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Abstract

Federated learning is a distributed optimiza-
tion paradigm that enables a large number
of resource-limited client nodes to coopera-
tively train a model without data sharing.
Previous works analyzed the convergence of
federated learning by accounting of data het-
erogeneity, communication/computation limi-
tations, and partial client participation. How-
ever, most assume unbiased client participa-
tion, where clients are selected such that the
aggregated model update is unbiased. In our
work, we present the convergence analysis of
federated learning with biased client selec-
tion and quantify how the bias affects conver-
gence speed. We show that biasing client
selection towards clients with higher local
loss yields faster error convergence. From
this insight, we propose Power-of-Choice,
a communication- and computation-efficient
client selection framework that flexibly spans
the trade-off between convergence speed and
solution bias. Extensive experiments demon-
strate that Power-of-Choice can converge
up to 3× faster and give 10% higher test ac-
curacy than the baseline random selection.

1 INTRODUCTION

Until recently, machine learning models were largely
trained in data centers (Dean et al., 2012) using pow-
erful computing nodes, fast inter-node communication
links, and large centrally available training datasets.
The future of machine learning lies in moving both data
collection as well as model training to the edge. Fed-
erated learning (FL) (McMahan et al., 2017; Kairouz
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et al., 2019; Bonawitz et al., 2019) considers a large
number of resource-constrained mobile devices that
collect training data from their environment. Due to
the devices’ limited communication capabilities and
privacy, the training data of the devices cannot be di-
rectly sent to the server. Instead, the devices locally
perform a few iterations of training using local-update
stochastic gradient descent (SGD) (Yu et al., 2019;
Stich, 2019; Wang and Joshi, 2021, 2019), and send
model updates periodically to the aggregating server.

Besides communication limitations, the key scalability
challenge faced by FL is that the devices (clients) can
have highly heterogeneous local datasets and compu-
tation speed. The effect of data heterogeneity on the
convergence of local-update SGD is analyzed in recent
works (Reddi et al., 2021; Haddadpour and Mahdavi,
2019; Khaled et al., 2020; Stich and Karimireddy, 2020;
Woodworth et al., 2020; Koloskova et al., 2020; Huo
et al., 2020; Zhang et al., 2020; Pathak and Wainwright,
2020; Malinovsky et al., 2020; Sahu et al., 2020) and
methods to overcome the adverse effects of data and
computational heterogeneity are proposed by Sahu et al.
(2020); Wang et al. (2021); Karimireddy et al. (2020),
among others.

Partial Client Participation. In practice, only a
small fraction of client nodes participate in each train-
ing round of FL, which can exacerbate the adverse
effects of data heterogeneity. While existing conver-
gence guarantees for full client participation and meth-
ods to tackle heterogeneity generalize to partial client
participation (Li et al., 2020b), these are limited to
unbiased client participation, where each client’s con-
tribution to the expected global objective optimized in
each round is proportional to its dataset size. Horváth
and Richtárik (2021) consider a biased client sampling
scheme. However, the updates sent by the selected
clients are normalized such that the aggregated up-
date is unbiased. To the best of our knowledge, this
work is the first to analyze biased client selection in FL
through the lens of selection skew towards clients with
higher local losses that results in a biased aggregated
update. Ruan et al. (2020) analyze the convergence
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with flexible device participation where the aggregated
update can be biased, but the effect of selecting clients
with higher local losses to the convergence of models
trained with FL is not investigated. Another line of
work including Nishio and Yonetani (2019) propose to
group clients based on hardware and wireless resources
to save communication resources.

Client Selection Aware of Local Loss. Adaptive
client selection that is cognizant of the training progress
of clients is not yet well-understood. Such biased client
selection strategies can accelerate error convergence in
heterogeneous environments by preferentially selecting
clients with higher local loss values, as we show in this
paper. This idea has been explored in recent empirical
studies (Goetz et al., 2019; Ribero and Vikalo, 2020;
Kim et al., 2020; Cho et al., 2020). Goetz et al. (2019)
proposed client selection with local loss (benchmarked
in our experiments) and Ribero and Vikalo (2020) pro-
posed utilizing the progression of clients’ weights. Kim
et al. (2020); Cho et al. (2020) also utilizes client loss
information with multi-arm bandits for client selec-
tion in FL. But these schemes are limited to empirical
demonstration without rigorous analysis of how selec-
tion skew affects convergence speed. Another relevant
line of work (Jiang et al., 2019; Katharopoulos and
Fleuret, 2018; Shah et al., 2020; Salehi et al., 2018)
employs importance sampling of data to speed-up con-
vergence of centralized SGD. They propose selecting
samples with highest loss or gradient norm to per-
form the next SGD iteration. In contrast, Shah et al.
(2020) proposes biased selection of lower loss samples
to improve robustness to outliers. Generalizing such
strategies to the FL setting is non-trivial due to the dis-
tributed and heterogeneous nature of the training data.
Concurrent work Fraboni et al. (2021) has proposed a
clustered client sampling scheme for FL to reduce the
variance of the clients’ aggregation weights in FL.

Our Contributions. In this paper, we present the
first convergence analysis of FL with biased client se-
lection that is cognizant of the training progress at
each client. We prove theoretically that biasing client
selection towards clients with higher local losses in-
creases the rate of convergence compared to unbiased
client selection. Using this insight, we propose the
Power-of-Choice client selection strategy and show
that Power-of-Choice yields up to 3× faster conver-
gence with 10% higher test performance than the stan-
dard federated averaging with random selection. We
also propose communication and computation efficient
variants of Power-of-Choice that incur minimal ad-
ditional resource overhead. In fact, we show that even
with 3× less clients participating in each round as com-
pared to random selection, Power-of-Choice gives
2× faster convergence and 5% higher test accuracy.

2 PROBLEM FORMULATION

Consider a cross-device FL setup with total K clients,
where client k has local dataset Bk consisting |Bk| =
Dk data samples. Clients are connected via a central
aggregating server and seek to collectively find the
model parameter w that minimizes the empirical risk:

F (w) =
1∑K

k=1Dk

K∑
k=1

∑
ξ∈Bk

f(w, ξ) =
K∑
k=1

pkFk(w)

(1)

where f(w, ξ) is the composite loss function for sam-
ple ξ and parameter vector w. The term pk =
Dk/

∑K
k=1Dk is the fraction of data at the k-th client,

and Fk(w) = 1
|Bk|

∑
ξ∈Bk

f(w, ξ) is the local objective
function of client k. In FL,w∗, andw∗k for k = 1, . . . ,K
that minimize F (w) and Fk(w) respectively can be dif-
ferent from each other. We define F ∗ = minw F (w) =
F (w∗) and F ∗k = minw Fk(w) = Fk(w∗k).

FL with Partial Client Participation. The most
common algorithm to solve (1) is federated averaging
(FedAvg) proposed by McMahan et al. (2017). The algo-
rithm divides the training into communication rounds.
At each round, the global server only selects a fraction
C of m = CK clients to participate in the training.
Each selected/active client performs τ iterations of lo-
cal SGD (Stich, 2019; Wang and Joshi, 2021; Yu et al.,
2019) and sends its locally updated model back to the
server. Then, the server updates the global model using
the local models and broadcasts the global model to a
new set of active clients.

Formally, we index the local SGD iterations with t ≥ 0.
The set of active clients at iteration t is denoted by
S(t). Since active clients performs τ steps of local
update, the active set S(t) also remains constant for
every τ iterations. That is, if (t + 1) mod τ = 0,
then S(t+1) = S(t+2) = · · · = S(t+τ). Accordingly, the
update rule of FedAvg is written as follows:

w
(t+1)
k ={
w

(t)
k − ηtgk(w

(t)
k , ξ

(t)
k ) for (t+ 1) mod τ 6= 0

1
m

∑
j∈S(t)

(
w

(t)
j − ηtgj(w

(t)
j , ξ

(t)
j )
)
, w(t+1) o.w.

(2)

where w
(t+1)
k denotes the local model parameters of

client k at iteration t, ηt is the learning rate, and
gk(w

(t)
k , ξ

(t)
k ) = 1

b

∑
ξ∈ξ(t)k

∇f(w
(t)
k , ξ) is the stochastic

gradient over mini-batch ξ(t)
k of size b that is randomly

sampled from client k’s local dataset Bk. Moreover,
w(t+1) denotes the global model at server. Although
w(t) is only updated every τ iterations, for the purpose
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(a) (b)

Figure 1: A toy example performing global model
updates with quadratic functions F1(w) and F2(w) as
the local objective, and F (w) = (F1(w) + F2(w))/2
as the global objective function with global minimum
w∗ for different sampling strategies (a) and (b). At
each round, a single client is selected to perform local
updates; (a): sampling client with larger local loss; (b):
sampling client uniformly at random (in the order of
2,2,1,1,2).

of convergence analysis we consider a virtual sequence
of w(t) that is updated at each iteration as follows:

w(t+1) = w(t) − ηtg(t) = w(t) − ηt
m

∑
k∈S(t)

gk(w
(t)
k , ξ

(t)
k )

(3)

with g(t) = 1
m

∑
k∈S(t) gk(w

(t)
k , ξ

(t)
k ). Note that in (2)

and (3) we do not weight the client models by their
dataset fractions pk because pk is considered in the
client selection scheme used to decide the set S(t). Our
convergence analysis can be generalized to when the
global model is a weighted average instead of a simple
average of client models, which we show in Appendix E
that our convergence analysis also covers the sampling
uniformly at random without replacement scheme pro-
posed by Li et al. (2020b). The set S(t) can be sampled
either with or without replacement. For sampling with
replacement, we assume that multiple copies of the
same client in the set S(t) behave as different clients,
that is, they perform local updates independently.

