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Abstract

We consider the problem of online learning in
Linear Quadratic Control systems whose state
transition and state-action transition matri-
ces A and B may be initially unknown. We
devise an online learning algorithm and pro-
vide guarantees on its expected regret. This
regret at time T is upper bounded (i) by

O((dy + dz)v/d,T) when A and B are un-
known, (ii) by O(d2log(T)) if only A is un-
known, and (iii) by O(dy(dy, + d) log(T)) if
only B is unknown and under some mild non-
degeneracy condition (d, and d,, denote the
dimensions of the state and of the control
input, respectively). These regret scalings
are minimal in 7', d, and d, as they match
existing lower bounds in scenario (i) when
d, < d,, (Simchowitz and Foster, 2020), and
in scenario (ii) (Lai, 1986). We conjecture
that our upper bounds are also optimal in
scenario (iii) (there is no known lower bound
in this setting).

Existing online algorithms proceed in epochs
of (typically exponentially) growing durations.
The control policy is fixed within each epoch,
which considerably simplifies the analysis of
the estimation error on A and B and hence
of the regret. Our algorithm departs from
this design choice: it is a simple variant of
certainty-equivalence regulators, where the
estimates of A and B and the resulting con-
trol policy can be updated as frequently as
we wish, possibly at every step. Quantify-
ing the impact of such a constantly-varying
control policy on the performance of these
estimates and on the regret constitutes one of
the technical challenges tackled in this paper.
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1 INTRODUCTION

The Linear Quadratic Regulator (LQR) problem ar-
guably constitutes the most iconic, studied, and applied
problem in control theory. In this problem, the system
dynamics are approximated by those of a linear system,
which, in discrete time, are x;11 = Axy + Bug + ;. x4
and u; represent the state and action vectors at time t,
respectively, and typically, the noise sequence (7;);>0
is i.i.d. Gaussian. The decision maker experiences
an instantaneous cost quadratic in both the state and
the control input x; Qx; + u; Ru;, where Q and R are
positive semidefinite matrices. Her objective is to de-
vise a control policy minimizing her accumulated long
term expected cost. In the perfect information setting
(as investigated in this paper), the state is observed
without noise, and is plugged in as an input in the con-
trol policy. When the state transition and state-action
transition matrices A and B are known, the optimal
control policy is a simple feedback control u; = K,z
where K, = — (R + BTP*B)_1 BT P, A and P, solves
the discrete algebraic Riccati equation.

This paper considers the online learning version of the
LQR problem, where the matrices A and B may be ini-
tially unknown. In such a scenario, the decision maker
must control the system while learning these matri-
ces. Early efforts in the control community (Astrbm
and Wittenmark, 1973; Kumar, 1985) were devoted to
establish the convergence and asymptotic properties
of adaptive control algorithms. The regret analysis of
these algorithms, initiated by Lai (1986); Lai and Wei
(1987) (in very specific cases) and by Abbasi-Yadkori
and Szepesvari (2011), has attracted a lot of attention
recently, see e.g., Mania et al. (2019); Cohen et al.
(2019); Shirani Faradonbeh et al. (2020); Simchowitz
and Foster (2020); Abeille and Lazaric (2020); Lale
et al. (2020); Cassel et al. (2020). Refer to §2 for
details, and to Appendix B for an even longer discus-
sion. Despite these efforts, the picture remains blurry.
We are unable from the aforementioned literature (see
Ziemann and Sandberg (2021)) to determine the con-
ditions on (A, B, R, Q) under which one can achieve a
regret scaling as O(log(T)) or O(V/T).
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The objective of this work is to devise online algorithms
for the LQR problem whose expected regret exhibits
the best scaling in both the time horizon T and the
dimensions d, and d,, of the state and control input,
in the three envisioned scenarios: (I) when (A, B) are
unknown, (II) when A only is unknown, (III) when B
only is unknown. In addition to guaranteeing minimal
regret, we wish our algorithms to enjoy a simple and
natural design and to require as little inputs as possible.
Existing algorithms proceed in epochs of exponentially
growing durations. The control policy is fixed within
each epoch. This doubling trick considerably simplifies
the analysis of the estimation error on A and B and
hence of the regret, but seems rather impractical. It is
also worth noting that most algorithms take as input a
level of confidence §, the time horizon T, a stabilizer K,
but also sometimes known upper bounds on the norms
of A and B (for details, refer to §2 and to Appendix
B).

Contributions. We propose CEC(T) a family of al-
gorithms based on the certainty equivalence principle
and with the following desirable properties. The con-
trol policy is not fixed within epochs, and may be
updated continuously as the estimates of A and B and
hence of the optimal control improve. These updates
are performed at the rounds in 7 C N, and our regret
guarantees hold for a wide variety of set T ranging from
T = N (updates every round) to 7 = {2¥ : k € N}
(doubling trick). CEC(T) is anytime, and does not
leverage any a priori information about the system
(except for the knowledge of a stabilizing controller).
We provide upper bounds of the expected regret of our
algorithms in the three envisioned scenarios:

In Scenario I where A and B are unknown, the expected
regret of CEC(T) is' O((dy+d,)\/d,T), which matches
the existing lower bound derived by Simchowitz and

Foster (2020) when d, < d,.

In Scenario II where A only is unknown, the expected

regret of CEC(T) is O(d2 log(T')), matching the lower
bound derived by Lai (1986).

In Scenario IIT where B only is unknown, the expected
regret of CEC(T) is O(dy(dy + dy)log(T')) under the
assumption that K, is full-rank; there is no lower bound
in this setting, but we conjecture that our upper bound
exhibits the optimal scalings in T, d,, and d,,.

It is worth comparing the design and performance guar-
antees of CEC(T) to those of existing algorithms. For
Scenario I, Simchowitz and Foster (2020) present an
algorithm achieving the same regret upper bound as
ours but with probability 1 — § where ¢ is an input of
the algorithm (see the next section for a detailed dis-

'The notation O hides logarithmic factors.

cussion on the difference between regret in expectation
and with high probability), and using a doubling trick.
For Scenarios IT and III, the best regret guarantees
were O(poly(d,,d,)log?(T)) (Cassel et al., 2020) with
unspecified polynomial dependence in (d,,d,) (with
degree at least 8 as far as we can infer from the anal-
ysis of Cassel et al. (2020)). These guarantees were
achieved by an algorithm with several inputs, including
the time horizon, a stabilizer, upper bounds on ||Al|,
||B]|, on the minimal ergodic cost, and that achieved
under the stabilizer. Refer to Appendix B for a detailed
discussion.

Further note that our algorithm, CEC(T), is anytime
and does not apply any kind of doubling trick: it is
a simple variant of certainty-equivalence regulators,
where the estimates of A and B and the resulting
control policy can be updated as frequently as we wish,
possibly at every step. Quantifying the impact of such a
constantly-varying control policy on the performance of
these estimates and on the regret has eluded researchers
and constitutes the main technical challenges tackled
in this paper. We address this challenge by developing
a novel decomposition of the cumulative covariates
matrix (sometimes referred to as Gram matrix), and
by deriving concentration results on its spectrum.

2 RELATED WORK

The online LQR problem has received a lot of attention
in the control and learning communities. The research
efforts towards the development of algorithms with
regret guarantees have recently intensified. We may
categorize these algorithms into two classes.

In the first class, we find algorithms based on the so-
called self-tuning regulators (Astr'dm and Wittenmark,
1973), as those developed in second half of the 20th
century in the control community, see Kumar (1985);
Matni et al. (2019). Self-tuning regulators work as
follows. At any given step, they estimate the unknown
matrices A and B, and apply a control policy corre-
sponding to the optimal control obtained replacing A
and B by their estimators. To ensure an appropriate
level of excitation of the system, and the ability to
learn A and B, the control inputs are typically per-
turbed using white noise. The algorithms developed
by Lai (1986); Lai and Wei (1987); Rantzer (2018);
Shirani Faradonbeh et al. (2020); Mania et al. (2019);
Simchowitz and Foster (2020); Cassel et al. (2020) obey
these principles. In the second class, we find algorithms
applying the Optimism in Front of Uncertainty (OFU)
principle, extensively used to devise regret optimal
algorithms in stochastic bandit problems Lai and Rob-
bins (1985); Lattimore and Szepesvéri (2020). These
algorithms maintain confidence ellipsoids where the
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system parameters lie with high probaility, and select
optimistically a system in this ellipsoid to compute
the control policy, see Abbasi-Yadkori and Szepesvari
(2011); Faradonbeh et al. (2017); Cohen et al. (2019);
Abeille and Lazaric (2020); Lale et al. (2020). A descrip-
tion of these algorithms and of their regret guarantees
can be found in Appendix B.

All these algorithms use a doubling trick which con-
siderably simplifies their analysis, and most of them
are not anytime (as they use the time-horizon as in-
put). For Scenario I where A and B are unknown, all
are designed in the fixed confidence setting, and enjoy
regret guarantees with a fixed confidence level §. The
best regret upper bound so far is O(d,+/d, T log(1/9))
with probability 1 — ¢ (Simchowitz and Foster, 2020).
For Scenarios IT (B known) and IIT (A known), Cassel
et al. (2020) present an algorithm with an expected re-
gret scaling as O(poly(d,, d,)log?(T)). CEC(T) offers
much better guarantees with a simplified design, and
is anytime.

We conclude this section with a brief discussion on the
differences between regret guarantees in expectation
or with high probability. Most existing online algo-
rithms for the LQR problem have regret guarantees
holding with a fixed level of confidence 1 — § where
¢ is an input of the algorithms. Their regret analysis
consists in identifying a ”"good” event under which the
algorithm behaves well and holding with probability
at least 1 — . Devising algorithms with expected re-
gret upper bounds is more involved since one needs
to also analyze the behavior of the algorithm under
the complementary event (the ”bad” event). In turn,
analyzing the expected regret requires a deeper under-
standing of the problem. There is however a method
to transform an algorithm with regret guarantees with
probability 1 — § to an algorithm with expected regret
guarantees: it consists in tuning § as a function of the
time horizon T, and in controlling the regret under
the bad event. For example, consider the algorithm
of Simchowitz and Foster (2020); in Scenario I where
A and B are unknown, the regret of this algorithm is
upper bounded by C+/T log(1/5) with probability 1—4.
Now choosing § = 1/7? and by applying the stabilizing
controller when the state norm exceeds some threshold,
it can be shown that the expected regret of the mod-
ified algorithm scales at most as Cv/Tlog(T). Note
that this method induces a multiplicative regret cost
proportional to log(T') and leads to an algorithm that
requires the time horizon as input. We believe that
because of the additional log(7T) multiplicative cost,
this method would lead to sub-optimal expected regret
guarantees in Scenarios II and IIT (there is, anyway,
no algorithms in these settings with high probability
regret upper bounds).

3 PRELIMINARIES AND
ASSUMPTIONS

The LQR problem. We consider a linear dynamical
system x;y1 = Az + Bug +1n; as described in the intro-
duction, and initial state zo = 0. (1;):>0 is a sequence
of i.i.d. zero-mean, isotropic?, o2-sub-gaussian random
vectors. The objective of the decision maker is to iden-
tify a control policy (ut)¢>o minimizing the following
ergodic cost limsupy_,. ~E[X 1, 2] Qx; + u/ Ruy),
where () and R are positive semidefinite matrices. Un-
der the assumption that (A, B) is stabilizable, the
Discrete Algebraic Riccati Equation (DARE) P =
ATPA— ATPB(R+ BTPTB)~"'BTPA + Q admits
a unique positive definite solution P, (Kucera, 1972),
and that the optimal control (u;):>o that minimizes
the above objective is defined as

Vit > 0, Uy = K*th, (1)
with K, = — (R+ BT P,B)”' BT P,A. The minimum
ergodic cost achieved under the feedback controller K,
is denoted by J py = limsupy_, o %]E[Zthl z (Q+
K] RK,)x,].

Regret in the online LQR problem. We investi-
gate scenarios where A and / or B are initially un-
known. An adaptive control algorithm 7 is defined as
a sequence of measurable functions u; from the past
observations to a control input: for any ¢t > 0, wu; is
Fi-measurable where F; = o (2o, Ug, - - -, Tt—1, Ut—1, Tt ).
The performance of the algorithm 7 is assessed through
its regret defined as:

T

Ry(r) =) () Que +u/ Rur) =TIy p),
t=1

where (z;,u,) are the state and control input at time ¢
under 7. The above regret definition is used in most
related papers, and somehow assumes that an Oracle
algorithm (aware of A and B initially) would pay a
cost of 7, ’;‘7 gy in each round. We discuss an alternative
definition in Appendix C, and justify this definition
when the expected regret is the quantity of interest.

Assumptions. Throughout the paper, we make the
following assumptions. (i) (7;):>0 is a sequence of i.i.d.
zero-mean, isotropic, o2-sub-gaussian random vectors.
(ii) We assume w.l.o.g.® that Q > I, and R = I, . (iii)

2We say that a random vector 7 is isotropic if E[nn '] =
I,. If 7 is zero-mean, isotropic and o2-subgaussian, then
we also have 1 < 462, The isotrop_PI assumption is without
loss of generality because if E[nn'] = ¥ > 0 then we can
rescale the dynamics by n-1/2,

3This is achieved by a change of basis in the state and in-
put spaces, and by rescaling the dynamics. See Simchowitz
and Foster (2020).
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We assume as in most existing papers that the system
(A, B) is stabilizable, and that the learner has access
to a stabilizing controller K, (i.e, p(A + BK,) < 1).

4 THE CEC(T) ALGORITHM

The pseudo-code of our algorithm, CEC(T), is pre-
sented in Algorithm 1. It essentially based on the
Certainty Equivalence principle: the control policy ap-
plied at time ¢ is the optimal control policy obtained
by replacing (A, B) by their Least Squares Estimators
(LSEs). However CEC(T) includes three additional
components described in more details below. First,
the control inputs are perturbed to ensure a sufficient
excitation of the system (so that the LSE is consistent).
Then, CEC(T) exploits the stabilizing controller K, to
avoid pathological cases where the system state could
become unstable. The use of K, is driven by an hys-
teresis switching mechanism. Finally, the LSE of (A, B)
and the corresponding optimal policy can be updated
at will, as frequently as we wish. Hence, CEC(T) al-
lows for lazy updates, which can be interesting in case
of low computational budget.

Certainty Equivalence and lazy updates.
CEC(T) takes as input an infinite set 7 C N cor-
responding to the times when the control policy is
updated. At such times, we compute the LSE (A;, By)
of (A, B) (see Appendix F for a pseudo-code). For
example in Scenario I, we have: for ¢t > 2,

t—2 21N (22 0 Tl T -1
4, By - (Z sunt 7] ) (Z ol )
s=0 s=0
(2)
Refer to Appendix F for the expressions of the LSE
in the other scenarios. You will note that, when B
only is unknown (Scenario III), then at time ¢, we
only use the sample path (zq,uo, ..., Ti—2,Ut—2,T¢—1)
to compute the LSE of B. This ensures that 7, and
K11 are independent, which will turn to be crucial in
our analysis. From the LSE (A4, B;), we compute the
updated control policy by solving Ricatti equations:

P, = A/ P,A, — Al PB,(R+ B P.B,) "' B P, A,
+Q, (3)
K; = —(R+ B/ P.B,)"'B/ P, A,. (4)

Regarding the set 7 of update times, we just assume
that for some constant C' > 1,

T= (tk)chI with Vk>1, tp < tir1r < Cty. (5)

These conditions are very general and are compatible
with 7 = N (update every round) and 7 = {2* k € N}
(doubling trick).

Hysteresis switching and stability. In CEC(T),
the calls of the stabilizer K, is driven by an hystere-
sis switching mechanism defined by two sequences of
stopping times (74, Uk)r>1 where

t
T = inf {t > U Z ||£179H2 > o2d, g(t)}7

s=0

t
v = inf {t > Tp_1: Z llzs||? < o?d, f(t)},
s=0
with 79 = 0 and g¢(¢) > f(¢) for all t > 1. By con-
struction, the sequences are interlaced: for all £ > 1,
Th_1 < U < Tk. The use of K, is done as follows.
For 7, <t < vg41, we use K, until the growth rate
of Zi:o ||zs||* decreases from that of g(t) to that of
f(t). For vg41 <t < 741, we use the adaptive con-
troller K;. We choose f(t) = t'*7/2 g(t) = t'*7 and
h(t) = t7, where v > 0 (for the analysis, we need to
have g(t) > f(t) > t). With these choices, we will
establish that the expected number of times when K,
is used is finite. This means that after some time,
CEC(T) only uses the certainty equivalence controller.

Input perturbations. A sufficient excitation of the
system is achieved by sometimes adding noise to the
control inputs — mainly in Scenario I. In CEC(T),
(v)i>0 and ((;)i>0 are sequences of independent ran-
dom vectors where for all t > 1, v, ~ N(0,0%1,,) and

¢ ~N(0,14,). We choose 02 = \/d,02%/\/t.

5 REGRET GUARANTEES

In this section, we present our main results. We pro-
vide finite-time expected regret upper bounds for the
CEC(T) algorithm in the three envisioned scenarios,
and give a sketch of the way they are derived. In the
statement of the results, for simplicity, we use the fol-
lowing notations: the relationship < corresponds to <
up to a universal multiplicative constant. For any ma-
trix M with p(M) < 1, we define Gar = Y oe || M),
and for any matrix K such that p(A + BK) < 1, we
denote P, (K) =Y ;2 ((A+ BK)")T(Q+ KTRK)(A+
BK)! . We further introduce G, = Gaipk,, Cp =
max(|Bl|,1), C, = max(|[A]l | Bl | BK. [ K.]l. 1),
and Cx = max (|| K|, || K«||, 1)-

5.1 Expected Regret Upper Bounds

Theorem 1. (Scenario I — A and B unknown) Let
the set of update times T satisfy (5). The regret of
m = CEC(T) with input T satisfies in Scenario I: for
allT > 1,

E[Ry(7)] < C1V/dy(dy + dy)VT log(T) + Cs,
with C1 < 02C%C%|| Py||?® log(ead,d,GoCs || Py||C)?

~

and Cy < poly(o,dy, dy,Go, Co, || P, Cp).
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Algorithm 1: Certainty Equivalence Control (7)) (CEC(T))

input
for the controller updates.
{1+ 0, K_1+ 0
for t > 0 do
0 if Xl llws]? > 02dag(t),
<1 it S lasl? < o%da f(2),
f;_1 otherwise.

if(teT)

else K; + K;_q;
Scenario I — (A, B) unknown:

Ktxt + Uy
Ut <—

Koxi + v otherwise.
Scenario II — A only unknown:

Ktl't if ‘et =1 and ||Kt||2 S h(t),
Ut <—
Koxy otherwise.
Scenario III — B only unknown:
Ktl't
U <
Koxy + (¢ otherwise.
end

if ¢, = 1 and || K% < h(t), and Amin

: Cost matrices @ and R, a stabilizing controller K,, variance proxy o of the noise, set of rounds 7

compute (A, Bt) (applying the LSE algorithm, see Appendix F);
compute (P, K;) (solving Riccati equations using (A¢, B));

T
t—1 |Ts Ts 1/4
2 i—0 >t
Us Us

if £, = 1 and || K,||> < h(t), and Amin (2’;;5 uSuT) > i

s

The above theorem states that the expected regret
is O((dy + du)Vd,T). It is worth noting that the
regret upper bounds match the lower bound derived
by Simchowitz and Foster (2020) when d, < d,,. When
T = {2* k € N}, we can improve our upper bound and

show:

E[Rr(n)] S 0*CE||P.||>* \/dyd VT log(T)
+ 2| P||**d2 log(T)poly (o, du, Go, Co, || Pe]|).-

Simchowitz and Foster (2020) prove a similar regret
upper bound, but in the fixed confidence setting, i.e.,
with probability 1 — ¢, for an algorithm taking § and
T as inputs. Our algorithm, CEC(T), is anytime and
enjoys regret guarantees in expectation. Finally, we
note that the second term in the regret upper bound of
Theorem 1, poly(c,d,,dy, Go, Cs, || Pkl|), corresponds
to the regret generated in rounds where the stabilizer
is used.

The next two theorems provide regret upper bounds
for CEC(T) in the remaining scenarios.

Theorem 2. (Scenario II — A only unknown) Let
the set of update times T satisfy (5). The regret of
7w = CEC(T) with input T satisfies in Scenario II: for
allT > 1,

]E[RT(ﬂ')] S Oldi log(T) + C’Q,

with constants C1 < 02| P.||°®log(eaGoCo|| Pyl dx )
and Cy < poly(o,d,, Go, Co, | Pxl|)-

Theorem 3. (Scenario III — B only unknown) Let
the set of update times T satisfy (5). Assume that
K.K] = 0. The regret of 1 = CEC(T) with input T
satisfies in Scenario III: for allT > 1,

E[RT(TI')] < Cldw(dw + du) lOg(T) + CQ,

with Cy 0% | P, |12 10g (€0 CoGal | Py 117 Cpdady )2,
and Cy < poly(a, dy,Go,Co, ||P*||,u;1), where we de-
note p? = min(Amin (K, K, .1)).

The results presented in the two above theorems signif-
icantly improve those derived by Cassel et al. (2020).
There, the authors devise an algorithm whose inputs
include upper bounds on ||A| and ||B]|, and on the
minimal ergodic cost. The expected regret of this algo-
rithm is upper bounded by O(poly(d,, d,)log*(T)). In
contrast, CEC(T) has an expected regret O(d2 log(T'))
when B is known and O(d(d, + dz)log(T)) when A
is known. Note that these scalings are natural and
similar to the optimal regret scalings one would typi-
cally get in stochastic bandit problems. In fact, Lai in
Lai (1986) (see Section 3) establishes that the expected
regret cannot be smaller than d2log(T) in Scenario I1.
The author is not able to present an algorithm with
regret matching this lower bound (refer to Appendix
B for details).
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5.2 Sketch Of The Regret Analysis

We provide below a brief description of the strategy
used to establish Theorems 1, 2, and 3. In this subsec-
tion, and only for simplicity, the notations 2 and <
will sometimes hide the problem dependent constants
that appear in the analysis. Let m denote CEC(T).

Step 1. Regret decomposition and integration.
Our strategy is to establish that for all § € (0, 1), the
following

P (Rr(m) 2 c1¢p(T) log(e/d) + capoly(log(e/d)))
> capoly(log(e/d))é (6)

holds with probability at most czpoly (log(e/d))d, where
c1, Ca, c3 are positive problem-dependent constants and
Y(T) is the targeted regret rate (e.g., ¥(T) = VT in
Scenario I). Integrating over §, we obtain the desired up-
per bound in expectation E[Rr(7)] < ¢1 log(cs)y(T) +
capoly(log(cs)). In order to show (6), we define for
each 6 € (0,1) a "nice” event & such that

& S {Rr(m) S c19(T)log(e/) + copoly(log(e/d))},
(7)
P(Es) > 1 — espoly(log(e/d))d, (8)
which in turn will imply (6). Next we explain the con-
struction of the event &s satisfying (7). The likelihood
of & and the proof of (8) are discussed in Step 2.

To construct & (refer to Appendix C for details), we
consider the regret generated before and after a certain
time 7 that will be properly defined later. The first
conditions we impose on s and 7 allow us to write the
regret generated after 7 as

T
Ry(m) — R (m) < Z Izl B, (k,)— Py (Ko )
t=7+1

T tr(P(Ky) = P.) + 02| P.(K)-

These conditions are that (2)-(72) hold at times be-
tween 7 <t < T,

(i) the algorithm only uses the certainty equivalence
controller Kj;

(i3) the controller K; is sufficiently close to Ky, so that
that p(A + BK;) < 1.

We can further prove that:

Rp(m) = Re(m) Ser Y &7 +07 Sar(y(T) — (),
t=7+1

if for all 7 <t < T, we ensure that:

(iii) ||Pi(K;) — P.|| < €2 log(1/8) where (g¢);>1 is non-
increasing and satisifies Y-, e2 < o(T),

() |[P(K) = O1),
(v) |zl = O(D),

A proper choice of 7 and condition (%) will allow us
to upper bound the regret up to 7. Indeed, if (%)
holds for t > 7, we are using the certainty equivalence
controller after 7. In view of the design of our algo-
rithm, we must have .. _ ||z-||? < o%d, f(s), and that
maxo<s<r | Ks|> < h(7), which in turn implies that
R, (m) < chpoly(7) for some problem dependent con-
stant ¢, > 0. Therefore, {Vt > 7: (i) - (v) hold} C
{Rr(m) < a1¢p(T) + poly(r)}. Now, if we choose
7 > cypoly(log(e/d)) for some appropriately chosen
constant ¢4 > 0,

& = {vt = cypoly(log(e/d)) : (i) - (v) hold}, (9)

then we have the desired set inclusion & C {Rr(m) <
c1p(T) log(e/d) + capoly(log(e/d))}. These arguments
are made precise in Appendix C for each of the scenarios
I, II, and III. The regret decomposition is stated in
Lemma 1, as for the integration of the high probability
bound, we refer the reader to Lemma 2.

Step 2. Nice event likelihood. It remains to estab-
lish (8). The proof relies on several important ingredi-
ents. Note that the conditions (%), (i) and (i) that
the event £ must satisfy concern the fact that K; is
played after 7 and our ability to control || B(K; — K.,)||
and || Py(K:) — Py||. We show that these three condi-
tions will be satisfied if the error of our LSE (A, B;) of
(A, B) is small enough. To this aim, we use the pertur-
bation bounds derived in Proposition 16. These bounds
allow us to bound | B(K; — K, )|| and || P, (K;) — Py|| as
a function of max(||A; — A||?, || B; — B||?). Observe that
if || B(Kt — K)|| is small, then playing K; will stabilize
the system, and we will keep using K;, which leads
to the condition (%) of &. The perturbation bounds
directly control | B(K; — K, )|| and || P, (K;) — P.||, and
yield the conditions (%) and (%i3) of £. In summary,
we can establish (8) provided that we are able to control
max(||A; — A%, | B; — B||?). More precisely, we just
need to prove the following probabilistic statement:

vt 2 log(e/9),

log(t)
t1/2

max([|A; — A|%, | B: - BI*) < log(e/9),

(10)
holds with probability at least 1 — 4.

The results regarding the event & are established in
Appendix D. Appendix E is devoted to proving that the
algorithm eventually commits to the certainty equiva-
lence controller K;. The analysis of LSE is presented in
Appendix F. Results about the perturbations bounds
for Riccati equations are stated in Appendix I.
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Step 3. Performance of the LSE under varying
control. In this last and most interesting step, we
prove (10). It is well established, see e.g. Mania et al.
(2019) that the error of the LSE (A, B:) heavily de-
pends on the spectral properties of what we refer to
as the cumulative covaria%es matrix. This matrix is
defined as Zz;é Bz] [mj for Scenario I, ZZ;E Tsx)
for Scenario II, and ZZ;B ud u) for Scenario IT1. We
show that for example in Scenario I, the critical condi-
tion to obtain (10) is that:

vt > log(e/8), Amin (ti {H B]T> > 2 (11)

s=1

holds with probability at least 1 — ¢. Establishing (11)
is one of the main technical contribution of this paper,
and is detailed in the next section.

