long-term
performative risk. We proved a convergence result
for our method, and we verified empirically that our
method is able to adapt to complicated stateful per-
formative dynamics and find θOPT, whereas existing
methods not tailored to this situation prove ineffective.

While our work does require parametric data assump-
tions, optimizing the performative loss for a fully gen-
eral distribution map D is intractible. The parametric
framework still provides a great deal of modeling flexi-
bility, leaving the entire toolkit of parametric statistics
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Figure 4: Performance of each method when the distri-
bution shift depends only on a low-dimensional statistic.
BSPGD denotes SPGD adapted to this setting. While
vanilla SPGD outperforms both DFO and PGD, by
taking into account the low-dimensional dependence,
we can get even faster and more accurate convergence.

available to the user. The assumption of a fixed long-
term distribution may also appear restrictive, but for
many types of performative effects—such as strategic
behavior on the part of the modeled population—this
assumption will indeed hold, as the agents will have no
incentive to change their behavior in the face of a fixed
model once their desired outcome has been reached.

6.1 Societal Impact

The goal of optimization in the performative setting
is to minimize the test loss. This is accomplished by
choosing a model which is both accurate and induces a
favorable data distribution, where “favorable” is mea-
sured only with respect to the model’s goal. When the
population in question consists of people, this amounts
to trying to induce these people to behave in a way
which makes them easy to classify, which may not align
with behaviors that benefit these people the most. In-
deed, it has been observed that in some cases, such a
procedure can maximize a certain measure of negative
externality (Jagadeesan et al., 2021). However, manip-
ulation of the data distribution also has the capability
to produce the opposite effect, i.e., inducing a data dis-
tribution which is advantageous both for the modeled
population and the modeler. The distribution induced
by the optimal model should also be studied to address
these concerns.

6.2 Future Work

There are a number of interesting directions for fu-
ture work. While minimizing the long-term perfor-
mative risk is a sensible goal, other goals can also be

considered—for instance, we can attempt to minimize
the total loss incurred over the whole time horizon.
In its current form, the problem is equivalent to a
determinstic and highly structured Markov decision
process, but relaxing some of the assumptions on the
underlying MDP is of interest for improving the practi-
cal efficacy of this setting, and offers the potential for
connections with reinforcement learning. Lastly, our
current method works in the batch setting where we
have enough samples to accurately estimate population-
level quantities. Developing methods that can work in
a stochastic/limited sample regime is also of interest.
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A DERIVATION OF STATEFUL PERFGD

The long-term performative loss is given by

L∗(θt) =

∫
`(z; θt)p(z;µ

∗(θt)) dz.

Its gradient is therefore given by

∇L∗(θt) =

∫
∇θ`(z; θt) p(z;µ∗(θt)) dz +

∫
`(z; θt)

dµ∗

dθ

>
∇µp(z;µ∗(θt)) dz.

The general form of our gradient estimate arises by substituting µt for µ∗(θt) and d̂mk

dθ for dµ∗

dθ .

The derivation for Algorithm 2 is as follows. For each time t, let ψt = [θ>t , µ
>
t−1]>, and define m(ψt) =

m(θt, µt−1) = µt. By Taylor’s theorem, we have

m(ψs)−m(ψt) ≈
dm

dψ

∣∣∣∣
ψt

(ψs − ψt). (3)

then we can vectorize equation (3) and obtain

∆µ ≈ dm

dψ

∣∣∣∣
ψt

∆ψ =⇒ dm

dψ

∣∣∣∣
ψt

≈ (∆µ)(∆ψ)†.

The expression for d̂m(k)

dθ arises as follows. Observe that

d

dθ
m(k)(θ, µ) =

d

dθ
[m(θ,m(k−1)(θ, µ))]

= ∂1m(θ,m(k−1)(θ, µ)) (4)

+ ∂2m(θ,m(k−1)(θ, µ)) · d
dθ
m(k−1)(θ, µ).

Since m(k−1)(θ, µ) is unknown, as are the derivatives ∂im and d
dθm

(k−1)(θ, µ), we simply substitute our “best

guess” for each one. That is, we substitute µ for m(k−1)(θ, µ), ∂̂im for ∂im, and d̂m(k−1)

dθ for dm(k−1)

dθ . Thus we
have

d̂m(k)

dθ
= ̂∂1m(θ, µ) + ̂∂2m(θ, µ) ·

̂dm(k−1)

dθ
,

with the base case d̂m(0)

dθ = 0 (the 0 matrix). Let ∂̂im = ̂∂im(θ, µ). It can easily be shown via induction that

d̂m(k)

dθ
= (I + ∂̂2m+ (∂̂2m)2 + · · ·+ (∂̂2m)k−1)(∂̂1m).

Assuming that ‖∂̂2m‖ < 1 (which we expect to hold since ‖∂2m‖ < 1), taking k →∞ yields

lim
k→∞

d̂m(k)

dθ
= (I − ∂̂2m)−1(∂̂1m)

which is precisely the expression in (2).

B PROOFS FOR §4

B.1 Properties of the Gaussian distribution

In the proofs which follow, we make use of several key properties of the Gaussian distribution. Some of the
well-known facts we state without proof.
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Lemma 6. Let p(z, µ) be the probability density function of a N (µ,Σ) random variable, where Σ is a fixed
covariance matrix. Then we have

∫
‖∇µp(z, µ)‖ dz ≤ ‖Σ−1‖

√
d.

Proof. We have ∫
‖∇µp(z, µ)‖ dz =

∫
‖Σ−1(z − µ)‖p(z, µ) dz

≤ ‖Σ−1/2‖
∫
‖Σ−1/2(z − µ)‖p(z, µ) dz

= ‖Σ−1/2‖Ez∼N (0,Id)[‖z‖] (5)

≤ ‖Σ−1/2‖
√
d. (6)

Here (5) holds because z ∼ N (µ,Σ) ⇒ Σ−1/2(z − µ) ∼ N (0, Id) and (6) holds by the well-known inequality
Ez∼N (0,Id)[‖z‖] ≤

√
d.

Lemma 7. Let σ2
0 = ‖Σ‖. Then we have

Pz∼N (µ,Σ)(‖z − µ‖ ≥ r + σ0

√
d) ≤ c1 exp{−c2r2/σ2

0},

where c1 is a constant which can depend on d and Σ, and c2 is a universal constant.

Lemma 8. Let g ∼ N (0, σ2I) ∈ Rd. Then ‖g‖ ≤ σ(
√
d + c

√
log γ−1) with probability at least 1 − γ for some

universal constant c. By a union bound, this means that with probability at least 1−γ, ‖gt‖ ≤ σ(
√
d+ c

√
log T

γ ) =

Õ(σ) for all 1 ≤ t ≤ T .

Lemma 9 (Anderson (1955)). Suppose X and G are independent and G ∼ N (0,Σ). Then for any s > 0, we
have

P(‖X +G‖ ≤ s) ≤ P(‖G‖ ≤ s).

Lemma 10. Let g ∼ N (0, In), and let A ∈ Rn×n have singular values s1 ≥ · · · ≥ sn. Suppose that sk ≥ c. Then

P(‖Ag‖ ≤ c
√
k − t) ≤ 2 exp(−c′ t

2

c2 ) for some universal constant c′.

Proof. Let A =
∑n
i=1 siuiv

>
i be the SVD of A. Define g̃i = v>i g. Since the vi form an orthonormal basis, we have

g̃i
i.i.d.∼ N (0, 1). Next, observe that

‖Ag‖ = ‖
∑
i=1n

si(v
>
i g)ui‖

= ‖(s1g̃1, . . . , sng̃n)‖
≥ ‖c(g̃1, . . . , g̃k)‖
= c‖g̃‖

where g̃ = (g̃1, . . . , g̃k)> ∼ N (0, Ik). The result then follows directly from (Vershynin, 2018), Theorem 3.1.1.

Lemma 11. Let A ∈ Rn×n and let s1 ≥ · · · ≥ sn be the singular values of A. Suppose that ‖A‖F ≤ cn and∏n
i=1 si ≥ βn for some β > 0. If c1

√
n ≤ k ≤ c2

√
n for some universal constants c1 and c2 then there exists

n0 = O((log c
β )2) such that for all n ≥ n0, sk ≥ β

2 .

Proof. Let k be arbitrary and suppose that sk <
β
2 . Then we have

βn ≤
n∏
i=1

si ≤

(
k∏
i=1

si

)(
β

2

)n−k
=⇒

k∏
i=1

si ≥ 2n
(
β

2

)k
.

On the other hand, we have
k∑
i=1

si ≤
n∑
i=1

si = ‖A‖∗ ≤
√
n‖A‖F ≤ cn3/2.
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A simple Lagrange multiplier argument implies that max
∏k
i=1 si s.t.

∑k
i=1 si ≤ C is (C/k)k. Plugging in

C = cn3/2, we arrive at the inequality

2n
(
β

2

)k
≤

k∏
i=1

si ≤
(
cn3/2

k

)k
=⇒ 2n ≤

(
2cn3/2

βk

)k
=⇒ n ≤ k

(
log2

2c

β
+ log2

n3/2

k

)
. (7)

Now because c1
√
n ≤ k ≤ c2

√
n, (7) implies that

n1/2 ≤ c2(log2

2c

β
+ log2

n

c1
) ≤ c2 log2

2c

β
+ c3n

1/4 (8)

for some universal constant c3. Now inequality (8) is quadratic in n1/4, so applying the quadratic formula and
simplifying, we see that it can only hold when n ≤ n0 for some n0 = O((log c

β )2). This completes the proof.

B.2 Useful Properties of m and µ∗

We will make use of the fact that m(k+l)(θ, µ) = m(k)(θ,m(l)(θ, µ)) for any k, l ≥ 0. This is a simple consequence
of the fact that m(k)(θ, µ) is the distribution parameters after k deployments of θ starting from µ, and deploying
θ for l steps followed by k more deployments is the same as deploying θ for k + l steps. It can also be shown
rigorously by a simple double inductive argument.

Lemma 12. For any k ≥ 0, we have ‖∂2m
(k)(θ, µ)‖ ≤ δk. In particular, since 0 < δ < 1, we have

‖∂2m
(k)(θ, µ)‖ ≤ δ for all k ≥ 1.

Proof. The claim is trivially true for k = 0. Inducting on k, we have:

‖∂2m
(k+1)(θ, µ)‖ = ‖ d

dµ
m(θ,m(k)(θ, µ))‖

≤ ‖∂2m(θ,m(k)(θ, µ))‖ · ‖∂2m
(k)(θ, µ)‖

≤ δ · δk.

The above makes use of Assumption 2 and the inductive hypothesis. This completes the proof.

Lemma 13. For any k ≥ 0, we have ‖∂1m
(k)(θ, µ)‖ ≤ B(1−δk)

1−δ . In particular, since 0 < δ < 1, we have

‖∂1m
(k)(θ, µ)‖ ≤ B

1−δ for all k ≥ 0.

Proof. The claim is trivially true for k = 0. Inducting on k, we have:

‖∂1m
(k+1)(θ, µ)‖ = ‖ d

dθ
m(θ,m(k)(θ, µ))‖

≤ ‖∂1m(θ,m(k)(θ, µ))‖+ ‖∂2m(θ,m(k)(θ, µ))‖‖∂1m
(k)(θ, µ)‖

≤ B + δ
B(1− δk)

1− δ

=
B(1− δk+1)

1− δ
.