Client Selection Strategy. To guarantee FedAvg
to converge to the stationary points of the objective
function (1), most analysis frameworks (Li et al., 2020b;
Karimireddy et al., 2020; Wang et al., 2021) consider a
strategy that selects the set S(t) by sampling m clients
at random (with replacement) such that client k is
selected with probability pk, the fraction of data at
that client. This sampling scheme is unbiased since
it ensures that in expectation, the update rule (3) is
the same as full client participation. Hence, it enjoys
the same convergence properties as local-update SGD
methods (Stich, 2019; Wang and Joshi, 2021). We de-
note this unbiased random client selection strategy as
πrand. In our work, we consider a class of biased client

selection strategies that is cognizant of the global train-
ing progress. In the toy example for quadratic functions
in Fig. 1(a), we set S(t+1) = arg maxk∈[K] Fk(w(t)), a
single client with the highest local loss at the current
global model. In this example, the selection strategy
cannot guarantee that (3) equals to the full client par-
ticipation case in expectation. Nevertheless, the biased
selection strategy gives faster convergence to the global
minimum than the unbiased selection strategy (random
selection) in Fig. 1(b). With this observation, we define
a client selection strategy π as a function that maps
the current global model w to a specific selected set of
clients S(π,w). Note that we do not restrict π to only
be a biased client selection strategy.

3 CONVERGENCE ANALYSIS

In this section we analyze the convergence of feder-
ated averaging with partial device participation for any
client selection strategy π as defined above. This anal-
ysis reveals that biased client selection can give faster
convergence, albeit at the risk of having a non-vanishing
gap between the true optimum w∗ = arg minF (w) and
limt→∞w(t). We use this insight in Section 4 to pro-
pose an efficient client selection strategy that balances
convergence speed and bias as well as an adaptive
strategy that modulates the selection bias to gradually
decrease the non-vanishing gap.

3.1 Assumptions and Definitions

First we introduce the assumptions and definitions
utilized for our convergence analysis.
Assumption 3.1. F1, ..., Fk are all L−smooth, i.e.,
for all v and w, we have Fk(v) ≤ Fk(w) + (v −
w)T∇Fk(w) + L

2 ‖v −w‖22.
Assumption 3.2. F1, ..., Fk are all µ−strongly con-
vex, i.e., for all v and w, we have Fk(v) ≥ Fk(w) +
(v −w)T∇Fk(w) + µ

2 ‖v −w‖22.
Assumption 3.3. For the mini-batch ξk uniformly
sampled at random from Bk from user k, the resulting
stochastic gradient is unbiased, that is, E[gk(wk, ξk)] =
∇Fk(wk). Also, the variance of stochastic gradients
is bounded: E‖gk(wk, ξk) −∇Fk(wk)‖2 ≤ σ2 for k =
1, ...,K.
Assumption 3.4. The stochastic gradient’s ex-
pected squared norm is uniformly bounded, i.e.,
E‖gk(wk, ξk)‖2 ≤ G2 for k = 1, ...,K.

These assumptions are common in related literature
(Stich, 2019; Basu et al., 2019; Li et al., 2020b; Ruan
et al., 2020). Next, we introduce two core metrics, local-
global objective gap and selection skew, which feature
in the convergence analysis presented in Theorem 3.1.
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Definition 3.1 (Local-Global Objective Gap).
For the global optimum w∗ = arg minw F (w) and local
optimum w∗k = arg minw Fk(w) we define the local-
global objective gap as

Γ , F ∗ −
K∑
k=1

pkF
∗
k =

K∑
k=1

pk(Fk(w∗)− Fk(w∗k)). (4)

This definition was first introduced by Li et al. (2020b).
Note that Γ ≥ 0 is an inherent property of the local and
global objective functions, and it is independent of the
client selection strategy. A larger Γ implies higher data
heterogeneity. If Γ = 0 then it implies that the local
and global optimal values are consistent, and there is
no solution bias due to the client selection strategy (see
Theorem 3.1). Next, we define selection skew, which
captures the effect of the client selection strategy on
the local-global objective gap.

Definition 3.2 (Selection Skew). For any k ∈
S(π,w) we define,

ρ(S(π,w),w′) =
ES(π,w)[

1
m

∑
k∈S(π,w)(Fk(w′)− F ∗k )]

F (w′)−
∑K
k=1 pkF

∗
k

(5)

which reflects the skew of a client selection strategy π.
The first w in ρ(S(π,w),w′) is the parameter vector
that governs the client selection and w′ is the point
at which Fk and F in the numerator and denomina-
tor respectively are evaluated. Note that ES(π,w)[·] is
the expectation over the randomness from the selection
strategy π, since there can be multiple sets S that π
can map from a specific w. It is trivial to show that
ρ(S(π,w),w′) ≥ 0.

Since ρ(S(π,w),w′) is a function of versions of the
global model w and w′, which change during training,
we define two related metrics that are independent of
w and w′. These metrics enable us to obtain a conser-
vative error bound in the convergence analysis.

ρ , min
w,w′

ρ(S(π,w),w′) (6)

ρ̃ , max
w

ρ(S(π,w),w∗) (7)

where w∗ = arg minw F (w). From (6) and (7), we
have ρ ≤ ρ̃ for any client selection strategy π.

For the unbiased client selection strategy πrand we have
ρ(S(πrand,w),w′) = 1 for all w and w′ since the nu-
merator and denominator of (5) become equal, and
ρ = ρ̃ = 1. For a client selection strategy π that
chooses clients with higher Fk(w) more often, ρ and ρ̃
will be larger (and ≥ 1). In the convergence analysis we
show that a larger ρ implies faster convergence, albeit

with a potential error gap, which is proportional to
(ρ̃/ρ− 1). Motivated by this, in Section 4 we present
an adaptive client selection strategy that prefers select-
ing clients with higher loss Fk(w) and achieves faster
convergence speed with low solution bias.

3.2 Main Convergence Result

We present the convergence for any client selection
strategy π for federated averaging with partial device
participation in terms of Γ and selection skew ρ, ρ̃.
Theorem 3.1 (Convergence with Decaying Learning
Rate). Under Assumptions 3.1 to 3.4, for learning
rate ηt = 1

µ(t+γ) and γ = 4L
µ , with any client selection

strategy π, after T iterations of federated averaging with
partial device participation we have the convergence as:

E[F (w(T ))]− F ∗ ≤ 1

(T + γ)

[
4L(32τ2G2 + σ2/m)

3µ2ρ
+

8L2Γ

µ2
+
Lγ‖w(0) −w∗‖2

2

]
+

8LΓ

3µ

(
ρ̃

ρ
− 1

)
︸ ︷︷ ︸

Non-vanishing bias,Q(ρ,ρ̃)

(8)

To the best of our knowledge, Theorem 3.1 provides the
first convergence analysis of federated averaging with a
biased client selection strategy π in the lens of selection
skew. We show the results for the fixed learning rate
case in Appendix A. The proof for Theorem 3.1 is
presented in Appendix C. Our convergence result is
a general analysis that encompasses random selection
and any selection strategy π that is cognizant of the
training progress. In the following paragraphs, we
discuss the effect of the two terms in the RHS of (8)
in detail.

Large ρ and Faster Convergence. A key insight
from Theorem 3.1 is that a larger selection skew ρ
results in faster convergence at the rate O( 1

Tρ ) as can
be seen in the first term in the RHS of (8). This theo-
retically proves that selecting clients with higher local
losses can improve the convergence rate of federated
averaging with partial device participation. Since we
obtain ρ by taking a minimum of the selection skew
ρ(S(π,w),w′) over w,w′, this is a conservative bound
on the true convergence rate. In practice, since the
selection skew ρ(S(π,w),w′) changes during training
depending on the current global model w and the local
models w′, the true convergence rate can be improved
by a factor larger than and at least equal to ρ.

Non-vanishing Bias Term. The second term
Q(ρ, ρ̃) = 8LΓ

3µ

(
ρ̃
ρ − 1

)
in the RHS of (8) denotes the

solution bias, which is dependent on the selection strat-
egy. By the definitions of ρ and ρ̃, it follows that ρ̃ ≥ ρ,
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which implies that Q(ρ, ρ̃) ≥ 0. For an unbiased se-
lection strategy, we have ρ = ρ̃ = 1, Q(ρ, ρ̃) = 0, and
hence (8) recovers the previous bound for unbiased
selection strategy (Li et al., 2020b). For ρ > 1, while
we gain faster convergence rate by a factor of ρ, we
cannot guarantee Q(ρ, ρ̃) = 0. Thus, there is a trade-off
between the convergence speed and the solution bias.
In the experimental results, we show that even with
biased selection strategies, the term ρ̃

ρ − 1 in Q(ρ, ρ̃)

can be close to 0, and Q(ρ, ρ̃) has a negligible effect on
the final error floor. We also show that by adaptively
modulating the selection skew in the client selection
strategy, we can gradually reduce the solution bias
Q(ρ, ρ̃) to 0.

