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Abstract

We study the stochastic bilinear minimax op-
timization problem, presenting an analysis
of the same-sample Stochastic ExtraGradi-
ent (SEG) method with constant step size,
and presenting variations of the method that
yield favorable convergence. In sharp con-
trasts with the basic SEG method whose last
iterate only contracts to a fixed neighborhood
of the Nash equilibrium, SEG augmented with
iteration averaging provably converges to the
Nash equilibrium under the same standard
settings, and such a rate is further improved
by incorporating a scheduled restarting pro-
cedure. In the interpolation setting where
noise vanishes at the Nash equilibrium, we
achieve an optimal convergence rate up to
tight constants. We present numerical exper-
iments that validate our theoretical findings
and demonstrate the effectiveness of the SEG
method when equipped with iteration averag-
ing and restarting.

1 INTRODUCTION

The minimax optimization framework provides solu-
tion concepts useful in game theory [Morgenstern and
Von Neumann, 1944], statistics [Bach, 2019] and online
learning [Blackwell, 1956, Cesa-Bianchi and Lugosi,
2006]. It has recently been prominent in the deep
learning community due to its application to genera-
tive modeling [Goodfellow et al., 2014, Arjovsky et al.,
2017] and robust prediction [Madry et al., 2018, Zhang
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TATS) 2022, Valencia, Spain. PMLR: Volume 151. Copy-
right 2022 by the author(s).

et al., 2019a]. There remains, however, a gap between
minimax characterizations of solutions and algorithmic
frameworks that provably converge to such solutions
in practice.

In standard single-objective machine learning appli-
cations, the traditional algorithmic realization of op-
timization frameworks is stochastic gradient descent
(SGD, or one of its variants), where the full gradient is
formulated as an expectation over the data-generating
mechanism. In general minimax optimization problems,
however, naive use of SGD leads to pathological behav-
ior due to the presence of rotational dynamics [Good-
fellow, 2016, Balduzzi et al., 2018].

One way to overcome these rotations is to use gradient-
based methods specifically designed for the minimax
setting (or more generally for the multi-player game
setting). A key example of such a method is the cel-
ebrated extragradient method. Originally introduced
by [Korpelevich, 1976], it addresses general minimax
optimization problems and yields optimal convergence
guarantees in the batch setting [Azizian et al., 2020b].
In the stochastic setting, however, it has only been
analyzed in special cases, such as the constrained case
[Juditsky et al., 2011], the bounded-noise case [Hsieh
et al., 2020], and the interpolatory case [Vaswani et al.,
2019b]. In the current paper, we study the general
stochastic bilinear minimax optimization problem, also
known as the bilinear saddle-point problem,

min
x

max
y

x>Eξ[Bξ]y + x>Eξ[gx
ξ ] + Eξ[(gy

ξ )>]y , (1)

where the index ξ denotes the randomness associated
with stochastic sampling. Following standard practice
we assume that the expected coupling matrix B =
E[Bξ] is nonsingular, and that the intercept vectors gx

ξ

and gy
ξ have zero mean: E[gx

ξ ] = 0n and E[gy
ξ ] = 0m.

Thus the Nash equilibrium point is [x∗;y∗] = [0n;0m].
Such assumptions are standard in the literature on
bilinear optimization [see, e.g., Vaswani et al., 2019b,
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Mishchenko et al., 2020].1

In this work, we present theoretical results in the gen-
eral setting of bilinear minimax games for a version
of the Stochastic ExtraGradient (SEG) method that
incorporates iteration averaging and scheduled restart-
ing. The introduction of stochasticity in the matrix Bξ

together with an unbounded domain presents techni-
cal challenges that have been a major stumbling block
in earlier work [cf. Dieuleveut et al., 2016]. Here we
show how to surmount these challenges. Formally, we
introduce the following SEG method composed of an
extrapolation step (half-iterates) and an update step:

xt−1/2 = xt−1 − ηt
[
Bξ,tyt−1 + gx

ξ,t

]
,

yt−1/2 = yt−1 + ηt

[
B>ξ,txt−1 + gy

ξ,t

]
,

xt = xt−1 − ηt
[
Bξ,tyt−1/2 + gx

ξ,t

]
,

yt = yt−1 + ηt

[
B>ξ,txt−1/2 + gy

ξ,t

]
.

(2)

Here and throughout we adopt a same-sample-and-
step-size notation in which the extrapolation and
extragradient steps share the same stochastic sam-
ple [Gidel et al., 2019, Mishchenko et al., 2020] and
step size ηt; i.e., the updates in Eq. (2) use the same
samples of Bξ, gx

ξ and gy
ξ . Note that there exist

counterexamples [see, e.g., Chavdarova et al., 2019,
Theorem 1] where the SEG iteration [Juditsky et al.,
2011] persistently diverges when using independent
samples. The same-sample stochastic extra gradient
(SEG) method aims to address this issue [Gidel et al.,
2019, Mishchenko et al., 2020]. In practice, for the
bilinear game problems we consider in this paper as
well as other application problems, including generative
adversarial networks and adversarial training, it is easy
to perform the same-sample SEG updates: in most
machine learning applications one can re-use a sample
without significant extra cost.

Main contributions. We provide an in-depth study
of SEG on bilinear games and we show that, unlike
in the minimization-only setting, in the minimax opti-
mization setting the last-iterate SEG algorithm with
the same sample and step sizes cannot converge in gen-
eral even when the step sizes are diminishing to zero
[Theorems A.1 and A.2]. This motivates our study of
averaging and restarting in order to obtain meaningful
convergence rates:

(i) We prove that in the bilinear game setting, under

1In the case of a square, nonsingular coupling matrix B
this assumption is feasible without loss of generality, while
in the rectangular matrix case we simply restrict ourselves
to the nonsingular min(n,m)-dimensional subspace induced
by singular value decomposition. The nonzero component of
the intercept vectors [gx

ξ ;gy
ξ ] projected onto such a subspace

is not taken into account in the SEG dynamics.

mild assumptions, iteration averaging allows SEG
to converge at the rate of 1/

√
K [Theorem 3.1],

K being the number of samples the algorithm
has processed. This rate is statistically optimal
up to a constant multiplier. Additionally, we
can further boost the convergence rate when
we combine iteration averaging with scheduled
restarting [Theorem 3.2] when the lower bound
of the smallest eigenvalue in the coupling matrix
is known to the system. In this case, exponential
forgetting of the initialization and an optimal
statistical rate are achieved.

(ii) In the special case of the interpolation setting, we
are able to show that SEG with iteration averag-
ing and scheduled restarting achieves an acceler-
ated rate of convergence, faster than (last-iterate)
SEG [Theorem 3.3], reducing the dependence of
the rate on the condition number to a depen-
dence on its square root. We achieve state-of-the-
art rates comparable to the full batch optimal
rate [Azizian et al., 2020b], with access only to
a stochastic estimate of the gradient, improving
upon Vaswani et al. [2019b].

(iii) We provide the first convergence result on SEG
with unbounded noise. The only existing result
of which we are aware of for the unbounded noise
setting is the work of Vaswani et al. [2019b] in
the interpolation setting. Our theoretical results
are further validated by experiments on synthetic
data.

1.1 Related Work

Bilinear minimax optimization. The study of the
bilinear example as a tool to understand minimax opti-
mization originated with Daskalakis et al. [2018], who
studied an optimistic gradient descent-ascent (OGDA)
algorithm to solve that minimax problem. They were
able to prove sublinear convergence for this method.
Later, Mokhtari et al. [2020] proposed to analyze
OGDA and the related ExtraGradient (EG) method
as perturbations of the Proximal Point (PP) method.
They were able to prove a linear convergence rate for
both EG and OGDA with an iteration complexity of
O(κ log(1/ε)), where κ ≡ λmax(B>B)/λmin(BB>) is
the condition number of problem Eq. (1). Highly
related to the current work is that of Gidel et al.
[2019], who studied the bilinear case and proved an
O(κ log(1/ε)) iteration complexity for EG with a bet-
ter constant than Mokhtari et al. [2020]. Wei et al.
[2021] studied Optimistic Multiplicative Weights Up-
date (OMWU) for solving constrained bilinear games
and established the linear last-iterate convergence.

Regarding optimal methods, a combination of Ibrahim
et al. [2020] and Zhang et al. [2019b] established a gen-
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eral lower bound, which specializes to a lower bound
of Ω(

√
κ log(1/ε)) for the case of the bilinear minimax

game setting. Azizian et al. [2020b] proved linear con-
vergence results for a series of algorithms that achieve
this lower bound and also provided an alternative proof
for this lower bound by using spectral arguments. How-
ever, Azizian et al. [2020b] did not provide accelerated
rates for OGDA and provided an accelerated rate for
EG with momentum but with an unknown constant.
In this work, we completely close that gap by providing
accelerated convergence rates for (stochastic) EG with
relatively tight constants. In another work, Azizian
et al. [2020a] proved a full-regime result for EG without
momentum where they show that the O(κ log(1/ε)) iter-
ation complexity for EG is optimal among the methods
using a fixed number of composed gradient evaluations
and only the last iterate (excluding momentum and
restarting). A similar iteration complexity, (with an
unknown constant) can be derived from the seminal
work by Tseng [1995] on EG.

Stochastic bilinear minimax and variational in-
equalities. The standard assumptions made in the
literature on stochastic variational inequalities [Ne-
mirovski et al., 2009, Juditsky et al., 2011] is that the
set of parameters and the variance of the stochastic
estimate of the vector field are bounded. These two
assumptions do not hold in the stochastic bilinear case,
because it is unconstrained and the noise increases
with the norm of the parameters. Recently, Hsieh et al.
[2020] provided results on stochastic EG with differ-
ent step sizes, without the bounded domain assump-
tion but still requiring the bounded noise assumption.
Iusem et al. [2017] and Bot et al. [2019] studied the
independent-sample, minibatch setting where the sum-
mation of inverse batchsize converges. Mishchenko et al.
[2020] discussed how using the same mini-batch for the
two gradients in stochastic EG gives stronger guar-
antees. Using a Hamiltonian viewpoint, Loizou et al.
[2020] provided the first set of global non-asymptotic
last-iterate convergence guarantees for a stochastic
game over a non-compact domain, in the absence of
strong monotonicity assumptions. In particular, their
stochastic Hamiltonian gradient methods come with
last-iterate convergence guarantees in the finite-sum
stochastic bilinear game as well. In our work, we pro-
vide an accelerated convergence rate for EG in the bi-
linear setting with unbounded domain and unbounded
noise.

Restarting and acceleration. Restarting has long
been introduced as an effective approach to accel-
erate first-order methods in the optimization liter-
ature [O’Donoghue and Candes, 2015, Roulet and
d’Aspremont, 2020, Renegar and Grimmer, 2021]. In
particular, O’Donoghue and Candes [2015] proposed

an adaptive restarting technique that significantly im-
proves the convergence rate of Nesterov’s accelerated
gradient descent method. Roulet and d’Aspremont
[2020] developed optimal restarting methods for solving
convex optimization problems that satisfy the sharp-
ness assumption. Renegar and Grimmer [2021] con-
sidered a more general set of problems than Roulet
and d’Aspremont [2020] and presented a simple and
near-optimal restarting scheme. Our variant restarting
achieves acceleration via a fundamentally different idea
that is inspired by modern variance-reduction ideas.