The above uses Assumptions 1 and 2 and the inductive hypothesis. This completes the proof.

Lemma 14. There exists a function µ∗(θ) such that limk→∞m(k)(θ, µ) = µ∗(θ), independent of the starting
parameters µ. Furthermore, for any θ, µ we have

‖m(k)(θ, µ)− µ∗(θ)‖ ≤ Dδk.

Proof. Let µ be arbitrary and consider the sequence m(k)(θ, µ). We claim that this is a Cauchy sequence. WLOG
let k ≤ l. Then by Lemma 12, we have

‖m(k)(θ, µ)−m(l)(θ, µ)‖ = ‖m(k)(θ, µ)−m(k)(θ,m(l−k)(θ, µ))‖
≤ δk‖µ−m(l−k)(θ, µ)‖
≤ Dδk.
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Since 0 < δ < 1, the sequence is Cauchy and therefore has a limit for any µ. Furthermore, again by Lemma 12,
we have

‖m(k)(θ, µ)−m(k)(θ, µ′)‖ ≤ δk‖µ− µ′‖ ≤ Dδk,

which implies that the limit of these Cauchy sequences is independent of µ. We can thus set µ∗(θ) =
limk→∞m(k)(θ, µ) for any µ, and the above argument implies that µ∗ is well-defined. It is also easy to see from
this logic that µ∗(θ) must be a fixed point of m(θ, ·).

Since m(0)(θ, µ) = µ and ‖µ − µ∗(θ)‖ ≤ D by definition of D, the claim holds for k = 0. We now induct and
suppose the claim is true for arbitrary k. Then we have

‖m(k+1)(θ, µ)− µ∗(θ)‖ = ‖m(θ,m(k)(θ, µ))−m(θ, µ∗(θ))‖ (9)

≤ δ‖m(k)(θ, µ)− µ∗(θ)‖ (10)

≤ δ ·Dδk.

Here (9) holds by the recursive definition of m(k+1) and the fact that µ∗(θ) is a fixed point of m(θ, ·), and (10)
holds by Assumption 2. This completes the proof.

Lemma 15. The long-term parameters µ∗(θ) are B
1−δ -Lipschitz in θ, and therefore dµ∗

dθ exists and we have

‖dµ
∗

dθ ‖ ≤
B

1−δ .

Proof. By Lemma 13, m(k) are uniformly Lipschitz in θ with Lipschitz constant B/(1− δ). Since µ∗ is the limit
of Lipschitz functions with Lipschitz constants uniformly bounded by B/(1− δ), the result follows.

Lemma 16. Let c = CD(1 + B
1−δ ) and B′ = B

1−δ . Then ‖dm
(k)

dθ −
dµ∗

dθ ‖ ≤ ckδ
k−1 +B′δk = O(kδk). In particular,

limk→∞ ‖dm
(k)

dθ − dµ∗

dθ ‖ = 0.

Proof. In what follows, we will occasionally drop the dependence of m(k)(θ, µ) on θ and µ and the dependence of
µ∗(θ) on θ when this dependence is clear from context.

Since dm(0)

dθ = 0 and ‖dµ
∗

dθ ‖ ≤ B
′ by Lemma 15, the claim holds for k = 0. We induct:

‖dm
(k+1)

dθ
− dµ∗

dθ
‖ = ‖ d

dθ
m(θ,m(k)(θ, µ))− d

dθ
m(θ, µ∗(θ))‖

= ‖∂1m(θ,m(k)(θ, µ)) + ∂2m(θ,m(k)(θ, µ))
dm(k)

dθ
− ∂1m(θ, µ∗(θ))− ∂2m(θ, µ∗(θ))

dµ∗

dθ
‖

≤ ‖∂1m(θ,m(k))− ∂1m(θ, µ∗)‖+ ‖∂2m(θ,m(k))− ∂2m(θ, µ∗)‖‖dm
(k)

dθ
‖

+ ‖∂2m(θ, µ∗)‖‖dm
(k)

dθ
− dµ∗

dθ
‖

≤ C‖m(k) − µ∗‖+ C‖m(k) − µ∗‖ B

1− δ
+ δ‖dm

(k)

dθ
− dµ∗

dθ
‖

≤ CD(1 +
B

1− δ
)δk + δ‖dm

(k)

dθ
− dµ∗

dθ
‖

≤ cδk + δ(ckδk−1 +B′δk)

= c(k + 1)δk +B′δk+1.

The above makes use of Lemma 14 and Assumption 5. The second part of the lemma then holds since 0 < δ < 1.

Lemma 17. The norm of the gradient of the long-term performative loss is bounded by a constant:

‖∇L∗(θ)‖ ≤ G = O

(
`maxB‖Σ−1/2‖

√
d

1− δ

)
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for all θ.

Proof. By Assumption 4 and Lemma 15, we have

‖∇L∗(θ)‖ ≤
∫
‖∇θ`(z; θ)‖ p(z;µ∗(θ)) dz +

∫
|`(z; θ)| ‖dµ

∗

dθ

>
‖ ‖∇µp(z;µ∗(θ))‖ dz

≤ `max + `max
B

1− δ

∫
‖∇µp(z, µ∗(θ))‖ dz

≤ G = O

(
`maxB‖Σ−1/2‖

√
d

1− δ

)
.

The last line follows from Lemma 6.

We remark that, by a proof similar to the preceding, the bound on ‖∇2L∗(θ)‖ in Assumption 5 can be replaced
with a bound on the second derivatives of `. This constant will not appear in the leading order terms of our final
bounds, so we opt for the simpler route of just assuming a priori that L∗ has a bounded Hessian.

B.3 Approximation Results

Throughout, we will assume that T = O(ε−c) for some universal constant c > 0. (We can always stop the
optimization procedure early if T is larger than this.) This implies that log T = o(η−c

′
), o(σ−c) for any positive

constant c′.

In our bounds, we will keep track of terms which are of leading order as η, σ, ε, T−1 → 0. Given our eventual
choices of η and σ, we will always have ε = o(η), η = o(σ), and σ = o(1). We will also track the problem-dependent
constants (e.g., B, C, D from the assumptions, the dimension d, etc.) which form coefficients for these leading
order terms, but we still consider these as constants and therefore drop terms which are high order in η, σ, ε, T−1

but with worse dependence on the aforementioned constants. We also remark that we have not attempted to
optimize our bounds with respect to these constants, and the dependence on them is likely not tight. Lastly, since
the constant G defined in Lemma 17 appears frequently, we will make use of it rather than repeatedly writing
`maxB‖Σ−1/2‖

√
d

1−δ , but it should be noted that G can in fact be replaced by constants which exist a priori by the
assumptions.

The overall structure of these proofs is inductive in nature. That is, we assume some conditions on the optimization
trajectory so far—namely, bounds on the errors of various estimators—, and show that these properties continue
to hold at the next step of the optimization.

We begin by showing that, after an initialization or “burn-in” period, the observed population means will be
close to their equilibrium values. (In practice, the initialization can be quite short.) For ease of notation, we
will always denote the θ update steps as ∇̂L∗t + gt, though for the initialization phase we will just take ∇̂L∗t = 0.
(That is, we initialize by updating θt by random Gaussian perturbations.)

Lemma 18. Suppose that t ≥ log 1
η , σ = o(1/

√
log T

γ ), and ‖∇̂L∗s‖ ≤ cG for each s < t. Then we have

‖µt − µ∗(θt)‖ = O(BG(log
1

η
)2η),

with probability at least 1− γ simultaneously for all t.

Proof. We claim that

‖µt − µ∗(θt)‖ ≤ δB
k−1∑
l=1

‖θt−l − θt‖+ ‖m(k)(θt, µt−k)− µ∗(θt)‖ (11)

for any 1 ≤ k ≤ t. For k = 1, (11) is just the statement ‖µt − µ∗(θt)‖ ≤ ‖m(1)(θt, µt−1)− µ∗(θt)‖, which is true
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since µt = m(1)(θt, µt−1) and thus the LHS and RHS are equal. Now we induct on k:

‖m(k)(θt, µt−k)− µ∗(θt)‖ = ‖m(k)(θt,m(θt−k, µt−k−1))− µ∗(θt)‖
≤ ‖m(k)(θt,m(θt−k, µt−k−1))−m(k)(θt,m(θt, µt−k−1))‖ (12)

+ ‖m(k)(θt,m(θt, µt−k−1))− µ∗(θt)‖
≤ δ‖m(θt−k, µt−k−1)−m(θt, µt−k−1)‖+ ‖m(k)(θt,m(θt, µt−k−1))− µ∗(θt)‖ (13)

≤ δB‖θt−k − θt‖+ ‖m(k)(θt,m(θt, µt−k−1))− µ∗(θt)‖. (14)

Here (13) follows from Lemma 12 and (14) uses Assumption 1. If we use the fact that m(k+1)(θ, µt−k−1) =
m(k)(θt,m(θt, µt−k−1)) (this is simply unrolling the recursive definition for m(k+1) from the inside out instead of
outside in) and plug (14) into the inductive hypothesis, we complete the induction and (11) holds for all k ≤ t.

Next, for l ≤ k, observe that

‖θt−l − θt‖ = η‖∇̂L∗tl + gt−l + · · ·+ ∇̂L∗t−1 + gt−1‖

≤ η
l∑
i=1

‖∇̂L∗t−i‖+ ‖gt−i‖

≤ η · l · (cG+ o(1)) (15)

≤ c′′Gkη. (16)

Here (15) holds since we have assumed the the high-probability guarantee of Lemma 8 holds for all t. Plugging
this inequality into (11), we have that

‖µt − µ∗(θt)‖ ≤ δB · (k − 1) · c′′Gkη +Dδk

= O(BGk2η +Dδk)

where we have also used Lemma 14 to bound ‖m(k)(θt, µt−k)− µ∗(θt)‖. Setting k = log 1
η (which is valid since

t ≥ log 1
η ), we obtain

‖µt − µ∗(θt)‖ = O(BG(log
1

η
)2η) = Õ(η).

Lemma 2. Suppose that ‖∇̂L∗s‖ are bounded by a constant for s < t. Let dm
dψ denote the true Jacobian of m

with respect to its input, and let d̂m
dψ = [∂̂1m, ∂̂2m] denote the estimator from Algorithm 2. Then for appropriate

choices of η, σ, and H, we have ∥∥∥∥∥ d̂mdψ − dm

dψ

∥∥∥∥∥ ≤ Õ
(
η

σ
+

ε

ησ2

)
≡ Em.

Proof. We begin by decomposing ∆µ and ∆ψ.

∆µ =
[
µ̂t−1 − µ̂t · · · µ̂t−H − µ̂t

]
=
[
µt−1 − µt · · · µt−H − µt

]︸ ︷︷ ︸
∆µ

+
[
εt−1 − εt · · · εt−H − εt

]︸ ︷︷ ︸
errµ

∆ψ =

[
θt−1 − θt · · · θt−H − θt
µ̂t−2 − µ̂t−1 · · · µ̂t−H−1 − µ̂t−1

]

=

[
θt−1 − θt · · · θt−H − θt
µt−2 − µt−1 · · · µt−H−1 − µt−1

]
︸ ︷︷ ︸

∆ψ

+

[
0 · · · 0

εt−2 − εt−1 · · · εt−H−1 − εt−1

]
︸ ︷︷ ︸

errψ
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Using this expression, we can rewrite d̂m
dψ :

d̂m

dψ
= (∆µ)(∆ψ)† + (errµ)(∆ψ)† + (∆µ)[(∆ψ + errψ)† − (∆ψ)†].