4 PROPOSED POWER-OF-CHOICE
CLIENT SELECTION STRATEGY

In Section 4, we discover that a selection strategy π
that prefers clients with larger local loss will result in a
larger ρ, yielding faster convergence. With this insight,
a naive client selection strategy can be choosing the
clients with highest local loss Fk(w). However, a larger
selection skew ρ may result in a larger ρ/ρ̃, i.e., a larger
non-vanishing error term. Moreover, to find the current
local loss Fk(w), it requires sending the current global
model to all K clients and having them evaluate Fk(w)
and sending it back. Such additional communication
and computation cost can be prohibitively high due
to the typically large number of clients and limited
communication and computation capabilities.

We leverage such trade-offs amongst convergence speed,
solution bias, and communication/computation cost
by our proposed Power-of-Choice client selection
strategy1. In Power-of-Choice (denoted by πpow-d),
the server chooses the active client set S(t) as follows:

1. Sample the Candidate Client Set. The central
server samples a candidate set A of d (m ≤ d ≤ K)
clients without replacement such that client k is
chosen with probability pk, the fraction of data at
the k-th client for k = 1, . . .K.

2. Estimate Local Losses. The server sends the
current global model w(t) to the clients in set A,
and these clients compute and send back to the
central server their local loss Fk(w(t)).

3. Select Highest Loss Clients. From the candi-
date set A, the central server constructs the active
client set S(t) by selecting m = max(CK, 1) clients
with the largest values Fk(w(t)), with ties broken at
1Power-of-Choice is based on the power of d choices

load balancing strategy (Mitzenmacher, 1996), which is
extensively used in queueing systems.

random. These S(t) clients participate in the train-
ing during the next round, consisting of iterations
t+ 1, t+ 2, . . . t+ τ .

Variations of πpow-d. The three steps of πpow-d
can be flexibly modified to reflect practical consider-
ations. For example, intermittent client availability
can be accounted for in step 1 by constructing set A
only from the set of available clients in that round.
We demonstrate the performance of πpow-d with inter-
mittent client availability in Appendix G.3. The local
computation and server-client communication cost in
step 2 can be reduced or eliminated by the following
proposed variants of πpow-d: πcpow-d and πrpow-d (see
Appendix F for their pseudo-codes). We also diminish
the solution bias while still gaining convergence speed
by the proposed variant πadapow-d below.

• Computation-efficient Variant πcpow-d: Saving
computation cost, instead of evaluating Fk(w) with
the entire local dataset Bk, we use an estimate∑
ξ∈ξ̂k f(w, ξ)/|ξ̂k|, where ξ̂k is the mini-batch of

b samples sampled uniformly at random from Bk.

• Communication- and Computation-efficient
Variant πrpow-d: Saving both computation and com-
munication cost, selected clients for each round send
their accumulated averaged loss over local itera-
tions, i.e., 1

τ |ξ(l)k |

∑t
l=t−τ+1

∑
ξ∈ξ(l)k

f(w
(l)
k , ξ) when

they send their local models to the server. The
server uses the latest received value from each client
as a proxy for Fk(w) to select clients. For clients not
yet selected, the latest value is set to ∞.

• Adaptive Selection Skew Variant πadapow-d: To
minimize the non-vanishing bias term in Theorem 3.1
while simultaneously gaining the benefit of conver-
gence speed from ρ, we gradually reduce d until
d = m2. This enables convergence speed up in the
initial training phase, while eventually diminishing
the non-vanishing bias term when d = m. Which d
to start with and how gradually we decrease d tom is
flexible, analogous to setting the hyper-parameters.

Intuitively, a large fixed d in πadapow-d allows the
global model to move fast towards the global opti-
mum, but at the same time can prevent the global
model from actually converging to the optimum due
to the non-vanishing bias. Hence, gradually decreas-
ing d for the convergence of the global model to the
optimum can be compared to the effect of modulating
the learning rate through the training process.

2d = m makes the Power-of-Choice strategy equiv-
alent to an unbiased sampling strategy, which has zero
non-vanishing bias.
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(a) K = 30 (b) K = 100 (c) K = 100 (log-scale) (d) ρ vs ρ/ρ̃

Figure 2: (a)-(c): Global loss of πrand, πpow-d, and πadapow-d for the quadratic simulations with C = 0.1. πpow-d
convergences faster than πrand and as convergence speed increases the solution bias also increases for πpow-d.
πadapow-d is able to eliminate this solution bias while gaining nearly identical convergence speed to πpow-d; (d):
Estimated theoretical values ρ and ρ/ρ̃ for the quadratic simulations. The theoretical values of convergence speed
(ρ) and bias (ρ̃/ρ) are consistent with the results shown in Fig. 2(a)-(b) for πrand and πpow-d.

(a) m = 1 (b) m = 3

Figure 3: Logistic regression loss on Synthetic(1,1) for
πrand, πpow-d, and πadapow-d, with d ∈ {2m, 10m}, K =
30 and m ∈ {1, 3}. πpow-d converges approximately 3×
faster for d = 10m and 2× faster for d = 2m than πrand
to the global loss ≈ 0.7. πadapow-d is able to converge
to the minimum global loss 3× faster than πrand.

Selection Skew in Power-of-Choice. The size
d of the candidate client set A controls the trade-off
between convergence speed and solution bias. With
d = m, Power-of-Choice becomes random client
sampling without replacement in proportion of pk. As
d increases, the selection skew ρ increases, giving faster
error convergence at the risk of a higher error floor.
However, note that the convergence analysis replaces
ρ(w,w′) with ρ to get a conservative error bound. In
practice, the convergence speed and the solution bias
is dictated by ρ(w(τbt/τc),w(t)) which changes during
training. With πpow-d, which is biased towards higher
local losses, we expect the selection skew ρ(w,w′) to re-
duce through the course of training. We conjecture that
this is the reason for πpow-d giving faster convergence
as well as little or no solution bias in our experiments
for DNNs (non-convex) presented in Section 5.

5 EXPERIMENTAL RESULTS

We evaluate our proposed πpow-d and its practical vari-
ants πcpow-d, πrpow-d, and πadapow-d by five sets of exper-
iments: (1) quadratic optimization, (2) logistic regres-
sion on a synthetic federated dataset, Synthetic(1,1)
(Sahu et al., 2020), (3) MLP for image classification
on a non-iid partitioned FMNIST dataset (Xiao et al.,
2017), (4) CNN for image classification on a non-iid
partitioned CIFAR10 dataset (Krizhevsky et al., 2009),
and (5) MLP for sentiment classification on the Twit-
ter dataset (Go et al., 2009). We also benchmark the
selection strategy proposed by Goetz et al. (2019), ac-
tive FL, denoted as πafl. Details of the experimental
setup are provided in Appendix F, and the code for
all experiments are shared in the supplementary mate-
rial. To validate consistency in our results, we present
additional experiments with MLP trained on a non-
iid partitioned EMNIST (Cohen et al., 2017) dataset
sorted by digits for image classification with K = 500
clients in Appendix G.4. Moreover we show the effect
of mini-batch size and local epochs on the performance
of Power-of-Choice in Appendix G.6

Quadratic and Synthetic Simulations. In
Fig. 2(a), even with few clients (K = 30), πpow-d con-
verges faster than πrand with nearly negligible solution
bias for small d. The convergence speed increases with
the increase in d, at the cost of higher error floor due
to the solution bias. For K = 100 in Fig. 2(b), πpow-d
shows convergence speed-up as with K = 30, but the
solution bias is smaller. Fig. 2(d) shows the theoreti-
cal values ρ and ρ̃/ρ which represents the convergence
speed and the solution bias respectively in our conver-
gence analysis. Compared to πrand, πpow-d has higher
ρ for all d implying higher convergence speed than
πrand. By varying d we can span different points on
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(a) Test accuracy and training loss for α = 2 (b) Test accuracy and training loss for α = 0.3

Figure 4: Test accuracy and training loss for πpow-d for varying d with K = 100, C = 0.03 for training MLP on
FMNIST. For both small and large α, πpow-d achieves at least 10% test accuracy improvement than πrand and
the training loss converges at a much higher rate than πrand.

(a) Test accuracy and training loss for α = 2 (b) Test accuracy and training loss for α = 0.3

Figure 5: Test accuracy and training loss for communication- and computation-efficient πcpow-d and πrpow-d with
K = 100, C = 0.03 for training MLP on FMNIST. πrpow-d which requires no additional communication and
minor computation, yields higher test accuracy than πrand and πafl.

the trade-off between the convergence speed and bias.
For d = 15 and K = 100, ρ̃/ρ of πpow-d and πrand are
approximately identical, but πpow-d has higher ρ, im-
plying that πpow-d can yield higher convergence speed
with negligible solution bias. In Appendix G.1, we
present the clients’ selected frequency ratio for πpow-d
and πrand which gives novel insights regarding the dif-
ference between the two strategies. For the synthetic
dataset simulations, we present the global losses in
Fig. 3 for πrand and πpow-d for different d and m. We
show that πpow-d converges approximately 3× faster to
the global loss ≈ 0.7 than πrand when d = 10m, with a
slightly higher error floor. Even with d = 2m, we get
2× faster convergence to global loss ≈ 0.7 than πrand.