Averaging in convex-concave games. Golowich
et al. [2020] studied the effect of averaging for EG in
the smooth convex-concave setting. They showed that
the last iterate converges at a rate of O(1/

√
K) in terms

of the square root of the Hamiltonian (and also the
duality gap), while it is known that iteration averaging
enjoys an O(1/K) rate [Nemirovski, 2004]. A tight
lower bound was also proved to justify an assertion
of optimality in the last-iterate setting. Such a result
provides a convincing argument in favor of restarting
the algorithm from an average of the iterates. This is
a theme that we pursue in the current paper.

Stability of limit points in minimax games. GDA
dynamics often encounter limit cycles or non-Nash sta-
ble limiting points [Daskalakis and Panageas, 2018,
Adolphs et al., 2019, Berard et al., 2020, Mazumdar
et al., 2019]. To mitigate this, Adolphs et al. [2019] and
Mazumdar et al. [2019] proposed to exploit the curva-
ture associated with the stable limit points that are not
Nash equilibria. While appealing theoretically, such
methods generally involve costly inversion of Jacobian
matrices at each step.

Over-parameterized models and interpolation.
Recently it was shown that popular stochastic gradient
methods, like SGD and its momentum variants, con-
verge considerably faster when the underlying model
is sufficiently over-parameterized as to interpolate the
data [Gower et al., 2019, 2021, Loizou and Richtárik,
2020, Vaswani et al., 2019a, Loizou et al., 2021b, Seb-
bouh et al., 2020]. In the minimax optimization setting,
an analysis that also covers the interpolation regime
is rare. To the best of our knowledge the only paper
that provides convergence guarantees for SEG in this
setting is Vaswani et al. [2019b], where SEG with line
search is proposed and analyzed. In our work we pro-
vide convergence guarantees in the interpolation regime
as corollaries of our main theorems but with a tight
1/e-prefactor in the linear convergence.

Organization. The remainder of this paper is or-
ganized as follows. §2 details the basic setup and
assumptions for our main results. §3 presents our con-
vergence results for SEG with averaging and restarting.
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§4 provides experiments that validate our theory. §5
concludes this paper with future directions. All techni-
cal analyses along with auxiliary results are relegated
to later sections in the supplementary materials.

Notation. Throughout this paper we use the following
notation. For two real symmetric matrices, B1,B2, we
denote B1 � B2 when v>B1v ≤ v>B2v holds for all
vectors v. Let λmax(B) (resp. λmin(B)) be the largest
(resp. smallest) eigenvalue of a generic (real symmetric)
matrix B. Let ‖B‖op denotes the operator norm of
B. Let Ft be the filtration generated by the stochastic
samples, Bξ,s,gξ,s, s = 1, . . . , t, in the bilinear game.
Let max(a, b) or a ∨ b denote the maximum value of
a, b ∈ R, and let min(a; b) or a∧b denote the minimum.
For two real sequences, (an) and (bn), we write an =
O(bn) to mean that |an| ≤ Cbn for a positive, numerical
constant C, for all n ≥ 1, and let an = Õ(bn) mean
that |an| ≤ Cbn where C hides a logarithmic factor

in relevant parameters. We also denote M̂ξ ≡ B>ξ Bξ

and Mξ ≡ BξB
>
ξ for brevity, each being positive semi-

definite for each realization of ξ. Finally, let [n] =
{1, . . . , n} for n being a natural number.

2 SETUP FOR MAIN RESULTS

In this section, we introduce the basic setup and
assumptions needed for our statement of the con-
vergence of the stochastic extragradient (SEG) algo-
rithm. We first make the following assumptions on

Bξ. Let us recall that M̂ ≡ EξM̂ξ ≡ Eξ[B>ξ Bξ] and

M ≡ EξMξ ≡ Eξ[BξB
>
ξ ].

Assumption 2.1 (Assumption on Bξ) Denote
B = Eξ[Bξ] for B ∈ Rn×m and impose the fol-
lowing regularity conditions: λmax(B>B) > 0 and

λmin(M) ∧ λmin(M̂) > 0. We assume that there exist
σB, σB,2 ∈ [0,∞) such that

‖Eξ[(Bξ −B)>(Bξ −B)]‖op ≤ σ2
B,

‖Eξ
[
(Bξ −B)(Bξ −B)>

]
‖op ≤ σ2

B,
(3)

and
‖Eξ[B>ξ Bξ − M̂]2‖op ≤ σ2

B,2,

‖Eξ[BξB
>
ξ −M]2‖op ≤ σ2

B,2.
(4)

The assumption of n ≥ m (i.e. B is tall) is without loss
of generality; we can convert the SEG iterates with a
wide coupling matrix to that of its transpose. Note also
σB = 0 corresponds to the nonrandom Bξ = B case.
The stochasticity introduced in Bξ allows us to con-
clude the first convergence result under the unbounded
noise condition.2 Next we impose an assumption on
the intercept vector gξ.

2As a comparison, Hsieh et al. [2020] only provides a
proof for the bounded noise case.

Assumption 2.2 (Assumption on gξ) There
exists a σg ∈ [0,∞) such that

Eξ
[
‖gx

ξ ‖2 + ‖gy
ξ ‖2
]
≤ σ2

g <∞.

Furthermore, we let Eξ[gx
ξ ] = 0n, Eξ[gy

ξ ] = 0m and
assume independence between the stochastic matrix Bξ

and the vector [gx
ξ ;gy

ξ ].

We remark that the independence assumption in As-
sumption 2.2 significantly simplifies our analysis.3 In
particular, it ensures E[Bξg

y
ξ ] = 0n and E[B>ξ g

x
ξ ] =

0m, so the Nash equilibrium is the equilibrium point
that the last-iterate SEG oscillates around. The in-
dependence structure of Bξ and [gx

ξ ;gy
ξ ] in Assump-

tion 2.2 is crucial for our analysis, which is satis-
fied in certain statistical models. Specially, when
one of the Bξ and [gx

ξ ;gy
ξ ] is nonrandom this is al-

ways satisfied. Our analysis can be further gener-
alized to more relaxed assumptions on zero correla-
tion between [gx

ξ ;gy
ξ ] and the first three moments

of Bξ, with a second-moment condition similar to

Eξ[‖Bξg
y
ξ ‖2 +‖B>ξ gx

ξ ‖2] ≤ C(λmax(M)∨λmax(M̂))σ2
g.

We defer the full development of this extension to fu-
ture work. With Assumptions 2.1 and 2.2 at hand, we
are ready to state our main results on the convergence
of SEG variants.

3 SEG WITH AVERAGING AND
RESTARTING

Recall that in contrast to SGD theory in convex opti-
mization, the last iterate of SEG does not converge to
an arbitrarily small neighborhood of the Nash equilib-
rium even for the case of a converging step size [Hsieh
et al., 2020]. We accordingly turn to an analysis of the
averaged iterate of xt and yt, t = 0, 1, . . . ,K, denoted
as

xK ≡
1

K + 1

K∑
t=0

xt, yK ≡
1

K + 1

K∑
t=0

yt. (5)

For simplicity we focus on the case in which Bξ,B are
square matrices. Let us define ηM as follows, which is
the maximal step size that the SEG algorithm analysis
takes:

ηM ≡
1√

ρ1 ∨ ρ2
, (6)

3In practice, such independence can be approximately
achieved via the following decoupling argument: we formu-
late the random Jacobian-vector product and the random
intercept using two independent random samples, separately.
Note an approximate knowledge of the Nash equilibrium is
required in this decoupling argument.
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where ρ1 = λmax

(
M−1/2[EξM2

ξ]M
−1/2

)
and ρ2 =

λmax

(
M̂−1/2[EξM̂2

ξ ]M̂
−1/2

)
. We introduce the follow-

ing variants:

η̂M(α) ≡ ηM√
2
∧ αλmin(BB>)

2σ2
B

√
λmax(B>B)

,

η̄M(α) ≡ ηM ∧
αλmin(BB>)

2σ2
B

√
λmax(B>B)

,

(7)

which reduce to 1/
√

2λmax(B>B) and

1/
√
λmax(B>B) when Bξ is nonrandom. We

state our first main result on SEG with iteration
averaging, Theorem 3.1, whose proof is provided in
§D.1:

Theorem 3.1 (SEG Averaged Iterate) Let As-
sumptions 2.1 and 2.2 hold with n = m. Prescribing an
α ∈ (0, 1), when the step size η is chosen as η̂M(α) as
defined in Eq. (7), we have for all K ≥ 1 the following
convergence bound for the averaged iterate:

E
[
‖xK‖2 + ‖yK‖2

]
≤ τ1 ·

‖x0‖2 + ‖y0‖2
(K + 1)2

+ τ2 ·
σ2
g

K + 1
,

(8)

where τ1, τ2 depending on σB, σB,2 are defined as

τ1 =
16 + 8κζ

(1− α)η̂M(α)2λmin(BB>)
,

τ2 =
18 + 12κζ

(1− α)λmin(BB>)
,

and κζ ≡ σ2
B+η̂M(α)2σ2

B,2

λmin(M)∧λmin(M̂)
denotes the effective noise

condition number of problem Eq. (1).

Measured by the Euclidean metric, Theorem 3.1 indi-
cates an O(1/

√
K) leading-order convergence rate for

the averaged iterate of SEG in the general stochastic
setting, which is known to be statistically optimal up to
a constant multiplier. We provide detailed comparisons
with previous related work in §B. Nevertheless, the it-
eration slowly forgets initial conditions at a polynomial
rate, and this result can be improved if we utilize a
restarting scheme and take advantage of the knowledge
of the smallest eigenvalue of BB>. Indeed, in the fol-
lowing result, we boost the convergence rate shown in
Eq. (8), when the smallest eigenvalue λmin(BB>) is
available to the system, via a novel restarting procedure
at specific times. The rationale behind this analysis
is akin to that used in boosting sublinear convergence
in convex optimization to linear convergence when the
designer has (an estimate of) the strong convexity pa-
rameter.

We now develop this argument in detail. We continue
to assume the case of square matrices Bξ,B. In Algo-
rithm 1 we run SEG with averaging and restart the

Algorithm 1 Iteration Averaged SEG with Scheduled
Restarting

Require: Initialization x0, step sizes ηt, total
number of iterates K, restarting timestamps
{Ti}i∈[Epoch−1] ⊆ [K] with the total number of
epoches Epoch ≥ 1, index s← 0

1: for t = 1, 2, . . . ,K do
2: s← s+ 1
3: Update xt, yt via Eq. (2)
4: Update x̂t, ŷt via

x̂t ←
s− 1

s
x̂t−1 +

1

s
xt, ŷt ←

s− 1

s
ŷt−1 +

1

s
yt

5: if t ∈ {Ti}i∈[Epoch−1] then
6: Overload xt ← x̂t, yt ← ŷt, and set s ← 0

//restarting procedure is triggered
7: end if
8: end for
9: Output: x̂K , ŷK

iteration at chosen timestamps, {Ti}i∈[Epoch−1] ⊆ [K],
initializing at the averaged iterate of the previous epoch.
The principle behind our choice of parameters in this
algorithm is that we trigger the restarting when the ex-
pected squared Euclidean metric E

[
‖xK‖2 + ‖yK‖2

]
decreases by a factor of 1/e2, and we halt the restarting
procedure once the last iterate reaches stationarity in
squared Euclidean metric in the sense of Theorem A.1:4

‖x0‖2 + ‖y0‖2 ≈
3σ2

g

λmin(M) ∧ λmin(M̂)
.