This allows us to decompose the error of d̂m
dψ as

‖dm
dψ
− (∆µ)(∆ψ)†‖ ≤ ‖dm

dψ
− (∆µ)(∆ψ)†‖+ ‖errµ‖‖∆ψ

†‖+ ‖∆µ‖‖(∆ψ + errψ)† − (∆ψ)†‖︸ ︷︷ ︸
(?)

. (17)

Before we begin, let us decompose (?) further. By (Wedin, 1973), if ∆ψ and ∆ψ are both full rank, then

‖(∆ψ + errψ)† − (∆ψ)†‖ ≤
√

2‖(∆ψ + errψ)†‖‖∆ψ†‖‖errψ‖. (18)

By Weyl’s inequality for singular values, we also have

‖(∆ψ + errψ)†‖ =
1

σmin(∆ψ + errψ)

≤ 1

σmin(∆ψ)− σmax(errψ)

=
1

1

‖∆ψ†‖
− ‖errψ‖

=
‖∆ψ†‖

1− ‖∆ψ†‖‖errψ‖
. (19)

Combining (18) and (19) and substituting them into (17), we obtain

‖dm
dψ
− (∆µ)(∆ψ)†‖ ≤ ‖dm

dψ
− (∆µ)(∆ψ)†︸ ︷︷ ︸

(I)

‖+ ‖errµ‖‖∆ψ
†‖︸ ︷︷ ︸

(II)

+
√

2 ‖∆µ‖ ‖∆ψ†‖2

1− ‖∆ψ†‖‖errψ‖
‖errψ‖︸ ︷︷ ︸

(III)

. (20)

Let us address (I) first. Recall that dm
dψ refers to the Jacobian of m evaluated at (θt, µt−1). By Taylor’s theorem,

for any 1 ≤ i ≤ H, we have

µt−i − µt =
dm

dψ
(ψt−i − ψt) +∇2m(ξi)[ψt−i − ψt, ψt−i − ψt]. (21)

Here ψt−i = (θ>t−i, µ
>
t−1−i)

> and ∇2m(ξi) denotes the tensor of second derivatives of m evaluated at some
point ξi specified by Taylor’s theorem. For each ξi, ∇2m(ξi) is a bilinear map from R2d × R2d → Rd, and
∇2m(ξi)[ψt−i − ψt, ψt−i − ψt] denotes evaluation of this map at the inputs specified in the brackets. Define

eTaylor
i = ∇2m(ξi)[ψt−i − ψt, ψt−i − ψt]. By (21), we have

∆µ =
[
dm
dψ (ψt−1 − ψt) + eTaylor

1 · · · dm
dψ (ψt−H − ψt) + eTaylor

H

]
=
dm

dψ

[
ψt−1 − ψt · · · ψt−H − ψt

]
+
[
eTaylor

1 · · · eTaylor
H

]
=
dm

dψ
∆ψ +

[
eTaylor

1 · · · eTaylor
H

]︸ ︷︷ ︸
ETaylor

. (22)
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Assume for the moment that ∆ψ has full rank; we will prove this later. Since we have chosen H ≥ 2d and
∆ψ ∈ R2d×H , this implies that ∆ψ has a right inverse. Combining this fact with (22), we have

(I) = ‖dm
dψ
− (∆µ)(∆ψ)†‖

= ‖dm
dψ
− (

dm

dψ
+ ETaylor(∆ψ)†)‖

≤ ‖ETaylor‖‖∆ψ†‖. (23)

We now bound ‖ETaylor‖. Because the operator norm ‖∇2m‖ ≤ C by Assumption 5, we have

‖eTaylor
i ‖ = ‖∇2m(ξi)[ψt−i − ψt, ψt−i − ψt]‖ ≤ C‖ψt−i − ψt‖2. (24)

It follows that

‖ETaylor‖ ≤ ‖ETaylor‖F

=

√√√√ H∑
i=1

‖eTaylor
i ‖2

≤

√√√√ H∑
i=1

(C‖ψt−i − ψt‖2)2. (25)

By definition of ψt−i and ψt, we have

‖ψt−i − ψt‖2 =

∥∥∥∥[ θt−i − θt
µt−1−i − µt−1

]∥∥∥∥2

= ‖θt−i − θt‖2 + ‖µt−1−i − µt−1‖2

≤ O((GHη)2) + (‖µt−1−i − µ∗(θt−1−i)‖+ ‖µ∗(θt−1−i)− µ∗(θt−1)‖+ ‖µ∗(θt−1)− µt−1‖)2 (26)

≤ O(G2H2η2) + (O(BG(log
1

η
)2η) +

B

1− δ
‖θt−1−i − θt−1‖+O(BG(log

1

η
)2η))2 (27)

≤ O(G2H2η2) + [O(BG(log
1

η
)2η +

B

1− δ
GHη)]2 (28)

= O(B2G2(log
1

η
)4η2). (29)

Inequality (26) holds by the logic from (16), as well as by splitting ‖µt−1−i − µt−1‖ with the triangle inequality.
Inequality (27) holds by Lemmas 15 and 18. Finally, inequality (28) again holds by the logic from (16).

Plugging the result of (29) into (25), we have

‖ETaylor‖ ≤ C

√√√√ H∑
i=1

[O(B2G2(log
1

η
)4η2)]2

≤ C
√
H · [O(B2G2(log

1

η
)4η2)]2

= O(C
√
HB2G2(log

1

η
)4η2)

= Õ(η2). (30)
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Combining this with (23) yields that

(I) = O(C
√
HB2G2(log

1

η
)4η2)‖∆ψ†‖. (31)

Next, observe that since ‖εt−i‖ ≤ ε, we have

‖errµ‖ ≤ ‖errµ‖F = O(
√
Hε), ‖errψ‖ ≤ ‖errψ‖F = O(

√
Hε). (32)

We now turn our attention back to (III); in particular we will bound ‖∆µ‖. By the definition of ∆µ, we have

‖∆µ‖ ≤ ‖∆µ‖+ ‖errµ‖

≤ ‖dm
dψ
‖‖∆ψ‖+ ‖ETaylor‖+ ‖errµ‖ (33)

= O
(
B‖∆ψ‖+ C

√
HB2G2(log

1

η
)4η2 +

√
Hε

)
. (34)

Here (33) follows from equation (22). Equation (34) follows from (30), (32), and Assumptions 1 and 2.

To bound ‖∆ψ‖, we make use of (29). We have

‖∆ψ‖ ≤ ‖∆ψ‖F

=

√√√√ H∑
i=1

‖ψt−i − ψt‖2

≤
√
H · O(B2G2(log

1

η
)4η2) (35)

= O(BG
√
H(log

1

η
)2η)

= Õ(η). (36)

Inequality (35) follows from (29). Plugging (36) into (34), we find that

‖∆µ‖ = O(B2G
√
H(log

1

η
)2η +

√
Hε)

⇒ (III) = O(B2G
√
H(log

1

η
)2η) · ‖∆ψ†‖2

1− ‖∆ψ†‖ε
· O(
√
Hε) (37)

= O(B2GH(log
1

η
)2ηε‖∆ψ†‖2). (38)

Equation (37) uses the definition of (III) and the bound on ‖∆µ‖ (which we have reduced using that fact that

ε = o(η)), as well as inequality (32). Equation (38) holds under the assumption that ‖∆ψ†‖‖errψ‖ ≤ 1
2 , which

we will show holds given the final choice of η and σ.

Let us combine what we have shown so far to reduce the expression (20):

‖dm
dψ
− (∆µ)(∆ψ)†‖ = O

(
C
√
HB2G2(log

1

η
)4η2‖∆ψ†‖+

√
Hε‖∆ψ†‖+B2GH(log

1

η
)2ηε‖∆ψ†‖2

)
. (39)

We have thus reduced the problem to showing that ∆ψ has full rank and bounding ‖∆ψ†‖ from above. By
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Lemma 19 below, ‖∆ψ†‖ = O( 1
ησ ). Plugging this into (39), we arrive at

‖dm
dψ
− (∆µ)(∆ψ)†‖ = O

(
C
√
HB2G2(log

1

η
)4η2 1

ησ
+
√
Hε

1

ησ
+B2GH(log

1

η
)2ηε

1

η2σ2

)

= O
(
C
√
HB2G2(log

1

η
)4 η

σ
+B2GH(log

1

η
)2 ε

ησ2

)
≡ Em.

This completes the proof.

Lemma 19. Suppose that ‖∇̂L∗(θt−i)−∇L∗(θt−i)‖ ≤ E∇, where

E∇ = O

(
CB3G2

√
Hd‖Σ−1/2‖

(1− δ)2
(log

1

η
)4 η

σ
+
B3GH

√
d‖Σ−1/2‖

(1− δ)2
(log

1

η
)2 ε

ησ2

)
= Õ(

η

σ
+

ε

ησ2
). (40)

Furthermore, assume that

σ ≥ 2c′
BH3/2E∇

1− δ
and σ = o(1)

where c′ is an absolute constant to be specified later. Then with probability at least 1− 3γ
T , ∆ψ has full rank and

‖∆ψ†‖ = O( 1
ησ ) as long as H = Θ( B8d4

α8(1−δ)8 (log T
γ )4).

Proof. Define et−i = ∇̂L∗(θt−i) − ∇L∗(θt−i) for i = 1, . . . ,H, so ‖et−i‖ ≤ E∇ for i = 1, . . . ,H. (Note: If
t− i ≤ log 1

η so that step t− i was during the intialization phase, then ∇̂L∗(θt−i) and ∇L∗(θt−i) are both replaced

with 0 and the error is 0 for these steps. The logic that follows can trivially be extended to this case.)

Claim 1: We have

θt−H+i = θ̄t−H+i − η
i−1∑
j=0

gt−H+j︸ ︷︷ ︸
Gt−H+i

−η
i−1∑
j=0

et−H+j︸ ︷︷ ︸
Et−H+i

+η2St−H+i,

where θ̄t−H+i is independent of all of the Gaussian perturbations gt−H+j , j = 0, . . . ,H − 1, and St−H+i is defined
recursively by

St−H+i =

i−1∑
j=0

∇2L∗(ζt−H+j)(Gt−H+j + Et−H+j − ηSt−H+j)

for some collection of vectors ζt−H+j in Rd.

Proof of Claim 1: The claim holds trivially when i = 0, so we induct on i. We have:

θt−H+i+1 = θt−H+i − η(∇L∗(θt−H+i) + gt−H+i + et−H+i)

= θt−H+i − η(gt−H+i + et−H+i)− η∇L∗(θ̄t−H+i − ηGt−H+i − ηEt−H+i + η2St−H+i)

= θt−H+i − η(gt−H+i + et−H+i)

− η(∇L∗(θ̄t−H+i)− η∇2L∗(ζt−H+i)(Gt−H+i + Et−H+i − ηSt−H+i)) (41)

= θ̄t−H+i − η∇L∗(θ̄t−H+i)− η(Gt−H+i + gt−H+i)− η(Et−H+i + et−H+i)

+ η2(St−H+i +∇2L∗(ζt−H+i)(Gt−H+i + Et−H+i − ηSt−H+i).