Elimination of Selection Skew. For πpow-d, the se-
lection skew is the trade-off for the convergence speed
gain. We eliminate this selection skew while maintain-
ing the benefit of convergence speed with πadapow-d. In
Fig. 2(a)-(b), πadapow-d shows a convergence speed sim-
ilar to πpow-d, d = K, but has no selection skew, con-
verging to the same minimum as πrand (see Fig. 2(c)).
In Fig. 3, πadapow-d again shows a convergence speed
similar to πpow-d, d = 10m, but has no adversarial selec-

tion skew. In fact, πadapow-d converges to the minimum
global loss value at least 3 × faster than πrand. Hence
πadapow-d gains the benefit of both worlds from biased
client selection: convergence speed and elimination of
selection skew.

Performance of πpow-d. As elaborated in Ap-
pendix F, α determines the data heterogeneity across
clients (i.e., dataset size and distribution discrepancies
across the clients). Smaller α indicates larger data
heterogeneity. In Fig. 4, we present the test accuracy
and training losses for πpow-d and πrand for the FM-
NIST experiments with α = 0.3 and α = 2. We can
see that πpow-d achieves approximately 10% and 5%
higher test accuracy than πrand and πafl respectively
for both α = 2 and α = 0.3. For higher α, larger d
performs better than smaller d. Fig. 4(a) shows that
this performance improvement due to the increase of d
eventually converges. For smaller α, as in Fig. 4(b),
smaller d = 6 performs better than larger d which
shows that too much solution bias is adversarial to the
performance in the presence of large data heterogeneity.
Moreover note that the adversarial solution bias is not
present in the non-convex DNN experiments.
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(a) Test accuracy and training loss for α = 2 (b) Test accuracy and training loss for α = 0.3

Figure 6: Test accuracy and training loss for communication- and computation-efficient πcpow-d and πrpow-d with
K = 100, C = 0.09 for training CNN on CIFAR10. πrpow-d which requires no additional communication and
minor computation, yields higher test accuracy than πrand and πafl.

Table 1: Comparison of R60, tcomp (sec), and test accuracy (%) with α = 0.3 for training MLP with FMNIST. In
the parentheses we show the ratio of each value with that for πrand with C = 0.1.

C = 0.1 C = 0.03

rand rand pow-d, d = 6 cpow-d, d = 6 rpow-d, d = 50 afl
R60 172 234(1.36) 89(0.52) 80 (0.47) 98(0.57) 121(0.70)
tcomp 0.43 0.36(0.85) 0.48(1.13) 0.38(0.88) 0.37 (0.85) 0.36(0.84)
Test Acc. 71.21±2.41 64.87±1.97 76.47±0.87 76.63±0.79 76.56±1.00 73.28±1.05

Performance of the Communication- and
Computation-Efficient variants. Next, we evalu-
ate πcpow-d and πrpow-d which were introduced in Sec-
tion 4. In Fig. 5, we show for the FMNIST experiments
that for α = 2, πrpow-d and πcpow-d each yields approx-
imately 5% and 6% higher accuracy than πrand, but
both yield lower accuracy than πpow-d that utilizes
the highest computation and communication resources.
For α = 0.3, πcpow-d and πrpow-d perform as well as
πpow-d and give a 10% accuracy improvement over
πrand. Moreover, πpow-d, πrpow-d and πcpow-d all have
higher accuracy and faster convergence than πafl. In
Fig. 6 we show that the results for the CIFAR10 exper-
iments are consistent with the results for FMNIST in
Fig. 5 in terms of the performance of πpow-d, πcpow-d,
and πrpow-d over πrand and πafl. Moreover in Fig. 7,
we demonstrate that all Power-of-Choice strategies
outperform in test accuracy than that of πrand and πafl
for the Sent140 experiment.

Communication Efficiency. We evaluate the
communication and computation efficiency of
Power-of-Choice by comparing different strategies
in terms of R60, the number of communication rounds
required to reach test accuracy 60%, and tcomp, the
average computation time (in seconds) spent per
round. The computation time includes the time taken
by the central server to select the clients (including
the computation time for the d clients to compute
their local loss values) and the time taken by selected
clients to perform local updates. In Table 1, for the

Figure 7: Test accuracy and training loss for
communication- and computation-efficient πcpow-d and
πrpow-d with K = 314, m = 8 for training MLP on
Sent140. πrpow-d which requires no additional com-
munication and minor computation, yields higher test
accuracy than πrand and πafl.

FMNIST experiment with only C = 0.03 fraction of
clients, πpow-d, πcpow-d, and πrpow-d have about 5%
higher test accuracy than (πrand, C = 0.1). The R60

for πpow-d, πcpow-d, πrpow-d is 0.52, 0.47, 0.57 times
that of (πrand, C = 0.1) respectively. This implies that
even for πrpow-d which does not incur any additional
communication cost for client selection, we can get a
2× reduction in the number of communication rounds
using 1/3 of clients compared to (πrand, C = 0.1) and
still get higher test accuracy performance. Note that
the computation time tcomp for πcpow-d and πrpow-d
with C = 0.03 is smaller than that of πrand with
C = 0.1. In Appendix G.2, we show that the results
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for α = 2 are consistent with the α = 0.3 case shown in
Table 1. In Appendix G.5, we show that for C = 0.1,
the results are consistent with the C = 0.03 case.

6 CONCLUDING REMARKS

In this work, we present the convergence guarantees
for FL with partial device participation with any bi-
ased client selection strategy. We show that biasing
client selection can speed up the convergence at the rate
O( 1

Tρ ) where ρ is the selection skew towards clients with
higher local losses. From this insight, we propose the
adaptive client selection strategy Power-of-Choice.
Experiments on natural image and language datasets
validate that Power-of-Choice yields 3× faster
convergence and 10% higher test accuracy than the
baseline federated averaging with random selection.
Even with using fewer clients than random selection,
Power-of-Choice converges 2× faster with high test
performance. An interesting future direction is to im-
prove the fairness (Li et al., 2020a; Yu et al., 2020;
Lyu et al., 2020; Mohri et al., 2019) and robustness
(Pillutla et al., 2019) of Power-of-Choice to use a
different metric such as the clipped loss or the q-fair
loss proposed by Li et al. (2020a) instead of Fk(w).
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Supplementary Material:
Towards Understanding Biased Client Selection in Federated Learning

A Additional Theorem

Theorem A.1 (Convergence with Fixed Learning Rate). Under Assumptions 3.1 to 3.4, a fixed learning rate
η ≤ min{ 1

2µB ,
1

4L} where B = 1 + 3ρ
8 , and any client selection strategy π as defined above, the error after T

iterations of federated averaging with partial device participation satisfies

F (w(T ))− F ∗

≤ L

µ

[
1− ηµ

(
1 +

3ρ

8

)]T F (w(0))− F ∗ −
4
[
η
(

32τ2G2 + σ2

m + 6ρLΓ
)

+ 2Γ(ρ̃− ρ)
]

8 + 3ρ


︸ ︷︷ ︸

Vanishing Term

+
4Lη

(
32τ2G2 + σ2

m + 6ρLΓ
)

µ(8 + 3ρ)
+

8LΓ(ρ̃− ρ)

µ(8 + 3ρ)︸ ︷︷ ︸
Non-vanishing bias

(9)

As T →∞ the first term in (9) goes to 0 and the second term becomes the bias term for the fixed learning rate
case. For a small η, we have that the bias term for the fixed learning rate case in Theorem A.1 is upper bounded
by 8LΓ

3µ

(
ρ̃
ρ − 1

)
which is identical to the decaying-learning rate case. The proof is presented in Appendix D.

B Preliminaries for Proof of Theorem 3.1 and Theorem A.1

We present the preliminary lemmas used for proof of Theorem 3.1 and Theorem A.1. We will denote the
expectation over the sampling random source S(t) as ES(t) and the expectation over all the random sources as E.

Lemma B.1. Suppose Fk is L−smooth with global minimum at w∗k, then for any wk in the domain of Fk, we
have that

‖∇Fk(wk)‖2 ≤ 2L(Fk(wk)− Fk(w∗k)) (10)

Proof.

Fk(wk)− Fk(w∗k)− 〈∇Fk(w∗k),wk −w∗k〉 ≥
1

2L
‖∇Fk(wk)−∇Fk(w∗k)‖2 (11)

Fk(wk)− Fk(w∗k) ≥ 1

2L
‖∇Fk(wk)‖2 (12)

Lemma B.2 (Expected average discrepancy between w(t) and w
(t)
k for k ∈ S(t)).

1

m
E[
∑
k∈S(t)

‖w(t) −w
(t)
k ‖

2] ≤ 16η2
t τ

2G2 (13)
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Proof.