Given these choices, summarized in Algorithm 1, we
obtain the following theorem:

Theorem 3.2 (SEG with Averaging/Restarting)
Let Assumptions 2.1 and 2.2 hold with n = m. For
any prescribed α ∈ (0, 1), choose the step size η̂M(α)
as in Eq. (7) and assume a proper restarting schedule.
For all K ≥ Kcomplexity + 1 we have the following
convergence bound for the output x̂K , ŷK of Algorithm
1:

E
[
‖x̂K‖2 + ‖ŷK‖2

]
≤ C1 ·

σ2
g

K −Kcomplexity + 1
, (9)

where

C1 ≡
18

(1− α)λmin(BB>)
·
[

1+
O(σ2

B + η̂M(α)2σ2
B,2)

λmin(M) ∧ λmin(M̂)︸ ︷︷ ︸
higher-order term O(κζ)

]
,

4The choice of the discount factor 1/e2 is to be consistent
with our optimal choice in the interpolation setting, where
in the σB = 0 case the total complexity is minimized to
e
√
λmax(B>B)/λmin(BB>).
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where Kcomplexity is the fixed burn-in complexity de-
fined as

logarithmic factor
1
e

√
(1− α)η̄M(α)2λmin(BB>)− C2

, (10)

with C2 being

O
(
η̄M(α)3/2(λmin(BB>))1/4

√
σ2
B + η̄M(α)2σ2

B,2

)
.

The proof of Theorem 3.2 is provided in §D.2. Here
we not only achieve the optimal O(1/

√
K) convergence

rate for the averaged iterate, but the proper restart-
ing schedule allows us to achieve a convergence rate
bound for iteration-averaged SEG in Eq. (9) that for-
gets the initialization at an exponential rate instead of
the polynomial rate that is obtained without restarting
[cf. Theorem 3.2].

Finally, we consider the interpolation setting, where
the noise vanishes at the Nash equilibrium. That is,
gx
ξ = 0n and gy

ξ = 0m; i.e. σg = 0 in Assumption
2.2. In that setting, we prove that SEG with iteration
averaging achieves an accelerated linear convergence
rate. Set the (constant) interval length of restarting
timestamps Kthres(α) as

2
1
e

√
(1− α)η̄M(α)2λmin(BB>)− C3

, (11)

with C3 being

O
(
η̄M(α)3/2(λmin(BB>))1/4

√
σ2
B + η̄M(α)2σ2

B,2

)
.

We present an analysis of this algorithm in the following
theorem, which can be seen as a corollary of Theorem
3.2 but benefits from a refined analysis where tight
constant prefactor sits in each term of the bound:

Theorem 3.3 (Interpolation Setting) Let As-
sumptions 2.1 and 2.2 hold with n = m and σg = 0.
For any prescribed α ∈ (0, 1) choosing the step size
η = η̄M(α) as in Eq. (7) and the restarting timestamps
Ti = i · Kthres(α) where Kthres(α) was defined as in
Eq. (11), we conclude for all K ≥ 1 that is divisible by
Kthres(α) the following convergence rate for the output
x̂K , ŷK of Algorithm 1:

E
[
‖x̂K‖2 + ‖ŷK‖2

]
(12)

≤ e−
K
e

√
(1−α)η̄M(α)2λmin(BB>)+C4

[
‖x0‖2 + ‖y0‖2

]
,

with C4 being

O
(
Kη̄M(α)3/2(λmin(BB>))1/4

√
σ2
B + η̄M(α)2σ2

B,2

)
.

The proof of Theorem 3.3 is provided in §D.3. The
idea behind Theorem 3.3 is, in plain words, to trigger

restarting whenever the last-iterate SEG has travelled
through a full cycle, giving insights on the design of
Kthres(α) in the restarting mechanism. Compared with
Eq. (13) in Theorem A.1 with σg equal to zero, the
contraction rate (in terms of its exponent) to the Nash

equilibrium −η
2
M

4 ·
(
λmin(M) ∧ λmin(M̂)

)
improves to

− 1
e

√
(1− α)η̄M(α)2λmin(BB>) plus higher-order mo-

ment terms involving Bξ. It is worth mentioning that
Algorithm 1 achieves this accelerated convergence rate
in Eq. (12) via simple restarting and does not require
an explicit Polyak- or Nesterov-type momentum up-
date rule [Nesterov, 2018]. In the case of nonrandom
Bξ, this rate matches the lower bound [Ibrahim et al.,
2020, Zhang et al., 2019b],5 and the only algorithm
that achieves this optimal rate to our best knowledge is
Azizian et al. [2020b] without an explicit 1/e-prefactor
on the right hand of Eq. (12).

We end this section with some remarks. For the results
in this section, we can forgo fully optimizing the pref-
actor over α and simply set a step size η as in Eq. (7).
Both the analyses of Theorems 3.1 and 3.2 adopt a step
size of ηM/

√
2, capped by some α-dependent threshold,

due to the fact that our analysis relies heavily on the
last-iterate convergence to stationarity. In the mean-
time, Theorem 3.3 does not rely on such an argument
and accommodates the larger (thresholded) ηM as the
step size. Lastly, we emphasize that the knowledge of
λmin(BB>) is required for the algorithm to achieve the
accelerated rate. Considerations regarding such knowl-
edge are related to the topic of adaptivity of stochastic
gradient algorithms [see, e.g., Lei and Jordan, 2020].

4 EXPERIMENTS

In this section, we present the results of numerical ex-
periments on stochastic bilinear minimax optimization
problems, including both the general setting and the
interpolation setting (i.e., zero noise at the Nash equi-
librium). The objective function we study remains the
same as Eq. (1), repeated here for convenience:

min
x

max
y

x>Eξ[Bξ]y + x>Eξ[gx
ξ ] + Eξ[(gy

ξ )>]y. (1)

Here we assume Bξ is a square matrix of dimension
d × d where d = m = n. To generate Bξ for each ξ,
where ξ corresponds to one iteration in our experiments,
we first generate a random vector u ∈ Rd, where each

5Ibrahim et al. [2020] paper provides the stated lower
bound

√
κ log(1/ε). Although the argument in Zhang et al.

[2019b] does not achieve this bound directly (since they did
not consider the bilinear-coupling case), modifying their
arguments easily extends it to the same lower bound in
the bilinear-coupling case. Theorem 3.3 matches this lower
bound in the nonrandom case.
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(a) General setting.
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Figure 1: Illustration (in two dimensions) of the stochastic extragradient (SEG) algorithm, stochastic extragradient
with iteration averaging (SEG-Avg), and stochastic extragradient with restarted iteration averaging (SEG-Avg-
Restart) on the stochastic minimax optimization problem defined in Eq. (1). Here the Nash equilibrium is
[x∗;y∗] = [0n;0m]. (a) General setting. (b) Interpolation setting, where noise vanishes at the Nash equilibrium.
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Figure 2: Comparing SEG, SEG-Avg, and SEG-Avg-Restart on a stochastic bilinear optimization problem.
The horizontal axis represents the iteration number, and vertical axis represents the square `2-distance to
the Nash equilibrium. (a) General setting (d = 100, stdB = 0.1, stdg = 0.01). (b) Interpolation setting
(d = 100, stdB = 0.1, stdg = 0.0).

element of the vector u is sampled from a uniform
distribution, uj ∼ Unif [1, d+ 1], for j ∈ [d]. Then we
define B = Diag(u) and generate Bξ ∈ Rd×d as follows:

Bξ = B + Eξ, and [Eξ]ij ∼ N (0, std2
B),

where Eξ[Bξ] = B, and B is a fixed matrix for all Bξ.
We generate the noise vectors gx

ξ ∼ N (gx, std2
g Id×d)

and gy
ξ ∼ N (gy, std2

g Id×d), where we generate the
means as follows: gx, gy ∼ N (0, 0.1 · Id×d) (note that
gx, gy are fixed for all gx

ξ , gy
ξ ). More specifically,

for each iteration, we randomly generate {Bξ,g
x
ξ ,g

y
ξ }

according to the above procedure. When stdB =
stdg = 0, the objective in Eq. (1) equals x>By +
x>gx + (gy)>y, where the Nash equilibrium is x? =
−(B>)−1gy and y? = −B−1gx.

We study three algorithms in this section: Stochas-
tic ExtraGradient (SEG), Stochastic ExtraGradient
with iteration averaging (SEG-Avg), and Stochas-
tic ExtraGradient with Restarted iteration averaging
(SEG-Avg-Restart).6

General setting (σg > 0). We first set stdg = 0.01
and stdB = 0.1. The results comparing the three al-
gorithms are shown in Figure 2(a). We find that SEG
can only converge to a neighborhood of the Nash equi-
librium, whereas SEG-Avg and SEG-Avg-Restart can
converge to the equilibrium. From Figure 2(a), we
also observe that the convergence rate of SEG-Avg is

6Straightforward calculation gives σB = stdB

√
d and

σg = stdg

√
2d in our example, as in Assumptions 2.1, 2.2.
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(b) d = 200
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Figure 3: Comparing SEG and SEG-Avg-Restart on a stochastic bilinear optimization problem in the interpolation
setting. The horizontal axis represents the iteration number, and the vertical axis represents the squared `2-
distance to the Nash equilibrium. (a) Comparison on dimension d = 100 (stdB = 0.1, stdg = 0.0). (b) Comparison
on dimension d = 200 (stdB = 0.1, stdg = 0.0). (c). Zoomed-in visualization of SEG-Avg-Restart on dimension
d = 200 (stdB = 0.1, stdg = 0.0).
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Figure 4: Comparison of SEG (without averaging) with different step sizes η and noise magnitudes stdg on
a stochastic bilinear optimization problem in the general setting. The horizontal axis represents the iteration
number, and the vertical axis represents the squared `2-distance to the Nash equilibrium. (a) Comparison with
respect to varying step size η ∈ {0.01, 0.0075, 0.005, 0.0025} (stdB = 0.1, stdg = 0.01). (b) Comparison with
respect to varying noise stdg ∈ {0.01, 0.001, 0.0001} with step size η = 0.01 (stdB = 0.1).

O(1/K2) at the beginning, and then the convergence
rate of SEG-Avg changes to O(1/K). Similar to the in-
terpolation setting, SEG-Avg-Restart converges faster
than both SEG and SEG-Avg. We also study the effect
of the step size η and the noise parameter stdg for
SEG. As shown in Figure 4(a), we observe that SEG
cannot converge to a smaller neighborhood of the Nash
equilibrium with smaller step size η, which aligns well
with our theoretical results. We summarize the varying
noise experimental results in Figure 4(b), where we
observe that SEG converges to a smaller neighborhood
of the Nash equilibrium when we decrease the noise
parameter stdg.

Comparisons with DSEG. As shown in Figures 5(a),
5(b), and 5(c), we provide experimental results on com-
paring SEG-Avg, SEG-Avg-Restart with the Double

Stepsize Extragradient (DSEG) method, proposed in
Hsieh et al. [2020], which allows the step sizes of the
extrapolation step and gradient step admitting differ-
ent scales. We follow the optimized hyperparameter
setup described in Hsieh et al. [2020] and select the
step size constants to achieve faster convergence. From
Figure 5(a), for the general setting, we find that the
convergence rate of DSEG is O(1/K) and both SEG-
Avg and SEG-Avg-Restart converge faster than DSEG.
For the interpolation setting in Figures 5(b) and 5(c),
we observe that the convergence rate of DSEG is sig-
nificantly slower than SEG-Avg-Restart.