Equation (41) follows by Taylor expanding ∇L∗ about θ̄t−H+i. We observe that

Gt−H+i + gt−H+i =

i−1∑
j=0

gt−H+j + gt−H+i

=

i∑
j=0

gt−H+j

= Gt−H+i+1.
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Similarly, we have

Et−H+i + et−H+i = Et−H+i+1

St−H+i +∇2L∗(ζt−H+i)(Gt−H+i + Et−H+i − ηSt−H+i) = St−H+i+1,

which completes the induction and proves Claim 1.

Before we proceed, we first bound ‖Et−H+i‖ and ‖St−H+i‖. By the formula for Et−H+i and the fact that
‖et−H+j‖ ≤ E∇ for all j, it is clear that

‖Et−H+i‖ ≤ HE∇

for all i. Furthermore, we have assumed that we are on the high-probability event that ‖gt‖ = O(σ(
√
d+
√

log T
γ ))

for all 1 ≤ t ≤ T (see Lemma 8). This implies that

‖Gt−H+i‖ = O(Hσ(
√
d+

√
log

T

γ
)) = Õ(σ)

for all i. Thus we can choose G such that ‖Gt−H+i‖ ≤ G ≤ cHσ(
√
d+

√
log T

γ ) for some universal constant c.

Finally, we claim that ‖St−H+i‖ ≤ (1+Lη)i−1
Lη · (G +HE∇) for all i. Since St−H = 0, the claim holds for i = 0.

We induct:

‖St−H+i+1‖ ≤ ‖St−H+i‖+ ‖∇2L∗(ζt−H+i)‖(‖Gt−H+i‖+ ‖Et−H+i‖+ η‖St−H+i‖)

≤ (1 + Lη)‖St−H+i‖+ L(G +HE∇) (42)

≤ (1 + Lη)i+1 − (1 + Lη)

Lη
· (G +HE∇) + (G +HE∇) (43)

=
(1 + Lη)i+1 − 1

Lη
· (G +HE∇). (44)

This completes the induction. Since i ≤ H, we have ‖St−H+i‖ ≤ (1+Lη)H−1
Lη (G + HE∇). Since η = o(1), by

expanding, we see that (1 + Lη)H = 1 +O(HLη). It follows that

‖St−H+i‖ ≤
1 +O(HLη)− 1

Lη
(G +HE∇) = O(H(G +HE∇)) = O

(
H2(σ(

√
d+

√
log

T

γ
) + E∇)

)
.

To summarize, we have:

‖Et−H+i‖ = O(HE∇), ‖Gt−H+i‖ = O

(
H

(
√
d+

√
log

T

γ

)
σ

)
, (45)

‖St−H+i‖ = O

(
H2

(
√
d+

√
log

T

γ

)
σ +H2E∇

)
.

Claim 2: We have the decomposition

µt−H+i = µ̄t−H+i − ηGµt−H+i − ηE
µ
t−H+i + η2Sµt−H+i,

where µ̄t−H+i is independent of all of the Gaussian perturbations gt−H+j and the remaining terms in the
expression are given by recursive definitions below.
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Proof of Claim 2: The claim holds trivially when i = −1, so we induct on i. In what follows, to avoid
notational clutter, we replace the index t −H + i by i. Define ψ̄i = (θ̄i, µ̄i−1), and set ∂1mi = ∂1m(ψ̄i) and
∂2mi = ∂2m(ψ̄i). Lastly, define

Ui =

[
Gi + Ei − ηSi

Gµi−1 + Eµi−1 − ηS
µ
i−1

]
.

We have:

µi+1 = m(θi+1, µi)

= m(θ̄i+1 − ηGi+1 − ηEi+1 + η2Si+1, µ̄i − ηGµi − ηE
µ
i + η2Sµi )

= m(ψ̄i+1)

− η∂1m(ψ̄i+1)(Gi+1 + Ei+1)− η∂2m(ψ̄i+1)(Gµi + Eµi )

+ η2∂1m(ψ̄i+1)Si+1 + η2∂2m(ψ̄i+1)Sµi + η2∇2m(ωi+1)[

[
Gi+1 + Ei+1 − ηSi+1

Gµi + Eµi − ηS
µ
i

]
,

[
Gi+1 + Ei+1 − ηSi+1

Gµi + Eµi − ηS
µ
i

]
]

(46)

= m(ψ̄i+1)− η((∂1mi+1)Gi+1 + (∂2mi+1)Gµi )− η((∂1mi+1)Ei+1 + (∂2mi+1)Eµi+1)

+ η2(∇2m(ωi+1)[Ui+1, Ui+1] + (∂1mi+1)Si+1 + (∂2mi+1)Sµi ) (47)

Thus if we set

µ̄i+1 = m(ψ̄i+1)

Gµi+1 = (∂1mi+1)Gi+1 + (∂2mi+1)Gµi

Eµi+1 = (∂1mi+1)Ei+1 + (∂2mi+1)Eµi

Sµi+1 = ∇2m(ωi+1)[Ui+1, Ui+1] + (∂1mi+1)Si+1 + (∂2mi+1)Sµi ,

then m̄ui+1 has the desired independence property and we have recusrive definitions for Gµi+1, Eµi+1, and Sµi+1.
This completes the proof of Claim 2.

Before moving on, we remark that it can be easily seen via induction that

Gµi =

i∑
j=1

(∂2mi) · · · (∂2mj+1)(∂1mj)Gj

=

i∑
j=1

(∂2mi) · · · (∂2mj+1)(∂1mj)

j−1∑
l=0

gl

=

i−1∑
l=0

 i∑
j=l+1

(∂2mi) · · · (∂2mj+1)(∂1mj)


︸ ︷︷ ︸

Mil

gl. (48)

We also have that

‖Mil‖ ≤
i∑

j=l+1

‖∂2mi‖ · · · ‖∂2mj+1‖‖∂1mj‖ ≤
i∑

j=l+1

δi−jB ≤ B
∞∑
j=0

δj =
B

1− δ
. (49)

This uniform constant bound on ‖Mil‖ will be useful later.

We will now bound ‖Gµi ‖, ‖E
µ
i ‖, and ‖Sµi ‖. When i = 0, all of these quantities are 0, which accounts for all of

our base cases. We proceed inductively for each one. We first claim ‖Gµi ‖ ≤ BG · 1−δi
1−δ (recall that G was chosen
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so that ‖Gi‖ ≤ G ≤ cHσ(
√
d+

√
log T

γ ):

‖Gµi+1‖ ≤ ‖∂1mi+1‖‖Gi+1‖+ ‖∂2mi+1‖‖Gµi ‖

≤ BG + δ ·BG
1− δi

1− δ

= BG
1− δi+1

1− δ
.

This completes the induction. Since δ < 1, we have ‖Gµi ‖ ≤ BG
1−δ = Õ(σ) for all i. By the exact same logic and

the fact that ‖Ei‖ ≤ HE∇ for all i, we also find that ‖Eµi ‖ = O(BHE∇
1−δ ) for all i.

Lastly, define S = c′H2((
√
d+

√
log T

γ )σ + E∇) for some universal constant c′ so that ‖Si‖ ≤ S for all i; this can

be done by (45). We claim that ‖Sµi ‖ ≤ B′S 1−δi
1−δ for all i. We have our base case i = 0, so we induct. Observe

that, by definition of Ui+1, we have

‖Ui+1‖2 ≤ (‖Gi+1‖+ ‖Ei+1‖+ η‖Si+1‖)2 + (‖Gµi+1‖+ ‖Eµi+1‖+ η‖Sµi ‖)
2

≤ c(G2 + E2
∇ + η2S2 + η2‖Sµi ‖

2) (50)

= o(S) (51)

Here (50) holds by the bounds on ‖Gi‖, ‖Ei‖, etc., and the elementary inequality (x+ y + z)2 = O(x2 + y2 + z2)
for any x, y, z ≥ 0. Inequality (51) holds since G,E∇, ‖Sµi ‖ = O(S), and S = o(1).

Now, by the recursive definition of Sµi+1 and the bounds on ∇2m, we have:

‖Sµi+1‖ ≤ C‖Ui+1‖2 +BS + δ‖Sµi ‖

= o(S) +BS + δ ·B′S1− δi

1− δ
(52)

≤ B′S + δ ·B′S1− δi

1− δ

= B′S
1− δi+1

1− δ
.

B′ can be selected properly in (52) since the o(S) term is vanishingly small compared to S. This completes the
induction. Summarizing our results, we have

‖Eµi ‖ = O(
BHE∇
1− δ

), ‖Gµi ‖ = O(Hσ(
√
d+

√
log

T

γ
)), ‖Sµi ‖ = Õ(σ) +O(E∇). (53)

With this in mind, we can can now write:

ψt−H+i − ψt =

[
θ̄t−H+i − ηGt−H+i − ηEt−H+i + η2St−H+i − (θ̄t − ηGt − ηEt + η2St)

µ̄t−H+i−1 − ηGµt−H+i−1 − ηE
µ
t−H+i−1 + η2Sµt−H+i−1 − (µ̄t−1 − ηGµt−1 − ηE

µ
t−1 + η2Sµt−1)

]

=

[
θ̄t−H+i − θ̄t

µ̄t−H+i−1 − µ̄t−1

]
︸ ︷︷ ︸

∆ψi

+η

[
Gt −Gt−H+i

Gµt−1 −G
µ
t−H+i−1

]
︸ ︷︷ ︸

∆Gi

+η

[
Et − Et−H+i

Eµt−1 − E
µ
t−H+i−1

]
︸ ︷︷ ︸

∆Ei

+η2

[
St − St−H+i

Sµt−1 − S
µ
t−H+i−1

]
︸ ︷︷ ︸

∆Si

.

Recall that vi:j denotes the matrix whose columns are vi through vj for i ≥ j:

vi:j =
[
vi vi−1 · · · vj

]
.

Using this notation, define

∆ψ = ∆ψ
H−1:0

, ∆G = ∆GH−1:0, ∆E = ∆EH−1:0, ∆S = ∆SH−1:0.
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Recalling the definition of ∆ψ, we then have

∆ψ = ∆ψ + η∆G+ η∆E + η2∆S.

Using the same Weyl’s inequality calculation as in (19), we the have

‖∆ψ†‖ ≤
‖(∆ψ + η∆G)†‖

1− ‖(∆ψ + η∆G)†‖(η‖∆E‖+ η2‖∆S‖)
. (54)

By (45), (53), and the definitions of ∆E and ∆S, we have

‖∆E‖ ≤ ‖∆E‖F = O(
BH3/2

1− δ
E∇) ‖∆S‖ ≤ ‖∆S‖F = Õ(σ) +O(E∇). (55)

Thus we have reduced our problem to showing that ∆ψ + η∆G has full rank and bounding ‖(∆ψ + η∆G)†‖ with

high probability. Note that since ∆ψ+ η∆G ∈ R2d×H and H ≥ 2d, it suffices to show that for any vector v ∈ R2d

with ‖v‖ = 1, we have
‖(∆ψ + η∆G)>v‖ ≥ ησ. (56)

First, observe that η∆G>v is Gaussian. Furthermore, for any mean 0 Gaussian vector g and deterministic vector
w, by Lemma 9 we have

P(‖w + g‖ ≥ s) ≥ P(‖g‖ ≥ s). (57)

Thus it suffices to lower bound ‖∆G>v‖ with high probability. By the homogeneity of the Gaussian, it suffices to
prove the result for σ = 1.