1

m

∑
k∈S(t)

‖w(t) −w
(t)
k ‖

2 =
1

m

∑
k∈S(t)

‖ 1

m

∑
k′∈S(t)

(w
(t)
k′ −w

(t)
k )‖2 (14)

≤ 1

m2

∑
k∈S(t)

∑
k′∈S(t)

‖w(t)
k′ −w

(t)
k ‖

2 (15)

=
1

m2

∑
k 6=k′,

k,k′∈S(t)

‖w(t)
k′ −w

(t)
k ‖

2 (16)

Observe from the update rule that k, k′ are in the same set S(t) and hence the terms where k = k′ in the
summation in (15) will be zero resulting in (16). Moreover for any arbitrary t there is a t0 such that 0 ≤ t− t0 < τ

that w(t0)
k′ = w

(t0)
k since the selected clients are updated with the global model at every τ . Hence even for an

arbitrary t we have that the difference between ‖w(t)
k′ −w

(t)
k ‖2 is upper bounded by τ updates. With non-increasing

ηt over t and ηt0 ≤ 2ηt, (16) can be further bounded as,

1

m2

∑
k 6=k′,

k,k′∈S(t)

‖w(t)
k′ −w

(t)
k ‖

2 ≤ 1

m2

∑
k 6=k′,

k,k′∈S(t)

‖
t0+τ−1∑
i=t0

ηi(gk′(w
(i)
k′ , ξ

(i)
k′ )− gk(w

(i)
k , ξ

(i)
k ))‖2 (17)

≤
η2
t0τ

m2

∑
k 6=k′,

k,k′∈S(t)

t0+τ−1∑
i=t0

‖(gk′(w(i)
k′ , ξ

(i)
k′ )− gk(w

(i)
k , ξ

(i)
k ))‖2 (18)

≤
η2
t0τ

m2

∑
k 6=k′,

k,k′∈S(t)

t0+τ−1∑
i=t0

[2‖gk′(w(i)
k′ , ξ

(i)
k′ )‖2 + 2‖gk(w

(i)
k , ξ

(i)
k )‖2] (19)

By taking expectation over (19),

E[
1

m2

∑
k 6=k′,

k,k′∈S(t)

‖w(t)
k′ −w

(t)
k ‖

2] ≤
2η2
t0τ

m2
E[

∑
k 6=k′,

k,k′∈S(t)

t0+τ−1∑
i=t0

(‖gk′(w(i)
k′ , ξ

(i)
k′ )‖2 + ‖gk(w

(i)
k , ξ

(i)
k )‖2)] (20)

≤
2η2
t0τ

m2
ES(t) [

∑
k 6=k′,

k,k′∈S(t)

t0+τ−1∑
i=t0

2G2] (21)

=
2η2
t0τ

m2
ES(t) [

∑
k 6=k′,

k,k′∈S(t)

2τG2] (22)

≤ 16η2
t (m− 1)τ2G2

m
(23)

≤ 16η2
t τ

2G2 (24)

where (23) is because there can be at most m(m− 1) pairs such that k 6= k′ in S(t).

Lemma B.3 (Upper bound for expectation over ‖w(t) −w∗‖2 for any selection strategy π). With E[·], the total
expectation over all random sources including the random source from selection strategy we have the upper bound:

E[‖w(t) −w∗‖2] ≤ 1

m
E[
∑
k∈S(t)

‖w(t)
k −w∗‖2] (25)
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Proof.

E[‖w(t) −w∗‖2] = E[‖ 1

m

∑
k∈S(t)

w
(t)
k −w∗‖2] = E[‖ 1

m

∑
k∈S(t)

(w
(t)
k −w∗)‖2] (26)

≤ 1

m
E[
∑
k∈S(t)

‖w(t)
k −w∗‖2] (27)

C Proof of Theorem 3.1

With g(t) = 1
m

∑
k∈S(t) gk(w

(t)
k , ξ

(t)
k ) as defined in Section 2, we have that

‖w(t+1) −w∗‖2 =‖w(t) − ηtg(t) −w∗‖2 (28)

=‖w(t) − ηtg(t) −w∗ − ηt
m

∑
k∈S(t)

∇Fk(w
(t)
k ) +

ηt
m

∑
k∈S(t)

∇Fk(w
(t)
k )‖2 (29)

=‖w(t) −w∗ − ηt
m

∑
k∈S(t)

∇Fk(w
(t)
k )‖2 + η2

t ‖
1

m

∑
k∈S(t)

∇Fk(w
(t)
k )− g(t)‖2

+ 2ηt〈w(t) −w∗ − ηt
m

∑
k∈S(t)

∇Fk(w
(t)
k ),

1

m

∑
k∈S(t)

∇Fk(w
(t)
k )− g(t)〉 (30)

=‖w(t) −w∗‖2−2ηt〈w(t) −w∗,
1

m

∑
k∈S(t)

∇Fk(w
(t)
k )〉

︸ ︷︷ ︸
A1

+ 2ηt〈w(t) −w∗ − ηt
m

∑
k∈S(t)

∇Fk(w
(t)
k ),

1

m

∑
k∈S(t)

∇Fk(w
(t)
k )− g(t)〉

︸ ︷︷ ︸
A2

+ η2
t ‖

1

m

∑
k∈S(t)

∇Fk(w
(t)
k )‖2

︸ ︷︷ ︸
A3

+ η2
t ‖

1

m

∑
k∈S(t)

∇Fk(w
(t)
k )− g(t)‖2

︸ ︷︷ ︸
A4

(31)
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First let’s bound A1.

− 2ηt〈w(t) −w∗,
1

m

∑
k∈S(t)

∇Fk(w
(t)
k )〉 = −2ηt

m

∑
k∈S(t)

〈w(t) −w∗,∇Fk(w
(t)
k )〉 (32)

= −2ηt
m

∑
k∈S(t)

〈w(t) −w
(t)
k ,∇Fk(w

(t)
k )〉 − 2ηt

m

∑
k∈S(t)

〈w(t)
k −w∗,∇Fk(w

(t)
k )〉 (33)

≤ ηt
m

∑
k∈S(t)

(
1

ηt
‖w(t) −w

(t)
k ‖

2 + ηt‖∇Fk(w
(t)
k )‖2

)
− 2ηt

m

∑
k∈S(t)

〈w(t)
k −w∗,∇Fk(w

(t)
k )〉 (34)

=
1

m

∑
k∈S(t)

‖w(t) −w
(t)
k ‖

2 +
η2
t

m

∑
k∈S(t)

‖∇Fk(w
(t)
k )‖2 − 2ηt

m

∑
k∈S(t)

〈w(t)
k −w∗,∇Fk(w

(t)
k )〉 (35)

≤ 1

m

∑
k∈S(t)

‖w(t) −w
(t)
k ‖

2 +
2Lη2

t

m

∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )

−2ηt
m

∑
k∈S(t)

〈w(t)
k −w∗,∇Fk(w

(t)
k )〉

(36)

≤ 1

m

∑
k∈S(t)

‖w(t) −w
(t)
k ‖

2 +
2Lη2

t

m

∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )

−2ηt
m

∑
k∈S(t)

[
(Fk(w

(t)
k )− Fk(w∗)) +

µ

2
‖w(t)

k −w∗‖2
] (37)

≤ 16η2
t τ

2G2 − ηtµ

m

∑
k∈S(t)

‖w(t)
k −w∗‖2 +

2Lη2
t

m

∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )

−2ηt
m

∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w∗))

(38)

where (34) is due to the AM-GM inequality and Cauchy–Schwarz inequality, (36) is due to Lemma B.1, (37) is
due to the µ-convexity of Fk, and (38) is due to Lemma B.2. Next, in expectation, E[A2] = 0 due to the unbiased
gradient. Next again with Lemma B.1 we bound A3 as follows:

η2
t ‖

1

m

∑
k∈S(t)

∇Fk(w
(t)
k )‖2 =

η2
t

m

∑
k∈S(t)

∥∥∥∇Fk(w
(t)
k )
∥∥∥2

(39)

≤ 2Lη2
t

m

∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k ) (40)

Lastly we can bound A4 using the bound of variance of stochastic gradients as,

E[η2
t ‖

1

m

∑
k∈S(t)

∇Fk(w
(t)
k )− g(t)‖2] = η2

tE[‖
∑
k∈S(t)

1

m
(gk(w

(t)
k , ξ

(t)
k )−∇Fk(w

(t)
k ))‖2] (41)

=
η2
t

m2
ES(t) [

∑
k∈S(t)

E‖gk(w
(t)
k , ξ

(t)
k )−∇Fk(w

(t)
k )‖2] (42)

≤ η2
t σ

2

m
(43)



Towards Understanding Biased Client Selection in Federated Learning

Using the bounds of A1, A2, A3, A4 above we have that the expectation of the LHS of (28) is bounded as

E[‖w(t+1) −w∗‖2]

≤E[‖w(t) −w∗‖2]− ηtµ

m
E[
∑
k∈S(t)

‖w(t)
k −w∗‖2] + 16η2

t τ
2G2

+
η2
t σ

2

m
+

4Lη2
t

m
E[
∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )]− 2ηt

m
E[
∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w∗))] (44)

≤(1− ηtµ)E[‖w(t) −w∗‖2] + 16η2
t τ

2G2

+
η2
t σ

2

m
+

4Lη2
t

m
E[
∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )]− 2ηt

m
E[
∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w∗))]

︸ ︷︷ ︸
A5

(45)

where (45) is due to Lemma B.3. Now we aim to bound A5 in (45). First we can represent A5 in a different form
as:

E[
4Lη2

t

m

∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )− 2ηt

m

∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w∗))]

=E[
4Lη2

t

m

∑
k∈S(t)

Fk(w
(t)
k )− 2ηt

m

∑
k∈S(t)

Fk(w
(t)
k )− 2ηt

m

∑
k∈S(t)

(F ∗k − Fk(w∗))

+
2ηt
m

∑
k∈S(t)

F ∗k −
4Lη2

t

m

∑
k∈S(t)