6 SPECTRUM OF THE
CUMULATIVE COVARIATES
MATRIX

As explained in the previous section, a critical step in
the analysis of the regret of CEC(T) is to characterize
the performance of the LSE even if the underlying
controller evolves over time. To this aim, we need
to control the spectrum of the cumulative covariates
matrix. We present a new decomposition of this matrix,
and show how the decomposition leads to concentration
results on its smallest eigenvalue. We believe that our
method is of independent general interest. We apply it
to the analysis of the cumulative covariates matrix in
Scenario 1. Refer to Appendix G for details, and for the
treatment of the two other scenarios. In this section,
we denote by K; the controller used by CEC(T) at
time t, i.e., either K, or K;. Again, we hide problem
dependent constants in the notations < and 2.

6.1 A Generic Recipe: Decomposition And
Concentration

We sketch here a method to study the smallest
eigenvalue of a random random matrix of the form
22:1 ysyd where y, = 2z + M,{ and where
(s, Ms,&5)s>1 1s a stochastic process such that & is
independent of (z1,...,2s) and (Mjy,..., M) for all
s > 1. This model covers the cumulative covariates
matrices obtained in the various scenarios. Indeed, for

Scenario I, we have y, = BS} = z, + M,&,, with

1, @]
M, = |~
|-l 2

b — NACCs—l + Bus_1
o Ks(Amsfl + Busfl)

_ | Ms—1
&=
For Scenario II, we have ys = 2541 = 25 + M5, with :

Zs = (A + BI?S)(ES, M, = Idzv gs = 1s-

For Scenario ITI, we have y;, = us = z5 + M &, with:

Rs = [A{V(S(Axs—l + Bus—l)a M = R:sa

§s = Kamsm1 + Lz _e 3 Gs-
Next, we claim that for some o > 0, the smallest eigen-
value of 22:1 Ysyd grows at least as t as ¢ grows large
when (C1) )\min(Zizl M M) is growing at least as
t* and (C2) Amax (22:1 zsz:) grows at most poly-
nomially in ¢. As a consequence of this claim, in all
scenarios, to complete Step 3 of the regret analysis, we
just need to verify that the conditions (C1) and (C2)
hold. This verification is explained in Scenario I in the

next subsection. For complete statements and proofs,
refer to Appendix G.

The first step towards our claim is the easiest but
perhaps the most insightful: it consists in applying
Lemma 10 in Appendix G to show that* for all V > 0,

t t
Zysy;r = Z(Msfs)(Msfs)T -V
s=1 s=1

- (Szt;zs(Msﬁs)T)T Vi+Vv)™! (izs(Msfs)T) .

s=1

()

where V; = 22:1 2,2, . The second step consists in
observing that the second term (x) in the above inequal-
ity is a self-normalized matrix valued process (see for
example Abbasi-yadkori et al. (2011), or Proposition

9). Concentration results for such processes lead to

(Vi +v) 12 <Z zs<Ms§s>T>

s=1

2
< log (/\max (V;f))

with high probability, provided the matrices (Ms)s>1
are bounded. In the last step, we derive a concentration
inequality for the matrix Y'_, (M&)(Ms&)T (see
Proposition 8). Tt concentrates around 3.\_, M M, .

In summary, we have proved that under condition (C2),
Amin (30, vy ) scales at least as Amin (30—, M M,"),
which combined with (C1) provides the desired claim.

4Here we mean lower bound in the sense of the Lwner
partial order over symmetric matrices.



Minimal Expected Regret in Linear Quadratic Control

6.2 The Recipe At Work In Scenario 1

We first establish a weak growth rate for
Amin(Cf_, ysyy ) of order t'/* where we have a
priori no information on the boundedness of the
matrix sequence (M;)s>1 (see statement (12) Theorem
4). A consequence of this first result is that LSE is
consistent and therefore (A;, B;) will eventually be
sufficiently close to (4, B) (See Appendix F). Using the
perturbation bounds of Proposition 16 (See Appendix
I), we can then guarantee that eventually the sequence
of (Mjs)s>1 will become uniformly bounded over time
w.h.p.. Using this result, we show that the growth rate
of Amin(Y'_, y<y) ) may be refined to an order of '/2
(see the statement (13) of Theorem 4).

Theorem 4 (Informal). Under CEC(T ), for all § €
(0,1) we have for all t 2 log(e/d),

e (BRI 2o o
s=0 L7 LTS

Furthermore, Nprom'ded we can guarantee that Yt 2
log(e/d), P(| Kt — Ki|| < Cx) > 1 — 0, then for all
0 € (0,1), we have for all t 2 log(e/d),

P <>\min (ti [ﬂ [Z]T> Zt1/2> >1-4. (13)
2 s us

The proof of Theorem 4 relies on showing that the
conditions (C1) and (C2) hold. We can start by
establishing (C2) since its proof is common to both
statements (12) and (13). We can observe that

t t t
Amax <Z Zsz;r> S h(t) (Z ||xs||2 + Z ||7751||2> )
s=1 s=1 s=1

where we use that Azs_1 + Bus_1 = s — 1s—1, and
|K||2 < h(s) for all s > 1. We can deduce, via a
matrix concentration argument (See Proposition 8 in
Appendix G), that 30_ [|7s]|? < ¢ w.h.p.. We can also
establish that 3'_, ||z.]|?> does not grow more than
a polynomial of order g(¢)h(t) w.h.p. under CEC(T)
(see Proposition 15 in Appendix H). Thus, condition
(C2) is satisfied.

Establishing (C1) is slightly more involved espe-
cially for the statement (13), but essentially we
can prove that Amin(3_, (Mo )(ME)T) = t1/4
w.h.p., and provided we can guarantee that for all
t > log(e/d), P(| Ky — Ki|| < Ck) > 1 — 6, then
Amin (Mo (Mo&)(Me&0)T) 2 #1/2 whyp. for t 2
log(e/d). We refer the reader to Appendix G for a
detailed proof of these claims. At a high level these
results follow because of the special structure of the
sequence of matrices (M;)s>1 and the independence
between the sequences (1;)s>0 and (Vs)s>o0-

The precise statements of Theorem 4 and its proof are
deferred to Appendix G.

7 EXPERIMENTS

To illustrate the performance of CEC(7), we run the
algorithm on the following simple example, proposed
by Abeille and Lazaric (2020) (refer to Appendix A for
details):

1.0l 0.01
A‘(o.m 0.5)’ B=Q=R=1I

The initially known stabilizer is K, and the unknown
optimal controller K, are given by:

—0.27 —0.01) K~ (—0.63

Ko~ <0.o1 —0.13 —0.007

—0.007
—-0.27 )°

Abeille and Lazaric (2020) compare the regrets of their
algorithm Lagl.Q and of CECCE (Simchowitz and Fos-
ter, 2020) in Scenario I when (A, B) are unknown. In
Figure 3 of Abeille and Lazaric (2020), the regret of
these two algorithms are plotted after the initialization
phase required by both algorithms and where a stabi-
lizing controller (with added noise) is used. This initial
stabilizing controller is not described by Abeille and
Lazaric (2020). But since the initialization phase lasts
for 2.10* rounds, and if K, as defined above was used,
it would generate an expected regret approximately
equal to 2.10% x (tr(Py(K,)) —tr P (K,)) ~ 17.103. For
Lagl.Q and CECCE, the initialization phase is required
so that the algorithm starts with a set of stabilizing
controllers close to K, to ensure that the state remains
bounded when using a controller in this set. The use of
hysteresis switching in CEC(7) allows us to remove the
initialization phase and the associated regret, which on
this example confers to CEC(7) much lower regrets.
In Figure 1, we plot the expected regret of CEC(T)
averaged over 100 runs for the three scenarios (we do
not compare with Lagl.QQ and CECCE, as their regrets
would be very large at time 0 — after the initialization
phase, but we do expect that Lagl.Q will asymptotically
peform better because of its improved exploration sub-
routine that translates to better problem dependent
constants in the regret scaling).

These curves clearly illustrate the regret scalings in the
various scenarios: VT when (A, B) is unknown, and
log(T) when either A or B is known. We present addi-
tional experiments in Appendix A, and in particular,
quantify the gain in not using a doubling trick, but
rather updating the estimated optimal controller more
frequently.



Yassir Jedra, Alexandre Proutiere

500 4 —— Scenario | - (A, B) unkown
Scenario Il - B known
—— Scenario lll - A known

400 -

300 1

Regret

200

100 4

6 260 460 660 860 10‘00
Iterations
Figure 1: Regret vs. time of CEC(T) averaged over 100

runs (shaded areas correspond to the standard error of
the mean (SEM)).

8 CONCLUSION

In this paper, we have designed CEC(T) a simple cer-
tainty equivalence-based algorithm for the online LQR
problem, and derived upper bounds on its expected
regret in the three envisioned scenarios (I: (A, B) un-
known, II: A only unknown, III: B only unknown).
The upper bounds have an optimal scaling in the time
horizon T in all scenarios and in the dimensions of the
state and control input vectors at least in Scenarios
I and II (we believe that the dependence in the di-
mensions is also optimal in Scenario III). Importantly,
CEC(T) allows for the estimates of (A, B) and the
corresponding certainty-equivalent control to be contin-
uously updated as new data is observed. Studying the
performance of such a continuously evolving control is
the main technical challenge solved in the paper.

Many interesting questions remain open. CEC(T) ex-
ploits a stabilizer when needed, and we proved that the
expected regret generated in rounds where the stabilizer
is used is finite. Does it mean that we can get rid of the
stabilizer? Another interesting research direction is to
investigate whether our approach and results extend to
LQG systems where the decision maker receives noisy
measurements of the state.
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Notations and Assumptions

e f(x) 2 g(x) means there exists an universal constant ¢ > 0 such that f(z) > ¢
<c

f(z) < g(z) means there exists an universal constant ¢ > 0 such that f(z)
® \nin(+) denotes the minimum eigenvalue.

® Anax(+) denotes the maximum eigenvalue.

e || - || denotes operator norm for matrices or ¢3-norm for vectors.

e || - ||r denotes Frobeinus norm.

o ||lz|las = V& T Mz for any vectors .

o |la1:t]lcc = maxi<s<y |as| where (as)s>1 is a scalar valued sequence.

o |lartlle = \/22:1 |as|? where (as)s>1 is a scalar valued sequence.

e d, and d, denote respectively the dimension of the state/input space.

o d=d, +d,.

e v is a postive constant used to define f(t) = t't7/2 g(t) = t'*7 and h(t) = t7.
e v, =max{l,~}.

o Co = max(A]l, | B, | BE|, | K., 1).

o G = X%, 05

o Garle) = sup {20 ITTo(M + Al A+ (Ad)ist,supys 1A < ).

e P(A, B) solution to the DARE corresponding to the LQR problem (A, B, @, R).
e K(A, B) optimal gain matrix corresponding to the LQR problem (A, B, @, R).
e L(M,N) is the solution to the Discrete Lyapunov equation X = M " XM + N.
e P(A,B,K) = L(A+ BK,Q + KT RK).

Shorthands for the true parameters (A4, B).

e Cp =max(||B|,1).

e Co = max(|| K], 1).

® Go =0a+BK,-

e G, =GayBK,-

° g*(ﬁ) = GA+BK, (5)

P, = P(A, B).
K,=K(A,B).

P.(K) = P(A, B, K).

o /i, = min(y/Amin(KLK[]T), 1).

Assumptions.

o We assume without loss of generality that @ > I;, and R = I4,. These can be enforced by a change of basis
of the state and input spaces, and rescaling the dynamics (see e.g., Simchowitz and Foster (2020)).

e The noise sequence (1;);>1 is assumed to be i.i.d. zero-mean, isotropic and o?-sub-gaussian random vectors.
Isotropy here is assumed for simplicity and is without loss of generality. Observe that isotropy implies
402 > 1.

e In all the envisioned scenarios, we assume access to a stabilizing controller. That is we know K, € R X da
such that p(A+ BK,) < 1.

e In scenario IT — (A known), we assume that u, > 0.
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A  EXPERIMENTS

A.1 The LQR System

The LQR system used in all our experiments was suggested by Abeille and Lazaric (2020), and is described by

1.01 0.01
A‘(o.m 0.5)’ B=Q=FR=1I.

Note that when the control inputs are set to zero, the resulting system is marginally stable Apax(A4) ~ 1.01 > 1.
The initially known stabilizer K, and unkown optimal controller K, are given by

~0.27 —0.01 ~0.63  —0.007
K"“‘(—O.Ol —0.13)’ K*”(—o.om —0.27)'

We further have the ergodic cost under K,, and optimal cost
tr(Py(K,)) = 3.63, tr(Py) & 2.78.

The noise sequence (7;)¢>1 is a sequence of i.i.d. random vectors distributed as N(0, I3). Finally, the experiments
we run here mainly concern Scenario I when A and B are unknown.

A.2 Sensitivity Of CEC(7) To The Doubling Trick With Or Without Data Forgetting

The experiments presented here have the following objectives.

1. Impact of sparse updates. We first wish to assess the impact of rarefying the control policy updates in
CEC(T), i.e., to quantify the impact of different choices of 7. To this aim, we compare the regrets of CEC(N)
(updates every step) and of CEC(73) where T3 = {2' : t € N*}.

2. Impact of data forgetting. In most existing algorithms, the control policy is updated in the steps of 73,
i.e., at the beginning of phases of increasing durations (phase k lasts for 2* steps). In addition, to further simplify
the analysis of the LSE, the control policy applied in phase k only depends on the data gathered during the
previous phase k — 1. This is the case for example in the algorithm Certainty Equivalence Control with Continual
Exploration (CECCE) proposed by Simchowitz and Foster (2020). In turn, this allows to analyze the LSE under a
fized control policy. We refer to this simplification as the data forgetting trick; note that half of the data gathered
is discarded using this trick. Although applying such principle does not affect the asymptotic scaling of the regret
(Simchowitz and Foster, 2020), it must have an impact on the practical performance of the algorithm. We wish
to quantify this impact. To this aim, we consider a variant of CEC(73) where the algorithm applies the data
forgetting trick. More precisely, for all k € N*, at times 2%,...,2**1 — 1, the algorithm either uses K, or a fixed
estimate K, of K, where K}, is constructed using only samples gathered at times 28=1, ... 2F — 1. We refer to
this algorithm as CEC(73) with forgetting.

All the algorithms CEC(N), CEC(T53), and CEC(T3) with forgetting are using f(t) = (t + 1)2, g(t) = (¢t +1)3
(hysteresis switching), and h(t) = ¢+ 1.

The results are presented in Figure 2. We observe that CEC(N), CEC(7z2) both have a regret scaling roughly as
VT as predicted by Theorem 1. Although we do not provide a theoretical guarantee on CEC(73) with forgetting,
we believe that the regret of this algorithm is also of the order v/T'. However CEC(73) with forgetting has a
much higher regret than CEC(N) (note that the y-axis in Fig. 2 (a) are in log scale). In addition, the regret of
CEC(Tz) with forgetting suffers from a very high variance, visible even after averaging over N = 3000 runs. This
high variance can be explained by the fact that, during each epoch, the estimated controller is not updated. If it
happens that such a controller is bad, then the algorithm has to wait until 32%_ [|z¢||> > d.g(t) = du(t + 1)? to
revert back to the stabilizing controller. CEC(N) is the least affected by the choice of g and exhibits the best
performance.

The choice of the functions f and g that control the hysteresis switching has been so far rather arbitrary. We run
the experiment again with f(¢) = log(¢)(t + 1) and g(¢) = log(¢)?(t + 1). The results are presented in Figure 3.
As we can see, the initial regret of CEC(72) and CEC(73) with forgetting drastically improve. The variance issue
still remains with forgetting, however it is now less prominent. Note that the performance of CEC(N) remained
unchanged, which suggests that algorithms based on continuous updates are more robust to the choice of f, and

g.
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Figure 2: Regret vs. time averaged over N runs of CEC(N), CEC(73), and CEC(72) with forgetting (shaded
areas correspond to the standard error of the mean (SEM)).
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Figure 3: Regret vs. time averaged over 100 runs of CEC(N), CEC(7z), and CEC(7z) with forgetting (when
plotted, shaded areas correspond to the standard error of the mean (SEM)). The solid (resp. dashed) curves
correspond to using hysteresis switching with f(t) = (¢t + 1) and g(t) = (¢t + 1)3 (resp. f(t) = log(t + 1)(t + 1)
and g(t) = log(t + 1)%(t + 1)).

A.3 CEC(T) Efficient Use Of The Initial Stabilizer

In this experiment, we wish to compare the performance of our algorithm to that of CECCE (Certainty Equivalence
Control with Continual Exploration) proposed by Simchowitz and Foster (2020). CECCE requires as an input
a confidence level § and a stabilizing controller. We choose § = 0.05 and use K, as an initial stabilizer. The
comparison to other algorithms is left for future work. These algorithms are not proven to be optimal, often
require knowledge of upper bounds on unknown quantities, are not anytime, or require knowledge of a stabilizing
controller that is sufficiently close to the optimal controller (see Appendix B for more details). Refer to Abeille
and Lazaric (2020) for a comparison of LagLQ (the algorithm proposed in Abeille and Lazaric (2020)) to CECCE.
Lagl.Q takes as input the knowledge of a stabilizing controller sufficiently close to the optimal controller, which
in turn, requires an initialization phase to identify such controller (such initialization phase is not accounted for
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in Abeille and Lazaric (2020)).
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Figure 4: Regret vs. time of CEC(T) averaged over 100 runs (shaded areas correspond to the standard error of
the mean (SEM)).

We present the results in Figure 4. We observe that CECCE suffers a linear regret over the considered horizon
T = 1000, which indicates that the algorithm is still in the initialization phase. In fact, it was also highlighted
by Abeille and Lazaric (2020) that CECCE requires an initial phase of length Ty ~ 10%. This suggests that the
design of the initialisation phase of CECCE is too conservative, and hence that the algorithm suffers a huge
initial regret cost. This conservativeness can be traced back the perturbation bounds on DARE provided by
Simchowitz and Foster (2020), and upon which CECCE is based. On the other hand, the results suggest that
CEC(N) has a strikingly shorter initialization phase, and wisely uses the stabilizing controller. This property can
be explained by the hysteresis switching mechanism upon which CEC(7T) relies which gives much more flexibility
in choosing under what worst case scenario the algorithm should revert back to the stabilizing controller. In
summary, CEC(N) performs better than CECCE, at least non-asymptotically.
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B RELATED WORK

In this section, we describe existing learning algorithms for the online LQR problem. These algorithms may be
roughly categorized into two classes. In the first class, we find algorithms based on slightly perturbing the so-called
self-tuning regulators (Astrom and Wittenmark, 1973), as those developed in second half of the 20th century in
the control community, see Kumar (1985) for a survey and Matni et al. (2019) for a more recent discussion. The
second class of algorithms applies the Optimism in Front of Uncertainty (OFU) principle, extensively used to
devise regret optimal algorithms in stochastic bandit problems (Lai and Robbins, 1985; Lattimore and Szepesvari,
2020). Before describing these two classes of algorithm in more detail, we start by discussing how algorithms may
differ in terms of regret guarantees, design principles, and the assumptions made towards their analysis.

One may also consider a third class of algorithms one that we may refer to as Thompson Sampling based
algorithms (Thompson, 1933). These algorithms assume that the true parameters of the system are samples from
some prior distribution, as such they follow a bayesian approach in their design and analysis. We will not discuss
these algorithm since they often enjoy guarantees these are different than ours and the ones we compare with
(e.g., Ouyang et al. (2017) analyse the bayesian regret, Abeille and Lazaric (2017) have sub-optimal regret rates
in T, and Faradonbeh et al. (2018) provide almost sure guarantees).

B.1 Types Of Guarantees, Algorithm Design, And Assumptions

Regret guarantees. We may assess the performance of an algorithm by establishing various kinds of re-
gret guarantees. Most often, the regret guarantees are in the fixed confidence setting only, in the follow-
ing sense. The regret R7. of an algorithm 7 up to time 7T satisfies a probabilistic guarantee of the form:

P (R} < (T (log (1/5))1/A’) > 1—4, for some v < 2 and some increasing function 1. Typically such a guarantee

is shown for a fixed confidence level (a fixed d), as the algorithm 7 is most often actually parametrized by 4. As a
consequence, this probabilistic guarantee cannot be integrated over ¢ to obtain an upper bound of the expected
regret. However, as discussed in Section 2, by carefully choosing § as a function of the time horizon 7', one may
modify the algorithms with fixed confidence guarantees and obtain guarantees in expectations, at the expense
of an extra log(T) multiplicative factor in the regret upper bound. As far as we are aware, strictly speaking,
upper bounds on the expected regret have been investigated by Rantzer (2018); Cassel et al. (2020) in Scenario II
where A or B is known only. Finally, it is worth mentioning that early work on adaptive control have focussed on
deriving asymptotic regret guarantees. For example, Lai (Lai, 1986; Lai and Wei, 1987) devised, for systems where
control inputs induce no cost R = 0, algorithms whose regret satisfies lim supp_, ., BT/ log(T) < C almost surely.
This type of guarantee does not imply either guarantees w.h.p. as described above or guarantees in expectation.

Algorithm design. Over the last few years, we have witnessed a significant research effort towards the design of
learning algorithms with regret guarantees. Most choices in this design have been made to simplify the algorithm
analysis rather than to improve their performance in practice. We discuss these choices below.

(i) Doubling trick. This trick is usually applied in online optimization problems (including bandits) (Besson and
Kaufmann, 2018; Lattimore and Szepesvéri, 2020) to come up with algorithms with anytime regret guarantees.
The doubling trick generally comes with a cost in terms of regret (Besson and Kaufmann, 2018). In linear
quadratic control, the doubling trick is used in all recent papers to simplify the analysis, but also to reduce the
computational complexity of the algorithms. It consists in splitting time into successive phases whose durations
grow exponentially. The control policy is computed at the beginning of each phase, and is applied throughout the
epoch. The analysis may then leverage the fact that the control policy is fixed within each phase. Even if recent
algorithms include a doubling trick, most of them still take the time horizon T as an input, and hence are not
anytime.

(ii) Ezplore-Then-Commit and the known time horizon and confidence level. As already mentioned, most of the
recent algorithms target regret guarantees with a fixed confidence level, parametrized by §. To this aim, they
adopt an Explore-Then-Commit (ETC) strategy, namely they rely on statistical tests to decide to switch from
an exploration phase to an exploitation phase. These tests require of course the knowledge of . Applying an
ETC strategy with confidence level (1 — §) imposes some constraints on the time horizon T (it has to be greater
than some decreasing function of é so that the statistical tests end). Observe that to further simplify the design
and analysis of algorithms, the time horizon is often assumed to be known in advance. It is finally interesting to
note that ETC strategies are known to be sub-optimal, even in the simplest of the stochastic bandit problems
(Garivier et al., 2016).
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Assumptions. The set of assumptions made to design and analyze algorithms varies in the literature, which
makes it hard to report and compare existing results precisely. Most existing work assume that we have access
to a stabilizer. Recent attempts to remove this assumption include Lale et al. (2020). There, for example, the
authors assume that the algorithm knows that the system (A, B) belongs to a set of systems (A’, B’) such that
A"+ B'"Ka py|l <Y < 1and |[A,B][|r < S, which in particular implies that ||Pa p|| < L, for some
constants Y, S, and L. We will provide a description as precise as possible of the set of assumptions made in
each paper reported below.

We propose an algorithm that does not take as input the time horizon T', or a certain level of confidence d. The
control policy used in the algorithm can be updated every step, but also as frequently as we wish (we may decide
reduce the computational complexity of the algorithm). Our analysis provides regret guarantees in expectation in
all scenarios.

B.2 Existing Algorithms

Next we describe selected recent learning algorithms. The first set of algorithms consist in slightly perturbing the
control policies obtained when applying the certainty equivalence principle. The second set consists of algorithms
applying the OFU principle.

Perturbed Self-Tuning Regulators

Self-tuning regulators work as follows. At any given step, they estimate the unknown matrices A and B, and
apply a control policy corresponding to the optimal control obtained replacing A and B by their estimators.
Unfortunately as proved by Lai (1982), self-tuning regulators may fail at converging — the certainty equivalence
principle does not always hold. This is due to the fact that under these regulators, the system may not be as
excited as needed to obtain precise estimators. To circumvent this difficulty, the natural idea is to introduce some
noise in the control inputs, leading to what we refer to as perturbed self-tuning regulators. We list below papers
applying this idea, and analyzing the resulting regret.

As far as we know, the first regret analysis of perturbed self-tuning regulators is due to Lai and co-authors in the
80’s, see e.g., Lai (1986); Lai and Wei (1987). The focus is on a scenario where A and B are unknown, but where
the control inputs do not contribute to the costs (R = 0). Lali first establishes, using the techniques developed in
Lai and Robbins (1979), that even if B is known, asymptotically the regret cannot be smaller than d2 log(T')
when the noise process (n;)¢>o is i.i.d. with distribution A(0, I4,). More precisely, it is shown that for the best
learning algorithm 7, lim inf7_, o % > d? almost surely. This lower bound is established using a Bayesian
method, and it is easy to see that it also holds in expectation. Lai (1986) devises a perturbed self-tuning regulator,
and analyzes its regret, but only under the assumption (1.7) which specifies that the state remains bounded and
that the minimum eigenvalue of the cumulative covariates matrix grows linearly with time asymptotically a.s..
These assumptions are strong, and hard to remove. In Lai and Wei (1987), these assumptions are removed but for
very specific systems. In both papers, the regret guarantees take the form limsupy_, . R%./log(T) < C almost

surely, which as already mentioned, does not imply guarantees in expectation.

Shirani Faradonbeh et al. (2020) study Scenario I. They propose a perturbed self-tuning regulator, referred
to as Perturbed Greedy Regulator, where the variance of the noise added to the inputs decreases over time.
The regulator uses a doubling trick. The authors establish that with probability 1 — d, a regret is bounded by
O(VTlog(1/6)*) for T > ¢(5). The dependence of the upper bound in the system and its dimensions is not
explicit. It is worth noting that the authors assume that the algorithm has access to a stabilizer, which according
to their companion paper (Faradonbeh et al., 2019) can be learnt in finite time. The authors further assume that
the system remains stable during the execution of their algorithm.

Mania et al. (2019) do not explicitly propose a perturbed self-tuning regulator with regret guarantees. However,
they show that if the estimation error is sufficiently small then the resulting algorithm achieves a 6(\/7) regret
with explicit dependence on the problem dimensions d,,d,. Their main contribution is a perturbation bound
on the solution to the Discrete Algebraic Riccati equations, an important piece of the regret analysis. They
propose an alternative proof to that of Konstantinov et al. (1993) and compute explicitly the problem dependent
constants.