Again to avoid notational clutter, we will changes indices t − H + i 7→ i. Let v = (v1, v2) with v1, v2 ∈ Rd.
Observe that ((∆G)>v)i = (G>t v1 +Gµt−1

>v2) +G>i v1 +Gµi−1
>v2. Define

∆̃G>v =

 |
G>i v1 +Gµi−1

>v2

|

H−1

i=0

∈ RH .

We will begin by analyzing ∆̃G>v and address the constant offset to this later. First, by definition of Gi and Gµi ,
we have:

G>i v1 +Gµi−1
>v2 =

i−3∑
l=0

g>l (v1 +M>il v2) + g>i−2(v1 + (∂1mi−1)>v2) + g>i−1v1. (58)

We now consider two cases. Recall that we have assume that σmin(∂im) ≥ α for all i and some constant α > 0.

Case 1: ‖v1‖ ≥ α
4 In this case, we write

G>i v1 +Gµi−1
>v2 =

i−2∑
l=0

g>l wil + g>i−1v1 (59)

with wil = v1 +M>il v2. Define u = v1
‖v1‖ , and for each i, l form the unique decomposition wil = ailu+ w⊥il with

u>w⊥il = 0. Define g̃l = g>l u, and note that since ‖u‖ = 1 and gl
i.i.d.∼ N (0, Id), we have g̃ ∼ N (0, IH) where g̃ is

the vector with entries g̃l. With this notation, (59) becomes

G>i v1 +Gµi−1
>v2 =

i−2∑
l=0

ailg̃l +

i−2∑
l=0

g>l w
⊥
il︸ ︷︷ ︸

Zi

+‖v1‖g̃i−1 (60)

Note that Zi is Gaussian and independent of g̃, since

EZig̃j =

i−2∑
l=0

E[(w⊥il
>gl)(g

>
j u)] =

i−2∑
l=0

w⊥il
>Eglg>j u =

i−2∑
l=0

1{l=j}w
⊥
il
>u = 0



Zachary Izzo, James Zou, Lexing Ying

by definition of w⊥il . Now from (60), we can write

∆̃G>v = Ãg̃ + Z,

where Z ⊥⊥ g̃ and Ã is lower triangular with 0s along the diagonal, ‖v1‖ on the first subdiagonal, and the other
entries given by ail. That is,

Ãil =


0 l ≥ i
‖v1‖ l = i− 1

ail l ≤ i− 2

.

Furthermore, by applying (60) to i = t, we have

G>t v1 +Gµt−1
>v2 =

t−1∑
l=0

blg̃l +

t−2∑
l=0

g>l w
⊥
tl︸ ︷︷ ︸

z

for some coefficients bl and z Gaussian and independent of g̃. Let b ∈ RH denote the vector with entries bl, so
that

G>t v1 +Gµt−1
>v2 = b>g̃ + z.

It then follows that

(∆G)>v = (G>t v1 +Gµt−1
>v2)1− ∆̃G>v

= 1(b>g̃ + z)− Ãg̃ − Z
= (1b> − Ã)g̃ + Z ′,

where Z ′ = z1− Z is a mean-0 Gaussian vector independent of g̃.

We now claim that there exists a constant H1 = O(1) such that for all H ≥ H1, σ√H(1b> − Ã) ≥ α
10 . By

Theorem 2.1 of (Zhu et al., 2019), for any k, we have σk(1b> − Ã) ≥ σk+1(Ã), so it suffices to show that
σ√H+1(Ã) ≥ α

10 . By (Horn and Johnson, 2012), Corollary 7.3.6, if M is any matrix and M ′ is a matrix obtained
by deleting a row or column of M , for any k we have σk(M) ≥ σk(M ′). Thus if we define A to be the submatrix
of Ã obtained by deleting the first row and last column of Ã, it suffices to show that σ√H+1(A) ≥ α

10 .

Observe that A is lower triangular with diagonal entries ‖v1‖ ≥ α
4 . Furthermore, all of the entries of A are

bounded by a constant: |Aii| = ‖v1‖ ≤ 1, and

|ail| ≤ ‖wil‖ ≤ ‖v1‖+ ‖Mil‖‖v2‖ ≤ 1 +
B

1− δ
≤ 2B

1− δ
≡ c,

where the penultimate inequality holds by (49) and the final inequality holds by assuming WLOG that B ≥ 1. It
follows that ‖A‖F ≤ c(H − 1). Furthermore, since A is lower triangular, we have

H−1∏
i=1

σi(A) = |det(A)| =
H−1∏
i=1

‖v1‖ ≥
(α

4

)H−1

.

Thus we can apply Lemma 11 with n = H − 1, β = α
4 , c = 2B

1−δ , and k =
√
H + 1. This implies that there exists

a constant H1 = O((log B
α(1−δ) )2) such that for all H ≥ H1, we have σ√H+1(A) ≥ α

8 ≥
α
10 as desired.

We will now show that (∆G)>v has a similar decomposition in the other case (when v1 is small), and after doing
so, we can proceed with a unified analysis.

Case 2: ‖v1‖ < α
4 Observe that since we chose ‖v‖ = 1, we must have

‖v2‖ =
√

1− ‖v1‖2 ≥
√

1− (α/4)2 ≥
√

15/4
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since α ≤ 1. Furthermore, note that

‖v1 + (∂1mi−1)>v2‖ ≥ σmin(∂1mi−1)‖v2‖ − ‖v1‖ ≥ α
√

15

4
− α

4
=

√
15− 1

4
α.

Define ṽi−2 = v1 + (∂1mi−1)>v2; the above calculation shows that ‖ṽi−2‖ ≥ α
2 . We now proceed similarly to

Case 1. As before, we have

G>i v1 +Gµi−1
>v2 =

i−3∑
l=0

g>l wil + g>i−2ṽi−2 + g>i−1v1 (61)

with wil = v1 +M>il v2. For each i, l, define ui = ṽi/‖ṽi‖, and write

wil = ailul + w⊥il , u>l w
⊥
il = 0

v1 = aiui + v⊥1,i, u>i v
⊥
1,i = 0.

Set g̃i = g>i ui and let g̃ be the vector with entries g̃i. Since ‖ui‖ = 1 and gi
i.i.d.∼ N (0, Id), we have g̃ ∼ N (0, IH).

We can now rewrite (61) as

G>i v1 +Gµi−1
>v2 =

i−3∑
l=0

ailg̃l + ‖ṽi−2‖g̃i−2 + ai−1g̃i−1 +

i−3∑
l=0

g>l w
⊥
il + g>i−1v

⊥
1,i−1︸ ︷︷ ︸

Zi

. (62)

Again, Zi is Gaussian and independent of g̃:

EZig̃j = E[(

i−3∑
l=0

g>l w
⊥
il + g>i−1v

⊥
1,i−1)(g>j uj)]

=

i−3∑
l=0

w⊥il
>E[glg

>
j ]uj + v⊥1,i−1E[gi−1g

>
j ]uj

=

i−3∑
l=0

1l=jw
⊥
il
>uj + 1i−1=jv

⊥
1,i−1

>uj (63)

= 0

where each term in (63) is 0 by definition of w⊥il and v⊥1,i−1. Furthermore, specializing (62) to i = t, we find that
there is a vector of constant coefficients b such that

G>t v1 +Gµt−1
>v2 = b>g̃ + z

where z is a mean-0 Gaussian independent of g̃. Defining ˜(∆G)>v as in Case 1, we then have:

(∆G)>v = (1b> − Ã)g̃ + Z ′

where Z ′ = z1−Z is a mean-0 Gaussian vector independent of g̃, and the lower-triangular matrix Ã is defined by

Ãil =


0 l ≥ i
ai l = i− 1

‖ṽi−2‖ l = i− 2

ail l ≤ i− 3

.

We now claim that there is a constant H2 such that for all H ≥ H2, σ√H(1b> − Ã) ≥ α
10 . Define Â to be Ã

with its first row and lost column deleted. Let D = diag(ai)
H−1
i=1 be the diagonal al Â, and finally define A to be
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the matrix obtained by deleting the first row and last column of Â−D. Note that A ∈ R(H−2)×(H−2) is lower
triangular with diagonal entries ‖ṽi−2‖, i = 2, . . . ,H − 1. Furthermore, we have:

σ√H(1b> − Ã) ≥ σ√H+1(Ã) (64)

≥ σ√H+1(Â) (65)

≥ σ√H+1(Â−D)−max
i
|ai| (66)

≥ σ√H+1(A)−max
i
|ai| (67)

≥ σ√H+1(A)− α

4
. (68)

Here, (64) follows from (Zhu et al., 2019) Theorem 2.1; (65) and (67) follow (Horn and Johnson, 2012) Corol-
lary 7.3.6; (66) holds by Weyl’s inequality for singular values and the fact that σ1(D) = maxi |ai|; and (68) holds
because |ai| ≤ ‖v1‖ ≤ α

4 by definition of ai. It therefore suffices to show that σ√H+1(A)− α
4 ≥

α
10 .

Note that A has entries which are bounded by a constant: |Aii| = ‖ṽi−2‖ ≤ ‖v1‖+ ‖∂1mi−1‖‖v2‖ ≤ 1 +B, and

|ail| ≤ ‖wil‖ ≤ 1 +
B

1− δ
≤ 2B

1− δ
≡ c

as in the previous case, so ‖A‖F ≤ c(H − 1). Furthermore, since A is lower triangular, its determinant is the
product of its diagonal entries, and therefore

H−2∏
i=1

σi(A) = |det(A)| =
H−1∏
i=2

‖ṽi−2‖ ≥

(√
15− 1

4
α

)H−2

.

Thus we can apply Lemma 11 with n = H − 1, β =
√

15−1
4 α, and c = 2B

1−δ to conclude that σ√H+1(A) − α
4 ≥√

15−1
8 α− α

4 ≥
α
10 for all H ≥ H2 with H2 = O((log B

α(1−δ) )2).

In both cases, we have that (∆G)>v = Mg̃+Z ′, where M ∈ RH×H is a matrix with σ√H(M) ≥ α
10 , g̃ ∼ N (0, IH)

and Z ′ is a mean-0 Gaussian with Z ′ ⊥⊥ g̃. Thus by Lemma 9 and Lemma 10 with k =
√
H, for all H ≥

max{H1, H2} we have:

P(‖(∆G)>v‖ ≤ α

10
H1/4 − r) = P(‖Mg̃ + Z ′‖ ≤ αH1/4 − r)

≤ P(‖Mg̃‖ ≤ αH1/4 − r)

≤ 2 exp(−c′ r2

(α/10)2
).

Then for any ε > 0, setting r = α
10
√
c′

√
log T

γ + 2d log 3
ε , we have that

‖(∆G)>v‖ ≥ α

10
H1/4 − α

10
√
c′

√
log

T

γ
+ 2d log

3

ε
with probability ≥ 1− 2γ

T

(ε
3

)2d

(69)

for any fixed v.