F ∗k ] (46)

=E[
2ηt(2Lηt − 1)

m

∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )

︸ ︷︷ ︸
A6

] + 2ηtE[
1

m

∑
k∈S(t)

(Fk(w∗)− F ∗k )] (47)

Now with ηt < 1/(4L) and νt = 2ηt(1− 2Lηt), we have that A6 can be rewritten and bounded as

− νt
m

∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w(t)) + Fk(w(t))− F ∗k )

=− νt
m

∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w(t)))− νt

m

∑
k∈S(t)

(Fk(w(t))− F ∗k ) (48)

≤− νt
m

∑
k∈S(t)

[
〈∇Fk(w(t)),w

(t)
k −w(t)〉+

µ

2
‖w(t)

k −w(t)‖2
]
− νt
m

∑
k∈S(t)

(Fk(w(t))− F ∗k ) (49)

≤νt
m

∑
k∈S(t)

[
ηtL(Fk(w(t))− F ∗k ) +

(
1

2ηt
− µ

2

)
‖w(t)

k −w(t)‖2
]
− νt
m

∑
k∈S(t)

(Fk(w(t))− F ∗k ) (50)

=− νt
m

(1− ηtL)
∑
k∈S(t)

(Fk(w(t))− F ∗k ) +

(
νt

2ηtm
− νtµ

2m

) ∑
k∈S(t)

‖w(t)
k −w(t)‖2 (51)

≤− νt
m

(1− ηtL)
∑
k∈S(t)

(Fk(w(t))− F ∗k ) +
1

m

∑
k∈S(t)

‖w(t)
k −w(t)‖2 (52)

where (49) is due to µ−convexity, (50) is due to Lemma B.1 and the AM-GM inequality and Cauchy–Schwarz
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inequality, and (52) is due to the fact that νt(1−ηtµ)
2ηt

≤ 1. Hence using this bound of A6 we can upper bound A5 as

E[
4Lη2

t

m

∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )− 2ηt

m

∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w∗))]

≤ 1

m
E[
∑
k∈S(t)

‖w(t)
k −w(t)‖2]− νt

m
(1− ηtL)E[

∑
k∈S(t)

(Fk(w(t))− F ∗k )]

+
2ηt
m

E[
∑
k∈S(t)

(Fk(w∗)− F ∗k )] (53)

≤16η2
t τ

2G2 − νt
m

(1− ηtL)E[
∑
k∈S(t)

(Fk(w(t))− F ∗k )] +
2ηt
m

E[
∑
k∈S(t)

(Fk(w∗)− F ∗k )] (54)

=16η2
t τ

2G2 − νt(1− ηtL)E[ρ(S(π,w(τbt/τc)),w(t))(F (w(t))−
K∑
k=1

pkF
∗
k )]

+ 2ηtE[ρ(S(π,w(τbt/τc)),w∗)(F ∗ −
K∑
k=1

pkF
∗
k )] (55)

≤16η2
t τ

2G2−νt(1− ηtL)ρ(E[F (w(t))]−
K∑
k=1

pkF
∗
k )︸ ︷︷ ︸

A7

+2ηtρ̃Γ (56)

where (55) is due to the definition of ρ(S(π,w),w′) in Definition 3.2 and (56) is due to the definition of Γ in
Definition 3.1 and the definitions of ρ, ρ̃ in Definition 3.2. We can expand A7 in (56) as

− νt(1− ηtL)ρ(E[F (w(t))]−
K∑
k=1

pkF
∗
k ) (57)

=− νt(1− ηtL)ρ
K∑
k=1

pk(E[Fk(w(t)]− F ∗ + F ∗ − F ∗k ) (58)

=− νt(1− ηtL)ρ

K∑
k=1

pk(E[Fk(w(t)]− F ∗)− νt(1− ηtL)ρ

K∑
k=1

pk(F ∗ − F ∗k ) (59)

=− νt(1− ηtL)ρ(E[F (w(t))]− F ∗)− νt(1− ηtL)ρΓ (60)

≤− νt(1− ηtL)µρ

2
E[‖w(t) −w∗‖2]− νt(1− ηtL)ρΓ (61)

≤− 3ηtµρ

8
E[‖w(t) −w∗‖2]− 2ηt(1− 2Lηt)(1− ηtL)ρΓ (62)

≤− 3ηtµρ

8
E[‖w(t) −w∗‖2]− 2ηtρΓ + 6η2

t ρLΓ (63)

where (61) is due to the µ−convexity, (62) is due to −2ηt(1 − 2Lηt)(1 − ηtL) ≤ − 3
4ηt, and (63) is due to

−(1− 2Lηt)(1− ηtL) ≤ −(1− 3Lηt). Hence we can finally bound A5 as

4Lη2
t

m
E[
∑
k∈S(t)

(Fk(w
(t)
k )− F ∗k )− 2ηt

m

∑
k∈S(t)

(Fk(w
(t)
k )− Fk(w∗))]

≤− 3ηtµρ

8
E[‖w(t) −w∗‖2] + 2ηtΓ(ρ̃− ρ) + η2

t (6ρLΓ + 16τ2G2) (64)

Now we can bound E[‖w(t+1) −w∗‖2] as

E[‖w(t+1) −w∗‖2] ≤
[
1− ηtµ

(
1 +

3ρ

8

)]
E[‖w(t) −w∗‖2]

+ η2
t

(
32τ2G2 +

σ2

m
+ 6ρLΓ

)
+ 2ηtΓ(ρ̃− ρ)

(65)
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By defining ∆t+1 = E[‖w(t+1) −w∗‖2], B = 1 + 3ρ
8 , C = 32τ2G2 + σ2

m + 6ρLΓ, D = 2Γ(ρ̃− ρ), we have that

∆t+1 ≤ (1− ηtµB)∆t + η2
tC + ηtD (66)

By setting ∆t ≤ ψ
t+γ , ηt = β

t+γ and β > 1
µB , γ > 0 by induction we have that

ψ = max

{
γ‖w(0) −w∗‖2, 1

βµB − 1

(
β2C +Dβ(t+ γ)

)}
(67)

Then by the L-smoothness of F (·), we have that

E[F (w(t))]− F ∗ ≤ L

2
∆t ≤

L

2

ψ

γ + t
(68)

D Proof of Theorem A.1

With fixed learning rate ηt = η, we can rewrite (66) as

∆t+1 ≤ (1− ηµB)∆t + η2C + ηD (69)

and with η ≤ min{ 1
2µB ,

1
4L} using recursion of (69) we have that

∆t ≤ (1− ηµB)t∆0 +
η2C + ηD

ηµB
(1− (1− ηµB)t) (70)

Using ∆t ≤ 2
µ (F (w(t))− F ∗) and L-smoothness, we have that

F (w(t))− F ∗ ≤ L

µ
(1− ηµB)t(F (w(0))− F ∗) +

L(ηC +D)

2µB
(1− (1− ηµB)t) (71)

=
L

µ

[
1− ηµ

(
1 +

3ρ

8

)]t
(F (w(0))− F ∗) +

4L(ηC +D)

µ(8 + 3ρ)

[
1−

[
1− ηµ

(
1 +

3ρ

8

)]t]
(72)

E Extension: Generalization to different averaging schemes

While we considered a simple averaging scheme where w(t+1) = 1
m

∑
k∈S(t)

(
w

(t)
k − ηtgk(w

(t)
k )
)
, we can extend

the averaging scheme to any scheme q such that the averaging weights qk are invariant in time and satisfies∑
k∈S(t) qk = 1 for any t. Note that q includes the random sampling without replacement scheme introduced by

Li et al. (2020b) where the clients are sampled uniformly at random without replacement with the averaging
coefficients qk = pkK/m. With such averaging scheme q, we denote the global model for the averaging scheme qk
as ŵ(t), where ŵ(t+1) ,

∑
k∈S(t) qk

(
w

(t)
k − ηtgk(w

(t)
k )
)
, and the update rule changes to

ŵ(t+1) = ŵ(t) − ηtĝ(t) = ŵ(t) − ηt

 ∑
k∈S(t)

qkgk(w
(t)
k , ξ

(t)
k )

 (73)

where ĝ(t) =
∑
k∈S(t) qkgk(w

(t)
k , ξ

(t)
k ). We show that the convergence analysis for the averaging scheme q is

consistent with Theorem 3.1. In the case of the averaging scheme q, we have that Lemma B.2 and Lemma B.3
shown in Appendix B, each becomes

1

m
E[
∑
k∈S(t)

‖ŵ(t) −w
(t)
k ‖

2] ≤ 16η2
tm(m− 1)τ2G2 (74)

E[‖ŵ(t) −w∗‖2] ≤ mE[
∑
k∈S(t)

qk‖w(t)
k −w∗‖2] (75)
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Then, using the same method we used for the proof of Theorem 3.1, we have that

E[‖ŵ(t+1) −w∗‖2] ≤
(

1− ηtµ

m

)
E[‖ŵ(t) −w∗‖2] + η2

t σ
2m+ 16m2(m− 1)η2

t τ
2G2+

E

2Lη2
t (1 +m)

∑
k∈S(t)

qk(Fk(w
(t)
k )− F ∗k )− 2ηt

∑
k∈S(t)

qk(Fk(w
(t)
k )− Fk(w∗))


︸ ︷︷ ︸

M

(76)