Simchowitz and Foster (2020) propose, for Scenario I, a perturbed self-tuning regulator, that takes as input &
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and T, as well as a stabilizer. Again to simplify the analysis, a doubling trick is used. The algorithm achieves a
regret of O(d,+/d;T log(1/6)) with probability 1 — §. The authors further derive what they refer to as a local
minimaz lower bound on the expected regret. This lower bound is obtained by varying the potential system
matrices (A, B) around those of the true system, and is in a sense close to a problem-specific lower bound. The

lower bound is scaling as Q(d,\/d.T log(1/9)).

Cassel et al. (2020) present perturbed self-tuning regulators for Scenarios II and III (when A or B is known). The
regulators have numerous inputs, including a stabilizer K (actually a strongly stable control) and upper bounds
on ||A]|, ||B]|, on the minimal ergodic cost, and that achieved under Ky. When A is known, the proposed regulator
is shown to have an expected regret of order O(poly(d,,d,)log®(T)) (where the degree of the polynomial scale
in the dimensions is not precised). The regulator presented for the case when B is unknown achieves similar
expected regret guarantees provided that the optimal controller K, satisfies K, K, = p > 0.

OFU-based algorithms

A typical OFU-based algorithm proceeds as follows. It maintains a confidence set C (an ellipsoid) where the system
parameters (A, B) lie with high probability. At a given step, the algorithm selects (A’, B’) € C that minimizes
the optimal cost J( 4/, gy (With sometimes an additional margin). The controller K4/ gy is then applied. Since
updating the controller requires solving a complex optimization problem, referred to as the optimistic LQR below,
this update should be done rarely (using a doubling trick).

Abbasi-Yadkori and Szepesvéari (2011) present OFU-LQ, an algorithm taking as inputs a confidence level 6 and T,
as well as a bounded set S where (A, B) lies and an upper bound on || [A B] || - OFU-LQ leverages a random
doubling trick: the controller is updated each time the determinant of the covariates matrix is doubled. This
determinant roughly grows as tdzj 4 and hence the successive phases have durations multiplied by 21/ (datdu) > 1
OFU-LQ has a regret of order O+/T log(1/6) with probability 1 — d. Here, the notation O(-) hides polynomial
factors in log(7T) and multiplicative constants exponentially growing in d, + d,,. Abbasi-Yadkori and Szepesvéri
(2011) does not indicate how to solve the optimistic LQR, and cannot be implemented directly. The same
conclusion holds for the algorithm proposed by Faradonbeh et al. (2017) (there, the authors were able to relax
some assumptions on the noise and stability, but an efficient and practical implementation of the algorithm is not
investigated).

A first practical implementation of OFU-based algorithms was presented by Cohen et al. (2019). The algorithm,
OSLO, uses an SDP formulation to solve the optimistic LQR. It uses a somewhat random doubling trick similar
to Abbasi-Yadkori and Szepesvari (2011) and requires the knowledge of §, T', upper bounds on the norms of A, B
and P4 py, as well as a stabilizing controller. OSLO achieves a regret of order O((dy + dy)3+/Tlog(1/6)%).

Abeille and Lazaric (2020) present an efficient algorithm to implement OFU-based algorithms proposed by
Abbasi-Yadkori and Szepesvari (2011). The idea is to perform a relaxation of the optimistic LQR. The analysis
requires the knowledge of 6 and the horizon 7. And a similar random doubling trick to that of Abbasi-Yadkori
and Szepesvari (2011) is used. They obtain a regret of order O((d,, + d;)v/d,Tlog(1/d)) with probability 1 — 6.
Note that the learner is assumed to know an initial state that is sufficiently good so that stability is maintained
throughout the learning process.

Lale et al. (2020) provide another improvement on the OFU based algorithm of Abbasi-Yadkori and Szepesvéri
(2011). Their goal is to improve the dependence of the regret upper bound on the dimension and to remove the
assumption of having access to a stabilizing controller. Doing so, the authors need to introduce other assumptions
about the set of systems to which the algorithm applies: A, B and A + BK (4, p) have bounded norms. The
regret of the proposed algorithm is with probability 1 — & of order O(poly(dy + dy,)\/T log(1/8)7) with v > 1 but
unspecified, and the degree poly(d) is also unspecified.

Summary of existing results and comparison with CEC(7)

In summary, all the aforementioned algorithms use a doubling trick so that the algorithm becomes amenable to
theoretical analysis (using the independence between epochs etc). Most of the algorithms are designed in the
fixed confidence setting. They are variants of ETC strategies and their construction rely heavily on knowledge of
the confidence level §. Most of them also take as input the time horizon T, i.e., they are not anytime.

The assumptions made towards the regret analysis of these algorithms are not unified. Therefore it is very
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hard to obtain fair comparisons between these algorithms. Except for Cassel et al. (2020), the algorithms have
regret guarantees in the fixed confidence setting, i.e., with probability 1 — §. The best regret dependence in ¢ is
\/log(1/8), but it is not achieved by all algorithms (log(1/8) (Abeille and Lazaric, 2020) and log(1/6)? (Shirani
Faradonbeh et al., 2020; Cohen et al., 2019)).

The table below summarizes the regret guarantees achieved by the various algorithms.

Scenario I - A and B unknown

paper regret upper bound w.p. 1 — ¢ | expected regret upper bound | required inputs
Shirani Faradonbeh et al. (2020) O(g(dy + du )2/Tlog(1/5)%) - 0 (unclear)
Simchowitz and Foster (2020) O(dy+/d;T 1og(1/0)) - 0and T
Mania et al. (2019) O( (dy +dy )\Ff(log(l/(ﬂ)) - unkown
Lale et al. (2020) O(poly(d +dy)\/Tlog(1/8)) | - 1)
Abbasi-Yadkori and Szepesvari (2011) O( cd=tduT log(1/4)) - 0 and T
Abeille and Lazaric (2020) O((dy + dy)\/dxT1og(1/6)?) - 0and T
Cohen et al. (2019) 5(((1 +dy)3/Tlog(1/6)%) - 0 and T
this paper O((dy + dy)V/d,T) -
Scenarios IT and IIT - A or B known
paper assumptions expected regret upper bound required inputs
Cassel et al. (2020) | A known, ||B|| < M O(poly(alm7 dy)1og*(T)) T, M (among others)
this paper A known O(dy(dy )log( ) -
Cassel et al. (2020) | B known, ||A]| < M (poly(dw,d )log*(T)) T, M (among others)
this paper B known O(d? log(T)) -

Table 1: Regret guarantees of existing algorithms. The notation 5() hides polynomial factors in log(7T") and
additive low order terms in 7' with potentially worse dependencies in log(1/4), and the constants depends on

problem parameters.
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C REGRET DEFINITIONS AND ANALYSIS

This appendix includes in C.1 a discussion about the definition of the regret of an adaptive control algorithm. In
C.2, we provide a useful decomposition of the expected regret that will serve as the starting point of our analysis
in the three scenarios. We present in C.3 the so-called integration lemma, that will helps us to derive expected
regret upper bounds based on high probability bounds. The three last subsections give the proofs of our main
theorems: the regret upper bound of CEC(7) in Scenario I (Theorem 1) is proved in C.4. The proof of Theorem
3 for Scenario III (A known) is given in C.5. That of Theorem 2 for Scenario II (B known) is finally presented in
C.6.

C.1 Regret Definitions

Let us denote by II the set of all possible adaptive control policies. For a poolicy 7 € II, (zT,u],..., T, u]) is
the sequence of states and control inputs generated under 7. Remember that zf = 0 = ug.

We define the ergodic cost of a policy 7 € IT as

T
J () = limsup E Z + (ul) T R(uF) (ergodic cost / objective)

T—o0

It can be shown under suitable assumptions on (A, B, Q, R) that there exists a policy m, € argmin, . J (7).
Let J, = J(7*). The optimal policy 7, can be found explicitly: for all ¢ > 1, 7* defines the feedback control
uz* = K,z7*. The matrix K, can be computed by solving the Riccati equations. We have the useful identity
that P, = (A + BK,)'P.(A + BK,) + Q + K,/ RK, where P, = 0 is the solution to the Ricatti equations.
Furthermore, we have J, = tr(P,).

Now, we define the regret of a policy 7 € II as

T

Y @) T Q@) + (uf) T R(uf) Z )+ (ui*) "R(ui) | - (14)

t=1 —1

This definition is natural as we compare the cost under 7 to that under 7*, cumulated over T" steps. During these
T steps to compute the costs, we follow the trajectory of the system. This contrasts with the definition of regret
often used in the literature:

= (@) TQT) + (uf) "R(uf) — T .. (15)

t=1

In fact when considering the expected regret, the above two definitions coincide up to a constant. Indeed, note
that for all ¢ > 1, ||z~ ||P* =7ty = nell®, + Nlaf* 15 + lluf* [|%. Taking expectation (note E[n X] = 0 provided
7 18 mdependent of X) gives

E [ll=7117,] = E [la7a 7, — lnell®, + 2718 + lug™ 17] -

Summing over time after rearranging gives:

T

E|> (@) Q") + (uf*) " R(uf

t=1

lex 1B, = =7z B, + el

=E [||$1||p leF il ] + T
Note that E[[|27% [|3,] < oo. Indeed it can be verified that

T—

,_.

((A+ BK,)")P.(A+ BK,)! + E[z] (A+ BK,)")"P,(A+ BK,)"2].
t=0

Therefore, when considering the expected regret, we can take (15) as the regret definition.
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C.2 Regret Decomposition

The regret decomposition for the three scenarios can be unified. To that end, let us denote

v; in Scenario I
Vt>1, &= 4q¢ in Scenario ITI (A known)
0  in Scenario IT (B known)

and note that for all t > 1, & is a zero mean gaussian random vector with variance proxy 6; = o; in Scenario I,
6, = 1 in Scenario III (A known), and &; = 0 in Scenario II (B known). Let (F;);>0 be a filtration such that F;
is the o-algebra generated by (n1,...,n:) and (&1,...,&) for all ¢ > 0. Now, we may observe that the controller
used by our algorithm is of the form

ViE>1, u = f(tﬂ?t + ouéy (16)

where (K});>0 is a sequence of random matrices taking values in Réuxds guch that K, is F;_;-measureable

vVt > 1 and Ky = 0, and where (a;);>0 is a sequence of random variables taking values in {0,1} such that oy is
JFi_1-measurable and oy = 0.

Now we are ready to establish a regret decomposition that is valid for any controller of the form (16). We state
this decomposition in the following result.

Lemma 1 (Exact Regret Decomposition). Let (u)i>0 be a sequence of control inputs that can be expressed as in
(16). Define, for allt > 0,

= PR if IB(R, ~ K| < gt and |PL(E)] < 2P
B = (17)
P, otherwise
P., = (A+ BK,)"P,(A+ BK,) + Q + K, RK,. (18)

Then, for all T > 1

B[Ry (r)] = E +E (1)l — loraly,] -

T
STl g+ Inel% ol gy
t=1

Proof of Lemma 1. First, we note that the sequence (}St)tzl is well defined. Indeed, when ||B(K; — K,)|| <
1/(4]|P,|>/?), P.(K,) exists and is the solution to the Lyapunov equation P = (A4 BK;)" P(A + BK,) + Q +
K, RK, (see Lemma 16).

Next, in view of our choice of control imputs (u;);>1, we can express the dynamics of the problem as z;41 =
(A4 BK})x; + Bag& + n for all ¢ > 0. Thus, multiplying both sides of (18) by x;, we obtain the identity

lzellB, , = lwers — Baube — nell%, + lzellgy + llue — el
Then, carefully expanding the above identity, leads to
e llE) + [luell? = ||$t||?9*,t - ||$t+1||2‘15t + HﬁtH%t + Oét||§t||QBT15tB+R

+2(Bagé + nt)Tﬁt(A + BfN{t)xt + Qn;rﬁtht + 2at£tTRI?txt~

We note that E[n¢|Fi—1] = E[&|Fi—1] = 0, and that ]St, Ty, oy, and I~{t are all F;_i-measurable. Thus, using the
tower rule, and substracting ||7¢|%, from both sides, we obtain for all ¢ > 1,

E (el + uel% — Wli3,) = [laell , = lzesal, + Il _p, +oel&l3eppm] -
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Summing over ¢ € {1,...,T} (we note that o = 0 and ug = 0) we obtain

T
ERr(m)] =E | Y _ g + llulf - Imlil
Lt=1

[ T
=E\D_ledlp,, = llwelly, + i3, _p, + O‘t||§t||23TﬁtB+R]
Li=1

r T
=B |3 Mol i, Il + il | (2112, = ezl ],
Li=

where we recall that tr(P,) = J,. This concludes the proof. O

C.3 Integration Lemma

We use Lemma 2 to integrate the high probability bounds on regret.
Lemma 2. Let X be a postive random variable such that for all § € (0,1)

P (X > Cylog(e/8) + C2 log(e/é)ﬁl) < C3log(e/8)P26
where Cy,Co,C3, 81,82 > 0. Then
E[X] < (21og(eC3) + 2% HT(8; +1))C1 + ((21og(eC5))™ + 12772 T(81 + B2))Co

where, here, T'(-) refers to the gamma function.

Proof. First, for convenience, we start by reparmetrizing p = log(e/d), so that we have P(X > Cyp + Cyp”1) <
C3p®2e~P for all p > 1. Additionally, we note that for p > 2log(eCs3), we have Cze™?/?2 < 1. Thus for
p > 2log(eC3), we have

]P(X > C’lerCgpﬁl) < pﬁzeip/z.

Now, we integrate and perform the change of variable u = Cyp + CopP for u > C12log(eCs) + Cz(21og(eC3))Pr,
which yields

E[X] = /OOO P(X > u)du
< 2log(eC3)Cy + (2log(eCs))?1 Cy + /OOO P(X > Cyp+ Cap™)(Cy + CaBrp™ V)dp.
Then observe that
/000 P(X > C1p + Cap™)(C1 + CoP1p™ ~H)dp < /000(01 + CoBip® Y pP2e P 2dp
< Cy /Ooo Pre=rl2dp + B1Ch /OOO ptBa=1=0/2

< 252+101 /OO pﬁzefpdp 4 ﬂ1261+,3202 /oo p51+ﬂ27167pdp
0 0
< 2,32—&-11—\(52 +1)Cy + ﬂlzﬁﬁ-ﬁzp(ﬂl + B2)C
where I'(x) refers to the gamma function evaluated at x. To conclude, we have shown that

E[X] < (2log(eCs) + 27211 (By + 1))Cy + ((21log(eC3))P* + 12817521 (B) + B2))Co.
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C.4 Proof of Theorem 1 - Regret Analysis in Scenario I

Motivated by the regret decomposition established in Lemma 1, we define what we shall refer to from now on as
proxy regret as follows

T
=S lml3, 5+t (B-P) + it (BTRB+R) + a3, (19)
t=1 ’

where (f)t)tzo is definied as in Lemma 1 with oy = 1, and & = vy for all t > 1. We note by the same lemma that

E[Rr(r)] < E[Ry(7)], thus we may restrict our attention to analysing the prozy regret instead of the true regret.
Now, we provide a high probability bound on this prozy regret which holds for all confidence levels § > 0.

Step 1: (Defining the nice event) We start by defining the following event.

(i) K=K,
(ii) | B(K,— K,)| < (4| P.][*?)~*
Es = AVt >t(0), (iii) ||Pu(K:)— Pill < Ci(6)r? (20)

(iv) ||P%(Kt)|| < 2|~
(V) Yiis rillzd? < C2(8) + Csllrirl3

where

= log(eir)i; /%,
iy = max{ty € T : ty < t},
t(6) = poly(c, Cs, Go, || Pill, du, du, v4) 10 (6/6)127*
C1(0) = 10’ Cx || Py |[*y.dy, /? (dy + du) log(eCoGod,) log(e/5)
Co(0) = poly (0, Co, Go, [|Pll, C, day du, 7.) log (e/5) 7
C3 = c30CR||P.|*/?y.dy

for some universal postive constants cj,c3 > 0. Furthremore, applying Theorem 5, we have
P(E5) > 1 t(6)0

for some proper choice of the universal constants defining ¢(0), C1(4), C2(6), Cs.

We can interpret the nice event & as follows. The first point (i) means that CEC(T) is playing certainty
equivalence for all ¢ > ¢(d). The second (4i) means that the sequence of (K;)¢>y(s) is such that the resulting
behaviour of the system is that of a stable system, and naturally p(A + BK;) < 1. To see that, we refer the
reader Proposition 18 (see also Lemma 16). The third point (iii) indicates that the error rate is decreasing as r?.
The final points (iv)- (v) are perhaps redundent since they can be deduced from points (ii)-(iii), but we include

them here for convenience.

Step 2: (Regret from #(8) onwards) We bound Ry (7) — Et((;)_l(w) under the event &. Note that under this
event, we have

T T
Ry (m) = Rygy—1(m) < C1(8) Y ri(llzel® + do) + du 2| PLJIBI* +1) > o7
t=t(8) t=te (8)

T
< CL0) { dallrrllz + Y rillzell? | +3duCRIIPowr |3
t=t(4)

< C1(6)(da|lrir |3 + C2(8) + Csllrir|?) + 643/ 2 CE|| P|VT
< 2C5C1(8)||r1r |3 + C1(6)Ca(8) + 645/ 2CR|| P |VT
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where in the first inequality, we used the (i) to have P, = P,(K;) for all t > (8), then used (iii) to bound
|Po(Kt) — Po(Ki—1)|| < ||Po(Ky) — Pol|| + | Pe(Ki—1) — Po|| < C1(8)r? for all t > ¢(5) + 1. Next, we used (iv), to
bound ||BTP,B + R|| < (2||P.||||B||* + |R||) < (2||P:|||B||> + 1). Finally we used (v) to bound ZtT:t(a) 2|24,

and bounded ||o1.7[3 < 2d5/*\/T.

Since 7T satisfies (5), we can easily verify that ||r1.7[|3 < log(T)v/T. To see that, note that (r;)¢>1; depends on T,
and we can always find 7’ = {(C’)¥ : k € N} for C” large enough such that the corresponding sequence (7});>1
satisfies ||r1 7|2 < ||7h.4]12 < log(T)VT since T satisfies (5).

Therefore, recalling the expressions of ¢(d), C1 (), C2(d) and C5, we have
Rep(m) = Rygs)—1(7) < Calog(e/8)log(T)V'T + Cs log(e/8)* - (21)
with
Cy = c402CEC%|| P,||”? log(eCoGody )d ? (dy + d.),
Cs = poly(0, Co, Go, [| P4, OB, day dus 1)

for some universal positive constant cq4 > 0.

Step 3: We bound ]:Et((;) (m) under the event . Note we can obtain the crude upper bound

£(8)

Rysy_ < P, 241 4d,.(1 B2, |IR|) o2

+(6) 1(”)—151125%5)” ,tlltgllmtll + d. (1 + max(|| B[, || R[)o;)
t(8)

< P, 2 4+ 5d,0%0°
_1;125%5)“ t”;”mt” +5d,Cpo

where we dropped the negative terms *thHf; for 2 <t < t(5). Considering the definition of P, ;, we have
t—1
TR if | B(E; — K.,)|| < qrpbore and [ Pu(K)| < 2| P12,
e 4C2?||P,||h(t)  otherwise,

where we upper bounded [P, .|| < 4||P.||C2h(t), using the fact that under CEC(T), we have K2 <
max(|| K, ||?, h(t)), and the fact that || P.| > max(||Q]|, | R||). Thus,

max || Pyl < 4CZ| P h(t).

1<t<t(6)
Thus, we may write
t(8)
Rygs)-1(m) < AC2||P,[Ih(t(8)) > (la])* + 50°d.CB).
t=1

Therefore under event s, we have
Ry5)-1(w) < 360°d, C3]| PL[|h(#(5)) £ (£(6)),

since when property (i) holds at time ¢(d), then it must mean that /sy = 1, which means that ZZ(Q |22 <
o%d, f(t(5)). Hence, recalling the expression of #(§), we obtain

Rys)1(m) < Cs log(e/0)™" (22)
where we note that the hidden universal constants hidden in poly(-) may be chosen large enough so that Cs.

Step 4: (Putting everything together) Now, under the event &s, using (21) and (22) we have

Ry(r) = Ry(r) — Rygsy—1(m) + Ry()-1(7)
< Cylog(e/8) log(T)VT + Cs log(e/8)*17
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where we note that the universal postive constants hidden in poly(.) may be chosen large enough so that C5 > Cj.
Therefore, we have established that

& C {ET(W) < Cylog(e/8) log(T)VT + 2Cs log(e/5)3173}

where Cs = 2C5. Now recalling the expression of ¢(J) and that P(Es) > 1 — ()¢ for all 6 € (0,1), we obtain that
for all 6 € (0,1), we have

P (RT(W) < Cylog(e/8) log(T)WT + Cs 1og(e/5)31vf) > 1 — Cglog(e/8)1+§ (23)
where Cg = poly(a, Cs, Go, || Psll, CB, dz, du, ¥x). Now, integrating (23) using Lemma 2, yields the final result
E[Rr(7)] < E[Rr(r)] < Crlog(T)VT + Cg
where

C7 = ¢710g(e0CoGo || Py ||Cpdudyyy ) 202 CECE || Py ||°2dY % (d, + dy)
Cs = p01Y(Uv Cs, Go, ”P*”v CB,dy, dy, ’7*)

and where ¢7 is a positive constant that only depends polynomially on -y, — the order poly(:) may depend on .

C.5 Proof Of Theorem 3 - Regret Analysis In Scenario IIT (A known)
The proof is very similar to that of Theorem 1 (see C.4). The only difference is that now there are no input

perturbation whenever CEC(T) uses the certainty equivalence controller, and the error rates of the LSE are now
better. We shall highlight these differences throughout the proof.

Again following Lemma 1, we define the prozy regret as follows
~ T ~ ~
Ry(m) = Z ”‘”t”?%—ﬁm +tr (Pt - P*) + a0 tr (BTPtB + R) + ||;n1||§30
t=1

where (ﬁt)tZI is defined as in Lemma 1 with a; = 1{I~<t¢Kt}’ & = (; and thus 62 < 1. Note by the same lemma,
we have E[Ry(7)] < E[Rp(w)).

Step 1: (Defining the nice event) We start by applying Theorem 5, which guarantees that the event

(i) K=K,
(ii) | B(Ky— K.)| < (4] P>~
Es = AVt >t(0), (i) ||Pu(Ky) — Pel| < C1(0)r? (24)

(iv) ||P;(Kt)|| < 2[|P
(V) Yiis rillzd? < C2(8) + Csllrirl3
holds with probability at leat 1 — ¢(6)d. In the definition &5, we have
rtQ = it_lv
iy = max{ty € T : t, < t},
t(8) = poly (0, Co, Go, | Pull, 1, i, du, ) log(e/6) 577
10%| P [8(dy + dy )y, log (<€l ldede )
C1(6) = 2 log(e/d),
C5(8) = poly(a, Co, Go, | Py, 1" day o, 1) o (e/0)™7,
C3 = CgO’ZHP*HB/de,
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for some universal positive constants ¢y, c3 > 0.

The properties (i)-(v) have the same interpretations as in C.4, with the distinction that this time, the error rates
are much better. We use these properties to bound the proxy regret.

Step 2: (Regret from ¢(#) onwards under the nice event) We bound Ry (7) — Rt(g)_l(ﬂ') under the event &. First
let us note that under this event, we have oy = 0 for all ¢ > ¢(4). Therefore, we have

T

Rr(m) = Rys)—1(m) < C1(8) D ri(|lwe]® + da)
t=t(5)

T
< C(0) | dallrirll3 +2 D rfllz
t=t(5)

< C1(8)(de||rurll3 + 2C2(8) + 23|z [|?)

< 3C3C1(8)|Ir1r 3 + 2C1(8)Ca(0)
where in the first inequality, we used the (i) to have P, = P,(K;) for all t > ¢(), then used (%ii) to bound
|Po(Ky) — Po(Ki—1)|| < ||Po(Ky) — Pyl + || Po(Ki—1) — Py|| < 2C1(8)r? for all t > t(5) + 1.

Since T satisfies (5), we can easily verify that ||r1.7||3 < log(T). To see that, note that (r;);>; depends on T,
and we can always find 7’ = {(C’)¥ : k € N} for C’ large enough such that the corresponding sequence (7});>1
satisfies ||r1, 7|13 < ||7).7113 < log(T) since T satisfies (5).

Therefore, recalling the expressions of t(d), C1(6), C2(0) and Cs, we have
Rer(m) = Rys)1(m) < Culog(e/6)log(T) + Cs log(e/8)" (25)
with

Cy = 5
*

2| P, || P||«dzd,
AT tog (<N ) o, 4

Cs = poly(o, Cs, Go, HP*H,/L:l,dz,du,’y*),

for some universal positive constant ¢4 > 0.

*

Step 3: (Regret up to #(d) under the nice event)s Now, we bound ﬁt(g) (m) under the event &. Note we can
obtain the crude upper bound

£(9)

53 < 2 ~ 2
Ry(s)-1(m) | Jnax 1Peell D lell? + dod (1 + max(||B]1%, | RI)))

=1
#(6)
2
< | e [P, t||Z||9Ct|| +2d,Ch

where we dropped the negative terms *H%Hzﬁ for 2 <t < t(J). Recalling the definition of P, ;, we have
t—1

THE 2|| Py || if | B(K: — K|l < qpipre and | P (K| < 2P|,
~ |4C2||P.||h(t)  otherwise

where we upper bounded [P, || < 4|P.||C2h(t), using the fact that under CEC(T), we have ||K[|? <
max(|| Ko ||?, h(t)), and the fact that || P.| > max(||Q]|, | R]|). Thus,

P, .|| < 4C?||P,||h(t
| nax [| Pl | Pel[A(t).

Thus, we may write
£(9)
Ry(s)-1(m) < ACZ| Pul|R(t(8)) D (Ilze* + 2d.CF)

t=1
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Therefore under event &s, we have
Ry(s)-1(m) < 120°d, C2CB|P.[[h(4(6)) f (£(5)),

since when property (i) holds at time ¢(d), then it must mean that £;s) = 1, which means that Zig |lzs]? <
o%d, f(t(5)). Hence, recalling the expression of #(§), we obtain

Rys)—1(m) < Cglog(e/5)*" (26)
where Cg = poly(a, Cs,Go, ||P*H27,u:17 CBadwadua'Y*)'

Step 4: (Putting everything together) Now, under the event s, using (25) and (26), we have

Ry(m) = Ry(m) — Rt(é)—l(ﬂ') + Et(é)fl(ﬂ')
< Cylog(e/8)log(T) + Cy log(e/5)5573

where we note that the universal postive constants hidden in poly(.) may be chosen large enough so that
C7 > 2C5 + Cg. Therefore, we have established that

Es C {ET(W) < Cylog(e/d)1og(T) + C 10g(e/5)557i”} )

Now recalling the expression of ¢(§) and that P(Es) > 1 —¢(4)d for all § € (0,1), we obtain that for all § € (0, 1),
we have

P (Rr(r) < Cilog(e/6)log(T) + Crlog(e/6)™ ) = 1 = Crlog(e/0)"™ 5 (27)

where the hidden universal constants in poly(-) defining C; may be chosen to be large enough for the above to
hold. Now, integrating (27) using Lemma 2, yields the final result

E[Rr(r)] < E[Rr(w)] < Cslog(T) + Co
where
cglog(eaCoGol| Pl iy ' Cpdeduys)* o || Pl|* P du (de + du)

—1
Mo
09 - pOly(Ua CO7g07 ||P*Ha /J’:la CBa dwa du77*)

where cg is a positive constant that only depends polynomially on ~,, and the order of poly(-) may depend on ~,.