Now let {vnet
i }

(3/ε)2d

i=1 ⊆ R2d be an ε-net for S2d−1. (An ε-net with (3/ε)2d elements exists by, e.g., (Vershynin,
2018) Corollary 4.2.13.) By taking a union bound of (69) over each vnet

i in the net, we have that (69) holds
simultaneously for all vnet

i with probability at least 1− 2γ
T . A further union bound shows that this holds over the

entire T steps of the trajectory with probability at least 1− γ
T .

Next, consider any v ∈ S2d−1 and choose vnet
i such that ‖v − vnet

i ‖ ≤ ε. We have

‖(∆G)>v‖ ≥ ‖(∆G)>vi‖ − ‖(∆G)>(vi − v)‖ ≥ α

10
H1/4 − α

10
√
c′

√
log

1

γ
+ 2d log

3

ε
− ‖∆G‖F ε. (70)
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We can bound ‖∆G‖F :

‖∆G‖2F =

H−1∑
i=0

(‖GH −Gi‖2 + ‖GµH−1 −G
µ
i−1‖

2)

≤ 2

H−1∑
i=0

(‖GH‖2 + ‖Gi‖2 + ‖GµH−1‖
2 + ‖Gµi−1‖

2).

We showed previously that ‖Gi‖, ‖Gµi ‖ = O( B
1−δ (
√
d+

√
log T

γ )H) for all i with probability at least 1− γ over

the whole trajectory. Thus

‖∆G‖2F = O(
B

1− δ

√
log

T

γ
H3/2)

with probability at least 1− γ. By another union bound, combining this inequality with (70) implies that with
probability at least 1− 3γ we have

‖(∆G)>v‖ ≥ α

10
H1/4 − α

10
√
c′

√
log

1

γ′
+ 2d log

3

ε
− cB

1− δ

√
log

T

γ
H3/2ε. (71)

Setting ε = H−11/8, (71) becomes

‖(∆G)>v‖ ≥ α

10
H1/4 − α

10
√
c′

√
log

1

γ′
+ 2d(log 3 +

11

8
logH)− cB

1− δ

√
log

T

γ
H1/8 (72)

≥ α

10
H1/4 − c1B

1− δ

√
d log

T

γ
H1/8 (73)

for some universal constant c1. The inequality (73) ≥ 1 is quadratic in H1/8, and with a simple application of

the quadratic formula we see that (73) ≥ 1 whenever H ≥ H3 for some H3 = O( B8d4

α8(1−δ)8 (log T
γ )4).

Combining (73) with (57), we have shown that for H ≥ max{2d,H1, H2, H3} = O( B8

α8(1−δ)8 (log T
γ )4), with

probability at least 1− 3γ, equation (56) holds at every step in the optimization trajectory. (Recall that it was
sufficient to prove this for the special case σ = 1 by homogeneity.)

We are almost done. Plugging this upper bound into (54), we have

‖∆ψ†‖ ≤
‖(∆ψ + η∆G)†‖

1− ‖(∆ψ + η∆G)†‖(η‖∆E‖+ η2‖∆S‖)

≤
1
ησ

1− 1
ησ (cηBH

3/2

1−δ E∇ + η2(Õ(σ) +O(E∇)))

≤
1
ησ

1− c′BH3/2

1−δ
E∇
σ

(74)

= O(
1

ησ
), (75)

where (74) holds because η(Õ(σ) +O(E∇)) = o(E∇) and (75) holds provided that σ ≥ 2c′BH
3/2E∇
1−δ . Given our

eventual choices of η and σ and the resulting bound on E∇ from Lemma 4, both of these conditions will indeed

hold. Thus we have that ∆ψ is full rank and ‖∆ψ†‖ = O( 1
ησ ), as desired.

Lemma 3. The long-term Jacobian estimate d̂µ∗

dθ from Eq. 2 satisfies∥∥∥∥∥ d̂µ∗dθ − dµ∗

dθ

∥∥∥∥∥ = Õ(η + Em) ≡ Eµ∗ ,
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where Em is the upper bound on the error in estimating the Jacobian of m from Lemma 2.

Proof. Throughout this proof, m(k) denotes m(k)(θt, µt−1) and µ∗ denotes µ∗(θt). We also seek to evaluate dm(k)

dθ

at the point (θt, µt−1) as well as dµ∗

dθ at θt. To avoid notational clutter, we will drop the dependence on the time
t, so θ denotes θt and µ denotes µt−1.

As d̂µ∗

dθ = limk→∞
d̂m(k)

dθ and ‖dm
(k)

dθ − dµ∗

dθ ‖ → 0 by Lemma 16, we have

‖ d̂µ
∗

dθ
− dµ∗

dθ
‖ = lim

k→∞
‖ d̂m

(k)

dθ
− dµ∗

dθ
‖

≤ lim
k→∞

‖ d̂m
(k)

dθ
− dm(k)

dθ
‖+ ‖dm

(k)

dθ
− dµ∗

dθ
‖

= lim
k→∞

‖ d̂m
(k)

dθ
− dm(k)

dθ
‖.

Thus it suffices to bound ‖ d̂m(k)

dθ − dm(k)

dθ ‖ and take the limit as k →∞.

Define B′ = B
1−δ and c1 = C(1 +B′)D. Take c2 to be a constant such that ‖µt−µ∗(θt)‖ ≤ c2BG(log 1

η )2η, which

exists by Lemma 18. Finally, define β = c2C(1 +B′)BG(log 1
η )2η + 2B′Em, and set δ′ = δ + Em.

We claim that ‖dm
(k)

dθ − d̂m(k)

dθ ‖ ≤ c1
∑k−1
i=0 δ

i(δ′)k−1−i + β 1−(δ′)k

1−δ′ . For k = 0, both dm(k)

dθ and d̂m(k)

dθ are 0, so the
claim holds trivially. We induct:

‖dm
(k+1)

dθ
−

̂dm(k+1)

dθ
‖ ≤ ‖∂1m(θ,m(k))− ̂∂1m(θ, µ)‖+ ‖∂2m(θ,m(k))

dm(k)

dθ
− ̂∂2m(θ, µ)

d̂m(k)

dθ
‖

≤ ‖∂1m(θ,m(k))− ∂1m(θ, µ)‖+ ‖∂1m(θ, µ)− ̂∂1m(θ, µ)‖

+ ‖∂2m(θ,m(k))− ∂2m(θ, µ)‖‖dm
(k)

dθ
‖+ ‖∂2m(θ, µ)− ̂∂2m(θ, µ)‖‖dm

(k)

dθ
‖

+ ‖ ̂∂2m(θ, µ)‖‖dm
(k)

dθ
− d̂m(k)

dθ
‖

≤ C‖m(k) − µ‖+ Em + C‖m(k) − µ‖B′ + EmB
′ + (δ + Em)‖dm

(k)

dθ
− d̂m(k)

dθ
‖ (76)

= C(1 +B′)‖m(k) − µ‖+ (1 +B′)Em + (δ + Em)‖dm
(k)

dθ
− d̂m(k)

dθ
‖

≤ C(1 +B′)(‖m(k) − µ∗‖+ ‖µ∗ − µ‖) + (1 +B′)Em + (δ + Em)‖dm
(k)

dθ
− d̂m(k)

dθ
‖

≤ C(1 +B′)(Dδk + c2BG(log
1

η
)2η) + 2B′Em + δ′‖dm

(k)

dθ
− d̂m(k)

dθ
‖ (77)

≤ c1δk + β + δ′(c1

k−1∑
i=0

δi(δ′)k−1−i + β
1− (δ′)k

1− δ′
) (78)

= c1(δk +

k−1∑
i=0

δi(δ′)k−i) + β(1 +
δ′ − (δ′)k+1

1− δ′
)

= c1

k∑
i=0

δi(δ′)k−i + β
1− (δ′)k+1

1− δ′
.
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In the above, (76) holds by Assumption 5; (77) holds by Lemma 14; and 78 holds by definition of c1, c2, β, δ′,
and the inductive hypothesis. Since Em ≥ 0, we have that δ′ ≥ δ. Furthermore, since Em = o(1), we may assume
that 0 < δ′ < 1. It follows that

‖dm
(k)

dθ
− d̂m(k)

dθ
‖ ≤ c1

k−1∑
i=0

δi(δ′)k−1−i + β
1− (δ′)k

1− δ′

≤ c1k(δ′)k−1 + (c2C(1 +B′)BG(log
1

η
)2η + (1 +B′)Em)

1

1− δ′

= O
(
k(δ′)k +

CB2G

(1− δ)2
(log

1

η
)2η +

B

(1− δ)2
Em

)
.

Taking k →∞, we find that

‖ d̂µ
∗

dθ
− dµ∗

dθ
‖ = O

(
CB2G

(1− δ)2
(log

1

η
)2η +

B

(1− δ)2
Em

)
≡ Eµ∗

as desired. Substituting the expression for Em, we see that the (log 1
η )2η term does not contribute to leading

order, so we have

Eµ∗ = O

(
C
√
HB3G2

(1− δ)2
(log

1

η
)4 η

σ
+

B3GH

(1− δ)2
(log

1

η
)2 ε

ησ2

)
. (79)

Lemma 4. The estimator ∇̂L∗t from Eq. (1) satisfies

‖∇̂L∗t −∇L∗t ‖ = Õ(η + Eµ∗),

where Eµ∗ is the error bound on d̂µ∗

dθ from Lemma 3.

Proof. We have

∇L∗(θ) =

∇1L∗(θ)︷ ︸︸ ︷∫
∇θ`(z, θ)p(z, µ∗(θ)) dz+

∇2L∗(θ)︷ ︸︸ ︷∫
`(z, θ)

dµ∗

dθ

>
∇µp(z, µ∗(θ)) dz

∇̂L∗(θ) =

∫
∇θ`(z, θ)p(z, µ̂) dz︸ ︷︷ ︸

∇̂1L∗(θ)

+

∫
`(z, θ)

d̂µ∗

dθ

>

∇µp(z, µ̂) dz︸ ︷︷ ︸
∇̂2L∗(θ)

We write ‖∇L∗ − ∇̂L∗‖ ≤ ‖∇1L∗ − ∇̂1L∗‖+ ‖∇2L∗ − ∇̂2L∗‖ and bound each of these terms separately. For the
remainder of this proof, we will assume that ‖µ̂− µ∗‖ = o(1). By the result of Lemma 18, this will be the case
when η = o(1).
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Let σ2
0 = ‖Σ‖, and let Bd(R) denote the Euclidean ball in Rd of radius R. For the first term, we have

‖∇1L∗ − ∇̂1L∗‖ ≤ `max

∫
|p(z, µ∗)− p(z, µ̂)| dz

≤ `max

[∫
‖z−µ̂‖≤R

|p(z, µ∗)− p(z, µ̂)| dz +

∫
‖z−µ̂‖>R

p(z, µ̂) dz +

∫
‖z−µ̂‖>R

p(z, µ∗) dz

]

≤ `max

[
Lp,2‖µ∗ − µ̂‖vol(Bd(R)) +

∫
‖z−µ̂‖>R

p(z, µ̂) dz +

∫
‖z−µ∗‖>R−‖µ̂−µ∗‖

p(z, µ∗) dz

]
(80)

= `max[Lp,2‖µ∗ − µ̂‖vol(Bd(R))

+ Pz∼N (µ̂,Σ)(‖z − µ̂‖ ≥ R) + Pz∼N (µ∗,Σ)(‖z − µ∗‖ ≥ R− ‖µ̂− µ∗‖)]

≤ `max[6Lp,2R
d‖µ∗ − µ̂‖

+ c1 exp{−c2(R− σ0

√
d)2/σ2

0}] + c1 exp{−c2(R− σ0

√
d− ‖µ̂− µ∗‖)2/σ2

0} (81)

= O(Rd‖µ∗ − µ̂‖+ exp{−c2(R− σ0

√
d− ‖µ̂− µ∗‖)2/σ2

0}) (82)

for any R ≥ σ0

√
d+ ‖µ̂− µ∗‖. In the above, (80) holds because

‖z − µ̂‖ > R =⇒ ‖z − µ∗‖ > ‖z − µ̂‖ − ‖µ̂− µ∗‖ > R− ‖µ̂− µ∗‖.