Interpolation setting (σg = 0). We first set the
noise parameter stdg = 0, and set stdB = 0.1. The
performance of SEG, SEG-Avg, and SEG-Avg-Restart
is summarized in Figure 2(b), where we set the dimen-
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Figure 5: Comparing SEG-Avg, SEG-Avg-Restart, and DSEG methods [Hsieh et al., 2020] on the stochastic
bilinear optimization problem. The horizontal axis represents the iteration number, and the vertical axis represents
the square `2-distance to the Nash equilibrium. (a) General setting (d = 100, stdB = 0.1, stdg = 0.01). (b)
Interpolation setting (d = 100, stdB = 0.1, stdg = 0.0). (c). Interpolation setting (d = 100, stdB = 0.1, stdg = 0.0)
under the semi-log scale in the vertical.

sion d = 100. We observe that the convergence rate of
SEG-Avg is O(1/K2), which aligns with our theoretical
analysis. Meanwhile, we find that SEG-Avg-Restart
converges faster than SEG under this interpolation set-
ting. As shown in Figures 3(a) and 3(b), we compare
the convergence rate of SEG and SEG-Avg-Restart on
a semi-log plot, since both algorithms converge expo-
nentially to the Nash equilibrium in the interpolation
setting. We observe that SEG-Avg-Restart converges
faster than SEG (for both d = 100 and d = 200) as
suggested by our theory. We also present a zoomed-in
plot of SEG-Avg-Restart in Figure 3(c).

5 CONCLUSIONS

We have presented an analysis of the classical Stochas-
tic ExtraGradient (SEG) method for stochastic bilinear
minimax optimization. Despite that the last iterate
only contracts to a fixed neighborhood of the Nash
equilibrium and the diameter of the neighborhood is
independent of the step size, we show that SEG ac-
companied by iteration averaging converges to Nash
equilibria at a sublinear rate. Moreover, the forgetting
of the initialization is optimal when we use a scheduled
restarting procedure in both the general and interpola-
tion settings. Numerical experiments further validate
this use of iteration averaging and restarting in the
SEG setting.

Further directions for research include justification of
the optimality of our convergence result, improvement
of the convergence of SEG for nonlinear convex-concave
optimization problems with relaxed assumptions, and
connection to the Hamiltonian viewpoint for bilinear
minimax optimization.
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Supplementary Material:
On the Convergence of Stochastic Extragradient for Bilinear Games

using Restarted Iteration Averaging

A ISSUES WITH LAST-ITERATE CONVERGENCE

In this section, we revisit the last-iterate convergence of SEG under our setting. In contrast with minimization
problems where stochastic gradient methods with a constant step size converge to a neighborhood of the optimum
whose size depends on the step size [Schmidt, 2014], solving the stochastic bilinear minimax optimization problem
with Stochastic ExtraGradient (SEG) method under standard settings leads to a last iterate contracting to a
fixed neighborhood of the Nash equilibrium whose diameter is independent of the step size. Hence, a classical
diminishing step size strategy is not sufficient.

We recall the following notations. Let ξ be an abstract random variable that is equi-distributed as ξt. The

expectations, also positive semi-definite, are denoted by M̂ = EξM̂ξ ≡ Eξ[B>ξ Bξ] and M = EξMξ ≡ Eξ[BξB
>
ξ ].

It is easy to verify that both matrices are symmetric and positive semi-definite. Recall that ηM is the maximal
step size the SEG algorithm analysis takes, defined earlier as

ηM ≡
1√

λmax

(
M−1/2[EξM2

ξ ]M
−1/2

)
∨ λmax

(
M̂−1/2[EξM̂2

ξ ]M̂
−1/2

) . (6)

When Bξ is nonrandom the value ηM simply reduces to 1/
√
λmax(B>B). It is worth highlighting that the

spectral knowledge of matrices involving moments of Bξ that we assume is mild, as analogous spectral information
has been traditionally assumed in the online stochastic optimization literature.

We remind the readers of the following result on last-iterate SEG (extension of Hsieh et al. [2020]):

Theorem A.1 (SEG Last Iterate) Under proper assumptions [e.g., Assumptions 2.1 and 2.2 in §2], if η is
chosen as ηM/

√
2 where ηM is defined as in Eq. (6), we have the following upper bound for the last iterate,

(xK ,yK) generated by the algorithm in Eq. (2), for all K ≥ 1:

E
[
‖xK‖2 + ‖yK‖2

]
≤ e−

η2M
4 ·(λmin(M)∧λmin(M̂))·K [‖x0‖2 + ‖y0‖2

]
+

3σ2
g

λmin(M) ∧ λmin(M̂)
. (13)

With our chosen step size, as K →∞ the expected squared Euclidean norm converges linearly in Eq. (13), i.e.,

lim sup
K→∞

E
[
‖xK‖2 + ‖yK‖2

]
≤ 3σ2

g

λmin(M) ∧ λmin(M̂)
,

which is, in the σg > 0 case, bounded away from zero.7 A version of Theorem A.1 was provided by Hsieh et al.
[2020], where a two-timescale method was proposed to remedy this lack of convergence to zero, with a large step
size update of gradient step followed by a smaller step size update of the extragradient step. In this case the
asymptotic neighborhood size is proportional to the square root of their ratio. However, Hsieh et al. [2020] only
provide a proof under an assumption of bounded noise. In the interpolation case where σg = 0, Vaswani et al.
[2019b] showed a weaker version of Theorem A.1 that incorporates an exact line-search step. To the best of our
knowledge, the statement of Theorem A.1 is the first to identify the maximal step size ηM that can be taken by
the SEG method in Eq. (6). For completeness, we provide the proof of our version of Theorem A.1 in §C.1.

7In contrast to λmin(BB>) being zero when B ∈ Rn×m with n > m, the λmin(M) ∧ λmin(M̂) can be positive when Bξ

is random in general. A standard instance will be Bξ being n×m a Gaussian random matrix consisting of independent
standard normals.
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σB > 0 and σg = 0 Convergence Rate

Juditsky et al. [2011] O
(

max
{
R2

K2 ,
1
K

})†
This work O

(
‖x0‖2+‖y0‖2

K2

)
σB = 0 and σg > 0 Convergence Rate

Hsieh et al. [2020] O
(
σ2
g

K

)
+ o

(
1
K

)
This work O

(
σ2
g

K

)
+O

(
‖x0‖2+‖y0‖2

K2

)
Table 1: Comparing convergence rates with Juditsky and Nemirovski [2008] and Hsieh et al. [2020]. †R is the
squared domain radius.

In addition, we introduce the following negative result that establishes a lower bound that accommodates a
broader range of step sizes. This result shows that the upper bound on SEG convergence rate in Theorem A.1 is
not improvable even for the case of diminishing step sizes, which limits the applicability of the last-iterate output
of the SEG algorithm in general [Hsieh et al., 2020].

Theorem A.2 (Lower bound for SEG, extension of Hsieh et al. [2020]) Under the assumptions of The-
orem A.1, there exist n,m ≥ 1, a distribution P supported on Rn×m × Rn × Rm for {(Bξ,g

x
ξ ,g

y
ξ )}, and an

initialization (x0,y0) satisfying ‖x0‖2 + ‖y0‖2 ≥ C1σ
2
g such that, for any sequence of step sizes ηt ∈ [0, ηM], the

last-iterate SEG (xK ,yK) generated by Eq. (2) satisfies E
[
‖xK‖2 + ‖yK‖2

]
≥ C2σ

2
g for any K ≥ 1, where C1, C2

are positive, numerical constants.

In this work, we remedy the lack of convergence that this results indicate via a convergence analysis of the averaged
iterates. We show in the main text of this paper that SEG with properly scheduled restarting and iteration
averaging achieves a statistically optimal rate of convergence, as well as an exponentially mixing (forgetting) of
the initialization; see §3.

B COMPARISON OF THEOREM 3.1 WITH EXISTING WORK

In this section, we compare our results with existing work. We first provide a few remarks regarding the
convergence rate in Theorem 3.1:

(i) In the general stochastic setting (σg > 0), the step size of our algorithm is not sensitive to the number
of iteration (K), i.e., simply picking the constant step size would guarantee the sharp convergence of
(same-sample) SEG to the optimal solution, which benefits from the intrinsic linearity of our problem. In
comparison, the algorithms in [Juditsky et al., 2011, Mishchenko et al., 2020] rigidly select the step size
η = O(1/

√
K). Meanwhile, our algorithm does not require the projection step compared with Juditsky et al.

[2011], Mishchenko et al. [2020].

(ii) Our analysis of Theorem 3.1 indicates that the “forgetting rate” of the dependency on initialization
‖x0‖2 + ‖y0‖2 can be improved to O(1/K2), achieving an optimal overall rate that is faster than existing
work. Mathematically we concluded (8) which is recapped here:

E
[
‖xK‖2 + ‖yK‖2

]
≤ 16 + 8κζ

(1− α)η̂M(α)2λmin(BB>)
· ‖x0‖2 + ‖y0‖2

(K + 1)2
+

18 + 12κζ
(1− α)λmin(BB>)

· σ2
g

K + 1
, (8)

where we recall that κζ ≡ σ2
B+η̂M(α)2σ2

B,2

λmin(M)∧λmin(M̂)
denotes the effective noise condition number of problem Eq. (1).

Nevertheless in our upcoming restarting analysis, we present an alternative convergence rate bound for the
averaged iterate as follows: for arbitrary γ ∈ (0,∞)

E
[
‖xK‖2 + ‖yK‖2

]
≤ 8(1 + γ)

(1− α)η̂M(α)2λmin(BB>)
· ‖x0‖2 + ‖y0‖2

(K + 1)2

2
(

1 + 1
γ

)
(σ2

B + η̂M(α)2σ2
B,2)

[
‖x0‖2 + ‖y0‖2 +

3σ2
g

λmin(M)∧λmin(M̂)

]
+ 9(1 + γ)σ2

g

(1− α)λmin(BB>)
· 1

K + 1
,

(14)
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which is slightly better (in the case of γ = 1) for our restarting analysis. See the discussion paragraph on
pp. 24 for more on this.

Comparison with Hsieh et al. [2020] Hsieh et al. [2020] considered the independent-sample double-stepsize
SEG, and our work focuses on the same-sample extra-gradient methods. The convergence rate of DSEG Hsieh
et al. [2020] in the general stochastic bilinear minimax optimization problem (σB = σB,2 = 0 and σg > 0) is

E
[
‖xK‖2 + ‖yK‖2

]
≤ λmax(B>B)

λ2
min(BB>)

· σ
2
g

K
+ o

(
1

K

)
.

In contrast, our convergence rate is, in a coarse manner, (by setting σB = σB,2 = 0 in Eq. (33))

E
[
‖xK‖2 + ‖yK‖2

]
.

1

λmin(BB>)
· σ

2
g

K
+
λmax(B>B)

λmin(BB>)
· ‖x0‖2 + ‖y0‖2

K2
.

We observe in the above two displays that our rate is sharper than the rate of Hsieh et al. [2020] in terms of
the coefficient of σ2

g/K, which is the dominant term in both bounds. In particular, when the step size is chosen
properly our convergence rate bound is sharper in the interpolation setting where σB > 0 and σg = 0.

Comparison with Juditsky et al. [2011] We first provide the connection between restricted gap and distance
to the Nash equilibrium. Suppose we consider the bounded domain setting for the bilinear minimax optimization
problem where Z = {‖x‖ ≤ R, ‖y‖ ≤ R} and R is the domain radius, and the variational inequality with

monotone mapping F (z) =

[
By
−B>x

]
where z =

[
x
y

]
. Then the restricted gap (i.e., merit function) can be

expressed as

Errvi(zK) = max
z∈Z
〈F (z), zK − z〉 = max

‖y‖≤R
x>KBy − min

‖x‖≤R
y>KB>x = R

(
‖B>xK‖+ ‖ByK‖

)
.