Cs =

C.6 Proof Of Theorem 2 - Regret Analysis In Scenario II (B known)

Again, the proof is very similar to that of Theorems 1 and 2 (see C.4 and C.5). Note that in this scenario,
there are no input perturbations, and the LSE error rates are as fast as in Scenario III. We shall highlight these
differences throughout the proof.

Again following Lemma 1, we define the prozy regret as follows
~ T ~
Br(m) =Y a2, 5, +tr(B=P.) + ol
t=1

where (IBt)tZl is defined as in Lemma 1 with a; = 0, & = 0. Note by the same lemma, we have E[Rp(m)] <
E[Rr(r)).

Step 1: (Defining the nice event) We start by applying Theorem 5, which guarantees that the event

(i) K=K,
(i) ||B(K;— K,)| < (4]|P.]]*?)~*
Es =Vt > t(0), (ii) |Pu(Ky) — Pl < C1(6)r7 (28)

(iw) |12 (Kol < 21| P
(v)  Limvo rElzel® < Co(8) + Chllrarl3
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holds with probability at leat 1 — #(4)d. In the definition of &5, we have
r? =i,
iy = max{ty € T : tx <t},
£(8) = poly (0, Co. Gou | P2[| da. 72) log(e/8) 7,
C1(8) = c60”|| P.||*dy log (e]| Px|d.; ) Log(e/d),
Ca(8) = poly (@, Co. Go, || P2 d, 74) log(e/8)'7",
C5 = 2402 || P, |3/ d,,

for some universal postive constants c1,c3 > 0.

The properties (i)-(v) have the same interpretations as in C.4, with the distinction that this time again, the error
rates are much better. We use these properties to bound the prozy regret.

Step 2: (Regret from ¢(¢) onwards under the nice event) We bound Ry () — ﬁt((;)_l(’fr) under the event &. First
let us note that under this event, we have oy = 0 for all ¢ > ¢(8). Therefore, we have

T
Ry(m) = Rysy—1(m) < C1(8) Y v (|l + )
t=t(5)

T
< C(0) | dallrirll3 +2 D rfllz
t=t(8)

< C1(8)(de[Ir1:r |13 4 2C2(8) + 2Cs|r1.7 1)
< 3C3C1(8)|Ir1r 13 + 2C1(8)Ca(0)

where in the first inequality, we used the (i) to have P, = P,(K,) for all t > (5), then used (iii) to bound
|Pe(Ky) — Po(Ki—1)|| < |Pe(Ky) — Pil| + | Po(Ki—1) — Pi|| < 2C1(8)r? for all t > ¢(6) + 1.

Since T satisfies (5), we can easily verify that ||r1.7]|3 < log(7T) (see the proof in the previous scenario).
Therefore, recalling the expressions of ¢(d), Cy(d), C2(d) and Cs3, we have
Ry (m) — Rygs)—1(m) < Cylog(e/8)log(T) + Cs log(e/8)10" (29)

with

Cy = ca0|| P log (e]| Pllwdz) d3 s,

Cs = pOIY(Ua Cs, Go, ||P*||, ,u:17 Ay dy, '7*)3
for some universal positive constant ¢4 > 0.
Step 3: (Regret up to t(d) under the nice event). Now, we bound ﬁt((;) (m) under the event . Note we can
obtain the crude upper bound

£(9)

Rys_1(m) < P, 2
1(3)—1(m) < 15?23&)” ,tlltgllxtll

where we dropped the negative terms _thH% ) for 2 < t < (). Recalling the definition of P, ;, we have
1P < 2|| Pyl if | B(K: — K|l < grpipre and [|Po(Ky)|| < 2P,
e 4C?||P,||h(t)  otherwise

where we upper bounded [P, .|| < 4||P.||C2h(t), using the fact that under CEC(T), we have K2 <
max (|| K, ||, h(t)), and the fact that ||P,| > max(||Q]], ||R||). Thus,

max || P, ;|| < A4CZ| Py|h(t).
1<t<t(8)
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Thus, we may write

(9
Rigs)-1(m) < 4CZ||PL||R(t(8)) D llll*.
t=1

Therefore, under event £, we have

Rys)-1(m) < 40°d,C2CH|| P || h(t(5)) f(£(5))

t

since when property (i) holds at time ¢(d), then it must mean that £;5) = 1, which means that Zs(j)l |lzs|? <

o%d, f(t(5)). Hence, recalling the expression of #(§), we obtain
Ry(s)-1(m) < Cglog(e/8)'57
where Cg = poly(o, Cs, Go, || Pll, CB, dzy Vs)-
Step 4: (Putting everything together) Now, under the event &, using (29) and (30) we have

Ry () = Ry(m) — Rygsy_1(m) + Rys)_1 ()
< Cylog(e/8) log(T) + Cr log(e/5) 67

(30)

where we note that the universal positive constants hidden in poly(.) may be chosen large enough so that

C7 > Cs5 4 Cg. Therefore, we have established that

& < {ﬁT(W) < Cylog(e/d)log(T') + C710g(e/5)1673} ,

Now recalling the expression of ¢(d) and that P(Es) > 1 — ¢(8)d for all § € (0,1), we obtain that for all § € (0, 1),

P (ETW < Cylog(e/8) log(T) + Cr log(e/8)' ) > 1— Cylog(e/8)'6%s

(31)

where the hidden universal constants in poly(-) defining C7 may be chosen large enough for the above to hold.

Now, integrating (31) using Lemma 2, yields the final result
E[Rr(m)] < E[Rr(7)] < Cslog(T) + Co
where

Cs = cglog(eaCoGol| Py||Cpdyyi) o | P ® P d2ys,
CV9 - pOIy(Ua 007 go> ||P*H7 CB7 dw7 ’Y*)a

where cg is a positive constant that only depends polynomially on ~,, and the order of poly(-) may depend on ~,.
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D THE NICE EVENT AND ITS LIKELIHOOD

In Appendix C, we have seen that the regret analysis relied on the definition of a ”nice” event s, and on the
fact that its occurrence probability is close enough to 1. This appendix is devoted to presenting such event
and establishing its likelihood for all the three envisioned scenarios. The main results are stated in Theorem 5,
Theorem 6, and Theorem 7 for Scenario I, Scenario II — A known, and Scenario IT — B known, respectively. Their
proofs follow the same line of reasoning and rely on the consistency of the least squares estimator (see Appendix
F), perturbations bounds on Riccati equations (see Appendix I), and the fact that CEC(T) eventually just uses
the certainty equivalence controller K; (see Appendix E).

D.1 Scenario I

To analyse regret, we need to ensure the event £ where for all ¢ > ¢(J)

(l Kt
1B(K, = K < (4l|1P])*/%)~

(iv) [P (K| < 2| P

)
ii)
(i) [|P(K¢) = Pof| < Cr(d)r?
)
)

(V) Yoo 1o Tl < Callrirl3 + Ca(5)

holds with probability at least 1 — () for all § € (0,1). We shall precise t(d), C1(0), C3(6) and C5 in Theorem 5
As for the sequence (7¢)¢>1, it is defined as

log(eiy)
172
U

vt>1, ri=

where i; = max{t, € T : t;, <t}. We note that if 7 = N, then i, = ¢, and if 7 = {e* : t € N}, then i, = elloe(®)],
Theorem 5. Assume T satisfies (5). Then under CEC(T), for all § € (0,1), we have

P(Vt > t(d), (i) — (v) hold) > 1 —¢(5)d
where

t(8) = poly (0, Co, Go, | Pull, d, du, ) log(e/8) 7,

C1(6) = 10 CR || P[P yed /(do + ) log(eCoGod,) log(e/d),
Co(6) = poly (0, Co, Go. | Pill, C, da, o, 7.) log (€/8) 7%

Cs = c30°C%|| Py |* *yds,

for some universal positive constant ¢y, cs > 0.

Proof. The proof proceeds in the following steps.

Step 1: (Least squares estimation under CEC(T)) First, since T satisifes (5), we have by Proposition 2 that
under CEC(T), the following holds

C102C% (dvy log (0CsGod,t) + log(e/d))
(dt)1/2

max(| A, — Al*, | B, — BI*) < (32)

with probability at least 1 — §, provided that

t1/% > ca CICK || P||" (de log(eaCoGol| P || dpduy) +og(e/8)) (33)
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for some universal positive constants C1,c; > 0. Constraining further ¢ to satisfy

/2 S C1160202C% || Py||*° (dyyx log (0CGodyt) + log(e/d))

- ()12 (34
ensures in addition that
a4y = A | B = BI) < {5 (3)
Now, using Lemma 22, we can find a universal positive constant ¢y > 0 such that if
t'/* > 20 C3C% | Po1* (ds log(e0CoGol| P | duduys) + log(e/d)) (36)

then conditions (33) and (34) also hold.

We remind here that because T satisfies condition (5), if the constant ca > 0 is chosen large enough, we can claim
that for all ¢ € N such that (33) holds, we have K; = K3, for some ¢, that also satisfies (33). Therefore, applying
Lemma 23, ensures that

P(Vt > t1(8), (32) and (35)) >1—46 (37)

with
t1(8)* = c30°C2CK || Pu||* (dya 10g(e0CoGo || Pul|dy ) + log(e/5)) - (38)

for some universal postive constant cs > 0. Finally, a direct application of Proposition 16 ensures that

(i) 1B — K < g
Co= Wt > 1(0),  (iii) ||P.(K)) — Po|| < Ci(o)r (39)
(iv) [1P.(K)] < 2|2

holds with probability 1 — ¢, with

C1(6) = 140C,02C% || P, ||13d; Y2 (dy + dy) s 1og (€0 CoGody ) log(e/d).

Step 2: (Commitment to the certainty equivalence controller) Using Theorem 8, we have
Ds = {w > 1,(5), (i) K, = K} (40)
holds with probability at least 1 — 5t5(d)d, with

t2(8) = poly(a, Co, Go, || Psll, d, du, 74 ) log(e/8) 27 (41)

such that t2(d) > ¢1(d) (this can be ensured by taking the universal positive constants hidden poly(-) large
enough).

Step 3: (Stability under the certainty equivalence controller) Let us define the events
T

Evsr =1 Y rilad® < 8IPNY? (Irirlillze s IP + 6CE0® (Ilrurl3 +log(e/d))) ¢
t:tz((s)

Ea 5 = {Vt > t5(5), (i) and (ii) hold }.
Noting that t5(d) may be chosen so that t2(d) > d,, we obtain by a direct application Proposition 18,

P (EvsrUESs) >1—06.

Step 4: (Putting everything together) To conclude, we note that under the event Cs N Ds N (E1 5,0 U Ea5), the
propoerties (i) —(iv) hold for all ¢ > t5(0). Additionally, under CEC(T), it also holds that ||z, (s)[|* < 02d, f(t2(0)),
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therefore we have

T

Yo rtllad® < SIPAP (reoyr |z I + 6C50° (dellrirll3 + log(e/s)))
t:tz((s)

< SIPI2 (Irestoy 2 a2 + 6C30% (de e 3 + Tog(e/5))

< 480 ||P.[]*/*Chdy||rr|l3 + poly (o, Co, Go, [|P.l, Ca, da, du, v2) log(e/8)t2(8)+7/2

< 4807 P||*2Chdy||rrr]13 + poly (o, Co, o, | Pull, . e, du, ) log(e/6) 7
where we used the fact ||r.7|% < poly(c, Co, Go, || Psll, ds, du,vx). Thus, defining the property

T
(V) D il < Csllrrl3 + Ca(6),
t=t2(6)

where

Cs(8) = poly(a, Co, Go, || Pull, C, oy dus ) log(e/8) 1077
Cs = 4802|| P, ||*/2C%d,,

we have shown that
Es = {Vt > t9(0), (Z) — (’U) hOld} CCsNDsNELsT

Finally, we note that Cs N Ds N (Eq,57 U Ea5) = Cs N D5 N Ey 5 p. Therefore, by a union bound, we have

]P)(g(;) >1-P (Cg UDs U (E1,5,t U Edyg)c)
>1—20—5t3(5)0
> 1 = Tt (8)5.

This gives the desired result with modified universal constants. O

D.2 Scenario IIT — A known

To analyse regret, we need to ensure the event £ where for all ¢ > ¢(J)

(i) K =K,

(i) |B(E: — K|l < (4[| 2132~
(iil) [|[Pe(Ke) = Pel| < Ci(0)r7
(iv) [[Pc(K)| < 2[| Pl

(V) Tacieo) rillel|? < Csllrirll3 + Ca(6)

holds with probability at least 1 — () for all § € (0,1). We shall precise ¢(J), C1(d), C2(6) and C5 in Theorem 6.
As for the sequence (r);>1, it is defined this time as

1
VtZI, 'f'?:_*
1t

where i; = max{t; € T : ¢ < t}.
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Theorem 6. Assume T satisfies (5). Then under CEC(T), for all § € (0,1), we have
P(Vt > t(6), (i) — (v) hold) > 1 —¢(d)d
where

t(5) = poly(a, Co, Go, | Pell, ti s day dus 1) log(e/8) 7%

CIUZHP*HS(du + dz)'Y* log (eUCKHngdmd“)
C1(0) = 2 log(e/d),
*

02(6) = pOIY(U7 Cov go’ HP*”,H::I, dﬂ, du7’)/*) 10g(€/§)54"/f’
Cy = c30°|| P ||*/?d,

for some universal positive constant c1,c3 > 0.

Proof of Theorem 6. The proof proceeds in the following steps.

Step 1: (Least squares estimation under CEC(T)) First, since T satisfies (5), we have by Proposition 4 that
under Algorithm CEC(T), the following holds

6110'2 (du’)/* log(acogodwdut) +d; + 10g(€/(5))

B, —B|I’ < 42
13- Bl i (12)
with probability at least 1 — §, provided that
202 || p, ||10
2 > “Ku” (dus 10g(e0CoGo|| P || daduye) + log(e/5)) (43)
for some universal positive constants C1,c; > 0. Constraining further ¢ to satisfy
> C1160202|| P, ||*° (duys log(0CoGodpdyt) + dy + log(e/d)) (44)
- 13
ensures in addition that 1
B —B|| < ——— 45
Now, using Lemma 22, we can find an universal positive constant co > 0 such that if
202 || P, |10
p/2 > 7GR () r0g(e0C.Gul| P dsd) + 08(e/0)). (46)

M
then conditions (43) and (44) also hold.
We remind here that because T satisfies condition (5), if the constant c; > 0 is chosen large enough, we can claim
that for all ¢ € N such that (43) holds, we have K; = K3, for some t;, that also satisfies (43). Therefore, applying

Lemma 23, ensures that
P(Vt > t1(5), (42) and (45)) >1—§ (47)

with o 1
30 Ci || ||

[
for some universal postive constant c3 > 0. Finally, a direct application of Proposition 16 ensures that

t1(6)"? = (dylog(eoCoGol| Pyl dzduys) + log(e/d)) , (48)

(49)

} B e
cl,aZ{\ﬁztl(d), (#) max(| B, ~ K, |, K*”)4|P*|3/2}

(i) [[P(K)| < 2 P
holds with probability 1 — .

Step 2: (Commitment to the certainty equivalence controller) Using Theorem 8, we have

Ds = {Vt > 1,(5), (1) K, = K} (50)
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holds with probability at least 1 — 5t5(5)d, with
t2(6) = poly(a, Cs, Go, || Psll, ,U;la ey dus Vs log(e/é)(w* (51)

such that t2(0) > t1(d) (this can be ensured by taking the universal positive constants hidden in poly(-) large
enough).

Step 3: (Refined error rate under the certainty equivalence controller) Now, note that since the event C1 s N D1 5

holds with probability at least 1 — 6t2()d, we may apply Proposition 5 and obtain

C 0'2
1B~ B < %45 (@t oy tos

*

eoCr || Py||dzdy,
——— | +log(e/9)

*

provided that
t > poly(o, Co, Go, [|Pull, 15", day dusy 74) Log(e/8) 17+

for some universal positive constant ¢4 > 0. Again, after using Lemma 23, and using the perturbation bounds via
Proposition 16 we obtain that the event

(1) |B(K: ~ K| < qrplyers
Cos =Vt >13(6), (i) |Pu(Ky) — Pu| < Ci(0)r? (52)
() [ P(K)| < 2| Pl

holds with probability at least 1 — c5t3(0)d, where we define

t3(8) = poly(a, Co, Go, [|Pull, 115", iy dus, 74) log(e/8) 157

6602”13*”8((1“ + dm)’Y* log (%)
C1(6) = 2 log(e/d)

for some universal positive constants cs, cg > 0.

Step 4: (Stability under the certainty equivalence controller) Let us define the events

T

Evsr =9 Y rilaed?® < 8IPIP2 (lrurlZllzes) I + 30° (I3 +log(e/6))) ¢
t:t3(5)

Es 5 = {Vt >t3(5), (i) and (i) hold }.
Noting that ¢2(d) may be chosen so that ¢2(d) > d,, we obtain by a direct application Proposition 18, that

P (EvsrUESs) >1—06.

Step 5: (Putting everything together) To conclude, we note that under the event Co s N Ds N (E1 6,10 U Ea5),
propoerties (i) — (iv) hold for all ¢ > ¢3(0). Additionally, under Algorithm CEC(T), it also holds that ||z, s)[|* <
o2d, f(t3(9)), therefore it follows that

T

> rtladl® < 8IPUP (e rlZ e @) lI” + 30 (dellrir 13 + log(e/d)))
t=t3(J)

<8I PP (i sy el (017 + 30° (dallrir 3 + log(e/d)))
< 240°|| P[> 2dy |17 |15 + poly (0, Co, Go, | Pulls " iy duy 74) log(e/8)t3(8) 7/
S 2402||P*||3/2d$||r11T||§ + polY(U7 COa go7 ||P*||’ M:la dwa du7 ’Y*) 10g(e/(5)54’73

where we used the fact ||r.7|% < 1. Thus, defining the property

T
(v) Y izl < Csllrirll3 + Ca(6),

t=t35(6)
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where

02(6) = pOly(U; 007 g07 ||P*||7 /14*_1, d(l:7 du7 ’y*) 10g(€/6)54')’§’
Cy = 2407|224,

we have shown that
Es = {Vt > t3(5), (1) — (V) hOld} - C275 NDs N Ey 51

Finally, we note that Co s N Ds N (E1,5,0 U E25) = Ca5 N Ds N Eq 5. Therefore, by a union bound, we have

P(&) >1—P(CEUDSU (Ers5s U Eqs)°)
Z 1-— C7t3((5)(5

for some universal positive constant ¢; > 0. This gives the desired result with modified universal constants. [

D.3 Scenario II — B known

To analyse regret, we need to ensure the event & where for all ¢ > #(4)

(i) K, =
(it) B — K| < (4]l PP2)~
(i) [|Px(K) — Po]| < C1(6)r
(iv)

)

| P (K[| < 2[| Pyl
(v) Yo w6y Tillzel? < Callrir|l3 + Ca(5)

holds with probability at least 1 — ()4 for all § € (0,1). We shall precise ¢(d), C1(d), C2(6) and C5 in Theorem 7.
As for the sequence (r¢);>1, it is defined this time as

VtE>1, ri=—

where iy, = max{ty € T : t;, < t}.

Theorem 7. Assume T satisfies (5). Then under CEC(T), for all § € (0,1), we have
P(Vt > t(d), (i) — (v) hold) > 1 —¢(6)d

where

#(6) = poly(a, Co, Go, | Pu ], du, ) log(e/8)°7%
C1(08) = ¢60”|| P.||*dy log (e]| Py || da) log(e /),
C5(8) = poly (0, Cs, Go, || P |, du, 1) log(e/6) 1%,

Cs = 2402 || P,||*/%d,,

for some universal positive constant cq,cs > 0.

Proof of Theorem 7. The proof proceeds in the following steps.

Step 1: (Least squares estimation under CEC(T)) First, since T satisfies (5), we have by Proposition 6 that
under CEC(T), the following holds

2 o C10? (dyylog(eaCoGod,t) + log(e/d))

4. - 4] :

(53)
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with probability at least 1 — §, provided that
t > c1(dyys log(eaCoGodyyy) + log(e/d)), (54)

for some universal positive constants C1,c; > 0. Constraining further ¢ to satisfy

t > C1160%02|| Py||*° (d,ylog(eaCoGodyt) + log(e/d)) (55)
ensures in addition that 1
A —All < ————. 56

Now, using Lemma 22, we can find an universal positive constant ¢y > 0 such that if
t > c20”||P||" (duy log(eaCoGs | Pul|day) + log(e/d)) , (57)
then conditions (54) and (55) also hold.

We remind here that because T satisfies condition (5), if the constant ¢3 > 0 is chosen large enough, we can claim
that for all ¢ € N such that (54) holds, we have K; = K3, for some ¢, that also satisfies (54). Therefore, applying
Lemma 23 ensures that
P(Vt > t1(6), (53) and (56)) >1—4 (58)
with
t1(8) = c30%| P.||*” (v log(ea CoGo | P | duy) + log(e/d)) (59)

for some universal postive constant c3 > 0. Finally, a direct application of Proposition 16 ensures that

(i7) max(||B(K; — K|, 1K — K.ll) < gpp.7
Ci5 = {Vt > (), APl (60)
(i) IP(K)| < 2/ P
holds with probability 1 — §.
Step 2: (Commitment to the certainty equivalence controller) Using Theorem 8, we have
Ds = {Vt > 1,(0), (1) K, = K} (61)
holds with probability at least 1 — 5t5(9)d, with
ta(6) = poly(0, Co, Go, || Pull, i dey du, 75) log(e/6)%7 (62)

such that ¢2(d) > ¢1(d) (this can be ensured by taking the universal positive constants hidden in poly(-) large

enough)

Step 3: (Refined error rate under the certainty equivalence controller) Now note that the event C; s N Dy s holds

with probability at least 1 — 6t2(8)d. Therefore, applying Proposition 5 we obtain

C40’2
t

[A: — Al < (dz log (¢]| Py ||dz) + log(e/d))

provided that
2
t > poly (o, Co, Go, | Pl da, 7.) log(e/8) 57>

for some universal positive constant ¢4 > 0. Again, after using Lemma 23, and using the perturbation bounds via
Proposition 16 we obtain that the event

(i4) || B(K:— K,)[| < W
Cos =Vt > 13(0),  (iii) |Pu(K;) — Pu|| < C1(0)r? (63)
(iv) || Pe(KY)| < 2||P]|

holds with probability at least 1 — ¢5t3(d)d, wehre we define

t3(6) = poly(a, Co, Go, || P ||, du, x) log(e/8)57+
C1(8) = c50?|| P.||*d, log (e]| Pyl d.) log(e/9),
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for some universal positive constants cs, cg > 0.
Step 4: (Stability under the certainty equivalence controller) Let us define the events

T

Eisr=19 > rilled® <8IPAP (IrirlZllzm @) I* + 307 (lrurll3 +log(e/d))) ¢
t=t3(9)

Ey 5 = {Vt > t3(5), (i) and (3¢) hold }.
Noting that t3(5) may be chosen so that t3(d) > d,, we obtain by a direct application Proposition 18, that

P (EysrUESs) >1—06.

Step 5: (Putting everything together) To conlcude, we note that under the event Co s N D5 N (E1,5,0 U Es 5), the
propoerties (i) —(iv) hold for all ¢ > ¢3(0). Additionally, under CEC(T), it also holds that ||z, (s)[|* < 02d, f(t3(9)),
therefore it follows that

T

D rillwdl® < SIPP (v, gy ey )1 + 30% (dallrir 5 + log(e/6)))
t=t3(9)

<8P (Irea oyt 2o llzes o) |17 + 307 (dallryr |13 + log(e/d)))
< 240%|| P, |*/?d, ||r1.7]|3 + poly(0, Co, Go, | Pel, do, 1) log(e/8)t3(6) 772
< 2462|| P,/ 2dy ||r1.7||2 + poly(a, Co, Go, | Pill, du, ) log(e/8) 1572

where we used the fact ||r.7|/% < 1. Thus, defining the property

T
(v) Y rElad? < Csllrirll3 + Ca(6),
—

where

C5(6) = poly(o,Co, Go, | Pell, d, v4) 1og(e/6)15’73’
Cs = 240° || P,|**d,,,

we have shown that
Es = {Vt > t3(0), (i) — (v) hold} CCs NDs N Ey 57

Finally, we note that Co.s N Ds N (E1 5,0 U Ea5) = C2,5 N Ds N Ey s 7. Therefore, by a union bound, we have

P(&) >1—P(CEUDSU (Erss U Eqs)°)
Z 1— C7t3((5)(5

for some universal positive constant c; > 0. This gives the desired result with modified universal constants. O
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E HYSTERESIS SWITCHING

In this appendix, we analyze the hysteresis switching scheme of CEC(T). The main result is stated in Theorem 8,
and essentially says that eventually, CEC(7) just uses the certainty equivalence controller K;. The proof of this
result relies mainly on the consistency of the least squares estimator (see Appendix F), and on the perturbation
bounds on Riccati equations (see Appendix I). The stability behaviour of the resulting dynamical system is also
instrumental in the analysis (see Appendix J).

E.1 Main Result

The following theorem says that after time ¢(§), CEC(T) only uses the certainty equivalence controller K;. In its
proof, we will use lemmas presented later in this appendix.

Theorem 8. Assume that T satisfies (5). For all § € (0,1), there exists a stopping time v(J), such that
CEC(T) uses the certainty equivalence controller at v(d), and such that the stopping time 7(0) = inf{t > v(J) :
CEC(T) uses stabilizing controller at time t} verifies

P(u(5) < £(8), 7(6) = 00) > 1 — 5¢(5)8

where
t(é) = pOIy(U7 COa gO? ||P*||’ :u:la d.’L’a du7 PY*) log(e/6)3’)’*ﬁ

and where the order of the polynomial only depends on v, and B = 4, a = 0 in Scenario I, 5 = 2 in Sce-
nario III (A known), and = 1 in Scenario II (B known). We note that in Scenarios I and II, we have
poly(a, Co, Go, | Pull, i L, duy duyvx) = poly(a, Cs, Go, | Pyl|, du, du, vi) simce we have no more dependency on fiy.

Proof of Theorem 8. The proof for the three scenarios are very similar. We provide the proof for Scenario I, as
for the other two scenarios, we simply highlight the differences in the proof.