Equation (81) holds by the inequality vol(Bd(R)) ≤ 6Rd, and by Lemma 7. If we then set

R = σ0

√
d+ ‖µ̂− µ∗‖+

σ0√
c2

√
log

1

‖µ̂− µ∗‖
,

substituting into (82) yields

‖∇1L∗ − ∇̂1L∗‖ = O(3d[(σ0

√
d)d + ‖µ̂− µ∗‖d + (

σ0√
c2

(log
1

‖µ̂− µ∗‖
)1/2)d]‖µ̂− µ∗‖+ ‖µ̂− µ∗‖) (83)

= O

((
log

1

‖µ̂− µ∗‖

)d/2
‖µ̂− µ∗‖

)
.

Equation (83) holds by the elementary inequality (a+ b+ c)d ≤ 3d(ad + bd + cd) for any a, b, c, d ≥ 0.

The bound on the second gradient term is similar to the first. First, for the Gaussian density p, note that
∇µp(z, µ) = Σ−1(µ− z)p(z, µ). Using this fact, we have

‖∇2L∗ − ∇̂2L∗‖ ≤ `max

∫
‖dµ

∗

dθ

>
∇µp(z, µ∗)−

d̂µ∗

dθ

>

∇µp(z, µ̂)‖ dz

≤ `max

‖dµ∗
dθ

>
‖
∫
‖∇µp(z, µ∗)−∇µp(z, µ̂)‖ dz + ‖dµ

∗

dθ

>
− d̂µ∗

dθ

>

‖
∫
‖∇µp(z, µ̂)‖ dz


≤ `max

[
B

1− δ
L∇µp,2‖µ∗ − µ̂‖vol(Bd(R)) +

∫
‖z−µ̂‖>R

‖∇µp(z, µ̂)‖ dz

+

∫
‖z−µ∗‖>R−‖µ∗−µ̂‖

‖∇µp(z, µ∗)‖ dz + ‖dµ
∗

dθ
− d̂µ∗

dθ
‖
∫
‖∇µp(z, µ̂)‖ dz

]

= O

(
Rd‖µ∗ − µ̂‖+

∫
‖z−µ∗‖>R−‖µ∗−µ̂‖

‖∇µp(z, µ∗)‖ dz + ‖dµ
∗

dθ
− d̂µ∗

dθ
‖‖Σ−1/2‖

√
d

)
. (84)



How to Learn when Data Gradually Reacts to Your Model

Equation (84) follows by applying Lemma 6 to
∫
‖∇µp‖. We bound the integral in the last line separately. For

any r > σ0

√
d, we have∫

‖z−µ∗‖>r
‖∇µp(z, µ∗)‖ dz =

∫
‖z−µ∗‖>r

‖Σ−1(µ∗ − z)‖p(z, µ∗) dz

= Ez∼N (µ∗,Σ)[‖Σ−1(z − µ∗)‖ · 1{‖z − µ∗‖ > r}]

≤
√

Ez∼N (µ∗,Σ)[‖Σ−1(z − µ∗)‖2] · Ez∼N (µ∗,Σ)[1{‖z − µ∗‖ > r}2] (85)

≤
√
‖Σ−1/2‖2Ez∼N (µ∗,Σ)[‖Σ−1/2(z − µ∗)‖2] · Pz∼N (µ∗,Σ)(‖z − µ∗‖ > r)

= ‖Σ−1/2‖
√

Ez∼N (0,Id)[‖z‖2] · c1 exp{−c2(r − σ0

√
d)2/σ2

0} (86)

= ‖Σ−1/2‖
√
d ·
√
c1 exp{−c2(r − σ0

√
d)2/2σ2

0}. (87)

Inequality (85) holds by the Cauchy-Schwarz inequality. Equation (86) holds because

z ∼ N (µ∗,Σ) =⇒ Σ−1(z − µ∗) ∼ N (0, Id),

and by Lemma 7. Finally, equation (87) holds because Ez∼N (0,Id)‖z‖2 = d. We can now plug (87) into (84):

‖∇2L∗ − ∇̂2L∗‖ = O

(
Rd‖µ∗ − µ̂‖+ exp{−c2(R− ‖µ∗ − µ̂‖ − σ0

√
d)2/2σ2

0}+ ‖dµ
∗

dθ
− d̂µ∗

dθ
‖‖Σ−1/2‖

√
d

)
.

If we take R = σ0

√
d+ ‖µ̂− µ∗‖+

√
2σ0√
c2

√
log 1
‖µ̂−µ∗‖ , then by the same logic as was used in Equation (83), we

obtain

‖∇2L∗ − ∇̂2L∗‖ = O

((
log

1

‖µ̂− µ∗‖

)d/2
‖µ̂− µ∗‖+ ‖dµ

∗

dθ
− d̂µ∗

dθ
‖‖Σ−1/2

√
d

)
.

Thus the bound on ‖∇1L∗ − ∇̂1L∗‖ can be absorbed into the bound on ‖∇2L∗ − ∇̂2L∗‖, and we have

‖∇L∗ − ∇̂L∗‖ = O

((
log

1

‖µ̂− µ∗‖

)d/2
‖µ̂− µ∗‖+ ‖dµ

∗

dθ
− d̂µ∗

dθ
‖‖Σ−1/2‖

√
d

)
. (88)

Now, when we take θ = θt (so µ∗ = µ∗(θt) and we are evaluating dµ∗

dθ at θt) and µ̂ = µ̂t, by Lemma 18, for
t ≥ logδ η, we have

‖µ̂t − µ∗(θt)‖ ≤ ‖µ̂t − µt‖+ ‖µt − µ∗(θt)‖ ≤ O(ε + (log
1

η
)2η).

Substituting this into (88) and using the definition of Eµ∗ , we have

‖∇L∗ − ∇̂L∗‖ = O


log

1

ε +
(

log 1
η

)2

η


d/2(

ε +

(
log

1

η

)2

η

)
+
√
d‖Σ−1/2‖Eµ∗


= Õ(ε + η) +O(

√
d‖Σ−1/2‖Eµ∗).

Since ε = O(η), we obtain the desired result. From the expression (79) for Eµ∗ , we see that the Õ(η) term does
not contribute to leading order, and we obtain

‖∇L∗ − ∇̂L∗‖ = O

(
CB3G2

√
Hd‖Σ−1/2‖

(1− δ)2
(log

1

η
)4 η

σ
+
B3GH

√
d‖Σ−1/2‖

(1− δ)2
(log

1

η
)2 ε

ησ2

)
≡ E∇. (89)

Note that this matches the definition of E∇ given in (40).
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Lemma 5. Let h be any L-smooth function and let ∇̂h be a gradient oracle with bounded error: ‖∇̂h(x)−∇h(x)‖ ≤
e, and assume that e = o(1). Then for η sufficiently small, the iterates xt of gradient descent with gradient oracle

∇̂h satisfy

min
1≤t≤T

‖∇h(xt)‖2 = O
(

1

Tη
+ e

)
.

Proof. We require the additional assumptions that ‖∇h(x)‖ ≤ G and that |h(x)| ≤ hmax for all x, and that
G, hmax = O(1).

Since h is L-smooth, we have h(y) ≤ h(x)+∇h(x)>(y−x)+ L
2 ‖x−y‖

2 for any x, y. Define et = ∇̂h(xt)−∇h(xt),

so ∇̂h(xt) = ∇h(xt) + et. Taking x = xt and y = xt+1, we have

h(xt+1) ≤ h(xt) +∇h(xt)
>(xt − η(∇h(xt) + et)− xt) +

L

2
‖xt − η(∇h(xt) + et)− xt‖2

≤ h(xt)− η‖∇h(xt)‖2 + η‖∇h(xt)‖‖et‖+ η2L‖∇h(xt)‖2 + η2L‖et‖2 (90)

≤ h(xt)− η‖∇h(xt)‖2 + ηGe + η2L‖∇h(xt)‖2 + η2Le2

= h(xt) + (η2L− η)‖∇h(xt)‖2 + ηGe + η2Le2.

Here (90) holds by the Cauchy-Schwarz inequality. Since η = o(1), we may assume that η−η2L > 0. Rearranging,
it follows that

‖∇h(xt)‖2 ≤
h(xt)− h(xt+1) + ηGe + η2Le2

η − η2L
. (91)

We now sum (91) from t = 1 to T . This yields

T min
1≤t≤T

‖∇h(xt)‖2 ≤
T∑
t=1

‖∇h(xt)‖2

≤
T∑
t=1

h(xt)− h(xt+1) + ηGe + η2Le2

η − η2L

=
h(x1)− h(xT+1)

η − η2L
+ T · ηGe + η2Le2

η − η2L

≤ 2hmax

η − η2L
+ T · ηGe + η2Le2

η − η2L

= O
(
hmax

η
+GTe

)
. (92)

Here (92) holds since η = o(1) and e = o(1). Dividing both sides of (92) by T yields the desired result.

Theorem 1. Let T be the number of deployments of Stateful PerfGD, and for each t let ∇L∗t = ∇L∗(θt). Then
for any γ > 0, there exist intervals [ηmin, ηmax] and [σmin, σmax] (which depend on T and the estimation error ε)
such that for any learning rate η in the former and perturbation size σ in the latter interval, with probability at
least 1− γ, the iterates of Stateful PerfGD satisfy

min
1≤t≤T

‖∇L∗t ‖2 = Õ(T−1/5 + ε1/5).

Proof. First, we remark that in order for Lemma 18 to hold, we need a “warm-up” phase of length log 1
η . We will

always take η = Ω(T−2/5), in which case this warm-up phase has length O(log T 2/5) = O(log T ) = o(T ). This
does not change the asymptotic length of the trajectory, so we will simply ignore it in the following calculations.
We will also assume that all of the required high-probability events hold from each of the previous lemmas,
making the following statements hold with probability at least 1−O(γ).

We split into two (very similar) cases. First, we consider when ε ≥ 1
T .
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Suppose that for s ≤ t, we have that ‖∇̂L∗(θs)−∇L∗(θs)‖ ≤ E∇ with

E∇ = O

(
CB3G2

√
Hd‖Σ−1/2‖

(1− δ)2
(log

1

η
)4 η

σ
+
B3GH

√
d‖Σ−1/2‖

(1− δ)2
(log

1

η
)2 ε

ησ2

)
. (93)

(Again, note that if s ≤ log 1
η , then we replace ∇̂L∗(θs) and ∇L∗(θs) with 0 and the above bound holds trivially.)