By defining the selection skew for averaging scheme q similar to Definition 5 as

ρq(S(π,w),w′) =
ES(π,w)[

∑
k∈S(π,w) qk(Fk(w′)− F ∗k )]

F (w′)−
∑K
k=1 pkF

∗
k

≥ 0, (77)

and

ρq , min
w,w′

ρq(S(π,w),w′) (78)

ρ̃q , max
w

ρq(S(π,w),w∗) =
maxw ES(π,w)[

∑
k∈S(π,w) qk(Fk(w∗)− F ∗k )]

Γ
(79)

With ηt < 1/(2L(1 +m)), using the same methodology for proof of Theorem 3.1 we have that M becomes upper
bounded as

E

2Lη2
t (1 +m)

∑
k∈S(t)

qk(Fk(w
(t)
k )− F ∗k )− 2ηt

∑
k∈S(t)

qk(Fk(w
(t)
k )− Fk(w∗))

 (80)

≤ −
ηtµρq

2
E[‖ŵ(t) −w∗‖2] + 2ηtΓ(ρ̃q − ρq) + 16m2(m− 1)η2

t τ
2G2 + 2Lη2

t (2 +m)ρqΓ (81)

Finally we have that

E[‖ŵ(t+1) −w∗‖2] ≤
[
1− ηtµ

(
1

m
+
ρq
2

)]
E[‖ŵ(t) −w∗‖2] + 2ηtΓ(ρ̃q − ρq)

+η2
t [32m2(m− 1)τ2G2 + σ2m+ 2L(2 +m)ρqΓ]

(82)

By defining ∆̂t+1 = E[‖ŵ(t+1) − w∗‖2], B̂ = 1
m +

ρq
2 , Ĉ = 32m2(m − 1)τ2G2 + σ2m + 2L(2 + m)ρqΓ, D̂ =

2Γ(ρ̃q − ρq), we have that

∆̂t+1 ≤ (1− ηtµB̂)∆̂t + η2
t Ĉ + ηtD̂ (83)

Again, by setting ∆̂t ≤ ψ
t+γ , ηt = β

t+γ and β > 1

µB̂
, γ > 0 by induction we have that

ψ = max

{
γ‖w(0) −w∗‖2, 1

βµB̂ − 1

(
β2Ĉ + D̂β(t+ γ)

)}
(84)

Then by the L-smoothness of F (·), we have that

E[F (w(t))]− F ∗ ≤ L

2
∆̂t ≤

L

2

ψ

γ + t
(85)

With β = m
µ , γ = 4m(1+m)L

µ and ηt = β
t+γ , we have that

E[F (ŵ(T ))]− F ∗ ≤

1

(T + γ)

[
Lm2(32m(m− 1)τ2G2 + σ2)

µ2ρq
+

2L2m(m+ 2)Γ

µ2
+
Lγ‖w(0) −w∗‖2

2

]
︸ ︷︷ ︸

Vanishing Error Term

+
2LΓ

ρqµ

(
ρ̃q
ρq
− 1

)
︸ ︷︷ ︸
Non-vanishing bias

(86)

which is consistent with Theorem 3.1.
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F Experiment Details

Quadratic Model Optimization. For the quadratic model optimization, we set each local objective function
as strongly convex as follows:

Fk(w) =
1

2
w>Hkw − e>k w +

1

2
e>kH

−1
k ek (87)

Hk ∈ Rv×v is a diagonal matrix Hk = hkI with hk ∼ U(1, 20) and ek ∈ Rv is an arbitrary vector. We set the
global objective function as F (w) =

∑K
k=1 pkFk(w), where the data size pk follows the power law distribution

P (x; a) = axa−1, 0 ≤ x ≤ 1, a = 3. We can easily show that the optimum for Fk(w) and F (w) is w∗k = H−1
k ek

and w∗ = (
∑K
k=1 pkHk)−1(

∑K
k=1 pkek) respectively. The gradient descent update rule for the local model of

client k in the quadratic model optimization is

w
(t+1)
k = w

(t)
k − η(Hkw

(t)
k − ek) (88)

where the global model is defined as w(t+1) = 1
m

∑
k∈S(t) w

(t+1)
k . We sample m = KC clients for every round

where for each round the clients perform τ gradient descent local iterations with fixed learning rate η and then
these local models are averaged to update the global model. For the implementation of πadapow-d, d was decreased
half from d = K for every 5000 rounds. For all simulations we set τ = 2, v = 5, η = 2× 10−5.

For the estimation of ρ and ρ̃ for the quadratic model, we get the estimates of the theoretical ρ, ρ̃ values by
doing a grid search over a large range of possible w,w′ for ρ(S(π,w),w′) and ρ(S(π,w),w∗) respectively. The
distribution of S(π,w) is estimated by simulating 10000 iterations of client sampling for each π and w.

Logistic Regression on Synthetic Dataset. We conduct simulations on synthetic data which allows precise
manipulation of heterogeneity. Using the methodology constructed in Sahu et al. (2020), we use the dataset with
large data heterogeneity, Synthetic(1,1). We assume in total 30 devices where the local dataset sizes for each
device follows the power law. For the implementation of πadapow-d, d was decreased to d = m from d = K at half
the entire communication rounds. We set the mini batch-size to 50 with τ = 30, and η = 0.05, where η is decayed
to η/2 every 300 and 600 rounds.

DNN Experiments. For image datasets, FMNIST (the MIT License) and CIFAR10 (the MIT License), we
construct the heterogeneous data partition amongst clients using the Dirichlet distribution DirK(α) (Hsu et al.,
2019), where α determines the degree of the data heterogeneity across clients (the data size imbalance and degree
of label skew across clients). Smaller α indicates larger data heterogeneity. We experiment with three different
seeds for the randomness in the dataset partition across clients and present the averaged results. For Sent140, we
randomly select 314 users (twitter accounts) that have more than or equal to 32 tweets, and the data heterogeneity
across the clients is naturally set. All experiments are conducted with clusters equipped with one NVIDIA TitanX
GPU. The number of clusters we use vary by C, the fraction of clients we select. The machines communicate
amongst each other through Ethernet to transfer the model parameters and information necessary for client
selection. Each machine is regarded as one client in the FL setting. The algorithms are implemented by PyTorch.
For all datasets we divide the train/validation/test dataset into 0.8/0.05/0.15 ratio where the clients’ datasets are
partitioned amongst the training dataset.

• MLP on FMNIST for Image Classification: We train a deep multi-layer perceptron network with 2
hidden layers of units [64, 30] with dropout after the first hidden layer where the input is the flattened image
and the output is consisted of 10 units each of one of the 0-9 labels. For all experiments we use mini-batch
size of b = 64, with τ = 30 and η = 0.005, where η is decayed by half for every 150, 300 rounds.

• CNN on CIFAR10 for Image Classification: We train a deep convolutional neural network with 2
convolutional layers with max pooling and 4 hidden fully connected linear layers of units [120, 100, 84, 50].
The input is the flattened convolution output and the output is consisted of 10 units each of one of the 0-9
labels. For all experiments we use mini-batch size of b = 128, with τ = 64 and η = 0.5, where η is decayed by
half for every 150, 300 rounds.

• MLP on Sent140 for Text Sentiment Analysis: We train a deep multi-layer perceptron network with
3 hidden layers of units [128, 86, 30] with pre-trained 200D average-pooled GloVe embedding (Pennington
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et al., 2014). The input is the embedded 200D vector and the output is a binary classifier determining
whether the tweet sentiment is positive or negative with labels 0 and 1 respectively. For all experiments we
use mini-batch size of b = 32, with τ = 100 and η = 0.05.

Pseudo-code of the variants of pow-d: cpow-d and rpow-d. We here present the pseudo-code for πcpow-d
and πrpow-d. Note that the pseudo-code for πcpow-d in Algorithm 1 can be generalized to the algorithm for πpow-d,
by changing 1

|ξ̂k|

∑
ξ∈ξ̂k f(w, ξ) to Fk(w).