Scenario I. By Lemma 4, we have for all § € (0,1), P(E15) > 1 — 4§, provided that
£(6)1/1 = coC2CR | P, |y, log(eoCaGol| Py dudy v, log(e/)

for some universal positive constant ¢; > 0 large enough so that t1(6) > d, + log(e/d). We note here that we may
have the crude upper bound Cx < C,||Py||. Now defining

v(d) =inf {t > t1(6) : £, =1},
7(0) = inf {t > v(d) : £ =0}.
and denoting
t(6) = ca(CoGo) ¥ (| P[P/ 11(8)*)
where ¢, > 0 is a universal positive constant. Note that #(8) > c2(CoGo)®/7t1(6)37* (recall that || P,| > 1). Thus,
provided c; is large enough, we may apply Lemma 3 and obtain

P(u(3) < H(5)) = 1—6.

Furthermore, note that t(5) > ¢z Py||?/?t1(8). Hence, provided c; is large enough, we may apply Lemma 7, and
obtain
P(v(d) < t(0),7(8) < 00) < 4t()0.

Therefore, we have
P(v(0) < £(0),7(0) = 00) = P(v(8) < t(6)) — P(v(d) < t(d),7(d) < o0)
<1—08—4t(6)
> 1 —5t(6)0,

where co may be chosen sufficiently large so that ¢(d) > 1.
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Scenario III (A known). We start by applying Lemma 6, to obtain that P(E55) > 1 — §, provided that

co?C|| P||*°

t1(6)1/2 = #2

(dys log(eaCoGo)|| Pty tduduys) + log(e/d)) .

The remaining of the proof follows similarly as in Scenario 1.

Scenario IT (B known). We start by applying Lemma 5, to obtain that P(Es5 ;) > 1 — §, provided that
t1(8) = || Pu[** (days Log(ea CoGo || Py [|day) + log(e/d)).

The remaining of the proof follows similarly as in Scenario I. O

E.2 The Time It Takes For CEC(7) To Use The Certainty Equivalence Controller

Lemma 3 quantifies the probability of switching to the certainty equivalence controller (i.e., K, = K;) at some
time, say between i and j. The proof of Lemma 3 relies on Lemma 15) and Proposition 15. The stabilizing
controller (i.e., IA(t = K,) will eventually bring the system to a stable behaviour, thus to a state where it can
attempt the certainty equivalence controller.

Lemma 3. Under CEC(T), for all § € (0,1) we have
PEke{i,...jh=1)>1-6

provided that
i >d, +1log(e/d) and > c(CoGo)¥/ Vi

for some universal positive constant ¢ > 0. Refer to the pseudo-code of CEC(T) for the definition of ..

Proof of Lemma 3. We start by defining the following events.
Ei,j:{ﬂke{i,...,jL Ek:1},

t
Asp = {Z 5] < C10°GIC2(dut' 27 + 1og(e/6))}-

s=0

We have, by Proposition 15, that the event As; holds with probability at least 1 — ¢ for some universal positive
constant C; > 1. Our analysis is essentially the same for all the envisioned scenarios. Therefore, to avoid
unnecessary rewriting, we denote

vy if in Scenario I
Vs >0: & =< ifin Scenario III

0 if in Scenario II

where we remark that for all s > 0, & is a zero-mean, sub-gaussian random vector that has variance proxy at
worst o2 for all s > d,.

Now, provided that i > log(e/d), observe that under the event A;; N & ; the following holds

(a) YI_o llzsll? > 02do f(j) = 02d,j /2,
(b) 0o llws||? < C1o2G2C2(dyi' T2 + log(e/d)) < 2010°G2C2d,i 7,

(c) Vs € {i,...,5}, us = Koxs + &s.
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Consider the following dynamical system
Vs >0, Ys+1 = (A+ BKo)ys + Birs + mits with yo =z
and note that when (¢) holds, we have (i, ...,2;) = (Yo,---,yj—), thus, 37 z4]]> = 32770 [lys|>. On the
other hand, the event
j—i
Ersiy = {Z lysll? < 2G2 (lax]]2 + 20°C2(da — 1) + log<e/6>>)}
s=0

holds with probability at least 1 — § provided ¢ > d,. This follows from Lemma 15. Therefore, provided
i > dy +log(e/d), under the event A, N &N &g, we have

J i J
S lel? < S 2+ 2
s=0 s=0 s=1

j—i
< 2C,0%C%G2d, i3 + Z llys| (Because (b) and (c¢) hold)
s=0
< 2010%C2G2d, %" + 2G2 ||z ||* + 202 C2G2d,.j (Under &1,5.i,5)
< 4C102C2G2d, (37 + 7). (Because (b) holds)

After some elementary calculations, we obtain that if j > (8C,C2G2)?/7,j > i3, and i > d, + log(e/d), then,
under the event As; N 55’]- N &1,5,,5, we have

J
D llall® < o*duf ().
s=0

But this cannot hold under & ; otherwise it would contradict property (a), therefore it must be that As:N&1 54,7 C
&; j. Hence by union bound, we have

]P)(gi’j) >1-— P(Ag’t Uglc,é,i,j) >1-25

provided that
i>d; +log(e/d) and j> C(COQO)S/WS”’*

for some universal positive constant ¢ > 0. Reparametrizing by ¢ = 2§ yields the desired result with modified
positive constants. O

E.3 Consistency Of LSE Leads To Commitment

The event that leads to commitment. We note that the conditions under which CEC(T) switches to the
certainty equivalence controller vary depending on which scenario we are in. Therefore, we are constrained to
define the event that leads to commitment in each of the three envisioned scenarios.

For scenario I, we define for all § € (0, 1), the event of interest as

(i) B, — K| < ke
(i6) K2 < hit)

o= = (i#)  Amin (ZZLE F} {x]T> 2 ¢/

(64)

Us| |Us

The definition of the time ¢;(d) is made precise in the following result, proved in E.5.
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Lemma 4. For all 0 € (0,1), let E;1 5 be defined as in (64). Under Algorithm CEC(T), assuming that T satisifes
(5), then, for all 6 € (0,1),
]P)(El,(s) Z 1- 67

provided that
t1(0)1* = coC2CE || Po|" (dv. 1og(eaCoGo ) || Pu|dwduys) + log(e/5)) -

For Scenario III, we define for all § € (0, 1), the event of interest as

(i) B~ K| < 17
Fas= vt >1:(6), () K[ <h() . (65)
(#47)  Amin (Zz;é uguj) > ¢1/2

Lemma 5. For all 6 € (0,1), let Ey 5 be defined as in (65). Under Algorithm CEC(T), assuming that T satisifes
(5), then, for all § € (0,1),
P(E2s) > 119,
provided that
o Cic| P

t2 (5) 1/2 = MQ

(dve log(erCoGo) | Pelus ! dudurye) + log(e/d)) ,

For Scenario 11,

(@) B — K| < 57 } (66)

(i) [ Ke|” < h(t)

Lemma 6. For all 0 € (0,1), let E3 5 be defined as in (66). Under Algorithm CEC(T), assuming that T satisifes
(5), then, for all 6 € (0,1),

B35 = {Vt > t3(9),

]P)(E;;’(;) >1-4,
provided that
t3(6) = ¢ Pe[| " (darys log(ea CoGo|| Py|duys) + log(e/d)).

The proofs of Lemma 4, Lemma 5, and Lemma 6 are presented in E.5. They rely on the consistency of the Least
squares algorithm under CEC(7) when T satisfies (5).

In the definitions of the events Ej s, E2 s, and Es s, property (i) is the most important for establishing the
commitment lemma that we shall provide shortly.

E.4 The Commitment Lemma

Lemma 7 states that CEC(7") will eventually only use the certainty equivalence conotroller, provided that K is
sufficiently close to K, (this is captured by property (i) in the aforementioned events).

Lemma 7. Assume that T satisfies (5). Assume that for all 6 € (0,1),
P(E,s)>1—¢

for some t,(6) > d, +log(e/d) for p € {1,2,3} and where E1 5, Es 5, and Es3 s are defined in (64), (66), and
(65), respectively. Define the following stopping times

v(6) =inf {t > t,(d) : &, = 1},
7(6) = inf {t > v(d) : £ = 0}.

Then for all § € (0,1), we have
P (v(0) < k,7(d) < 00) < 4ko

provided that k > 18%/7|| P, ||/7t,(8) for some universal positive constant ¢ > 0.
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Proof of Lemma 7. For ease of notation, we drop the dependency of v(d), and 7(§) on §, and simply write v, and
7. Furthermore, we shall refer to

vs if in Scenario I

Vs >0 Esz{

0 if in Scenarios II or III.

We note that &, is a zero-mean, sub-gaussian random vector with variance proxy at most o2 provided s > d,. Fix
pe{l,2,3}
We have
P(v<k,7<oo)<P({v<k,7<oo}NE,s)+P(EF5)
<P{{v<k,7<oc}NE,s)+46

k
Z P{v=i,T<oo}NE,s)+96
i=t(8)+1

k )
< Y Y P{lv=ir=j}NE,;s) +3.

i=t(8)+1 j=i+1

IN

Computing the probabilities P({v =i,7 = j} N E, ). Let j > i. First, let us note that under the event
{v=1i,7=j}NE,s, the following must hold

(a) For all i <t < j, uy = Ky + & (since £, = 0 and conditions (#)-(iii) hold),

(6) Yo sl < 0dof (i) = 0°dyi™ /2,

() Yoloo llasl? > o?dug(j) = 02duj' .
First, we use a truncation trick, and define

Vit >0, f(t:(Kt—K*)l{ }—i—K*

= [
1K is =K< g tiara

and note that under the event E, 5, we have K; = K, for all t > t(9). Now consider the following dynamical
system _
Vs 21, ysr1 = (A+ BKits)ys + Béits + nigs  with  yo = ;.

We note that under the event E,, 5, we have (z;,...,2;) = (Y0,...,Y;j—i). On the other hand, the event

j—i
2,805 = {Z lysll® < 8PP (llil® + 60°C2(da (j — 4) + 10g(j2/5)))}

s=0

holds with probability at least 1 — §/42, provided that i > d,. This follows by Lemma 16 (see also Proposition
18). Therefore, under the event E, 5 N &y 5, N{v =1,7 = j}, we have

J i J
Dol <3 sl + Dl ?
s=0 s=0 s=1i

J
< o?dyit T2 4 Z |2 ||? (Because (b) holds)
< 02dy i T2 4 8| P32 ai]|? + 60°CE(dy + 2) (Under &3,5,,; N By 5)
< 902|| PP 2dyittV/? + 302 C2d, 5 (Because (a) holds)

provided that i > log(e/J).
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After some elementary computations, we obtain that if j > 182/7||P,||>/7, and i > log(e/d), then under the event
E,sN&ysi;N{v=1,7=j} we have

J
3 lasl? < 02dag .
s=0

But this cannot be under the event {v = i,7 = j} N E, 5, otherwise it would contradict (¢). Therefore, it must be
that {v=1i,7 =j} N E,; C &5, ;. Hence

. . c J

Pv=i,7=j}NEps) <P(E55,;) < 72

provided that
i > dy +log(e/d) and  j > 18%7|| P/,

Let us remind here that j > ¢ and i > ¢(4).

Concluding step. To conclude, provided that k > 18%/7||P,||?/7(d, + log(e/d)), we have

k e’}
Po<hk (@) <o)< 3 > Plo=i,7=j Eps)+0
i=t(8)+1 j=i+1

k 0o
1)
>y = +6
i=t(8)+1 j=i+1
=)

IN

< + § < 4ko.
O
E.5 Remaining Proofs
Proof of Lemma 4. Using Lemma 8, we have already established that:
1 2
P (Vt > t4(9) : || B(K: — Ky)|| < W and ||Ky||* < h(t)) >1-96 (67)
with
t4(8)/* = c10C2|| P (d log(eoColo || Pyldy duye) + log(e/6)) (68)

for some universal positive constant ¢; > 0. Now we may use Proposition 11 to obtain that:
t—1 T 2
Tsl| |Ts Coo\/dyt
. > 1>1-
. (m (z =] =] ) L GOV Ly

provided that t'/4 > co0C2C% || P,||'%(dx log(eaCoGo|| Pyl|dzdyys) + log(e/§)) for some universal positive con-
stants Co, co > 0. From which we may conclude that

t—1 T
Ts| [Ts 1/4
P | Amin >t >1-6
P (G ED)= )
provided that t1/4 > c30C2C% || P,||'°(dvs log(ea CoGo || Py ||dxduyx ) +1og(e/d)), for some universal positive constant

c3 > 0 that is chosen to be large enough so that % Vdet > $1/4 Next, we apply Lemma 23 to obtain the
K
following bound that holds uniformly over time.

P (w >t5(0),  Amin (ti [z] BT) > t1/4> >1-§ (69)

s=0
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where
t5(9)/* = c4soC2CK || P " (dyi 1og(eaCoGo | Pul|dadu ) + log(e/5)) (70)

for some universal constant ¢4 > 0. Now, using a union bound, we obtain from (72), and (74) that

P(E1s) >1-20 (71)
with
t1(8)V* = coC2CK | Pul|" (dyu log(eoCoGo) | Py [ doduy) + log(e/6))
for some universal positive constant ¢ > 0 chosen large enough so that ¢ () > max(t4(9),t5(9)). O

Proof of Lemma 5. Using Lemma 8, we have already established that:

P (Vt > t4(0) : | B(K; — Ky) and |K|* < h(t)) >1-9 (72)

-
SETARE

with
t4(6)"? = ¢|| P||**(d. log(ea CoGo || P || dwduy.) + log(e/5)) (73)

for some universal positive constant ¢; > 0. Now we may use Proposition 13 to obtain that:

t—1 2t
P (Amin (Z us”\j) Z %) Z 1-9
s=0

provided that ¢'/2 > czw(d'y* log(eaCoGol| Py ||dudyys) + log(e/d)) for some universal positive constants
cg > 0. From which we may conclude that

t—1
]P (Arnin <Z U5UZ> Z t1/2> 2 1 _ 5
s=0

provided that ¢1/4 > M(d% log(eaCoGo|| Pi||dzdyuy«) + log(e/d)), for some universal positive constant

2
c3 > 0 that is chosen to be large enough so that ’i—;f > /2. Next, we apply Lemma 23 to obtain the following
bound that holds uniformly over time.

t—1
P <Vt >t5(6): Amin <Z usuj> > t1/2> >1-9§ (74)
s=0

where

20 P, 10
t5(5)1/2 _ C40 KQ” ||

(dv. log(eoCoGol| Pull iy ' duduys) + log(e/d)) (75)

*

for some universal constant ¢4 > 0. Now, using a union bound we obtain from (72), and (74) that
P(Ess) >1—20 (76)

with

ca?Cr || P |10
2

t2(6)"/? = (dvx 1og(eaCoGo) | Pellp ! dadurys) + log(e/9))

*

for some universal positive constant ¢ > 0 chosen large enough so that t3(d) > max(t4(9),t5(9)). O



Yassir Jedra, Alexandre Proutiere

Proof of Lemma 6. Let t > 0 and 6 € (0,1). Assume the following condition holds.
1% > C160%(| P, ||*° (dpy log (6CoGod,t) + log(e/6)) . (77)
Then, by Proposition 6, if the condition
t > c1(dyys log(eaCoGodyyy) + log(e/d)), (78)
also holds, then we have
P (14— A1 < fori ) 216 (79)

Note that T satisfies condition (5). Therefore, provided that the constant ¢; > 0 is chosen large enough, we can
claim that for all ¢ € N such that (77) and (78) hold, we have K; = K, for some t;, that also satisfies (77) and
(86).

Using Propostion 16, we may conclude that provided (77) and (78) hold, we have

< Vsq_s
~5|P32) '

P (max(: ~ K. B - K.
By Lemma 22, we can find a universal positive constant co > 0 such that
t > col|P||" (daye 10g (€0 CoGol| Pu|deys) + log(e/6))
implies that the conditions (77) and (78) hold, and ||K;||?> < h(t). Now using Lemma 23 gives that
P(E35)>1-4

where
t3(0) = || P||"* (days 10g(e0 CoGol| Pu|davs) 4 log(e/6))

for some universal positive constant ¢ > cs. O
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F THE LEAST SQUARES ESTIMATOR AND ITS ERROR RATE

In this appendix, we study the performance of the Least Squares Estimator (LSE) of (4, B). We first provide the
pseudo-code of the algorithm giving this estimator, see Algorithm 2. The error rate of the LSE in Scenario 1
is characterized in Propositions 1 and 2. The error rate is analyzed for Scenario III in Proposition 3, 4, and 5
Propositions 6 and 7 upper bound the error rate in Scenario II. It is worth mentioning that these results are
established without the use of a doubling trick that would essentially mean that the controller is fixed. Here, in
CEC(T), we allow the controller to change over time. Further note that the results hold under CEC(T) regardless
of how T is chosen provided it satisifes (5). To derive upper bounds on the LSE error rate, we extensively exploit
the results related to the smallest eigenvalue of the covariates matrix, presented in the next appendix.

The performance of CEC(7) depends on the error rate of the LSE, but also on how well the certainty equivalence
controller K; approximates the optimal controller K. In Lemmas 8 and 9, we present upper bounds of || K; — K, ||
in the different scenarios. These lemmas are also used to refine the error rates of the LSE.

F.1 Pseudo-code Of The LSE

Algorithm 2: Least Squares Estimation (LSE)

input : Sample path (zg,ug,...,Ti—1,ut—1,2:) and the cost matrices @ and R
output: Estimator (A, B;) of (A, B)

if B known then

t
A (Zi;é(ms—kl - Bus)x;r) (Zi éz xT) ;
end
if A known then

_ _ T
By + (Zzzg(:vs“ - Axs)u;r) (Zz:% usuz> ;
end
if (A, B) are unkown then

e (Sean] ) (22 ]

end

F.2 Error Rate In Scenario I
Proposition 1. Under CEC(T), for all 6 € (0,1),

Co? (dv, log (0CsGodydyt) + log(e/d))

max((|4; — | |1B; - BIP) < o

holds with probability at least 1 — &, provided that t > co*C8(d, log(eocCoGodydyys) +log(e/d)) for some positive
constants C,c > 0.

Proof of Proposition 1. Fix t > 2. We start by writing the LSE error

=2 9T\ (221 T f
_ s s s
[At -4 B 7B] - (Z Nls {ug] ) <Z {ug] [us] ) '
s=0 s=0
For ease of notation, let ys = [u } for all s > 1. Provided the ZS 0 Ysy4 is invertible, we can decompose the

€rror as

t—2 —1/2 -
I[4.—A B, -B]|’ < (Zysy;r> Zysm
s=0

Amin s 0 YslYs )
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Step 1: (Bounding the smallest eigenvalue) Define the event

t—2 ¢ 1/4
s=0

Using Proposition 10, we know that the event B; holds with probability at least 1 — § provided
(%) t>c10*'C8(yadlog(eaCoGodydys) + log(e/6)),

for some ¢; > 0. Under the event B;, the estimation error may be upper bounded as

o = —1/2 /4 o 2
s=0

s=0
—1/2 2
2
= t1/4 (Z ysys Id +dy > (Z ysﬂs) ’

where we used, for the last inequality, the fact that 2 ZS o YsYd = Ei;% Ysyd + %Idz+du-

Step 2: (Bounding the self-normalized term) Define the events

—1/2 /49 2
/1/4 .
Eits = Z Ysys + Id +d, Z Ysl
s=0
e det (t}/i Zi;% Ysyd + Id) }

< 7521
< To”log 5

t—2
Eop5 = {Z lvsll? < 02/ de(2d,t + 31og(e/6))} ,
s=0

t
Ars = {Z 1% < c202C2G2 (st +27 + log<1/5>>} :

s=0

Then by Proposition 15, the event A; 5 holds with probability at least 1 — § for some absolution positive constant
cz > 0. By proposition 9, the event & ; holds with probability at least 1 — J, and by Hanson-Wright inequality
(see Proposition 19), the event £ ;s holds with probability 1 — ¢. Under the event A; s N &1 46 N Ea,1,5, we have

_ 1/d t—2
V2 =2 V2
<det (t/ Sual +1)) <3l
s=0 s=0

\/5 t—2
v D lwsll? + s + 1
s=0

\/5 t—2 N
v DMzl B P s [P + s + 1
=0

V2(4ey + 6)02CAG2dyd 13/ 4H5/?
< V2(4ey + 6)02CAG2dyd 1Y,

IN

IN

IN

where we used || K,||2 < C2%-h(s), assumed that

(o4) £ > log(e/d),
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and used v, = max(1,~) to obtain the last two inequalities. Therefore, assuming (xx), we have under the event
Ayps N Es that

et det (t‘l//% ZZ;% Ysyd + Id)
)

log < c30% (dv, log (0CsGod,dyt) + log(e/d)),

for some universal positive constants.

Step 3: (Putting everything together) To conclude, under the event A; 5 N B, N &5,

00'2 (dv* log (Ucogoda:dut) + 10g(€/§))
11/4 ’

max(||A; = A|*,|B; - BIY) < (80)

where C' = 2v/2¢3. Therefore, the upper bound (80) holds with probability 1 — 36 when (%) and (%) hold. These
two conditions hold whenever

t > coC8(dy, log(eaCoGodyrdyy,) + log(e/d)),

for ¢ is large enough. Reparametrizing by 6’ = §/3 yields the desired guarantee with modified universal positive
constants. O

Lemma 8. Assume that T satisfies (5). Then, under Algorithm CEC(T), we have, for all § € (0,1),

(i) max(||K; — K|, |BUK, — K)I) < srpir ) >1-5

F (W 20 Gy KR < b

where t(8)Y/* = coC2|| P, || ' (dyy log(eaCoGol| Py||dnduys) + log(e/d)), for some universal positive constant ¢ > 0.

Proof of Lemma 8. Let t > 0 and 6 € (0,1). Assume that:
4 > 0160?02 P.||*° (dv, log (0CoGodydyt) + log(e/d)) . (81)
Then, by Proposition 1, if the condition
t > 10403 (dye log(eo CoGodadrs) +log(e/9)), (82)

also holds, then we have

]P’(max(|At—A||2,|Bt — B|I») >1-4. (83)

1
< -
- 1602P*||1°)

Since T satisfies condition (5), if the constant ¢; > 0 is chosen large enough, we can claim that for all ¢t € N such
that (81) and (82) hold, we have K, = K;, for some t) that also satisfies (81) and (82).

Using the perturbation bounds of Propostion 16, we conclude that, provided (81) and (82) hold, we have

1
<——n]>1-4
- 5||P*||3/2> -

By Lemma 22, we can find a universal positive constant co > 0 such that

P (maX(IIKt — K., IB(K: — K

t1/% 2 ¢20°C2|| P || " (drys Log(eo CoGo || Pu | dyduy) + og(e/6))

implies that the conditions (81) and (82) hold, and || K;||?> < h(t). Finally, to obtain a bound that holds uniformly
over time, we use Lemma 23 and obtain

(i) max(| Ky — K, | B, — K)I) < sk ) >1-3,

F (W 21O i) K2 < A(e)

where t(6)1/* = co?C?|| P, ||*°(dx log(eaCoGo || Pe || drduyy) + log(e/d)) for some universal positive constant ¢ >
Ca. O
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Proposition 2. Assume that T satisfies (5). Under algorithm CEC(T), for all § € (0,1),

CC% (dv, log (6CsGod,t) + log(e/d))
(do1)1/2

max(||A; = A|*, | B, - BIJY) <

holds with probability at least 1 — §, when
t1/% > coC2C% || Pu||™° (dv. log(eoCoGol| Pl duduys) + log(e/d))

for some positive constants C,c > 0.

Proof. The proof differs from that of Proposition 1 only in the second step, where instead we define the event

5= b (S 1] [2]) = ™

s=0

where C' > 0 is some universal constant to be defined through Proposition 11. Indeed, using Lemma 8, we may
apply Proposition 11 which guarantees that B; holds with probability at least 1 — §, provided that

/% > co? CICK || P|" (d log(ea CoGol| P || duduy) + og(e/5))

for some positive constant ¢ > 0. The remaining steps are identical to those of the proof of Proposition 1. O

F.3 Error Rate In Scenario III
Proposition 3. Under CEC(T), for all 6 € (0,1),

Co? (dyys10g(0CoGodydyt) + dy +log(e/d))
t1/2

|B: — BJ| <

with probability at least 1 — §, provided that
t > c102(dyy log(eaCoGodyy,) + log(e/d))

for some universal positive constants C,c > 0.

Proof of Proposition 3. Fix t > 2. We start by writing the estimation error as
t—2 t—2 f
B, — B = (Z nsu;r> <Z usu;r> .
s=0 s=0
When Zi;% usu] is invertible, we can decompose the estimation error as
t—2 12 4o ? 1
-1 < (o) (St L
- T
s=0 s=0 Amhl(E:szousus>
Step 1: (Bounding the smallest eigenvalue) Define the event

() 0)

Using Proposition 12, we have the event B; holds with probability at least 1 — 4, if the following condition (x)
hold:

(%)t > c1(dyvelog(eaCoGodyyy) + log(e/0)).
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Under the event B;, the estimation error may be upper bounded as

\/§ t—2 —1/2 2
||Bt ‘B”2 — t1/2 <Z uSuZ) (Z UsTs )
s=0

_ 22 g2\ T e i
T

s=0 s=0

11/2
ut 5
Step 2: (Bounding the self-normalized term) Consider the events,

—1/2 2
¢ 1/2 t—2
Eite = { (Zu ug + —Id ) (Z um?)
s=0

ddet(}@Zi 2 usul +Id) }
5 )

where we used the fact that 2 Zt 2 usu) = ZS o Usly

< 752 log

t—2
Eats = {Z 1¢)1* < o (2d t—|—310g(1/5))}

s=0
t
Ags = {Z ]2 < e20°C2G2 (dot'+27 + log<1/6>>} :
s=0

By Proposition 15, the event A; s holds with probability at least 1 — § for some universal positive constant cg > 0.
By Proposition 9, the event & ;s holds with probability at least 1 — ¢, and by Hanson-Wright inequality (See
Proposition 19) the event & ; ;5 holds with probability at least 1 — ¢. Under the event A, 5 N &1 45 we have

\/5 t—2 d \/5 t—2
s=0 s=0

\/ﬁ t—2 .
72 D P sl + 11¢ 117 + 1
s=0

t—2
< V2CSHOTVEY P+ 1G4 1

s=0

< 2V/2(cy 4 3)02CAG2d,d 11 T3/2,
where in the last two inequalities, we used the fact || K||2 < ||Ko|[2h(t), we assumed that
(%) t>log(e/d)

holds and used v, = max(y,1). Therefore, assuming that (%) holds, under the event & + s N €25 N Az 5, we have

e? det <t\1//§2 Zi %u ul + 14, )

5 < ¢30% (dus 10g(0CoGodydyt) +log(e/d))

log

for some universal constant ¢z > 0.
Step 3: (Putting everything together) To conclude, under the event Ay s N By N E1,.5 N E2,4,5, we have

Co? (dyv, 10g(0CoGoddyt) + log(e/d))

||Bt*B|| < 11/2

(84)
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for some universal constant C' > 0. Therefore, the upper bound (88) holds with probability at least 1 — 4, provided
that (x) and (sx) hold. These two conditions hold whenever

t > co?(dyvs log(eaCoGod,yy) + log(e/d))

for some universal constant ¢ > 0. This concludes the proof. O

Lemma 9. Assume that T satisfies (5). Under CEC(T), for all § € (0,1), we have

P (Vt > i), O max(IK = K| | B = Kl

< 1
= 5| P.]3/2 >1-34,
(1) || K[> < h(t) ) B

where t(8)1/? = co?||Py||**(dv, log(eaCoGo || Py ||duduys) + log(e/8)) for some universal positive constant ¢ > 0.