Therefore, the restricted gap can be lower bounded as

Errvi(zK) ≥ R
√
λmin(BB>) (‖xK‖+ ‖yK‖) .

With this relation at hand, the convergence rate in Juditsky et al. [2011] when calibrated to the interpolation
setting (σB > 0 and σg = 0) is

E [‖xK‖+ ‖yK‖]2 .
1

λmin(BB>)
· σ

2
B

K
+
λmax(B>B)

λmin(BB>)
· R

2

K2
.

In comparison with Juditsky et al. [2011] our convergence rate in Eq. (8) spells

E
[
‖xK‖2 + ‖yK‖2

]
.

(
1

η̂M(α)2
+

σ2
B + η̂M(α)2σ2

B,2

η̂M(α)2(λmin(M) ∧ λmin(M̂))

)
· 1

λmin(BB>)
· ‖x0‖2 + ‖y0‖2

K2
,

where our convergence rate is significantly better in terms of the σB-dependency.8

Other related work on stochastic min-max problems Alacaoglu and Malitsky [2021] proposed stochastic
variance reduced algorithms for solving variational inequalities with the finite-sum structure. For more recent
results on stochastic iterative methods for solving min-max problems we refer the interested reader to Loizou
et al. [2021a], Gorbunov et al. [2021a,b] and the references therein.

C TECHNICAL ANALYSIS OF LAST-ITERATE SEG

In this section we present the technical details of our theoretical results in §A, focusing on the last-iterate Theorem
A.1.9 We first introduce a lemma without proof, which is a standard result in linear algebra [Trefethen and
Bau III, 1997, Lecture 5] stating the relations between spectrum of relevant matrices:

8In the above five displays, an . bn denotes an = O(bn) for the two positive sequences.
9The proof of Theorem A.2 can be found in Hsieh et al. [2020] and hence we omit it in this work.
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Lemma C.1 (Spectral properties) For our coupling matrix B ∈ Rn×m with n ≥ m (tall matrix), B>B and
BB> share the same spectrum or eigenvalues except zeroes:

σ(BB>) = σ(B>B) ∪ (0, . . . , 0︸ ︷︷ ︸
n−m

).

Furthermore, both σ(B>B) and σ(BB>) are subsets of the nonnegative reals, so we always have

λmax(BB>) = λmax(B>B),

and

λmin

(
B>B

)
≥ λmin

(
BB>

)
. (15)

In special, when n = m we have λmin(B>B) = λmin(BB>). The λmin(BB>) might be different from λmin(B>B)
when B is nonsquare, in which case λmin(BB>) simply reduces to 0 whenever n > m.

Next, we introduce the contraction parameter that plays a key role in our analysis.

λ∗(η) ≡ λmin

(
M− η2[EξM2

ξ ]
)
∧ λmin

(
M̂− η2[EξM̂2

ξ ]
)
. (16)

Note that λ∗(η) is not necessarily nonnegative for positive ηs. We have the following lemma establishing various
inequalities regarding λ∗(η) and ηM as in Eq. (6):

Lemma C.2 Under Assumption 2.1 we have

(1) For all η > 0, it holds that

η2λ∗(η) ≤ 1/4. (17)

(2) For all η ∈ (0, ηM] where ηM is defined as in Eq. (6), it holds that

λ∗(η) ≥
(

1− η2

η2
M

)(
λmin(M) ∧ λmin(M̂)

)
≥ 0. (18)

(3) ηM defined as in Eq. (6) satisfies, for any η > 0 such that λ∗(η) ≥ 0,

0 < ηM ≤
1√

λmax(M) ∨ λmax(M̂)

≤ 1√
λmax(B>B)

. (19)

When Bξ = B a.s., both equalities hold in the above Eq. (19).

The proof of Lemma C.2 is detailed in §C.3.1.

C.1 Analysis of Theorem A.1

Theorem A.1, Full Version Let Assumptions 2.1 and 2.2 hold. For any positive η we have for all K ≥ 1

E
[
‖xK‖2 + ‖yK‖2

]
≤
(
1− η2λ∗(η)

)K [‖x0‖2 + ‖y0‖2
]

+ η2QK(η)
[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
σ2
g,

(20)

where we denote

QK(η) ≡
K∑
t=1

(
1− η2λ∗(η)

)t−1
which is upper bounded by K ∧ 1

η2λ∗(η)
, (21)



C. J. Li, Y. Yu, N. Loizou, G. Gidel, Y. Ma, N. Le Roux, M. I. Jordan

and λ∗(η) was earlier defined as in Eq. (16). For all η ∈ (0, ηM] where ηM is defined as in Eq. (6), we have for
all K ≥ 1

E
[
‖xK‖2 + ‖yK‖2

]
≤
(

1− η2

(
1− η2

η2
M

)(
λmin(M) ∧ λmin(M̂)

))K [
‖x0‖2 + ‖y0‖2

]
+ η2QK(η)

[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
σ2
g

≤ exp

(
−η

2
M

4

(
λmin(M) ∧ λmin(M̂)

)
·K
)[
‖x0‖2 + ‖y0‖2

]
+

3σ2
g

λmin(M) ∧ λmin(M̂)

(when η = ηM/
√

2).

(22)

Analogous to our remarks immediately following the statement of Theorem A.1 in §A, for a given range of step
size such that λ∗(η) is positive, QK(η)→ 1/(η2λ∗(η)) as K →∞ the squared Euclidean norm approaches

E
[
‖xK‖2 + ‖yK‖2

]
→ 1

λ∗(η)

[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
σ2
g,

which is bounded below, due to Eq. (17), by
σ2
g

λmin(M)∧λmin(M̂)
due to λ∗(η) ≤ λmin(M) ∧ λmin(M̂) and hence

bounded away from 0. Optimizing the choice of η achieves, as observed in Eq. (13), a limiting upper bound that
triples the above display so the bandwidth of the limiting points is rather narrow (within a triple bandwidth).

We now turn to prove Theorem A.1.

Proof.[Proof of Theorem A.1] We denote for short Mξ ≡ BξB
>
ξ and M̂ξ ≡ B>ξ Bξ, and x ≡ xt, y ≡ yt, x

− ≡ xt−1,

y− ≡ yt−1, Bξ ≡ Bξ,t, gξ ≡ gξ,t, as well as the conditional expectation Eξ[·] = E [· | Ft−1]. Recall Eq. (2)
combined gives the SEG update rules is in total

x = x− − η2BξB
>
ξ x
− − η

[
Bξy

− + gx
ξ

]
− η2Bξg

y
ξ

y = y− − η2B>ξ Bξy
− + η

[
B>ξ x

− + gy
ξ

]
− η2B>ξ g

x
ξ .

(23)

By analyzing equation Eq. (23) we derive

Eξ
[
‖x‖2 + ‖y‖2

]
= Eξ

∥∥∥(I− η2BξB
>
ξ

)
x− − ηBξy

− − ηgx
ξ − η2Bξg

y
ξ

∥∥∥2

+ Eξ
∥∥∥(I− η2B>ξ Bξ

)
y− + ηB>ξ x

− + ηgy
ξ − η2B>ξ g

x
ξ

∥∥∥2

= Eξ
∥∥(I− η2BξB

>
ξ

)
x− − ηBξy

−∥∥2
+ Eξ

∥∥∥−ηgx
ξ − η2Bξg

y
ξ

∥∥∥2

+2Eξ
〈(

I− η2BξB
>
ξ

)
x− − ηBξy

−,−ηgx
ξ − η2Bξg

y
ξ

〉
︸ ︷︷ ︸

cross term

+ Eξ
∥∥(I− η2B>ξ Bξ

)
y− + ηB>ξ x

−∥∥2
+ Eξ

∥∥∥ηgy
ξ − η2B>ξ g

x
ξ

∥∥∥2

+2Eξ
〈(

I− η2B>ξ Bξ

)
y− + ηB>ξ x

−, ηgy
ξ − η2B>ξ g

x
ξ

〉
︸ ︷︷ ︸

cross term

,

where by independence we have the cross terms being

2Eξ
〈(

I− η2BξB
>
ξ

)
x− − ηBξy

−,−ηgx
ξ − η2Bξg

y
ξ

〉
= 0

2Eξ
〈(

I− η2B>ξ Bξ

)
y− + ηB>ξ x

−, ηgy
ξ − η2B>ξ g

x
ξ

〉
= 0.
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Therefore

Eξ
[
‖x‖2 + ‖y‖2

]
= Eξ

∥∥(I− η2BξB
>
ξ

)
x− − ηBξy

−∥∥2
+ Eξ

∥∥∥−ηgx
ξ − η2Bξg

y
ξ

∥∥∥2

+ Eξ
∥∥(I− η2B>ξ Bξ

)
y− + ηB>ξ x

−∥∥2
+ Eξ

∥∥∥ηgy
ξ − η2B>ξ g

x
ξ

∥∥∥2

= Eξ
∥∥(I− η2BξB

>
ξ

)
x−
∥∥2

+ Eξ
∥∥−ηBξy

−∥∥2
+ Eξ

∥∥(I− η2B>ξ Bξ

)
y−
∥∥2

+ Eξ
∥∥ηB>ξ x−∥∥2

+2Eξ
〈(
I− η2BξB

>
ξ

)
x−,−ηBξy

−〉+ 2Eξ
〈(
I− η2B>ξ Bξ

)
y−, ηB>ξ x

−〉︸ ︷︷ ︸
cross term

+ Eξ
∥∥−ηgx

ξ

∥∥2
+ Eξ

∥∥∥−η2Bξg
y
ξ

∥∥∥2

+ Eξ
∥∥∥ηgy

ξ

∥∥∥2

+ Eξ
∥∥−η2B>ξ g

x
ξ

∥∥2

+2Eξ
〈
−ηgx

ξ ,−η2Bξg
y
ξ

〉
+ 2Eξ

〈
ηgy

ξ ,−η2B>ξ g
x
ξ

〉
︸ ︷︷ ︸

cross term

,

where it is again easy to verify the cross terms are zero due to the identities

Eξ
〈(
I− η2BξB

>
ξ

)
x−,−ηBξy

−〉+ Eξ
〈(
I− η2B>ξ Bξ

)
y−, ηB>ξ x

−〉 = 0,

Eξ
〈
−ηgx

ξ ,−η2Bξg
y
ξ

〉
+ Eξ

〈
ηgy

ξ ,−η2B>ξ g
x
ξ

〉
= 0.