Algorithm 1 Pseudo code for cpow-d: computation efficient variant of pow-d

1: Input: m, d, pk for k ∈ [K], mini-batch size b = |ξ̂k| for computing 1

|ξ̂k|

∑
ξ∈ξ̂k f(w, ξ)

2: Output: S(t)

3: Initialize: empty sets S(t) and A
4: Global server do:
5: Get A = {d indices sampled without replacement from [K] by pk}
6: Send the global model w(t) to the d clients in A
7: Receive 1

|ξ̂k|

∑
ξ∈ξ̂k f(w, ξ) from all clients in A

8: Get S(t) = {m clients with largest 1

|ξ̂k|

∑
ξ∈ξ̂k f(w, ξ) (break ties randomly)}

9: Clients in A in parallel do:
10: Create mini-batch ξ̂k from sampling b samples uniformly at random from Bk and compute 1

|ξ̂k|

∑
ξ∈ξ̂k f(w, ξ)

and send it to the server
11: Return: S(t)

Algorithm 2 Pseudo code for rpow-d: computation & communication efficient variant of pow-d

1: Input: m, d, pk for k ∈ [K]
2: Output: S(t)

3: Initialize: empty sets S(t) and A, and list Atmp with K elements all equal to inf
4: All client k ∈ S(t−1) do:
5: For t mod τ = 0, send 1

τb

∑t
l=t−τ+1

∑
ξ∈ξ(l)k

f(w
(l)
k , ξ) to the server with its local model

6: Global server do:
7: Receive and update Atmp[k] = 1

τb

∑t
l=t−τ+1

∑
ξ∈ξ(l)k

f(w
(l)
k , ξ) for k ∈ S(t−1)

8: Get A = {d indices sampled without replacement from [K] by pk}
9: Get S(t) = {m clients with largest values in [Atmp[i] for i ∈ A], (break ties randomly)}
10: Return: S(t)

G Additional Experiment Results

G.1 Selected Client Profile

We further visualize the difference between our proposed sampling strategy πpow-d and the baseline scheme
πrand by showing the selected frequency ratio of the clients for K = 30, C = 0.1 for the quadratic simulations
in Fig. 8. Note that the selected ratio for πrand reflects each client’s dataset size. We show that the selected
frequencies of clients for πpow-d are not proportional to the data size of the clients, and we are selecting clients
frequently even when they have relatively low data size like client 6 or 22. We are also not necessarily frequently
selecting the clients that have the highest data size such as client 26. This aligns well with our main motivation
of Power-of-Choice that weighting the clients’ importance based on their data size does not achieve the
best performance, and rather considering their local loss values along with the data size better represents their
importance. Note that the selected frequency for πrand is less biased than πpow-d.
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(a) Selected client profile for πrand (b) Selected client profile for πpow-d

Figure 8: Clients’ selected frequency ratio for optimizing the quadratic model for πrand and πpow-d with K =
30, C = 0.1. The selected ratio is sorted in the descending order.

Table 2: Comparison of R60, tcomp (sec), and test accuracy (%) for different sampling strategies with α = 2. The
ratio R60 / (R60 for rand, C = 0.1) and tcomp / (tcomp for rand, C = 0.1) are each shown in the parenthesis.

C = 0.1 C = 0.03

rand rand pow-d, d = 6 cpow-d, d = 6 rpow-d, d = 50 afl
R60 135 136(1.01) 82 (0.61) 89 (0.66) 99(0.73) 131(0.97)
tcomp 0.42 0.36(0.85) 0.46 (1.08) 0.38 (0.88) 0.36(0.86) 0.36(085)
Test Acc. 63.50±2.74 66.03±1.47 73.81±1.14 73.36±1.17 72.52±0.89 70.64±1.99

G.2 Communication and Computation Efficiency with larger data heterogeneity

In Table 2, we show the communication and computation efficiency of Power-of-Choice for α = 2, as we
showed for α = 0.3 in Table 1 in Section 5. With C = 0.03 fraction of clients, πpow-d, πcpow-d, and πrpow-d have
better test accuracy of at least approximately 10% higher test accuracy performance than (πrand, C = 0.1). R60

for πpow-d, πcpow-d, πrpow-d is 0.61, 0.66, 0.73 times that of (πrand, C = 0.1) respectively. This indicates that we
can reduce the number of communication rounds by at least 0.6 using 1/3 of clients compared to (πrand, C = 0.1)
and still get higher test accuracy performance. The computation time tcomp for πcpow-d and πrpow-d with C = 0.03
is smaller than that of (πrand, C = 0.1).

G.3 Intermittent Client Availability

In real world scenarios, certain clients may not be available due to varying availability of resources such as battery
power or wireless connectivity. Hence we experiment with a virtual scenario, where amongst K clients, for each
communication round, we select clients alternately from one group out of two fixed groups, where each group
has 0.5K clients. This altering selection reflects a more realistic client selection scenario where, for example, we
have different time zones across clients. For each communication round, we select 0.1 portion of clients from
the corresponding group uniformly at random and exclude them from the client selection process. This random
exclusion of certain clients represents the randomness in the client availability within that group for cases such
as low battery power or wireless connectivity. In Fig. 9 we show that πpow-d and πrpow-d achieves 10% and 5%
test accuracy improvement respectively compared to πrand for α = 2. For α = 3, both πpow-d and πrpow-d shows
10% improvement. Therefore, we demonstrate that Power-of-Choice also performs well in a realistic scenario
where clients are available intermittently.

G.4 Results for DNN on Non-iid Partitioned EMNIST Dataset

To provide validation of the consistency in our results of πpow-d and its variants on the FMNIST dataset, we
present additional experiment results on the EMNIST dataset sorted by digits with K = 500, C = 0.03. We
train a deep multi-layer perceptron network with two hidden layers on the dataset partitioned heterogeneously
across the clients in the same way as for the FMNIST dataset. For all experiments, we use b = 64, τ = 30, and
η = 0.005 where η is decayed by half at round 300.
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(a) Test accuracy and training loss for α = 2 (b) Test accuracy and training loss for α = 0.3

Figure 9: Test accuracy and training loss in the virtual environment where clients have intermittent availability
for K = 100, C = 0.03 with πrand, πpow-d, and πrpow-d on the FMNIST dataset. For both α = 2 and α = 3,
πpow-d achieves approximately 10% higher test accuracy than πrand.

(a) Test accuracy and training loss for α = 2 (b) Test accuracy and training loss for α = 0.3

Figure 10: Test accuracy and training loss for different sampling strategies for K = 500, C = 0.03 with
πrand, πpow-d, and πafl on the EMNIST dataset.

In Fig. 10, we show that πpow-d performs with significantly higher test accuracy than πrand for varying d for both
α = 2 and 0.3. For α = 2, πafl is able to follow the performance of πpow-d in the later communication rounds, but
is slower in achieving the same test accuracy than πpow-d. Moreover, in Fig. 11, we show that πcpow-d works as
good as πpow-d for both large and small data heterogeneity. The performance of πrpow-d falls behind πpow-d and
πcpow-d for smaller data heterogeneity, whereas for larger data heterogeneity, πrpow-d is able to perform similarly
with πpow-d and πcpow-d.

G.5 Effect of the fraction of selected clients

In Fig. 12, for larger C = 0.1 with α = 2, the test accuracy improvement for πpow-d is even higher than the case
of C = 0.03 with approximately 15% improvement. πcpow-d performs slightly lower in test accuracy than πpow-d
but still performs better than πrand and πafl. πrpow-d performs as well as πafl. For α = 0.3, πpow-d, πcpow-d, and
πrpow-d have approximately equal test accuracy performance, higher than πrand by 5%. The Power-of-Choice
strategies all perform slightly better than πafl. Therefore we show that Power-of-Choice performs well for
selecting a larger fraction of clients, i.e., when we have larger C = 0.1 > 0.03.

G.6 Effect of Mini-batch Size and Local Epochs

We evaluate the effect of mini-batch size b and local epochs τ on the FMNIST experiments with different sets of
hyper-parameters: (b, τ) ∈ {(128, 30), (64, 100)}. Note that (b, τ) = (64, 30) is the hyper-parameter setting used
for the results in Fig. 4 and Fig. 5. For b = 128, we observe that the performance improvement of πpow-d and its
variants over πrand and πafl is consistent with b = 64 (see Fig. 13 and Fig. 14). In Fig. 15 and Fig. 16, for τ = 100,
with smaller data heterogeneity, the performance gap between πrand and πpow-d and its variants is consistent with
that of τ = 30. For larger data heterogeneity, however, increasing the local epochs results in πrand and πpow-d
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(a) Test accuracy and training loss for α = 2 (b) Test accuracy and training loss for α = 0.3

Figure 11: Test accuracy and training loss for different sampling strategies for K = 500, C = 0.03 with
πrand, πpow-d, πcpow-d, πrpow-d, and πafl on the EMNIST dataset.

(a) Test accuracy and training loss for α = 2 (b) Test accuracy and training loss for α = 0.3

Figure 12: Test accuracy and training loss for different sampling strategies for K = 100, C = 0.1 with
πrand, πpow-d, πcpow-d, πrpow-d, and πafl on the FMNIST dataset. For larger C = 0.1, πpow-d performs with 15%
and 5% higher test accuracy than πrand for α = 2 and α = 0.3 respectively.

πpow-d and its variants performing similarly. This shows that with larger data heterogeneity, larger τ results in
increasing the selection skew towards specific clients, and weakens generalization.

(a) Test accuracy and training loss for α = 2 (b) Test accuracy and training loss for α = 0.3

Figure 13: Test accuracy and training loss for πrand, πpow-d, and πafl for K = 100, C = 0.03 on the FMNIST
dataset with mini-batch size b = 128 and τ = 30.
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(a) Test accuracy and training loss for α = 2 (b) Test accuracy and training loss for α = 0.3

Figure 14: Test accuracy and training loss for πrand, πpow-d, πcpow-d, πrpow-d, and πafl for K = 100, C = 0.03 on
the FMNIST dataset with mini-batch size b = 128 and τ = 30.

(a) Test accuracy and training loss for α = 2 (b) Test accuracy and training loss for α = 0.3

Figure 15: Test accuracy and training loss for πrand, πpow-d, and πafl for K = 100, C = 0.03 on the FMNIST
dataset with mini-batch size b = 64 and τ = 100.

(a) Test accuracy and training loss for α = 2 (b) Test accuracy and training loss for α = 0.3

Figure 16: Test accuracy and training loss for πrand, πpow-d, πcpow-d, πrpow-d, and πafl for K = 100, C = 0.03 on
the FMNIST dataset with mini-batch size b = 64 and τ = 100.
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