Proof. Let t > 0 and ¢ € (0,1). Assume that the following condition holds.
12 > 0160202 Py || '° (dus 10g (0CsGodydyt) + dy + log(e/d)) . (85)
Then, by proposition 3, if the condition
t > c1(dyys log(ecCoGod,dyyy) + log(e/d)), (86)
also holds, then we have
IP’(||Bt—B||2 < 1602|1R”10) >1-6. (87)

Since T satisfies condition (5), if the constant ¢; > 0 is chosen large enough, we can claim that for all ¢ € N such
that (85) and (86) hold, we have K; = K;, for some t; that also satisfies (85) and (86).

Using Propostion 16, we may conclude that when (85) and (86) hold, we have

1
< —— | >1-4.
B 5||P*||3/2> B

P (max(|K — K. 1B ~ K.))
By Lemma 22, we can find a universal positive constant ¢y > 0 such that

t12 > 302 P||*(duys 1og(e0CoGo || Py || dud v ) + log(e/5))
implies that the conditions (85) and (86) hold, and || K> < h(t). Now using Lemma 23 yields

P (Vt >y, O max(lK = K [ B — K.l

<1
. = SIPRZ ) > 71—,
(i1) [|Ke]* < h(2) > -

where t(0)Y/2 = co?||Py||**(duys 1og(eaCoGo|| Py || duduys) + di + log(e/§)) for some universal positive constant
c> cs. O

Proposition 4. Assume that T satisfies (5). Under CEC(T), for all § € (0,1),

2
1B, — Bl < Co? (dyys log(aCogO;i;tdut) + d; +1og(e/d))

holds with probability at least 1 — 0, provided that

co?Cx | P

s

/2 > (dyy, 10g(ecCoGo || Py ||deduyy) + log(e/8))

for some positive constants C,c > 0.
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Proof. The proof differs from that of Proposition 3 only in the second step, where instead we define the event

t—2
Bt = {)\min (Z us“l) > Cuit} )
s=0

where ;2 = min(Apin (KK, ), 1), and C > 0 is some universal constant to be defined through Proposition 13.
Indeed, using Lemma 9, we may apply Proposition 13 which guarantees that B; holds with probability at least
1 — 6, provided that

202 }1 10
072 5 TGP (4 o (eoCoGol Pl dadur) + log(e/6))

.

for some positive constant ¢ > 0. The remaining steps are identical to those of the proof of Proposition 3. O
Proposition 5. Assume that T satisfies (5), and that under CEC(T), for all 6 € (0,1), we have

(i) K=K, _
P(“”“”’ (i) max<||B<Kt—K*>7||Kt—K*|>s<4P*||3/2>-1>21 10)0)

for some t(§) > log(e/d). Then for all § € (0,1), the following
2
co

eoCk || Py l||dgdy,
M%t <(du + dw)'Y* log (”2*

holds with probability at least 1 — ¢1t(8)d provided that
t > comax(t(6)*7, 0 (dyyx log(ecCoGodyyy) + log(e/d))?

for some universal constants C,cy,co > 0.

1B, - Bl < )+ ou(e/5))

*

Proof of Proposition 5. Fix t > 2. We start by writing the estimation error as

t—2 t—2 i
By — B = (Z nsu;r> (Z ususT> .
s=0 s=0

t—2 . . -
When Y. usu, is invertible, we can decompose the estimation error as

t—2 “1/2 /4 o 2 1
|B: — BH2 < ( Usul) ( “577;> .
;O s=0 >\min (Zi;?) Us”?)

Step 1: (Bounding the smallest eigenvalue) We define the event

t—2
Bt = {)\min <Z usu;r> > Olﬂit} )
s=0

where £12 = min(Apin (K, K, ), 1), and C; > 0 is some universal constant to be defined through Proposition 13.
Indeed, using Lemma 9, we may apply Proposition 13 which guarantees that B; holds with probability at least
1 — 6, provided that

202 (1P, |10
() /2 > clw (duys log(eaCoGo|| Pelldedyuys) + log(e/d))

*

for some positive constant ¢; > 0. Under the event B;, the estimation error may be upper bounded as

1 t—2 —1/2 ;4 o 2
i< | (Saar) (S
* s=0

2
t—2 t—2

—1/2
2 T 2 T
< s Crusitl sMs )
= Chplt (Zu v du) (;Ou !

s=0
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where we used the fact that 2 ZS o Ustly = Zi;% usu, + Crpltly,.

Step 2: (Bounding the self-normalized term) Consider the events,

t—2 —1/2 4 o 2
gl,t,& = { (Z usu;r + Clﬂztldu> <Z Uﬂﬁ)
s=0

s=0

< 752 log

oda det(c,ﬂtzs o Uslg Jrld) }
5 ;

2

I1¢51* < o®(2dut + 310g(1/5))} ;

I
<)

t
Eares =
S
t

Eisi= e]|* < 8I PP/ (|2s) || + 30™ (dat + log(e/5)))
t(6

=

_ (i) K=K,
Cl‘s‘{wz“‘”’ (i) max(|BK, — K.), |, — K. || < (4] B,]]22) ") }

By Proposition 15, the event A; s holds with probability at least 1 — § for some universal positive constant
ca > 0. By Proposition 9, the event & ;s holds with probability at least 1 — ¢, and by Hanson-Wright
inequality (See Proposition 19) the event &+ s holds with probability at least 1 — §. By Proposition 18 we have
P(E1,5¢UC{5) > 14, and by assumption the event Cf ;) holds with probability at least 1 —#(d)d. Under the
event £+ N Ey 5 NCi s we have

1 t—2 ﬁ 1 t—2
T 2

t—2

2 =12 2 2
< Cuth_:HKSH Js]l” + 16" + 1
#(8)
< Cugt ZK 51> + Z 4CKH$SH2+ZHCS||2 + 1.
s=t(4)
Now always under & N By s N Cy 5, provided ¢ > t(§)1+37/2 we have

t(3) ()
Koz < Ko Ph(t(9) D llsll? < 0da| Ko|[t(8)H577? < 02d, || Kot
s=0 s=0

where we used the fact ||K,[|2 < ||Ko|2h(t), and the fact at time ¢ = t(§) K; = K, so that Zz(jé lzs|? <
o%d, f(t(5)). Furthermore, we have

t—2
D ACK as|? < B2CK PP (||z4(s) || + 30° (dat + log(e/5)))
s=t(9)

< 96C% || P13 20%d, (2t(6) /2 + 1)
< 200C% || P, |3 202 d,t.

Thus, provided that ¢ > t(6)1+3/27, we obtain that under the event & N Eq 5 N C; s we have

1
t—2 a
1 T claQCf(HP*||3/2d$du
(det <C’u2t E UsUg +Idu>> < 5

it 13
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for some universal positive constant ¢; > 0. Denote
(k) t > t(5)1F3/2

Therefore, assuming that (%) holds, under the event & 54 N & N E1 5 NCy 5, we have

log

t—2
e det (Cjﬁt 28:0 usu;r + Idu) eoCx || P.||dpdy,
<e|dlog| ——F5——

- ) +log(e/6))

*
for some universal constant ¢4 > 0.

Step 3: (Putting everything together) To conclude, under the event B; N &1 5+ N E2+ N E1 s NCy s, we have

Co? Ck || Pyl|dzdy
|B: — B < ,ugt (dlog (eUK|u2”> + log(e/5)> (88)

* *

for some universal constant C' > 0. Therefore, the upper bound (88) holds with probability at least 1 — C't(d)d,
provided that (%) and (xx) hold. These two conditions hold whenever

t > emax(t(6)*7, 0 (dyyx log(eaCoGodyys) + log(e/d))?)

for some universal constants C, ¢ > 0. This concludes the proof. O

F.4 Error Rate In Scenario I1
Proposition 6. Under CEC(T), for all 6 € (0,1),

Co? (dyylog(eaCoGod,t) + log(e/d))
t

14, — Al <

with probability at least 1 — 0, when t > ¢(dy7yx log(ecCoGod,vyx) +log(e/d)), for some universal positive constants
C,c>0.

Proof of Proposition 6. Fix t > 2. We start by writing the estimation error as

t—2 t—2 1
A — A= (Z nsxé,T) (Z mwj) .
s=0 s=0

t—2 . . N
When Y. zsz, is invertible, we can decompose the estimation error as

t—2 12 49 ? 1
[A; — A < Tox) zem, .
; s=0 Amin (ZZ;%) st;r>

Step 1: (Bounding the smallest eigenvalue) Define the event

t
Bt == {)\min <Z$S$;—> Z Clt} .
s=0

By Proposition 14, the event B; holds with probability at least 1 — §, provided that the condition () holds:

(%) 2 c10%(dey. log(eoCoGoda) + log(e/d)),



Yassir Jedra, Alexandre Proutiere

for some universal constants C7,c¢; > 0. Under the event B;, we have

1 t—2 -1/2 44 o 2
A — A2 < — Tex) Tsn,
Cit s s
2

9 t—2 —1/2 44 o
T T
i (z +cludx) (zn) 7

s=0

where we used the fact that 2 ZZ;% Tx)] = Zi;% zex] + Cht.

Step 2: (Bounding the self-normalized term) Consider the events,

t—2 “1/2 4y _o 2
em:{ (zxsx:wludu) (mel)
s=0

s=0

< 75° log ,

ed“” det (Cilt ZZ;% 175931 + Idav) }
o

t
Avs = {Z Jeal|? < c202C2G2(dut" 7 + log<1/5>>} .

s=0

By Proposition 15, the event A, s holds with probability at least 1 — ¢ for some universal positive constant cy > 0
(involved in the definition of A; 5). By Proposition 9, the event & s holds with probability at least 1 — . Under
the event A; s N & 5, we have

= T =
det | =— zs:chrI < — xsl|? + 1
(10 (Gt vie)) <

< 29 202g2 420,
Ch

where we assumed that (xx) : t > log(e/d). Therefore, assuming that (xx) holds, we have, under the event
EsNErts N AL,

et det (b ih el +1a, )
1)

log < 302 (dpylog(eaCoGodyt) + log(e/d)) ,

for some universal constant ¢z > 0.
Step 3: (Putting everything together) To conclude, under the event A; s N B, N & 5, we have

2
14, — Al < Co (dxfylog(eaCotgodxt) + log(e/9))

(89)

for some universal constant C' > 0. Therefore the upper bound (88) holds with probability at least 1 — 24,
provided that (x) and (xx) hold. These two conditions hold whenever

t > co?(dyy, log(eaCoGodyyy) + log(e/d)),

for some universal constant ¢ > 0. This concludes the proof.
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Proposition 7. Assume that T satisfies (5), and that under CEC(T), for all § € (0,1), we have

(i) K=K, _
P(v0> 600 (i — Ko~ KDl < (R ) 108

for some t(§) > log(e/d). Then for all 6 € (0,1), the following
Co?
140 - A < 2 d, og (el P d.) + log(e/)

holds with probability at least 1 — ¢1t(6)d
t > comax(t(6)*, 02 (dyys log(eaCoGodyys) + log(e/d)))

for some universal constants C,cy,co > 0.
Proof of Proposition 7. Fix t > 2. We start by writing the estimation error as

t—2 t—2 f
—A= <Z nsxz> (Zxﬂ:j) .
s=0 s=0

t—2 . . N
When Y. zsz, is invertible, we can decompose the estimation error as

t—2 “1/2 sy 9 2 .
”At - *’4”2 < ( xsx;r> < msn;r) .
; ; )\min (Ztg;% l'sx;—>

Step 1: (Bounding the smallest eigenvalue) Define the event

t
Bt = {)\min (ZLCS{E;—) > Clt} .
s=0

By Proposition 14, the event B; holds with probability at least 1 — §, provided that the condition () holds:
(%)t > c10%(doyi Jog(eaCoGodyyy) + log(e/s)),

for some universal constants C1,c; > 0. Under the event B;, we have

t—2

—1/2 _
1
|4; — AJ* < Cit <Z$S$I> szﬂs

s=0
2

< C’llt (Zx X4 +Clt1d> <§xsn;—> ,

where we used the fact that 2 Zi;% rerl = %x ] + Ot

Step 2: (Bounding the self-normalized term) Consider the events,

t—1 —1/2 2
Ei6 = { (Z Tor] + Cltjdu) (Z TN ) )

s=0

< 70?log

edrdet<c%tzz éxw +Id) }
6 )

t
Ersr =3 > ladll* < 8PP 2(|zees) || + 30*(dut + log(e/d))) ¢ ,
t(8)

_ (4) K, =K,
Cro= {WZ“‘”’ (i) max(|BK, — K.),[|K, — K. ||| < @]B]122)"! }
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By Proposition 9, the event &; 4 s holds with probability at least 1 —§. By Proposition 18 we have P(E7 s UCié) >
1 — 6, and by assumption the event Cf, s holds with probability at least 1 — ¢(§)d. Under the event E; 5 NCy,5 we
have

= i f
det [ ——— al S+
(e (szt;ms + )) szom 4
9 (W0 =2
Cf ZH%HQ Z as]? | +1.

s=t(d)
Now always under & ; N Ey 5 NCy s, provided ¢t > ¢(5)'+7/2 we have

t(5)
D K|as|? < 02dat(5) 2 < 0?d,t
s=0

where we used the fact at time ¢ = ¢(8), K, = K, so that Zigé |7]|? < 0?d, f(t(5)). Furthermore, we have

t—1
D lwsl® < IR ([las) | + 307 (dat + log(e/d)))
s=t(d)

< 21| P[> 202 dy (¢(8) /2 + 1)
< 42|| P, |I> %02 d,t.

Thus, provided that ¢ > t(6)1+1/27, we obtain that under the event E; s NCy 5 we have

1
t—1 dg
1
(det (w;xsxz‘i’jdu>> SClO’Q||P*||3/2d:B

for some universal positive constant ¢; > 0. Denote
(k) t > t(6) /2

Therefore, assuming that (%) holds, under the event & 5+ N E1 5 N Cy 5, we have

el det<CM2tZS 0 Usthy +Id)
0

log < ¢4 (d; log (ec || P.||dz) + log(e/d))

for some universal constant ¢4 > 0.

Step 3: (Putting everything together) To conclude, under the event B; N &1 5+ N E2+ N E1 s NCy s, we have

14y~ All < T (4, 1og (el Pildy) + log(e/0) (90)

for some universal constant C' > 0. Therefore, the upper bound (90) holds with probability at least 1 — Ct(d)d,
provided that (%) and (xx) hold. These two conditions hold whenever

t> cmax(t(é)%*,az(dx'y* log(ecCyGodyv4) + log(e/d)))

for some universal constants C, ¢ > 0. This concludes the proof. O



Minimal Expected Regret in Linear Quadratic Control

G Smallest Eigenvalue of the Cumulative Covariates Matrix

This appendix is devoted to the analysis of the smallest eigenvalue of the cumulative covariates matrix. This
eigenvalue should exhibit an appropriate scaling so that the LSE performs well. We first provide a generic recipe
for the analysis of this eigenvalue, and then apply it to the three scenarios. For Scenario I, the results are stated
in Proposition 10 and 11. Our analysis of Scenario III is summarized in Propositions 12 and 13. Finally, for
Scenario II, we establish Proposition 14.

G.1 A generic recipe

In the three scenarios, we will have to obtain high probability bounds on the smallest eigenvalue of a matrix of the
form 22:1 ysy;r where ys = z5 + M€ where & is a random variable independent of z1,...,2zs and My, ..., M,
for all s > 1. The need for such guarantee stems mainly from the analysis of the least squares estimator. Because
of this structure, common to the three settings, our proofs for the different scenarios will be similar in spirit up to
some technical details that are mainly related to the nature of the sequence of matrices (Mjs)s>1. We shall now
sketch a generic recipe for our proofs.

Sketch of the recipe. The first step is to use Lemma 10, which will allow us to lower bound® 22:1 ysyd . We
obtain, for all A > 0,

Zysys >_Z M fs M fs (Z Zs M fs ><Z ZsRg +)\]d> (Z ZS(Msfs)T> —)\Id.

Random Matriz Self-Normalized Matrixz Valued Process

Then, we bound the random matrix (first term) using conditional independence via Proposition 8. Finally, we
also bound the Self-Normalized Matrix Process (the second term) using Proposition 9.

Ingredients of the recipe. Let us now list the main lemmas and propositions used above. Their proofs are
presented in G.5.

Lemma 10. Let (yi)i>1, (2t)e>1, and (&)i>1 be three sequences of vectors in R? satisfying, for all s > 0, the
linear relation ys = zs + &. Then, for all A\ >0, allt > 1 and all € € (0, 1], we have

¢ t t t T/ -1,y
Sl =36 1 - el - L (z g) (z T+ m) (z zsgz> o
s=1 s=1 s=1 s=1 s=1 s=1

Proposition 8. Let (F;)i>0 be a filtration over the underlying probability space. Let (&)i>1 be a sequence
of independent, zero-mean, o?-sub-gaussian, isotropic random vectors taking values in RP and such that & is
Fi-measurable for allt > 1. Let (My;)i>1 be a sequence of random matrices taking values in R4XP such that M,
is Fi—1-measurable and its norm ||Ms|| is bounded a.s.. Let m = (my)i>1 refer to the sequence of such bounds

(e.g. || Ms|| < ms). Then
/2 d 2 d
]P’( >802|m1t||2max< p-|;5 , p+5 )) <2 °
T 7

where [|my.¢llooc = maxi<s<t M), [[mill2 = \ Zi:l Ims|?, and ¢ = [[metll2/]ma:t] oo

Remark 1. For our purposes, |mi.4||3 and r? will be either of order O(1) and O(t) respectively, or of order
O(log(t)) and O(\/t) respectively. These scalings will depend on the scenario considered.

t

D (ME)(ME)T ZM M

s=1 s=1

An immediate consequence of Proposition 8 is:

SHere we mean lower bound in the Lwner partial order over symmetric matrices.
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Corollary 1. Under the same assumptions on (§);>1 and (Ms)i>1 as in Proposition 8, if we further assume
2 4 2
that supgsy [ms| < m, then we have for all p > 0, € € (0,1), and for all t > min (8(;'727"), @) (5d + 2p),

t—1 t
<ZMM —5t1d<ZM§S (M,&) " Z MT+gtId>z1—2e—P.

s=1 s=1

In particular if Mg = I, (§&)i>1 are now taking values in R?, we have for all p > 0, ¢ € (0,1), and for all
t > min (82‘;4, %) (5d + 2p),

P((l—e tId-<Z§S§T 1+6)tId> >1-—2e".

Proposition 9 (Self-normalized matrix processes). Let (F;)i>0 be a filtration over the underlying probability
space. Let (&)i>1 be a sequence of independent, zero-mean, o*-sub-gaussian, isotropic random vectors taking
values in RP and such that & is F;-measurable for allt > 1. Let (M;)¢>1 be a sequence of random matrices taking
values in RY*P | such that My is F;_1-measurable and its norm ||M|| is bounded a.s.. Let m = (my)i>1 refer to
the sequence of such bounds. Let (z;)1>1 be a sequence of random vectors taking values in R?, such that z; is
Fi—1-measurable for allt > 1. Then for all positive definite matriz V > 0, the following self-normalized matriz
process defined by

YVt >1, Sz, Mf (Zzs M) ) <ZZSZ +V> <iZS(MS£8)T>

satisfies, for all p>1 and t > 1,

<e "

t
I1Se (2, ME)|| > o?|lma.|| (2 log det (V_l Zzszg + Id> +7d + 4p>

s=1

G.2 Application to Scenario I

We now apply the recipe described in the previous subsection to lower bound the smallest eigenvalue of the
cumulative covariates matrix in Scenario I. We first prove the following result, that will then be refined.

Proposition 10 (Sufficent exploration). Under Algorithm CEC(T), for all 6 € (0,1),

el 1T o\ /4
(L) =)
s=0
holds with probability at least 1 — §, provided that

t> CU4C§((dI + dy)ys log(eaCoGoddyyy) + log(e/d))

for some universal positive constant ¢ > 0.

Proof of Proposition 10. Define for all t > 1, the event

[

71—

T
81775 = {El’l € {t/2, . 7t — 1} N Amin ( - |:iz:| |:ij:| ) 2 2'1/4} .

Let us recall that under CEC(T), we have

.
K+ if 4 =1 and |[K,||? < h(t), and Amin | 3212} r] [xl > /4

Koxy + 1 otherwise.
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Define for all s > 1,

= Ts _ A:Esfl +B’U,S,1 - Id: O B Mot
Ys = Ls]a Zs = [Ko(Axs_l +Bus_1)]’ M, = |:Ko I, | and & = e

u

Note that under the event &7, we have y, = z, + Mo¢, for all s € {t/2,...,t—1}. Applying Lemma 10, we obtain

t t t -z ’
S weyd =)0 (Mol )(Moe) " = In, — ||| Y 202 +1a,s > 2 (M) ||| Ia,
s=t/2 s=t/2 s=t/2 s=t/2

For all 6 € (0,1) and ¢ > 1, we define the following events

t
Asp = {Z 25| < Cro*C3G3 (dpt' 7 + 1og(e/6))} ,

s=0
2
t—1 V2
Ea5t = { Z ZsZsT + 14 Z ZS(MOSS)T
s=t/2 s=t/2

< 7\/dgca2 log 5

)

e det (22;1/2 252] + Idm) }

= t/2)I %
E34 = Z 6552— = |:( /O) o 02\/@/2]qu:| ’

s=t/2

t—1 3t
54,15 = {/\max <Z 775”3) < 2} .
s=0

In view of Proposition 15, P(A;5) > 1 — 6. From Proposition 9, we have P(€5,) > 1 — 4. From
Proposition 8, P(€3;) > 1 — § provided that ¢t > c10%(d + log(e/d)), where we first normalize to obtain
Zizm(]E[gtgj]—1/255)(]E[§tgj]—1/2§s)T then apply the proposition to get the high probability bound. We have
by Proposition 8, that P(€,+) > 1 — & provided that ¢ > 0?(d, + log(e/d)).

Provided that t > log(e/d), we have under the event A, N Ef N &5t M Eqy that

t—1 1/d t
det Z 2oz + 14, < Z ll2s]|? + 1
s=t/2 s=t/2

t
< Y 203w — e’ + 1

s=t/2

t
<ACT Y Jlasl® + lIms—a 1> + 1
s=0

< 21C102CAG2d 3.
Therefore, provided that ¢ > log(e/d), we have under the event As; N EF, N a5 N Exy that

2
—1/2
/ t—1

t—1
Z zezd + 14 Z 2s(Mo&) T < Con/dpo? (dy, log(eaCoGod,t) + log(e/d))

s=t/2 s=t/2
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for some universal positive constant Cy > 0. Furthermore, if ¢ > o*d,, under the event &3+, we have

t

%(Mosg)(Mogs)T = Mo {(t@[” a2¢£/2fdj M.

o 1 tla, tKJ
=2 |tK, tK]K,+ o0%\/d,tl,,
t . o2\/d, o2\/d,
> — min , 1y
2 2| K, |2Vt + 02y/d, 2Vt
o2d, . ( t \/f>
> min ,— | Ig
2 2| Ko |2Vt + o2V/d, 2
2 /77
= 7 dwtlda
6C2

where we used Lemma 11 (with « = 1/2, and 8 = 1).
Therefore, provided that ¢t > 0?d, and t > log(e/d), we have under the event Ase NET 1 NEa54ME3 M Eyy that

t—1 2 d 7
0/ Ay

Amin (Z uuT> > - Car/dyo? (dry, log(eaCoGod,t) + log(e/d)).
s=0 ©

Using Lemma 22, there exists c3 > 0 such that if

t> C30’4C§(d’)/* IOg(BUCogodzdu’Y*) + IOg(e/(s)) (91)
then
° ”zﬁ\é'éj — 1 — Cyv/d 0% (dvy, log(eaCoGodyt) + log(e/8)) > ”i@ > /4,
o ¢t >log(e/d),
o t > o%d,.

Therefore, if condition (91) holds, we have under As; NEF, NE25¢ N E3 ¢ N Euy

t—1
Amin (Z usu;—> > /4,
s=0

But this cannot hold under the event &7 ;, therefore it must be that AsteNE5:ME3NELy C &1y which in turns
impies that
P(&1¢) > 1-P(A5, UE 5, UES, UEL,) > 1 —46.

reparametrizing by ¢’ = 40 gives the desired result with modified universal postive constants. O
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Proposition 11 (Sufficient exploration with refined rates). Under CEC(T), assume that for all 6 € (0,1), we
have
P> 1(0), K~ K. <1)>1-6

for some t(6) > 1. Then for all 6 € (0,1),
t—1 T 2 /71
)\min ( |:xS:| |:x5:| > Z Co dzt

2
] us c2

(]

with probability at least 1 — §, provided that
Y2 > cmax(t(6)'/2, Ck (dv, log(eoc CoGo || Py || deduyy) + log(e/8))) (92)

for some universal positive constants C,c > 0.

Proof of Proposition 11. Let us start by defining
E1o = {Vt 2 1(0), ||, — K| <1}.

Now, we recall that under CEC(T), we have u; = (1 — ay)(Kzxy + vt) + e (Koxy + ;) for all t > 1, where we
defined

VE>1, ap = =0 g (93)

S

.
0 if ¢, =1 and ||K||2 < h(t), and Amin | 32024 [xs] ms} > t1/4

1 otherwise.

Let I~(S = (1 - as)Klgk,~ Kk, ||<1} T @s Ko, and note that ||I?SH < 2Ck. Thus, under the event & 5, we have

Ts| Azs_1 + Bu, I, O [ns_s
|:Us:| N |:KSA1'5—1 +KSBUS_1:| * |:K9 Idu:| |: Vs : (94)
Denote for all s > 1,

| s . A-Ts—l +Bus o Idac @) _ | Ms—1
Ys = {u} v R T [f{sAxs_l +KSBuJ M= [f( I, } &= [ ’

gl,s = |:n301:| s and 52,3 = |:0:| .

Vs

u

Now, under the event &£ 5, we may simply write y, = 25 + Ms&s = 25 + M &1 5 + &2, for all s > 1. Let us note
that &, is independent of (M, ..., M,) and (2o, ..., zs), and that ||M,| < v/5Ck. Lemma 10 ensures that

—1
t—1 t—1

T
t—1 t—1 t

Zysyz = Z(Msgs)(Msfs)T* Z ZS(Msfs)T Z Zsz;r + Ay Z ZS(MSSS)T —1a.
s=0

s=t(d) s=t(d) s=t(6) s=t(d)

Upper bounding the self-normalized term. Define the following events

t
Asy = {Z o> < C1o?C2G2 (At + 1og<e/6>>} :

s=0
2
t—1 Yz
sz,ﬁ,t:{ S oalien| (3 aone
s=t(9) s=t(9)

< 35C%+/d,0? log

t—1 3t
53,t = {)\max (Z 778”7,:) < 2} .
s=0

e det (22;1(5) zszd + Id) }
6 i
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We have by Proposition 15 that the event Aj; holds with probability at least 1 — ¢ for some universal positive
constant C; > 1. By Proposition 9, the event & 5: holds with probability at least 1 — §. Finally the event &3,
holds with probability at least 1 — & provided that t > c;02(d,. + log(e/d)).