Finally

Eξ
[
‖x‖2 + ‖y‖2

]
= Eξ

∥∥(I− η2BξB
>
ξ

)
x−
∥∥2

+ Eξ
∥∥−ηBξy

−∥∥2
+ Eξ

∥∥(I− η2B>ξ Bξ

)
y−
∥∥2

+ Eξ
∥∥ηB>ξ x−∥∥2

+ Eξ
∥∥−ηgx

ξ

∥∥2
+ Eξ

∥∥∥−η2Bξg
y
ξ

∥∥∥2

+ Eξ
∥∥∥ηgy

ξ

∥∥∥2

+ Eξ
∥∥−η2B>ξ g

x
ξ

∥∥2

= (x−)>E
(
I− η2BξB

>
ξ +

(
η2BξB

>
ξ

)2)
x− + (y−)>E

(
I− η2B>ξ Bξ +

(
η2B>ξ Bξ

)2)
y−

+ η2Eξ
[
(gx
ξ )>

(
I + η2BξB

>
ξ

)
gx
ξ

]
+ η2Eξ

[
(gy
ξ )>

(
I + η2B>ξ Bξ

)
gy
ξ

]
,

(24)

and in the last equality we use the independence assumption of Bξ and [gx
ξ ;gy

ξ ] as in Assumption 2.2, so we have

since Eξ[B>ξ Bξ] � λmax(M̂)Im and Eξ[BξB
>
ξ ] � λmax(M)In that

Eξ
[
‖Bξg

y
ξ ‖2 | gξ

]
= gy

ξEξ[B
>
ξ Bξ](g

y
ξ )> ≤ gy

ξ

[
λmax(M̂)Im

]
(gy
ξ )> = λmax(M̂)‖gy

ξ ‖2,

and analogously

Eξ
[
‖B>ξ gx

ξ ‖2 | gξ
]
≤ λmax(M)‖gx

ξ ‖2,

so summing up the above two and taking expectation gives, due to Assumption 2.2,

Eξ
[
‖Bξg

y
ξ ‖2
]

+ Eξ
[
‖B>ξ gx

ξ ‖2
]
≤ λmax(M̂)Eξ‖gy

ξ ‖2 + λmax(M)Eξ‖gx
ξ ‖2

≤
(
λmax(M̂) ∨ λmax(M)

)
E
[
‖gy

ξ ‖2 + ‖gx
ξ ‖2
]

=
(
λmax(M̂) ∨ λmax(M)

)
σ2
g.

Therefore Eq. (24) gives, for any positive η, that

Eξ
[
‖x‖2 + ‖y‖2

]
= (x−)>

(
I− η2

(
M− η2[EξM2

ξ ]
))

x− + (y−)>
(
I− η2

(
M̂− η2[EξM̂2

ξ ]
))

y−

+ η2
[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
σ2
g

≤
(
1− η2λ∗(η)

) (
‖x−‖2 + ‖y−‖2

)
+ η2

[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
σ2
g,
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where λ∗(η) was earlier defined in Eq. (16). Recursively applying this allows us to conclude

E
[
‖xK‖2 + ‖yK‖2

]
≤
(
1− η2λ∗(η)

)K [‖x0‖2 + ‖y0‖2
]

+

[
K∑
t=1

(
1− η2λ∗(η)

)t−1
η2

]
︸ ︷︷ ︸

= η2QK(η) due to Eq. (21)

[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
σ2
g,

and hence concludes Eq. (20). The rest of the proof, under the condition η ∈ (0, ηM], follows from λ∗(η)’s
definition in Eq. (16) along with Lemma C.2. �

C.2 Proof of Theorem A.2

Theorem A.2 is, in fact, a variant of Proposition 1 of Hsieh et al. [2020] under our assumptions. Hence the proof
therein applies, and we provide the statement in our work mainly for the sake of completeness.

C.3 Auxiliary Proofs

C.3.1 Proof of Lemma C.2

Proof.[Proof of Lemma C.2]

(1) Since EξM2
ξ −M2 = Eξ (Mξ −M)

2 � 0 a simple discriminant argument of a quadratic 1− t+ t2, which is
greater than or equal to 3/4 for all reals t, concludes

I− η2
(
M− η2[EξM2

ξ ]
)
� I− η2

(
M− η2M2

)
� 3

4
I,

and

I− η2
(
M̂− η2[EξM̂2

ξ ]
)
� I− η2

(
M̂− η2M̂2

)
� 3

4
I,

and hence

1− η2λ∗(η) = λmax

(
I− η2

(
M− η2[EξM2

ξ ]
))
∨ λmax

(
I− η2

(
M̂− η2[EξM̂2

ξ ]
))
≥ 3

4
,

proving Eq. (17).

(2) The definition of ηM as in Eq. (6) gives for all η ∈ (0, ηM]

η2M−1/2[EξM2
ξ ]M

−1/2 � I and η2M̂−1/2[EξM̂2
ξ ]M̂

−1/2 � I,

and we have

EξM2
ξ �

1

η2
M

M and EξM̂2
ξ �

1

η2
M

M̂

hold, which concludes when η satisfies η ∈ (0, ηM] both

M− η2[EξM2
ξ ] �

(
1− η2

η2
M

)
M and M̂− η2[EξM̂2

ξ ] �
(

1− η2

η2
M

)
M̂,

and hence via Eq. (16)

λ∗(η) = λmin

(
M− η2[EξM2

ξ ]
)
∧ λmin

(
M̂− η2[EξM̂2

ξ ]
)
≥
(

1− η2

η2
M

)(
λmin(M) ∧ λmin(M̂)

)
≥ 0

holds for all η ∈ (0, ηM], which proves Eq. (18).
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(3) Note M = EξMξ and M̂ = EξM̂ξ, and ηM > 0 is due to the finiteness of λmax

(
M−1/2[EξM2

ξ ]M
−1/2

)
under

Assumption 2.1. For the second inequality note by the part (1) of the proof

M−1/2[EξM2
ξ ]M

−1/2 �M−1/2M2M−1/2 = M,

and
M̂−1/2[EξM̂2

ξ ]M̂
−1/2 � M̂−1/2M̂2M̂−1/2 = M̂,

hold due to Eq. (4), and it is straightforward to check that all equalities hold in the Bξ = B a.s. case, proving
the second inequality of Eq. (19). For the third inequality, we have

M−BB> = E
[
(Bξ −B)(Bξ −B)>

]
� 0,

and
M̂−B>B = E

[
(Bξ −B)>(Bξ −B)

]
� 0,

with equality holds when Bξ = B a.s. Hence

λmax(M) ≥ λmax(BB>) and λmax(M̂) ≥ λmax(B>B).

Note λmax(BB>) = λmax(B>B) as indicated by Lemma C.1 gives the third inequality and the whole lemma.

�

D TECHNICAL ANALYSIS IN §3

In this section, we collects the technical analyses and proofs of our main theoretical results. The study of SEG in
general stochastic setting §3 for the averaged-iterate Theorem 3.1 and restarted-averaged-iterate Theorem 3.2.
When narrowing down to the interpolation setting in §3, we state Theorem 3.3. For each of the theorems we first
detail their full versions and accompany them with proofs, separately.

D.1 Analysis of Theorem 3.1

Theorem 3.1, Full Version Let Assumptions 2.1 and 2.2 hold and we assume that λ∗(η) > 0. Under the
condition on step size η ∈ (0, ηM] where ηM was earlier defined as in Eq. (6), we have for all K ≥ 0 the following
convergence rate holds for the averaged iterate xK ,yK defined in Theorem 3.1:(

λmin(BB>)
(
1 + η2λmin(BB>)

)
− 2ησ2

B

√
λmax(B>B)

)
E
[
‖xK‖2 + ‖yK‖2

]
≤ E

[
‖ByK + ηMxK‖2 +

∥∥∥B>xK − ηM̂yK

∥∥∥2
]

≤

 8(1 + γ)

η2(K + 1)2
+

2
(

1 + 1
γ

)
(σ2

B + η2σ2
B,2)

K + 1

[‖x0‖2 + ‖y0‖2
]

+
6(1 + γ) + 2

(
1 + 1

γ

)
(σ2

B + η2σ2
B,2)λ∗(η)−1

K + 1

[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
σ2
g,

(25)

where γ ∈ (0,∞) is arbitrary. In addition when Bξ,B are square matrices, we have

E
[
‖xK‖2 + ‖yK‖2

]
≤ P̂K+1(η) · ‖x0‖2 + ‖y0‖2

(K + 1)2
. (26)

In above the prefactor is defined as10

P̂K+1(η)

≡


+∞ if λmin(BB>)

(
1 + η2λmin(BB>)

)
≤ 2ησ2

B

√
λmax(B>B)

8(1+γ)+

(
2(1+ 1

γ )η2(σ2
B+η2σ2

B,2)+
6(1+γ)+2(1+ 1

γ )(σ2B+η2σ2B,2)λ∗(η)−1

‖x0‖2+‖y0‖2
·η2[1+η2(λmax(M)∨λmax(M̂))]σ2

g

)
·(K+1)

η2λmin(BB>)(1+η2λmin(BB>))−2η3σ2
B

√
λmax(B>B)

otherwise
,

10Here we interpret 0 · (+∞) as +∞ whenever it appears.
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and by setting η = η̂M(α) defined earlier as in Eq. (7), we have

P̂K+1(η̂M(α)) ≤ 8(1 + γ)

(1− α)λmin(BB>)
· 1

η̂M(α)2

+
2
(

1 + 1
γ

)
(σ2

B + η̂M(α)2σ2
B,2)

[
‖x0‖2 + ‖y0‖2 +

3σ2
g

λmin(M)∧λmin(M̂)

]
+ 9(1 + γ)σ2

g

(1− α)λmin(BB>)
· K + 1

‖x0‖2 + ‖y0‖2
,

(27)
which recovers Eq. (14).

Proof.[Proof of Theorem 3.1] First, as long as η2λ∗(η) ≤ 1/4 the Eq. (20) is further bounded as

E
[
‖xK‖2 + ‖yK‖2

]
≤
(
1− η2λ∗(η)

)K [‖x0‖2 + ‖y0‖2
]

+ η2QK(η)
[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
σ2
g.

(28)

Depending on the behavior of QK(η), the expected squared Euclidean norm admits two different upper bounds:
(i) when λ∗(η) is bounded away from 0, uniform bound holds with its limit being bounded by a quantity that
is inverse proportional to λ∗(η); (ii) when λ∗(η) approaches zero, the quantity eventually grows linearly at a
rate that does not depend on λ∗(η). In our analysis we will assume that λ∗(η) is bounded away from zero while
applying two different bounds interchangeably.

Returning to the SEG update Eq. (23) which we repeat as

xt = xt−1 − η2Bξ,tB
>
ξ,txt−1 − η

[
Bξ,tyt−1 + gx

ξ,t

]
− η2Bξ,tg

y
ξ,t

yt = yt−1 − η2B>ξ,tBξ,tyt−1 + η
[
B>ξ,txt−1 + gy

ξ,t

]
− η2B>ξ,tg

x
ξ,t.

(23)

Setting η = η̂M(α) as in Eq. (7) and telescoping both sides of the update rule Eq. (23) for t = 1, . . . ,K gives

xK − x0 = −η2
K∑
t=1

Bξ,tB
>
ξ,txt−1 − η

K∑
t=1

[
Bξ,tyt−1 + gx

ξ,t

]
− η2

K∑
t=1

Bξ,tg
y
ξ,t

yK − y0 = −η2
K∑
t=1

B>ξ,tBξ,tyt−1 + η

K∑
t=1

[
B>ξ,txt−1 + gy

ξ,t

]
− η2

K∑
t=1

B>ξ,tg
x
ξ,t.

Manipulating gives

1

K

K∑
t=1

Bξ,tyt−1 +
η

K

K∑
t=1

Bξ,tB
>
ξ,txt−1 =

xK − x0

−ηK − 1

K

K∑
t=1

gx
ξ,t −

η

K

K∑
t=1

Bξ,tg
y
ξ,t,

1

K

K∑
t=1

B>ξ,txt−1 −
η

K

K∑
t=1

B>ξ,tBξ,tyt−1 =
yK − y0

ηK
− 1

K

K∑
t=1

gy
ξ,t +

η

K

K∑
t=1

B>ξ,tg
x
ξ,t.