Since E∇ = o(1) and ‖∇̂L∗(θs)‖ ≤ G+ E∇, we have ‖∇̂L∗(θs)‖ ≤ cG for some absolute constant c. Furthermore,
if we require that

σ ≥ 2c′
BH3/2E∇

1− δ
, (94)

then Lemma 2 holds. Then we have the chain Lemma 2 ⇒ Lemma 3 ⇒ Lemma 4, and in particular Lemma 4
holds with the same E∇ as in (93). Inductively, we see that ‖∇̂L∗(θt)−∇L∗(θt)‖ ≤ E∇ for all 1 ≤ t ≤ T .

We can now apply Lemma 5 with e = E∇ + O(σ
√

log T
γ ). (The second term accounts for the fact that the

perturbation gt must be included in e, and ‖gt‖ = O(σ
√

log T
γ ).) This yields

min
1≤t≤T

‖∇L∗t ‖2 = O

(
`max

Tη
+G(E∇ + σ

√
log

T

γ
)

)
= O

(
`maxε

η
+G

√
log

T

γ
· σ

)
(95)

where the second bound holds by condition (94) and ε ≥ 1/T .

Next, let us analyze the condition (94); it takes the form σ ≥ c1(log 1
η )4 η

σ + c2(log 1
η )2 ε

ησ2 . Dividing both sides of

this inequality by σ and setting η =
√
ε/σ, (94) holds if

c1(log
1

η
)4 η

σ2
+ c2(log

1

η
)2 ε

ησ3
≤ (c1 + c2)(log

1

η
)4 ε

1/2

σ5/2
≤ (c1 + c2)(log

1

ε
)4 ε

1/2

σ5/2
≤ 1.

The rightmost inequality holds when σ ≥ (c1 + c2)2/5(log 1
ε )8/5ε1/5. Furthermore, the expressions for the

coefficients c1 and c2 are given by

c1 =
2c′BH3/2

1− δ
· cCB

3G2
√
Hd‖Σ−1/2‖

(1− δ)2
=
c′′B4G2H2

√
d‖Σ−1/2‖

(1− δ)3

c2 =
2c′BH3/2

1− δ
· cB

3GH
√
d‖Σ−1/2‖

(1− δ)2
=
c′′B4GH5/2

√
d‖Σ−1/2‖

(1− δ)3
.

It follows that

(c1 + c2)2/5 = O
(
B8/5G4/5Hd1/5‖Σ−1‖1/5

(1− δ)6/5

)
,

which finally yields that (94) holds for

σ = Ω

(
B8/5G4/5Hd1/5‖Σ−1‖1/5

(1− δ)6/5
(log

1

ε
)8/5ε1/5

)
. (96)

Finally, we set σ = c(log 1
ε )8/5ε1/5 and η =

√
ε/σ. Observe that in this case, ε

η = ε1/2σ1/2 = Õ(ε3/5) = o(σ), so

the ε/η term in (95) can be ignored. Recalling the fact that we must choose H = Θ( B8d4

α8(1−δ)8 (log T
γ )4) in order

for Lemma 19 to hold, we have

min
1≤t≤T

‖∇L∗t ‖2 = O

(
B8/5G9/5Hd1/5‖Σ−1‖1/5

(1− δ)6/5

√
log

T

γ
(log

1

ε
)8/5ε1/5

)

= O
(
B9.6G1.8d4.2‖Σ−1‖0.2

α8(1− δ)9.2
(log

T

γ
)4.5(log

1

ε
)1.6 · ε1/5

)
= Õ(ε1/5).
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This completes the case when ε ≥ 1
T . Otherwise, we have ε < 1

T . Starting from (93), WLOG we can replace each
occurence of ε with 1

T and all of the bounds will still hold, so in this case we get

O
(
B9.6G1.8d4.2‖Σ−1‖0.2

α8(1− δ)9.2
(log

T

γ
)4.5(log T )1.6 · T−1/5

)
= Õ(T−1/5).

Since we are always in one case or the other, we always have

min
1≤t≤T

‖∇L∗t ‖2 = Õ(T−
1
5 + ε

1
5 ).

The fact that there are interval of nonzero width for η and σ follows from the fact that we can multiply or divide
both of these by constants close to 1 and not change any of the asymptotics (since the constants can be chosen
such that (94) still holds). This completes the proof.

C EXPERIMENT DETAILS

For all of the experiments, we did a grid search over the relevant parameters for each method, then chose the best
results for that method. The parameters we considered were:

RGD → learning rate (lr)
DFO → learning rate (lr), wait, perturbation size (ps)
PerfGD → learning rate (lr), wait, horizon (H)
SPGD → learning rate (lr), perturbation size (ps), horizon (H)

The grid ranges for each parameter were as follows:

• lr ∈ {10−k/2 : k = 1, . . . , 6}

• wait ∈ {1, 5, 10, 20}

• DFO ps ∈ {10−k/2 : k = 0, . . . , 3}

• SPGD ps ∈ {0} ∪ {10−k/2 : k = 0, . . . , 3}

• PGD H ∈ {d, d+ 1, . . . , 2d, ∞}

• SPGD H ∈ {2d, 2d+ 1, . . . , 3d, ∞}

For each experiment, we specify the dimension d. We also require that θ ∈ [−R,R]d for some R. If any of the
optimization methods took θ outside of this constraint set, we simply clamped θ back to the required range.

Rather than having deterministically bounded error on the mean estimates µ̂t, we take µ̂t = µt + et, where

et
i.i.d.∼ N (0, σ2

errI) are Gaussian error terms which would arise from taking µ̂t to be the mean of a finite sample.

For §5.2, we set d = 5 and R = 5. The matrix A was chosen as −0.8× a random PSD matrix. The vector b was
set to be 2× the all 1’s vector. We used a time horizon of T = 50, and the noise on estimating the mean was
σerr = 10−3. We did 5 trials per scenario.

For §5.3, we set d = 5, R = 5, and the mean estimation noise is still σerr = 10−3. We set A = −0.8I, b to be
2× the all ones vector, and δ = 0.684, and conducted 50 trials. In a small fraction of runs, the SPGD gradient
estimate would explode, so we also clipped the gradient if its norm exceeded 10 by normalizing it to a unit vector.

For §5.4, we set d = 2 and R = 3. We had µ0 = [2, 1]> and µ1 = [1, 2]>. The proportion of spammers was 0.5.
We set α = −2, the regularization strength to be 10−1, and δ = 0.25. The mean estimation noise was σerr = 10−3,
and we conduct 50 trials.
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C.1 Bottleneck

The long-term mean for θ is given by

µ∗(θ) =
1

1 + θ>µ0
µ0.

The long-term performative loss is then

L∗(θ) =
−θ>µ0

1 + θ>µ0
+
λ

2
‖θ‖2.

If there is a long-term distribution, then the mean satisifes the fixed point equation µ = (1 − θ>µ)µ0. This
equation implies that µ = cµ0 for some scalar c. Substituting and solving the resulting equation, we see that The
long-term mean for θ is given by

µ∗(θ) =
1

1 + θ>µ0
µ0.

To avoid the denominator blowing up, we would like to enforce some constraints on θ and µ. We accomplish this
by setting Θ = {θ ∈ Rd : θ ≥ 0 and ‖θ‖∞ ≤ 1/

√
d}. If we also choose µ0 so that ‖µ0‖2 = 1 and µ0 ≥ 0, then we

claim that ‖µt‖ ≤ 1 and 0 ≤ θ>µt ≤ 1 for all t. It trivially holds for t = 0. At time t+ 1, we have:

‖µt+1‖2 = |1− θ>µt|‖µ0‖2
= |1− θ>µt|.

Since θ>µt ≥ 0, we trivially have 1− θ>µt ≤ 1. To see that it is also nonnegative:

1− θ>µt ≥ 1− ‖θ‖2‖µt‖2

≥ 1−
√
d

1√
d
· 1 = 0.

It follows that ‖µt+1‖2 ≤ 1. Furthermore, since µ0 ≥ 0 and 1 − θ>µt ≥ 0, we have µt+1 ≥ 0 and therefore
0 ≤ θ>µt+1 ≤ 1, completing the induction.

A simple calculation yields

∇L∗(θ) = λθ − µ0

(1 + θ>µ0)2
, (97)

∇2L∗(θ) = λI +
2

(1 + θ>µ0)3
µ0µ

>
0 . (98)

If we assume that ‖µ0‖2 = 1, then (98) implies that L∗ is convex precisely when 2/(1 + θ>µ0)3 ≥ −λ for all θ.
Since µ0, θ ≥ 0, it follows that L∗ is convex for any nonnegative regularization strength λ. Thus we should expect
(approximate) gradient descent to find the minimizer for this problem.

D ADDITIONAL EXPERIMENTS

D.1 Extended Results for the Linear Experiment

Here we extend the results of Section 5.2 as the mean takes longer and longer to settle. For both of the following
experiments, we kept the number of model deployments at T = 50. Figure 5 shows the performance of each
algorithm at the same noise level as the previous experiment (σerr = 10−3). Figure 6 shows the results with no
noise on the mean (σerr = 0).

At the same noise level as the previous experiments, SPGD maintains its superior performance when it takes the
distribution 128 steps to settle. However, as the number of steps required for the distribution to settle increases,
the noise in mean estimation becomes larger than ∂2m and SPGD can no longer get an accurate estimate of the
long-term loss gradient. However, as the error on µ̂t decreases below the size of ∂2m, SPGD is able to form a
good estimate of the long-term performative gradient even for extremely slowly adapting distributions, obtaining
near-optimal performance even when the distribution takes 512 or even 2048 steps to settle to its long term value.
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Figure 5: Additional results for the linear m experiment. SPGD retains its superior performance even when the
distribution takes 128 steps to settle, but for slow enough dynamics, SPGD eventually degrades to the level of
the other algorithms due to the noise in estimating µt.
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Figure 6: When there is no (or very little) noise in estimating µt, SPGD can still get an accurate estimate
for the long-term gradient and manages to retain its superior performance even for extremely slowly adapting
distributions.
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Figure 7: A demonstration of the oscillating distribution dynamics for this experiment.
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Figure 8: Performance of each of the algorithms for the oscillating distribution dynamics shown in Figure 7.
SPGD still outperforms the other algorithms and finds a near-optimal point.

D.2 Dynamics with Oscillations

We consider another experiment where the distribution parameters do not converge monotonically to their
long-term values. We still use the point loss `(z, θ) = −z>θ, but we take

m(θ, µ) = δ(Aθ + b)− (1− δ)µ

for some fixed 0 < δ < 1. In this case, m(k) oscillates around the long-term value of µ∗(θ) = δ
2−δ (Aθ + b). This

oscillation can be seen in Figure 7 in dimension d = 2. Consecutive updates of µ oscillate back and forth on either
side of the long-term value.

In spite of the oscillations present in the dynamics, by choosing a fixed base point for the finite difference
approximations used to estimate the long-term derivatives, SPGD still performs well in this setting. Figure 8
shows the results for δ = 0.134. (Roughly speaking, this corresponds to a situation where it takes 32 steps for the
effect of the initial distribution to decay.)
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