Provided that ¢ > log(e/d), under the event A; s N &5 N Es+ we have

t—1 He =1
det Z Zsz;r + 1 < Z llzs)1* + 1
s=t(5) s=t(9)
t—1
2 2
< Z4CK||xs+1 - 778” +1
s=0
t—1
< 8CK Y lasrall® + llnsll* + 1
s=0

8(3C + 4)0?C%C2G2d 7.

Thus provided that ¢ > log(e/d), under the event A; s N &2 5+ N E3+ we have that

t—1 —1/2, t-1
( Z Zsz;r +Id> ( S(Msgs)—r>
s=t(9)

Z
s=t(9)
< 35C%\/dpo? (dv, log(eaCoGo || Py||dst) + log(e/d)).

2

Lower bounding 22;1(5)(Ms§s)(Ms£s)T' This is the most challenging task, and we shall break it into several

steps. First, we note that &; 5 and &  are independent (by design of CEC(T)), and My &, = M &1 s + &2,5. We
use Lemma 10 to write:

t

Y OLE)MLE)T = 6 + 5676 2 el 6 + 1) G 6 —

s=t(5)

where we define, for ease of notations, the tall matrices ¢ = [lel,l . Mt&’t] and & = [527,5 . 527,5]
so that we have

t—1

ga=> (M& )M,

s=t(4)

t—1
£;§2 = Z 52,56;57

s=t(5)
& (& &+ 1a) 71 &=
t—1 s i
Z (M&1,5)85 Z (M&r,6) (M) "+ 14 Z (M&1,5)83
s=t(5) s=t(5) s=t(5)

Step 1: We first derive a lower bound on the smallest eigenvalue of £&,¢; . We have

A thl T 0
= s81.s i (Kog1ms) (Ksg1ms) TIIHA s=0 Is"ls
agl = é%& €ls = J M,
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Indeed, we have for all A > 0,

t
&l => &8,

s=1
t—1 ~
_ Z ~773—177;r—1 an—l(Ksﬂs—l)T
s—1 Ks7737177;1 (Ksnsfl)(Ksnsfl)T
_ 77 n' X
X'X
- [T +V7 o0
- _)\Idu
where we defined, for ease of notations, the tall matrices n’ = [770 nt_l], X7 = [Klno Kmt_l] ,

and used Lemma 12 to obtain the last inequality. We may apply Corollary 1 to bound from below the above
inequality. First define the events

-1
Ere=1{2(t—t(0 Z ﬂldx :
s:t
t—1 N "
g5,t = Z (K8+1775)(K8+1775)T < 80?{“ - t<6))
s=t(9)

By proposition 8, the event &4 holds with probability at least 1 — &, provided that ¢ > ca0?(d, + log(e/d)) for
some universal positive constant c; > 0. By Propostion 8, the event &5 ; holds with probability 1 — J, provided
that ¢ > c302(d, + log(e/d)) for some universal positive constants C3, c3 > 0. Therefore, provided that ¢ > 2¢(J)
and A = e/t under the event &£ N &5 ; we have

e(t—t(8))Vt
£ & = | 3CkG— t(a))Jm/Id 0
g,
et\f
— | 8C% t+2ef‘r 0
o O —6\/£Idu

Step 2: Next, we find a lower bound on the smallest eigenvalue of the random matrix &¢, . Consider the event

d(t — t(9)
Eor = Aui z ] | > TYAL10)
By Proposition 8, the event & ; holds with probability at least 1 — 4, provided that we have ¢t > ¢4(d,, +1og(e/d)) +
t(9) for some unlversal posmve constant ¢4 > 0. Note that we need to apply Proposition 8 to the normalized
random matrix — \/T ZS +(8) VsV . Thus, provided that ¢ > 2¢(4), under the event &4 ;, we have

0] 0
Elng t O 02\/TI ]
2v2

Step 3: We now upper bound the norm of the self-normalized matrix process & &2(&9 o + 1) ~1& &1, Consider
the event

e det (Zz’;i(é) (Msgl,s)(Msfl,s)T + Id> }

Erst = { H(f;fz + Id)_1/2§2T§1H2 < 70%\/d, log 5
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By Proposition 9, the event &7, 5 holds with probability at least 1 — §. Therefore, provided that ¢ > log(e/d),
under the event &7+ 5 N €4+ wWe have

1/d
t—1 / t—1

det Z (Msgl,s)(Msfl,s)T + Id S Z ||]\4s£1,s||2 + 1
s=t(8) s=t(8)
t—1

< > 2Kl + 1
s=t(5)

< 8C%t.

Therefore, for ¢ > log(e/d), we have, under &7, 5 N 4y, that

[€le + 1 7e 6| < Cao® VT (don(eCrct) +1os(e/),

for some universal positive constant Cy > 0.

Step 4: (Putting everything together) From the first and second step, provided that ¢ > 2¢(9) 32 ,
the event &4 N &5 4 N E6,¢, We have
o2 dg t\/
1 7“ Iy, @)
&85 + 568 ¥ | sk TV Ve
2
O 08\%7 Vi,
2 z 7802 N - \/—x IdJC O
— 13t
8v2 19) I,
2\/7
= 81V202% La
where we chose € = U;‘/fgj. Therefore provided ¢ > 2¢(6), t > % and t > log(e/d), we have under the event
54)15 N 55715 n 56,1& n 57,6,t that
t—1 o2 i
Amin | D> (M&)(M&)T | > — — C40”\/dy(log(eCt) + log(e/8)) — 5
e 81202 c%

Now, using Lemma 22, there exists an universal positive constant c¢g > 0, such that under the following condition
1% > ¢5 max (t(5)1/2, 02C% (dlog(eCrdyd,) + 1og(e/5))> (95)

then the following conditions also hold

L f; Cy02y/d,(log(eCit) + log(e/d)) — & > 180\\};;

t > log(e/d)

t > 24(5)

> o

t > ca0?(d, + log(e/d))
t > c30*(dy +log(e/9))
o t > cy(dy +log(e/d))

Hence, if condition (95) holds, we have under the event €4, N &5 N & N E7 5,4 that

o2\/dt
~ 100v2C%

t—

(M&s) (M) T

1
)\min
s=t(4)



Minimal Expected Regret in Linear Quadratic Control

The concluding step. To conclude, provided that condition (95) holds, we have under the event As; N &1 5N
Eo5:MNENELNEst NE6t NE7 54,

S oVt 2 2
Amin | D vst) | = =~ — 1= 35C%\/dp0” (dy, log(eCoGs || Py || dat) + log(e/5)).
g 100v2C%

Using again Lemma 22, there exists an universal positive constant ¢ > 0, such that if
Y% > cmax(t(6)Y2, O (dvy, 1og(eaCoGo | P || duduye ) + log(e/d))) (96)

then

o .2 -
D ﬁ —1—35C%+/d,0?(dv, log(ec CoGo || Pi||dst) + log(e/8)) > %gzv

o condition (95) holds.

Therefore provided condition (96) holds, we have

= . o?\/dt
P )‘min Zysys > 15002 >1- ]P)( g,t U glc,é U 55,6,t U g?f,t U git U 85C,t U gg,t U 8%6,75)
s=0 K
>1-80
Hence reparametrizing by 8’ = 8§ gives the desired result with modified universal constants. O

G.3 Scenario III (A known)

. . . . I t—1 .
In this scenario, the cumulative covariates matrix is > ._,usu]. We present two results about its smallest

eigenvalue. In the first result, we show that this eigenvalue scales at least as v/¢. In the second result, we obtain a
linear growth rate, when the certainty equivalence controller K; has become close to the true optimal controller
K.

Proposition 12 (Sufficent exploration). Under Algorithm CEC(T), we have for allt > 1, and § € (0, 1),

t—1 f
)\min (Z us”j) Z 5
s=0

holds with probability at least 1 — §, provided that t > c(dyv« log(eaCoGodyvs) + log(e/d)) for some universal
positive constant ¢ > 0.

Proof of Proposition 12. Recall that under CEC(T), we have

_ [Ew if £, =1 and ||K,||? < h(t), and Amin (ZZ;}) usu}) > Vi
Ut
Koxy + (; otherwise.

For ease of notation, for all s > 0, we denote z;, = K,xs. Consider the event

1—1
817t:{3i6{t/2,...7t—1}2 Amin <ZU1UI>Z\/;}
s=0

Under the event &£ ,, for all s € {t/2,...,t — 1}, us = Koxs + (s = 25 + (5. Thus, by Lemma 10 (with A = 1),

2
—1/2
/ t

t t
Dougul = Y we] = >0 —Ta, — ||| DD 2 +a, >z |||

s=0 s=t/2 s=t/2 s=t/2 s=t/2



Yassir Jedra, Alexandre Proutiere

For all 6 € (0,1) and ¢ > 1, define the following events

¢
A5 = {Z lzs| < ClgngoQ(dth% + log(e/é))} ,

s=0
—1/2 2 t—1
i1 =1 edu det (ngt 2524 + 14 )
s=t/2 ©5%s u
Eaps = Z Zsz;r + I Z ZSC;F < Tlog 5 ,
s=t/2 s=t/2

t—1

t

Eap = min | D GG | =3
s=t/2

In view of Proposition 15, P(A,;) > 1 — 6. By Proposition 9, we have P(£2;5) > 1 — 0, and by Proposition
8, P(€34) > 1 — 6 when t > ¢1(dy + log(e/d)) for some universal positive constant ¢; > 0. Under the event
Ais NEF N &5, when t > log(e/d), we have

t—1 1/du t
det Z 2ezg + 14, < Z 26 l1* + 1
s=t/2 s=t/2
t
<GP s + 1
s=0
< 3C0%||K,|[2C2G2d t* 27
< 3Ca2CAG2d 3.
Thus, under the event A; 5 N EF, N E24 5, we have
2
t—1 VR
Yzl D w6 ||| < Caldunlog(0CoGodat) +log(e/9))-
s=t/2 s=t/2

Hence, under the event A; s NET; N 245 N E5 4,

t—1
t
Amin (Z uSUST) > 3 = 1= Cy (duy, log(0CoGodat) + log(e/9)),
s=0

when t > log(e/d). Now, Lemma 22 ensures that there exists some universal constant ¢; > 0 such that if
t > ¢1 (dyys log(0CoGoddyvs) + log(e/d)) (97)

then

o L —1—C5(dyv.log(0CoGodyt) +log(e/d)) > £ > V1,
o t > ci(dy + log(e/d)),
e ¢t >log(e/d).

Therefore when the condition (97) holds, then under the event A; s N Ef 4N E&2t5MNEsy it must hold that
t—1
)\min (Z us“l) > \/Z
s=0
but this cannot hold under Stf 5, therefore it must be that A; s N Es 5 N E3+ € £1 ¢ which in turn implies that

P(&14) 21— P(Aj) — P(E3,5) — P(E3,) > 1 - 30,

Reparametrizing ¢’ = 3§ yields the desired result with modified universal constants. O
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Proposition 13 (Sufficient exploration with refined rates). Under CEC(T), assume that u? =
min(Apin (KK, ),1) > 0 and that for all § € (0,1) we have

P(Vtzt(&), 1K, — K. || < )>1_5

for some t(6) > 1. Then for all 6 € (0,1),

t—1 ,LL2t
Ami T >t
- (z ) 1
s=0
holds with probability at least 1 — &, provided that
olC%
t > cmax ( t(5), —5~ ((du + dz)yx log(eaCoGol| Py || dudyys) + log(e/d)) |,

*

for some universal positive constants C,c > 0.

Proof of Proposition 135. We start by defining the event

16 = {\ﬁ >1(0): | K, — K, || < &}.

We note that under the event & 5, we have (2| K, |)? = K:K, = (“7) I;,. Now, recall that under CEC(T), we
have u; = (1 — ay) (Kixt) + oy (Koxy + ;) for all t > 1, where

0 if ¢, =1 and ||K;||?> < h(t), and Apin (Zi Bus ) >\t

Vit 2 1: Qp =
1 otherwise.

Define I?t = (1 — o) Ky, K, | <p.y T Ko for all t > 1, and

2 = [?t(Awt +But)’ M, = |:I?t atId“] s and 5,5 = |:n2;1:| .

Note that u; = z; + M, for all t > ¢(6) under the event & 5. We may also use Lemma 10, and obtain always
under & 5,

~1/2

Z usu] = Z (Mi&) (M) " — T, — Z 2] + 1, > 2(ME)T ||| Ta-

t
s=t(p) s=t(8 s=t(9)

It is worth mentioning here that & is independent of (M, ..., M;) and («p, ..., a;). Furthermore, we can easily
verify that || M;|| < 2Ck and & is zero-mean and o2-sub-subgaussian. Let us consider the events

t

E2s0=1 > (M&)(ME)T ZMMT “*( H0) + Vla, ¢,
s=t(8) s=t(8

—1/2
/ t

t
g3,6,t = { Z Zsz;r + Idu Z Zs(Msfs)T
s=t(9)

s=t(8)

< 14026’% log

: 3t
54,75 = {Amax (Z 77t77tT> < 2}7
s=0

t
Ay = {Z s 1? < C1o2G2C2 (At 27 + log<e/6))} :

s=0

= det (ZS 1) Zs%s +1a, ) }
5 )
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We have, by Corollary 1, that P(&5,) > 1 — ¢ provided that ¢ > %(du + log(e/d)) for some universal
positive constant ¢; > 0. By Proposition 9, P(£3,5,) > 1 — 6. Applying Corollary 1, we get P(E44) > 1 -6
provided that ¢t > ca0*(d,, + log(e/§)). Finally we have under CEC(T), by Proposition 15, P(As;) > 1 —§ for
some universal positive constant C;7 > 1 (used in the definition of As).

Under the event & 5+ N &2 5+, we have

t

t 2
> (ME)ME)T = D MM =Bt #6) + D,
s=t(d) s=t(d)

t

Z (1—Ozt)l{HKt_K*H<#*}KsKST-l—atKoK;r +atldu
s=t(9)

Y

MQ

-5 (=) + 1,
- 1 13

> - o) la, +anla, | = (= 40) + D,
s=t(9)

2

- %(t — #(8) + 1)1, .

1Y

When t > log(e/d), under the event &3 5, N E4r N As ¢, we obtain

. 1/dy,

t
det | Y zz] +1a, < > JallP+1
s=t(9) s=t(9)

t
<ACK Y lwers — nsl® + +1
s=t(5)
t

<4ACE 3 2wea |2 + 2> +1
s=0

< 4C3 (40102 C2G2d M T2 +3t) + 1
< Coo?CEC2G2d 37,
for some universal positive constant Cy that is large enough for the last inequality to hold. Therefore, when

t > log(e/d), under the event & 5, N Exr N Asy it holds that

—1/2
/ t

t
Z zezd + 14, Z 2e(Ms&s) T ||| < C30%C% (dlog(eaCoGo || Py|dut) + log(e/d))
s=t(9) s=t(8)

for some universal positive constant C3 > 0 where we used the crude upper bound Cx < C,||P,|| and denoted
d = d + d,,. Therefore, when ¢ > log(e/d), under the event As; N E1 5+ N E2,56 NE354 N Eay, we have

2
3wl = %(t —#(8) + 1) — 1 — C302C% (dlog(eaCoGo|| P ||dut) + log(e/5)) .

Using Lemma 22, there exists a constant ¢z > 0 such that if

04012(
t>c3 | t(d)+ 2 (dyx log(eaCoGodyy) + log(e/d) | (98)

*

then the following holds



Minimal Expected Regret in Linear Quadratic Control

%(t t(8) +1) — 1 — C30%C% (dlog(eaCoGo || Py||dst) + log(e/d)) > “lzot,
> log(e/d),

o t> 2O, +log(e/s),

t > coot(d, + log(e/d)).

Therefore, provided (98) holds,
¢ L2t
P\ Awin | Y ustt] | > Ty | 21 PAG VST UES s UES s UEL,) 21 —50.
s=t(8)

Reparametrizing by ¢’ = 50 gives the desired result with modified universal positive constant. This concludes the
proof. O

G.4 Scenario II (B known)

In this scenario, the cumulative covariates matrix is ZS 0 TsTy . We establish that its smallest eigenvalue scales
linearly with time.

Proposition 14. Under Algorithm CEC(T), for all § € (0,1),

mm<zm> !

holds with probability at least 1 — &, when t > co? (dyvx 10g(0GoCodys) + log(e/d)) for some universal positive
constant ¢ > 1.

Proof of Proposition 14. Recall that for all s > 0, we have z511 = Axs + Bus + 5. For ease of notation, we
define for all s > 0, z, = Azs + Bus. Thus, we may write 2541 = 25 + 715 and note that 7, is independent of z;.
Now, a direct application of Lemma 10 (with the choice A = d,.) gives, for all ¢ > 1,

t t—1 t—1 -1/2 4 2
Z msxz bt Z 77577;'— -1, — <Z zsz;r + Idw> (Z 257y ) I, . (99)
s=0 s=0 s=0

We shall see that the terms appearing on the right hand side of the above inequality can be bounded adequatly
when certain events hold. Let § € (0,1) and ¢t > 1, and define the following events

Asi = {Z 5]l < C1G3CTa%(dh(t)g(t) + 10g(6/5))} ;

s=0
-1 —1/2 dodet (Y 1- 2528 + 14
gl,&,t (Z 252y + Id) <Z ZsM, > < T7o“log ( 5 ) ,
s=0
of t—1 .
52,p,t = g < Amin ;)773775 and  Amin Znsns > 3
We have:
P(Aye) =16, (100)
P(E1p0) > 16, (101)
P(Ep) >1—0, if t>ci0?(d, + log(e/d)). (102)

(100) follows from Proposition 15 with the constant Cy defined in the statement of the proposition, (101) follows
from Proposition 9, and finally (102) follows from Corollary 1 (with the choice ¢ = 1/3, and using 402 > 1 by
isotropy of noise).
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Under the event A, ; N &3, ¢, we have

-1 1/ds =
-1 T 2
det ()\ Zozz +Idw> < Xansll +1

t—1
< el + lIns)1? + 1
s=0

< 6C,02C2G2d T2
< 6C,02C2G2d >

where we assumed that ¢ > log(e/d). Thus under the event A; s N &1 46 N Ea,1,5, we have
t—1 —1/2 4y 2
T 2
<Z 2sZg + Id> (Z ZsMg ) < Cy07(dyv«(log(eaCoGodyt) + log(e/d)).
s=0

Therefore, under the event Ay s N &14.5 N €215, in view of (99), it must hold that

Amin (Zx x, ) > = — 11— 0202(dyy, (log(eaCoGodyt) + log(e/d)).

Using Lemma 22, we can find an universal positive constant ¢ > 0 such that when the following condition holds

t > c20?(dyys log(eaCoGod,y,) + log(e/d)), (103)

then it must also hold that

% — 1 — Cy0*(dyyx(log(eaCoGod,t) + log(e/d)) >

Hence, when condition (103) holds,

t
t
P (Amin (Z mT> > 4> >1—P(AsUES, s UES,5) > 1—30.
s=0

Reparametrizing 6’ = 3§ gives the desired bound with different universal constants. O

, t>1log(e/d), and t > ci10?(d, + log(e/d)).

PP

G.5 Proofs of the main ingredients

Proof of Lemma 10. Let A\,e > 0,t>1, and u € S%1. We have

t

t
Z|UT%‘2 = Z uT&sl? +2(u &) (u' 25) + [u " 2

s=1 s=1

t
ZZWT&\Q (1—e)|u’ 2z —er+ mf EAV U+Z2 Te) (T z6) +elo’ z)?
s=1
t

¢
> Z luT€ 2+ (1 —e)|u'zs]? — el — sup —edv v — ZQ(UTfs)(szs) + elvT 2|2
s=1

d
veR s—1

where the first inequality follows by adding then substracting Au'w = X, and by taking the infimum over v € R<.
Next, we can easily verify that

t t
sup —2 'UT (Z Zs(u—rgs)> — E’UT (Z zsz;r + )\Id> v
s=1
~1/2
% (Z zsz + )\Id> (Z zs(u & >

2
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Thus if follows that

2

t t 12,y
Z luys)? > Z luT €2+ (1 —&)|u’ 2]? —eduTu— = (Z Zs2g + )\Id> <Z ng;I—) u
s=1

s=1 s=1
which implies that

t t t t T/ -1,y
Doyl =Y EES +(1—9)d zz —é (Z zsfs> (Z 2s2) +Md> <Z N ) — My
s=1 s=1 E s=1 s=1 s=1

s=1

Proof of Proposition 8. The vectors M, are zero-mean, (om,)?-sub-gaussian, conditionally on F,_;:

2 .2 om
E [exp(oTMsfs)‘}—s—l} < exp (HMZ”U) < exp (”0”(2S)> i

Thus, for all z € S9~! and s > 1, we have, by Lemma 20, that the random variable (z T M. £,)2—E[(z T M&,)?|Fs_1]
s (40my)%-sub-exponential conditionally on F,_;. Therefore, fixing x € S9!, with a peeling argument, we
immediately obtain for all |A| <

1
(40)2[ma.e][Z,°
i 2 4 4
E lexp ()\ S (2T ME,)2 [(mTMS§S)2|f51]>] < exp (M‘W)Qﬂmlth) .
s=1

Now, Markov inequality yields for all p > 0, and all |\| < )2

1
lma:ell3,

P (Z@JMS&S)"’ —E (2" Mo&o)?| Farn] > p) < exp (; (N*(40) [[mals — 2Ap)> :

s=1

Using A = min ( gz mopme ) £ives
t
P (Z(xTMsgs)z —E [(xTMs§S)2|]:s—1] > p>

s=1
1 p? p ))
< exp ( min < , .
2 (40)HIma:ll3” (40)2 Imael%

In a similar way we can establish
(ZE TM 5&s) |]:é 1] (ITMS£S)2 > p)

Sexp(—lmin< 4p2 I 2p 5 ))
2 (o)t lmaelly” (40)?[[ma.ellZ

Therefore, by union bound we obtain
> p)

P (
1. p? p
§2exp(—mln< , ))
2 (4o)*Imaelli” (40)2 Imasel|Z

t

Z(xTMS§S)2 -k [(xTMsfs)QU'"sfl]

s=1
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By isotropy of the noise vectors (&);>1, we have S0 E[(xT Mo&,)|Fs 1] = 4, T M M z. Now, applying
an e-net argument with e = 1/4, we get, by Lemma 21, that
> p)

]P) <
3 (e )
<2-9%xp | —= min , .
= p( 2 (82<o>4||m1:t||3 8(0)2][mre 1%

Exploiting the fact that |[my.¢||3 < ||m1.¢]|%||m1.¢]|3, then reparametrizing, we obtain

2 d 2 d
]P( >802|m1t|2max< p_z5 ) p—’;5 )) §267p7
\/ T T

where ¢ = ||ma.||/]|mi:t]| o H

t t

D (ME) (M) = > MM

s=1 s=1

t

D (ME)(M&)T ZM M

s=1 s=1

Proof of Corollary 1. Applying Proposition 8, we get for all p > 0,

1
P(t > 802m? max<\/2p—;5d,2p—:5d>><2e_p

where we see that [|$M,|| < 2 almost surely for all 1 < s < ¢. Then, we can verify that, under the condition

t > min (82(:727”)2, M) (5d + 2p),
€> < 2e”P.

p(l
t

This concludes the proof after noting that

t

D (M) (M)T ZM M

s=1 s=1

t

S (M) (ME)T ZM M

s=1

t
ZM{S V(M) T ZMMT

implies that
t t t
S MM —etly 2 (ME)(M&E)T =Y MM + ety
s=1 s=1

O

Proof of Proposition 9. The proof follows immediately from Theorem 1 of Abbasi-Yadkori et al. (2011) together
with an e-net argument via Lemma 21. Start by fixing ¢ > 1. First, since Si(z, M¢&) is positive semidefinite
matrix, we may express ||Si(z, ME)|| = supyega—r ' Si(2, ME)x. Next, we note that the vectors (7 Ms&s)1<s<i
are zero-mean, (o||m1.¢||oo)?-sub-gaussian, conditionally on F;_;. Thus, Theorem 1 of Abbasi-Yadkori et al.
(2011) applies and we have for all p > 0,

t
1
P (xTSt(z,Mﬁ)x > 202 |ma.||A <2log det <V1 Zzgz: + Id> + p)) <e”.
s=1
Now, an e-net arguemnt with e = 1/2 (Lemma 21) yields
t
P <|St(z,M§)|| > o?||ma]|% <2logdet <V1 Zzszj + Id> +7d + 4p>> <e?,
s=1

which concludes the proof. O
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G.6 Additional lemmas

Lemma 11. For all K € R%*%  there exists an orthogonal matriz Q that depends on K, such that for all > 0
and a > 0, we have

; o L. O 0

dy T af

K KKT T ﬁld = Q 0 ||K||2+OLBIT 0O Qa (104)
* O O (1—-«a)ply,

where r = rank(K) < min(d,, dy).

Proof of Lemma 11. Let r = rank(K). Consider the singular value decomposition of K: K = U XV, U € R *de
is orthogonal, V € R% %% is orthogonal, ¥. € R%*% Then

Ia, KT _[vTv VvETU
K KKT+pl| |U'SV USSTU+BUTU

o [T =T
=Q' [ r zxT +Bldu] @

[l =STEST +aply)'s O
=< [ o (1—a)ply, ©
L. O 0
T af
=Q | O sl o |
O (-0l

where (i) we set @ = diag(V,U), (ii) we assumed that U and V are properly chosen so that the non zero
elements of T (XX T + afl,,) Y lie at the bottom right block of the resulting matrix, and (iii) we noted that

2
Anax(ET(SET + al,,)718) = B =

Lemma 12. Let E, X be two tall matrices, then

—

[ETE ETX}

A ETE 0]
XTE XX )

[RYRE
-y

Proof of Lemma 12. We have

E'E E'X] _[ETE-E™X (X'X+A,) 'X"E O
XTE XTx|=| ) =y
C|Er(-x(xTx+a)TIXT)E O
| 0 —AI
r A T
-~ Pl E O
L 0] -y ’

where we used the fact that, using an SVD,

A

Itdz _— XT(XTX + )\Idu)ilX t W[tdm.
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H POLYNOMIAL GROWTH

In this section, we establish that under CEC(T), the growth rate of ' ||lzs|| is not larger than g(t)h(t) with
high probability. This controlled growth rate is a consequence of the hysteresis switching mechanism of CEC(T).
The proof of the result relies on further results on the stability of time-varying linear systems presented in
Appendix J.