(29)

Now we try to bound the norm of the left hands in the above two displays. Young’s inequality gives that for fixed
γ > 0, ‖a+ b‖2 ≤ (1 + γ)‖a‖2 + (1 + 1

γ )‖b‖2 so ‖a‖2 ≥ 1
1+γ ‖a+ b‖2 − 1

γ ‖b‖2 holds for two vectors a, b of same
dimensions,

E

∥∥∥∥∥ 1

K

K∑
t=1

Bξ,tyt−1 +
η

K

K∑
t=1

Bξ,tB
>
ξ,txt−1

∥∥∥∥∥
2

= E

∥∥∥∥∥ByK−1 + ηMxK−1 +
1

K

K∑
t=1

(Bξ,t −B)yt−1 +
η

K

K∑
t=1

(
Bξ,tB

>
ξ,t −M

)
xt−1

∥∥∥∥∥
2

≥ 1

1 + γ
E
∥∥ByK−1 + ηMxK−1

∥∥2 − 1

γ
E

∥∥∥∥∥ 1

K

K∑
t=1

(Bξ,t −B)yt−1 +
η

K

K∑
t=1

(
Bξ,tB

>
ξ,t −M

)
xt−1

∥∥∥∥∥
2

.

(30)
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Analogously,

E

∥∥∥∥∥ 1

K

K∑
t=1

B>ξ,txt−1 −
η

K

K∑
t=1

B>ξ,tBξ,tyt−1

∥∥∥∥∥
2

= E

∥∥∥∥∥B>xK−1 − ηM̂yK−1 +
1

K

K∑
t=1

(Bξ,t −B)>xt−1 −
η

K

K∑
t=1

(
B>ξ,tBξ,t − M̂

)
yt−1

∥∥∥∥∥
2

≥ 1

1 + γ
E
∥∥∥B>xK−1 − ηM̂yK−1

∥∥∥2

− 1

γ
E

∥∥∥∥∥ 1

K

K∑
t=1

(Bξ,t −B)>xt−1 −
η

K

K∑
t=1

(
B>ξ,tBξ,t − M̂

)
yt−1

∥∥∥∥∥
2

.

(31)

Combining the above two displays Eq. (30), Eq. (31) with Eq. (29) we have

1

1 + γ
E
[∥∥ByK−1 + ηMxK−1

∥∥2
+
∥∥∥B>xK−1 − ηM̂yK−1

∥∥∥2
]

− 1

γ
E

∥∥∥∥∥ 1

K

K∑
t=1

(Bξ,t −B)yt−1 +
η

K

K∑
t=1

(
Bξ,tB

>
ξ,t −M

)
xt−1

∥∥∥∥∥
2

− 1

γ
E

∥∥∥∥∥ 1

K

K∑
t=1

(Bξ,t −B)>xt−1 −
η

K

K∑
t=1

(
B>ξ,tBξ,t − M̂

)
yt−1

∥∥∥∥∥
2

≤ E

∥∥∥∥∥xK − x0

−ηK − 1

K

K∑
t=1

gx
ξ,t −

η

K

K∑
t=1

Bξ,tg
y
ξ,t

∥∥∥∥∥
2

+ E

∥∥∥∥∥yK − y0

ηK
− 1

K

K∑
t=1

gy
ξ,t +

η

K

K∑
t=1

B>ξ,tg
x
ξ,t

∥∥∥∥∥
2

≤ (1 + β)E
∥∥∥∥xK − x0

−ηK

∥∥∥∥2

+ (1 + β)E
∥∥∥∥yK − y0

ηK

∥∥∥∥2

+

(
1 +

1

β

)
E

∥∥∥∥∥− 1

K

K∑
t=1

gx
ξ,t −

η

K

K∑
t=1

Bξ,tg
y
ξ,t

∥∥∥∥∥
2

+

(
1 +

1

β

)
E

∥∥∥∥∥− 1

K

K∑
t=1

gy
ξ,t +

η

K

K∑
t=1

B>ξ,tg
x
ξ,t

∥∥∥∥∥
2

,

(32)

where the last inequality is an application of Young’s that involves an arbitrary fixed number β ∈ (0,∞). The
rest of this proof follows in three steps:

(i) As a first step, we have from Eq. (28) along with Lemma C.2

E
∥∥∥∥xK − x0

−ηK

∥∥∥∥2

+ E
∥∥∥∥yK − y0

ηK

∥∥∥∥2

≤ 2

η2K2

(
‖xK‖2 + ‖x0‖2

)
+

2

η2K2

(
‖yK‖2 + ‖y0‖2

)
≤ 2

η2K2

((
1− η2λ∗(η)

)K [‖x0‖2 + ‖y0‖2
]

+ η2QK(η)
[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
σ2
g

)
+

2

η2K2

[
‖x0‖2 + ‖y0‖2

]
≤ 2

η2K2

[
2‖x0‖2 + 2‖y0‖2 + η2QK(η)

[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
σ2
g

]
≤ 4

η2K2
[‖x0‖2 + ‖y0‖2] +

2
[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
K

σ2
g.
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(ii) A second step is, due to Assumption 2.2, standard L2 martingale analysis gives

E

∥∥∥∥∥− 1

K

K∑
t=1

gx
ξ,t −

η

K

K∑
t=1

Bξ,tg
y
ξ,t

∥∥∥∥∥
2

+ E

∥∥∥∥∥− 1

K

K∑
t=1

gy
ξ,t +

η

K

K∑
t=1

B>ξ,tg
x
ξ,t

∥∥∥∥∥
2

=
1

K2

K∑
t=1

E
∥∥∥−gx

ξ,t − ηBξ,tg
y
ξ,t

∥∥∥2

+
1

K2

K∑
t=1

E
∥∥∥−gy

ξ,t + ηB>ξ,tg
x
ξ,t

∥∥∥2

=
1

K
Eξ
∥∥∥−gx

ξ − ηBξg
y
ξ

∥∥∥2

+
1

K
Eξ
∥∥∥−gy

ξ + ηB>ξ g
x
ξ

∥∥∥2

=
1

K
Eξ‖gx

ξ ‖2 +
η2

K
Eξ‖Bξg

y
ξ ‖2 +

1

K
Eξ‖gy

ξ ‖2 +
η2

K
Eξ‖B>ξ gx

ξ ‖2

+
2η

K
Eξ〈gx

ξ ,Bξg
y
ξ 〉 −

2η

K
Eξ〈gy

ξ ,B
>
ξ g

x
ξ 〉︸ ︷︷ ︸

cross term=0

≤ 1

K
Eξ
[
‖gx

ξ ‖2 + ‖gy
ξ ‖2
]

+
η2

K
Eξ
[
‖Bξg

y
ξ ‖2 + ‖B>ξ gx

ξ ‖2
]

≤
1 + η2

(
λmax(M) ∨ λmax(M̂)

)
K

σ2
g,

where a similar analysis as in the proof of Theorem A.1 was adopted.

(iii) A third step is that, due to λ∗(η) ≥ 0 of Lemma C.2,

E

∥∥∥∥∥ 1

K

K∑
t=1

(Bξ,t −B)yt−1 +
η

K

K∑
t=1

(
Bξ,tB

>
ξ,t −M

)
xt−1

∥∥∥∥∥
2

+ E

∥∥∥∥∥ 1

K

K∑
t=1

(Bξ,t −B)>xt−1 −
η

K

K∑
t=1

(
B>ξ,tBξ,t − M̂

)
yt−1

∥∥∥∥∥
2

≤ 2

K2

K∑
t=1

E ‖(Bξ,t −B)yt−1‖2 +
2η2

K2

K∑
t=1

E
∥∥(Bξ,tB

>
ξ,t −M

)
xt−1

∥∥2

+
2

K2

K∑
t=1

E
∥∥(Bξ,t −B)>xt−1

∥∥2
+

2η2

K2

K∑
t=1

E
∥∥∥(B>ξ,tBξ,t − M̂

)
yt−1

∥∥∥2

≤
2(σ2

B + η2σ2
B,2)

K2

K∑
t=1

E
[
‖xt−1‖2 + ‖yt−1‖2

]
≤

2(σ2
B + η2σ2

B,2)

K2

K∑
t=1

((
1− η2λ∗(η)

)t−1 [‖x0‖2 + ‖y0‖2
]

+η2Qt−1(η)
[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
σ2
g

)
≤

2(σ2
B + η2σ2

B,2)

K

(
‖x0‖2 + ‖y0‖2 +

[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
λ∗(η)−1σ2

g

)
,

where since η2λ∗(η) ∈ [0, 1/4] we applied the result of Eq. (28).
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Putting the above pieces together, along with Eq. (32), yields for any K ≥ 0 we have11

1

1 + γ
E
[∥∥ByK−1 + ηMxK−1

∥∥2
+
∥∥∥B>xK−1 − ηM̂yK−1

∥∥∥2
]

≤ 2E
∥∥∥∥xK − x0

−ηK

∥∥∥∥2

+ 2E
∥∥∥∥yK − y0

ηK

∥∥∥∥2

+ 2E

∥∥∥∥∥− 1

K

K∑
t=1

gx
ξ,t −

η

K

K∑
t=1

Bξ,tg
y
ξ,t

∥∥∥∥∥
2

+ 2E

∥∥∥∥∥− 1

K

K∑
t=1

gy
ξ,t +

η

K

K∑
t=1

B>ξ,tg
x
ξ,t

∥∥∥∥∥
2

+
1

γ
E

∥∥∥∥∥ 1

K

K∑
t=1

(Bξ,t −B)yt−1 +
η

K

K∑
t=1

(
Bξ,tB

>
ξ,t −M

)
xt−1

∥∥∥∥∥
2

+
1

γ
E

∥∥∥∥∥ 1

K

K∑
t=1

(Bξ,t −B)>xt−1 −
η

K

K∑
t=1

(
B>ξ,tBξ,t − M̂

)
yt−1

∥∥∥∥∥
2

,

which is further bounded by

8

η2K2
[‖x0‖2 + ‖y0‖2] +

4
[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
K

σ2
g

+
2
[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
K

σ2
g

+
1

γ
·

2(σ2
B + η2σ2

B,2)

K

([
‖x0‖2 + ‖y0‖2

]
+
[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
λ∗(η)−1σ2

g

)
≤
(

8

η2K2
+

2(σ2
B + η2σ2

B,2)

γK

)[
‖x0‖2 + ‖y0‖2

]
+

6 + 2
γ (σ2

B + η2σ2
B,2)λ∗(η)−1

K

[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
σ2
g,

and by rearranging the terms in the last display along with Eq. (43) we have in finale (and shifting the time
index forward by one)(

λmin(BB>)
(
1 + η2λmin(BB>)

)
− 2ησ2

B

√
λmax(B>B)

)
E
[
‖xK‖2 + ‖yK‖2

]
≤ E

[
‖ByK + ηMxK‖2 +

∥∥∥B>xK − ηM̂yK

∥∥∥2
]

≤

 8(1 + γ)

η2(K + 1)2
+

2
(

1 + 1
γ

)
(σ2

B + η2σ2
B,2)

K + 1

[‖x0‖2 + ‖y0‖2
]

+
6(1 + γ) + 2

(
1 + 1

γ

)
(σ2

B + η2σ2
B,2)λ∗(η)−1

K + 1

[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
σ2
g,

where we used the iterated laws of expectation at multiple occasions, as well as the property of L2 martingale
differences as well as the definitions Eq. (3) and Eq. (4) in Assumption 2.1. This concludes Eq. (25). The rest of the

proof sits upon the application of Lemma C.2, esp. Eq. (18) and the fact that 1+η̂M(α)2
(
λmax(M) ∨ λmax(M̂)

)
≤

3
2 , concluding the whole proof of Theorem 3.1.