Proposition 15. Under CEC(T), and assuming that for all t > 1, that h(t) > 1 and g(t) > t, we have, for all
0€(0,1),

P (Z lzs]1? > Co®C2G2(doh(t)g(t) + 10g(6/5))> <4, (105)
s=0

for some universal positive constant C' > 0.

Proof. Let t > 0. We start by defining the following events

&= {Z ”msH2 < U2dacg(t)} )

s=0
% t J
Vie{0,...,t =1}, & = {ZHxSHQ §U2dwg(i)}ﬂ m {ZH.ISHQ >02dwg(j)}
s=0 j=i+1 (s=0
Note that the events &, ..., & form a partition of the underlying probability space. Furthermore, for each

i €40,...,t— 1}, if the event &; holds then the following also holds

(i) 0o llzsl? < o2dy g(i),

(ii) 541 = (A+ BK,)xs + Brgs + 15 for all i < s <,
(iti) ||zit1]| < 2Cs0+/dy h(i)g(i) + || By + 5],

where we recall Cs = max(||All, || B, || BKs||, || Ko, 1). In view of the above, we will show that for all ¢ € {0,...,t},
for all p > 0 we have

P <5¢ N {Z l|lzs||? > 44G2C2% 02 (3d,h(t)g(t) —|—p)}> <3e?, (106)
s=0

where G, = limsup,_,.. >t_, ||(A + BK,)?||. This in turn will allow us to conclude that for all p > 0,

P (Z a1 > 44G3C20* (3 h(t)g (1) + p))

s=0

= ZIP’ (& N {Z llzs||? > 44G2C20*(3d,h(t)g(t) + p)})
i=0

s=0
<3(t+1e .

Finally, reparametrizing p = p’ + log(t + 1), gives for all p’ > 0,

t
3 <Z [s]|* > 44G2C20? (4d h(t)g(t) + p’)) <3e”

s=0

Now, it remains to show that (106) indeed holds. Let i € {0,...,t}. We have

t i t
Sl =Y e+ Y o]
s=0 s=0

s=i+1
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If (¢) holds then it holds that Zi:o |lzs||* < 02d,g(i). Next we bound the sum ZZZZ—H ||zs||? with high probability.

To do so, consider the following dynamical system:
Vk >0, ykt1=(A+ BEKo)yr + BVitiyk + Niv1+x  and Yo = Tiy1,

where we note that By; + n; is zero-mean, sub-gaussian with variance proxy ||B||?0? + 02 < 2C20?. We further
note that if (#¢) holds then x5 = ys_;—1 for all i < s <¢. Thus, applying Lemma 15 (see Appendix J), we obtain

t
P ((ii) and Y [g]|? > 262 (|wiga||® +2C207 - (2d,(t —i — 1) + 3p))> <e . (107)
s=i+1

Note that if (i#¢) holds bounding ||x;11|| amounts to bounding || By; + 7;||. Standard concentration bounds lead to
P (| Bv; +ni]|* > 8C30*(2d, + p)) < 2e77,
which implies
P ((iii) and [|v;41|* > 8C20?d, h(i)g(i) + 16C202(2d, + p)) < 2 ". (108)

Combing the high probability bounds (107) and (108) using a union bound and considering the fact that h(t) > 1
and g(t) >t for all ¢t > 1 yields

t
P <(zz) and (447) and Z llzs||? > 44G2C2% 02 (2d,h(t)g(t) + p)) < 3e .

s=i+1

Finally putting everything together, after simplifications, gives

t
P ((i) and (i) and (4ii) and Z |z ||* > 44G2C2 0% (3d,h(t)g(t) + p)> < 3e .
s=0

Recalling that (), (é¢) and (iéi) are implied by the event &;, the desired high probablity bound (106) follows

immediately. This concludes the proof. Hiding the universal constants and reparametrizing by § = 3e~”, we may
simply write:

P (Z sl < 02 G2C2(dah(t)g(h) + p>> >1- 3¢, (109)

s=0
O
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I CONTROL THEORY

This section provides basic notions and results in control theory, and more importantly results quantifying the
sensitivity of the solution of Riccati equation to small perturbations of the state transition and state-action
transition matrices.

I.1 Lyapunov Equation

The equation and its solution. Let M, N € R?*? where N is a symmetric positive definite matrix. The
discrete Lyapunov equation equation corresponding to the pair (M, N) is defined as: X = M T XM + N where X is
the matrix variable. If p(M) < 1, then the discrete Lyapunov equation admits a unique positive definite matrix that
we shall denote by £(M, N). In this case, the explicit value of the solution is: £L(M,N) = Y"27 (M"*)TN(MF).

Quantifying stability. The fact that £(M, N) is well defined when p(M) < 1 follows from Gelfand’s formula
which ensures that sup,s [|M*]|/p(M)* < co. For our purposes, we wish to quantify the transiant behaviour of
| M*| in terms £(M, N). The following standard Lemma allows us to do so. We provide its proof for completeness.

Lemma 13 (Stabiliy quantified). Let M € R¥*? be q stable matriz. Then, the corresponding Lyapunov equation
to the pair (M, 1) admits a unique positive definite solution, L = L(M, 1). Furthermore, we have

1\ #/2
|L|> L2, (110)

vk >0, |MF|< (1
Proof. The existence of L(M, I;) is a standard fact of Lyapunov theory. Using the Lyapunov quation, we write
M = MTLM + I, which we can rearrange as M " LM = L'/?(I; — L=')L/? using the fact that L = 0. In fact
L > I; in view of the closed form of £(M, I;), from which we obtain

1
MTLM < (1 — L) L. (111)
Multiplying both sides of the above inequality by (M*~1)T from left, by M*~! from right, and reiterating
the above inequality yields (M*)TM* < (M T)*LM* < (1 — ||L||"")*L. Thus, it immediately follows that
IME|2 < (1= [|L|~1)" || L||, which concludes the proof. O

1.2 Riccati Equation

The equation and its solution. The Discrete Algebraic Riccati Equation (DARE) refers to the matrix equation
P=ATPA—ATPB(R+ BT"B)"'BTPA+ Q in the matrix variable P. When the pair (4, B) is stabilizable®
and @ = 07, the DARE admits a unique positive definite solution, that we shall denote P(A, B). Furthermore,
the optimal gain matrix is K (A, B) = —(R+ BT P(A, B)B) BT P(A, B)A and verifies p(A + BK(A,B)) < 1.

Relation to Lyapunov equation. Note that it can be easily verified that P(A, B) = L(A+ BK(A,B),Q +
K(A,B)"RK (A, B)). This motivates the definition P(A, B, K) = L(A+BK,Q+K " RK) whenever p(A+BK) <
1.

Perturbation bounds. To simplify the notations, we adopt the following shorthands: (i) for the true parameter
(A, B), we shall refer to K, = K(A,B), P, = P(A,B) = P(A,B,K,), and P,(K) = P(A,B,K), (ii) for an
alternate parameter (A’, B’), we shall denote K/ = K(A’,B’), and P = P(A’,B’) = P(A’,B',K’). Now, a
key observation behind existing regret analysis of the online LQR is to obtain the bound ||Py(K') — P.|| <
max {[|A" — A||?,||B’ — B||*}. The first step towards this bound is to note that ||[P,(K’) — P.|| < ||K' — K. ||
This is ensured by the so-called cost difference lemma which is due to Fazel et al. (2018).

Lemma 14. For any matriz K € R%*%= sych that p(A+ BK) < 1. We have

P(K)— P, = L(A+BK,(K - K,)T(R+ B P.B)(K — K,)) . (112)

5The pair of matrices (A, B) is stabilizable if there exists a matrix K € R%*% such that p(A + BK) < 1.
"Actually, the matrix Q may be positive semi-definite but in this case, the pair (C, A) needs to be detectable for the
Riccati equation to admit a unique solution where @ = C'TC' (see Theorem 8 by Kucera (1972))
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Perturbation bounds were first rigorously estabilished by Konstantinov et al. (1993), showing locally the order
of perturbation ||[P’ — Py || < max {||A" — A4||, || B’ — Bs«||} which in turn can be used to show that [|K' — K,| <
max {||A" — A,||, || B" — By||}. Combining that with Lemma 14 allows us to derive the desired inequality. Recently
the constants were refined and made explicit BY Mania et al. (2019) and Simchowitz and Foster (2020). In this
paper, we use the following result (see Theorem 5 and Proposition 6 in Appendix B of Simchowitz and Foster
(2020) where we computed some constants for simplicity):

Proposition 16. Assume that R = I, and Q = I, . Let (A, B) be a stailizable system. For all alternative pairs

(A’,B/) c Rdzxdw % Rdzxdu’ Zf
1

113
AR (113)

max {||A" — A, ||B" — BJ|} <
then the following holds:

(i) the system (A’, B') is stabilizable, and consequently its corresponding DARE admits a unique positive definite
solution P' = P(A’, B') with a corresponding gain matriz K' = K(A', B');

(i1) the optimal gain K' corresponding to the system (A’, B') satisifies

1P| < 1.09|| P ], (114)

IBOK" — K.)|| < 32| Pl|”/? max {|| A" — All, | B~ BII} , (115)
IRVA(K' — K. < 28||P.||"/* max {| A" — A|.|B" — Bll}, (116)
1P (K") = Pu|| < 142|| P || max {||A" — A||*, | B' - B||*}, (117)
1P (KD < 1,05] P]|. (118)
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J SSTABILITY OF PERTURBED LINEAR DYNAMICAL SYSTEMS

This appendix presents an analysis of the stability of time-varying linear systems. The analysis is instrumental to
understand the behavior of the system under CEC(T), and in particular to show that the system does not grow
faster than polynomially in time, see Appendix H. We start this appendix by stating results about the stability of
generic time-varying linear systems. We then explain how to apply these results to our system under CEC(T).
The proofs are postponed to the end of the appendix.

J.1 Generic Time-varying Linear Systems And Their Stability

Consider the stochastic process (y;);>0 taking values in R?, such that:
VE >0, Y41 = Meyr + & (119)

The initial state yo may be random, (£;)¢>0 is a sequence of zero-mean, o-sub-gaussian random vectors taking
values in R? that are independent of yg, and finally, (M;);>¢ is a sequence of matrices taking values in R4*? that
are possibly random, or even adversarially chosen. By stability of the process (y¢):>0, we mean that the growth of
Zi:o llys||? as t increases is no more than ¢ with high probability. We will make this definition precise in the
upcoming lemmas.

We investigate two classes of systems:

(i) Time-invariant systems where M; = M for all ¢ > 0;

(ii) Adversarially time-varying systems where the matrices M; for ¢t > 0 are random and may be adversarially
selected in a small neighborhood of a stable deterministic matrix M with p(M) < 1.

(i) Time-invariant systems. For time invariant systems, we present Lemma 15 whose proof relies on Hanson-
Wright inequality, and on the specific structure of some truncated block Toeplitz matrices that arise naturally in
the analysis. The specific structure of these matrices stems from the causal nature of the dynamical system, and
manifests itself in the following constant:

t
G = limsup > _ || M*], (120)
t—o0 5—0

which is well defined as long as p(M) < 1.

Lemma 15 (Time-invariant systems). Consider the linear system yir1 = My: + & as defined in (119). Assume
that M is deterministic and satisfies p(M) < 1. Then:

t
VE>1,¥p>0, P (Z lys)? < 262, (Hyon2 + o (dt +2y/dip + 2p))> >1— e, (121)
s=0

The proof of Lemma 15 is presented in Appendix J.3.

(ii) Time-varying systems. For time-varying systems, the stability results are presented in Lemma 17. Again
they rely on Hanson-Wright inequality, and the specific causal structure of the system. M; varies around the
matrix M and we assume that ||[M; — M|| < e for all ¢ > 0. The analysis requires us to establish properties of
perturbed truncated block Toeplitz matrices. In this analysis, the constant G, is replaced by:

S

¢
Gy (e) = sup {limsup(l + Z |
t—o0

NkH) : (Ni)¢>0 where sup| N, — M| <e;. (122)
s=0 k=0 t20

In the above definition, the supremum is taken over all possible deterministic sequence of matrices (N;)¢>o. Clearly
G (0) = Gpr. However, it is not obvious to determine under which condition on €, the constant Gys(e) < oo.
Lemma 16 provides an answer to this issue. As it turns out, we may express this condition in terms of the solution
of the discrete Lyapunov equation corresponding to the pair (M, I;), which we denote as

L=L(M,I,). (123)
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Lemma 16 (Stability under perturbation). Let M € R¥*? such that p(M) < 1, and € > 0. For any sequence of
matrices (A¢)e>0) taking values in R, and such that sup,s [|A¢|| < e, it holds that

1\/2 k
< || <|L|We+(1—”L”) ) , (124)

where L = L(M, 14) is the positive definite solution to the Lyapunov equation corresponding to the pair (M, I;).

Furthermore, for all x € (0,1), ife < W, then Gar(e) < 2}'5_“;;2 , and p(M + Ay) <1 for all t > 0.

k

[T+ A

=1

Vk >0:

The proof of the previous lemma follows the same steps as those of Lemma 5 in Mania et al. (2019), or Lemma 4
in Dean et al. (2019)) with the slight difference that (A;);>1 are not fixed and using the constants that we get
from Lemma 13. We omit the proof here. We are now ready to state the result on the stability of the system
with perturbed dynamics.

Lemma 17 (Time-varying systems). Consider a linear dynamical system (y.)i>o0 described as in (119). Further-
more, assume that the sequence of matrices (My)i>o is such that there exists a stable matriz M € R¥>4 and a

. 1 . . .
postive € < srrmi T with sup;sq | My — M|| < e. Then, for any non increasing scalar sequence (at)i>o0, we

have, for allt > 1, and for all p > 0,

t
P <Z 2l > 26a(e)? <||a0:t||go||yo||2 102 (dnao:tln% t 2y /dlave 2 + zp))) <o (12)

s=0

The proof of Lemma 17 is presented in Appendix J.3. It is worth mentioning that Lemma 15 is in fact a
consequence of Lemma 17, but we keep the two lemmas as well as their proofs separate for clarity of the
exposition.

J.2 Application To CEC(T)

The results presented above will often be used in the analysis of the behaviour of the states (z;)¢>o under CEC(T)
when the controller used is fixed over a period of time, say between s and ¢. In such cases, we may express the
dynamics as follows:

Vs<t1<t: Try1 = (A+ BI?T)xT + & with x9 =0,

where either (i) [N(T =K, for all s <7 <t or (ii) I~(T = K, for all s < 7 < t. We now specify noise sequence
(&7)s<r<t in the three envisioned scenarios.

e In scenario I, under CEC(T), we have 441 = (A + Bf?t)zt + Byy +n for all t > 1, with g = 0. We may
write & = By + . for all ¢ > 0, thus (&):>1 is a sequence of independent, zero-mean, sub-gaussian random
vectors where for each t > 1, & has variance proxy || B|*0? + 02 where we recall that o, < o for all ¢ > 1.
Hence we may simply use 62 = o2(|| B||? + 1).

e In scenario III, under CEC(T), we have z;41 = (A + BIN{t)xt + n for all ¢ > 1, with o = 0. We may write
& =y for all t > 0, thus having (&;)¢>1 is a sequence of i.i.d. zero-mean, o%-sub-gaussian random vectors.

e In scenario I, under CEC(T), 2411 = (A + BK;)z; + 1%,y BG +m for all t > 0, with zo = 0, ruling out
the pathological case that K; = K, which may only happen with probability zero. Hence (&;)s<r<: coincide
with (7t)s<r<¢ provided K, = K, for all s <7 <t and we can use 62 = ¢2. Similarly (&+)s<r<t coincide
with (Bn: + nt)s<r<¢ provided K, =K, for all s <7 <t and we may use 52 = (| B||* + 1).

Note that in all cases > < o%(||B||> + 1)

For the case where CEC(T) uses the stabilizing controller between rounds s and ¢, we apply Lemma 15 and
obtain:
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Proposition 17. Refer to the condition {¥s <7 <t: K, = K,} as (SC). Then, for all p >0,
t
P <Z llz-]1? > 2G2(||lzs]|* 4+ 0?(2d,t + 3p)), and condition (SC) holds) <e”. (126)
Proof. Consider the events

t
E = {Z 2. )1? > 2G2(||2s||* + 0%(2d.t + 3p)), and condition (SC) holds}

T=s

t—s
Ep = {Z ly=II* > 2G3 ([l +02(2dxt+3p))} ;

7=0
where the dynamical system (y¢)¢>0 is defined as
V7 2>0, Yr41 = Myr + Blris + Nrys, Yo=1xs, and M = A+ BK,.

Observe that 1 C Fy. We apply Lemma 15 to conclude O

For the case where CEC(T) uses the certainty equivalence controller between s and ¢, we are mainly interested in
scenarios when max,<,«; || Kr — K, || < w. In particular, we note that for e < W, by Lemma 16, we have

Gu(e) = Garnr. (e) < 4[|P.[*>. (127)
Now, we may state and prove the following result.

Proposition 18. Refer to the condition {VS <r<t: K,=K; and|B(K,-K,)| < W} by (CE).
Then, for all p > 0,

t
P<Za3||$rll2 > 8| PP (lasse | 3o lls|1® + 37 (2da asie-1 13 + 3p)),

T=S8

and condition (CE) holds.) <e " (128)

Proposition 18, it is an immediate consequence of Lemma 17.

Proof. Consider the events

t
B {Z aZl|z-[|? > 8] P> (lasie | % |25 1 + % (2ds | asie—1]13 + 3p)), and (CE) holds}

T=S8

t—s
s {Z 12 > 81 [*/2( | +02(2dxt+3p>>},

7=0

where the dynamical system (y;):>o is defined as

VT Z 07 Yr41 = M‘ry‘r + BCT+S + Nr+s,y Yo = Ts

with

M. =A+B | (Keps— Ky )
<( + ){HB(KTH—KJ”SW} >

Observe that E; C F,. We apply Lemma 17 to conclude. O
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J.3 Proofs

To establish Lemmas 15 and 17, we first give intermediate results about block Toeplitz matrices.

J.3.1 Block Toeplitz Matrices

Lemma 18 (Norms of truncated block Toeplitz matrices). Let M € R4*?. Consider the following matrices

14 14
M M oI 0

(M, ) = | M® and  T(M,t)=|M* M I . (129)
M M M2 M

If p(M) < 1, then G given in (120) is well defined and for all t > 0, the following holds:

(i) |IT(M, )] < G,
(ii) | T(M, )|l < G,
(i) [|[T(M,)||r < Grr/d(t +1).
Proof. First, Gy < oo whenever p(M) < 1. Now, it is clear that ||['(M,t)]| < Zi:o |1M#]| < Gar. Next, we can

also immediately bound the norm of the truncated block Toeplitz matrix ||7(M,#)|] < 3'_, |M?|| < Gy Finally,
we have |[T(M,t)||r < v/d(t+ )| T(M,t)|| < +/d(t+ 1)Gar, which concludes the proof. O

Lemma 19 (Norms of perturbed truncated block Toeplitz matrices). Let M € R4, and (A;)i>0 be a sequence
of matrices in R such that sup, | A¢|| < & for some e > 0. Consider the following matrices

Iq
mo,0
F(M7 AO:t) = 1,0 ) and

m¢—1,0
ko,11q
krami1  K12lq 0
_ | ko 1m K2.2MM ko3l
T(M,Ao:t)— 2,1M2,1 2,2M2 2 2,314 ,
Rt,1M¢ 1 Rt t—1Mtt—1 Kt tTet Kt,t+1fd

where for all s <t, my s = HZZS(M + Ag) and for all s <t+1, kys < 1. If p(M) <1 and € < where L

1
- 2| L[]3/2
denotes the solution of the Lyapunov equation corresponding to the pair (M, 14). Then, Ga(e), as defined (122),
is finite and for all t > 0 the following holds:

(1) [IT(M, Do) || < Gua(e),
(i6) | T (M, Do:e)|| < G (e).

Proof. We start by noting that Lemma 16 immediately applies since p(M) < 1, and € < W This ensures
that Gpr(e) < 0o. Next, we have

t—1 t—1 s
DM, Ap)| 1+ maoll <1+ 3 ] + Ar)
s=0 s=0 || k=0
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and
t—1
. <
IT(M, Do) < max massr + Z b s x|
S=
t—1 k+s
<1 ;
<) g, |10+ a9
s=0 — — 1=k
< Gule)
where in the second inequality used the fact that x; s <1 for all ¢,s. This concludes the proof. O

J.3.2 Proof of Lemma 15

Proof. First, let us note that for all s > 1, we may expand the dynamics and write

s—1

ys = Myo+ Y M*7' g,
k=0

We deduce that
2

t t t||s—1
DollyslP <2 IMoyol® 42 |I> S M ey (130)
s=0 s=0 s=0 [|k=0

Introducing the following matrices
I 1a €o
M ]\42 Iq o &1

F(Mv t) = M2 ) T(Ma t) = M M Id and §O:t = 52 )
M M. M2 M I £,
we may rewrite (130) in the following convenient form
t
D llysll® < 20T, )yol|* + 2| T (M, ¢ = 1o ]| (131)

s=0

We can now upper bound the term ||7T(M,t — 1)&p.4—1 H2 with high probability using Hanson-Wright inequality
(See Proposition 19). To this aim, we need upper bounds of || T(M,t — 1)||%, ||T(M,t —1)"T(M,t —1)||r, and
|T(M,t—1)"T(M,t—1)||. By a direct application of Lemma 18, we obtain

IT(M,t = 1)|F < Giydt
1T (Mt = 1)TT (Mt = 1) < |T(M,t = D|[|T(M,t = 1)||r < G3,Vdi
IT(M,t = 1)TT(M,t - 1)|| < G,
Applying Hanson-Wright inequality yields
Vp>0, P (||T(M,t Do < 0263, (dt +2y/dip+ zp)) >1— e (132)
Again by a direct application of Lemma 18, we have |[I'(M,t)|| < Gar, which leads to
IT (M, £)yoll* < Gasllyoll*. (133)

Finally, considering the inequality (131), the high probability upper bound (132) and the deterministic upper
bound (133), we obtain

t
Vp>0, P (Z lys|I* < 263, <||yoH2 + o (dt+2\/%+2p))> >1—e ",

s=0



Minimal Expected Regret in Linear Quadratic Control

J.3.3 Proof of Lemma 17

Proof. Denote for all s > 1, Ay, = My — M. Now, for all s > 1, we have

s—1 s—1 s—1
Ys = <H(M+Ak)> Yo + < H (M+Ai)> Ek-
k

k=0 =0 \i=k+1
Hence
t t s—1 2 b szt s—1 2
2 2 2 s 4
>t <2lanet Y| (TTar+s0 ) 23|52 (] orean)me . o2
s=0 s=0 k=0 s=0 ||k=0 i=k+1
Introducing the following matrices
[ 14 ko,11q
mo .0 kiamii  ki2la 0
T(M, Agy) = |M10|, T(M,Agy) = |F21M21  K2,2M22 Ka,31q ,
| T1¢.,0 Rt,1M¢ 1 R t—1Mt—1  Ke ¢ttt Ht,t+1fd
[aoéo
a161 ¢
a€ at
and oy = | 9262 where Vs <t, mys = H(MJrAk) and Vs <t+1, ko= —.
: k=s s
_atﬁt

We may rewrite (134) in the following convenient form

t
S 112 < 2IT(M, A1 )goll? + 20T (M, Aoy 1)1
s=0
< 2|[T(M, Ao—1)[Pllyoll* + 2/ T (M, Ag:p—1)1*[[€o:e—1 12
t—1

< 2| T(M, Aowe—1) P lyoll* + 2/ T (M, Ag.e—1)II* Y a2l€ >
s=0

By Hanson-Wright inequality, we have for all p > 0,
t—1
P <Z a3||&|1* < o®(dllagi—1 3 + 24/ dllaoe—1[I5p + 2P)> z1—e”. (135)
s=0
Next by Lemma 19, we have
DM, Ao:e)| < Gu(e) and  [|T(M, Do) < Gar(e).
It follows that for all p > 0,

t
P (Z lysl* < 2Gas () (llao:e |2 Ivoll* + o (dllao:e—1 13 + 24/ dllao:e-1l5p + 20)) >1—e”

s=0
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J.1 Sub-gaussian Vectors

Definition 1. A random vector ¢ taking values in R? is said to be zero-mean, o?-sub-gaussian if E[¢] = 0 and
0 2 .2
Vo € RY: Elexp(67€)] < exp <”2J>

Definition 2. A random variable X taking values in R is said to be zero-mean, and \-sub-exponential if E[X] =0
and

V|s| <

> =

: Elexp(s(X? — E[X?]))] < exp (8?2>

Lemma 20. Let X be a zero-mean, o2-sub-gaussian random variable taking values in R, then X? —E[X?] is a
zero-mean (40 )?-sub-exponential random variables taking values in R.

J.2 Hanson-Wright Inequality And e-net Arguments

We use the following version of Hanson-Wright inequality due to Hsu et al. (2012). This result result does not
require strong independence assumptions with the caveat that it is only a one sided high probability bound.
However this is sufficent for our purposes.

Proposition 19 (Hanson-Wright inequality). Let M € R™*"™ be a matriz, and & be a zero-mean, o2-sub-gaussian
random vector in RY. We have

Vo> 0, B(IME|? > o2(IM]% + 2M T M| y/p+ 2 MTM||p)) < e (136)

The following lemma can be found for instance in Vershynin (2018).

Lemma 21 (An e-net argument). Let W be an d x d symmetric random matriz, and € € (0,1/2). Furthermore,
let N be e-net of ST=1 with minimal cardinality. Then, for all p > 0, we have

d
2
P(|W] > p) < (6 + 1) max P(jlz"Wz| > (1—2¢)p).

J.3 Miscellaneous Lemmas

Lemma 22. For all a,a >0 and b € R, if t* > (2a/a) log(2a/a) 4 2b, then t* > alog(t) + b.

Lemma 23. Let (&:)i>0 denote a sequence of events (defined on a probability space). Assume that for some
a > 0, we have
Vo e (0,1), Vt:t*>c1+colog(l/d), P(&)>1-4.

Then,

V6 € (0,1), P N &l >1-3,
t>c) +cl log(1/6)

for some constants ¢ and ¢ with ¢} < ¢1 + (c2/@) log(eca/a), and ¢y < cs.

Proof of Lemma 25. The result stems from the union bound. By assumption, we have
Vo € (0,1), Vt* > ¢ + colog(t?/d), P(E) > 15/t

By Lemma 22, we have

t* > 2¢; + (4ea/a)log(dea /) + 2¢2log(1/6) == t > ¢ + colog(t?/9).
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Thus
Vé € (0,1),Vt > 2¢1 + 4ezlog(4es) + 2¢210g(1/9) - P(&) > 1— 6/t

Using the union bound, we get

V6 e (0,1), P N | >1-7%/6
t>c)+ch log(1/6)

where ¢} = 2¢; + (4dcz/a) log(4ca /) and ch = 2c¢o. Reparametrizing 6" = 725 /6 gives the desired result.

O