�

Discussion We remark that the magnitude of QK+1(η) can be either O(1) or O(K), depending on whether
λ∗(η) is bounded away from zero or sufficiently close to zero. When applying iteration average, one needs to

11For simplicity we optimize the numerical constants on γ and take β = 1.
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maximize the step size to achieve a sharp bound in which case it is sufficient to replace QK+1(η) in the bound by
K + 1 instead of 1

η2λ∗(η) . In special, the dependency on
[
‖x0‖2 + ‖y0‖2

]
can be improved to O( 1

(K+1)2 ) if we

adopt the 1
η2λ∗(η) bound for QK+1(η), achieving

(1− α)λmin(BB>)
(
1 + η2λmin(BB>)

)
E
[
‖xK‖2 + ‖yK‖2

]
≤

16 + 4(σ2
B + η2σ2

B,2)λ∗(η)−1

η2(K + 1)2

[
‖x0‖2 + ‖y0‖2

]
+

12 + 4(σ2
B + η2σ2

B,2)λ∗(η)−1

K + 1

[
1 + η2

(
λmax(M) ∨ λmax(M̂)

)]
σ2
g,

(33)

which recovers (8). In the upcoming technical analysis for restarting, we do not, however, utilize this upper
bound.

D.2 Analysis of Theorem 3.2

Theorem 3.2, Full Version Under Assumptions 2.1 and 2.2 and assume that Bξ,B are square matrices, we
apply restarting at epoch = 1, 2, . . . ,Epoch after K ≥ Kepoch steps where

Kepoch =

⌈
q2 +

√
q2
2 + 4q1q3

2q3

⌉
− 1, (34)

with

q1 ≡
16

(1− α)λmin(BB>)
· e

2−2epoch[‖x0‖2 + ‖y0‖2]

η̂M(α)2

q2 ≡
4(σ2

B + η̂M(α)2σ2
B,2)

[
e2−2epoch[‖x0‖2 + ‖y0‖2] +

3σ2
g

λmin(M)∧λmin(M̂)

]
+ 18σ2

g

(1− α)λmin(BB>)

q3 ≡
‖x0‖2 + ‖y0‖2

e2epoch
,

(35)

where we denote

Epoch =

⌈
1

2
log

(
λmin(M) ∧ λmin(M̂)

3σ2
g

[‖x0‖2 + ‖y0‖2]

)⌉
.

Then for Êpoch = 1, . . . ,Epoch where K =
∑Êpoch

epoch=1Kepoch the iteration has the expected squared Euclidean

metric that is discounted by a factor of 1/e2Êpoch:

E
[
‖x̂K‖2 + ‖ŷK‖2

]
≤ 1

e2Êpoch

[
‖x0‖2 + ‖y0‖2

]
,

and for K =
∑Epoch

epoch=1Kepoch + K̂, K̂ = 0, 1, . . . where SEG with aforementioned restarting and (tail-) iteration
averaging achieves

E
[
‖x̄K‖2 + ‖ȳK‖2

]
≤ 16

(1− α)λmin(BB>)
·

3σ2
g

λmin(M)∧λmin(M̂)

η̂M(α)2(K̂ + 1)2

+
4(σ2

B + η̂M(α)2σ2
B,2) · 6σ2

g

λmin(M)∧λmin(M̂)
+ 18σ2

g

(1− α)λmin(BB>)
· 1

K̂ + 1

=

1 +

8
3(K̂+1)

+O(η̂M(α)2σ2
B + η̂M(α)4σ2

B,2)

η̂M(α)2
(
λmin(M) ∧ λmin(M̂)

)
 · 18σ2

g

(1− α)λmin(BB>)
· 1

K̂ + 1
,

(36)

which recovers Eq. (9).
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Proof.[Proof of Theorem 3.2] Without loss of generality we consider the first epoch initialized at x0,y0. Recall
from Eq. (8) we have

E
[
‖x̄K‖2 + ‖ȳK‖2

]
≤ 16

(1− α)λmin(BB>)
· ‖x0‖2 + ‖y0‖2
η̂M(α)2(K + 1)2

+
4(σ2

B + η̂M(α)2σ2
B,2)

[
‖x0‖2 + ‖y0‖2 +

3σ2
g

λmin(M)∧λmin(M̂)

]
+ 18σ2

g

(1− α)λmin(BB>)
· 1

K + 1
,

(8)

so after K steps the iteration has a squared Euclidean metric that is discounted by a factor of 1/e2, in the sense
that the right hand of the above display is ≤ 1

e2

[
‖x0‖2 + ‖y0‖2

]
. This reduces to finding the solutions to the

quadratic inequality

q1

(K + 1)2
+

q2

K + 1
− q3 ≤ 0, (37)

where q1, q2, q3 were earlier defined as in Eq. (35) in the epoch = 1 case, repeated as

q1 ≡
16

(1− α)λmin(BB>)
· ‖x0‖2 + ‖y0‖2

η̂M(α)2

q2 ≡
4(σ2

B + η̂M(α)2σ2
B,2)

[
‖x0‖2 + ‖y0‖2 +

3σ2
g

λmin(M)∧λmin(M̂)

]
+ 18σ2

g

(1− α)λmin(BB>)

q3 ≡
‖x0‖2 + ‖y0‖2

e2
.

The root formula gives (and omitting the infeasible solutions)

1

K + 1
≤ −q2 +

√
q2
2 + 4q1q3

2q1
or equivalently K ≥

⌈
q2 +

√
q2
2 + 4q1q3

2q3

⌉
− 1.

This gives the epoch number Eq. (34).

To get a sensible bound on time complexity, instead of solving the quadratic formula Eq. (37) we instead consider

to upper bound of Kepoch and its summation
∑Epoch

epoch=1Kepoch. Recall first we set η = η̂M(α) defined earlier as in
Eq. (7). From time to time we omit the ceilings for simplicity (which does not affect the magnitude as the terms
grow large). Since Bξ is a square matrix, we set η = ηM as in Eq. (7) again and apply the following restarting
schedule: run SEG at epoch = 1, 2, . . . for an iteration number of Kepoch defined as in Eq. (34), one can upper
bound the iterate number at epoch = 1, 2, . . . a maximal over two terms where

q1 ≡
16

(1− α)λmin(BB>)
· e

2−2epoch[‖x0‖2 + ‖y0‖2]

η̂M(α)2

q2 ≡
4(σ2

B + η̂M(α)2σ2
B,2)

[
e2−2epoch[‖x0‖2 + ‖y0‖2] +

3σ2
g

λmin(M)∧λmin(M̂)

]
+ 18σ2

g

(1− α)λmin(BB>)

q3 ≡
‖x0‖2 + ‖y0‖2

e2epoch
,

(35)
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which allows the following bound12

Kcomplexity ≤
Epoch∑

epoch=1

[
2q2

q3
+

√
2q1

q3

]

≤
Epoch∑

epoch=1

4e2(σ2
B + η̂M(α)2σ2

B,2)

(1− α)λmin(BB>)
+

18σ2
g + 4(σ2

B + η̂M(α)2σ2
B,2)

3σ2
g

λmin(M)∧λmin(M̂)

(1− α)λmin(BB>)[‖x0‖2 + ‖y0‖2]
· e2epoch


+

Epoch∑
epoch=1

√
16e2

(1− α)η̂M(α)2λmin(BB>)
,

which is further bounded by

Kcomplexity ≤
(√

16e2

(1− α)η̂M(α)2λmin(BB>)
+

4e2(σ2
B + η̂M(α)2σ2

B,2)

(1− α)λmin(BB>)

)
· Epoch

+
18σ2

g + 4(σ2
B + η̂M(α)2σ2

B,2)
3σ2

g

λmin(M)∧λmin(M̂)

(1− α)λmin(BB>)[‖x0‖2 + ‖y0‖2]
·

Epoch∑
epoch=1

e2epoch

=

(√
16e2

(1− α)η̂M(α)2λmin(BB>)
+

4e2(σ2
B + η̂M(α)2σ2

B,2)

(1− α)λmin(BB>)

)
·
⌈

1

2
LOG

⌉

+
6(λmin(M) ∧ λmin(M̂)) + 4(σ2

B + η̂M(α)2σ2
B,2)

(1− α)λmin(BB>)[‖x0‖2 + ‖y0‖2]
· ‖x0‖2 + ‖y0‖2

1− e−2
,

where

LOG ≡ log

(
λmin(M) ∧ λmin(M̂)

3σ2
g

[‖x0‖2 + ‖y0‖2]

)
,

and we applied the fact

Epoch∑
epoch=1

e2epoch =
e2Epoch−2 − 1

1− e−2
≤ ‖x0‖2 + ‖y0‖2

1− e−2
· λmin(M) ∧ λmin(M̂)

3σ2
g

,

hence concluding Eq. (10) and the theorem. �

D.3 Analysis of Theorem 3.3

Theorem 3.3, Full Version Let Assumptions 2.1 and 2.2 hold with σg = 0. When Bξ,B are square matrices,
for any prescribed α ∈ (0, 1) choosing the step size η = η̄M(α) defined as in Eq. (7), for an iteration number of
K ≥ Kthres(α) defined as in Eq. (11). Then we have for all K ≥ 1 that is divisible by Kthres(α) the following
convergence rate for x̂K , ŷK (outputs of Algorithm 1) holds

E
[
‖x̂K‖2 + ‖ŷK‖2

]
≤ exp

(
− 2

Kthres(α)
·K
)[
‖x0‖2 + ‖y0‖2

]
. (38)

In above we adopt the fine-grained iteration number per epoch

Kthres(α) ≡

 4√
2η̄M(α)2

(
σ2
B + η̄M(α)2σ2

B,2

)
+ 8RATE−

√
2η̄M(α)2

(
σ2
B + η̄M(α)2σ2

B,2

)
2

, (11’)

12Note it is easy to verify

⌈
q2+
√
q22+4q1q3
2q3

⌉
− 1 ≤ max

(
2q2
q3
,
√

2q1
q3

)
≤ 2q2

q3
+
√

2q1
q3

by considering the two cases of

2q2
q3
≤
√

2q1
q3

and 2q2
q3
≥
√

2q1
q3

, separately.
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where

RATE ≡
√

(1− α)η̄M(α)2λmin(BB>)

e2
. (39)

In the regime of σB, σB,2 → 0+ we do asymptotic expansion and get13

2

Kthres
=

1

8

(√
2η̄M(α)2

(
σ2
B + η̄M(α)2σ2

B,2

)
+ 8RATE−

√
2η̄M(α)2

(
σ2
B + η̄M(α)2σ2

B,2

))2

=
1

e

√
(1− α)η̄M(α)2λmin(BB>)−O

(
4

√
η̄M(α)2λmin(BB>) ·

√
η̄M(α)2σ2

B + η̄M(α)4σ2
B,2

)
,

which along with Eq. (38) gives Eq. (12) of Theorem 3.3.

Now for the interpolation setting, in the case of square matrices Bξ,B, we turn to consider the convergence rate
of SEG with iteration averaging, stating the following lemma:

Lemma D.1 Let Assumptions 2.1 and 2.2 hold with σg = 0. Under the condition on step size η ∈ (0, ηM] where
ηM was earlier defined as in Eq. (6), we conclude for all K ≥ 0 the following convergence rate for xK ,yK holds(

λmin(BB>)
(
1 + η2λmin(BB>)

)
− 2ησ2

B

√
λmax(B>B)

)
E
[
‖xK‖2 + ‖yK‖2

]
≤ E

[
‖ByK + ηMxK‖2 +

∥∥∥B>xK − ηM̂yK

∥∥∥2
]

≤
(

2

η
+
√

2(σ2
B + η2σ2

B,2)QK+1(η)

)2 ‖x0‖2 + ‖y0‖2
(K + 1)2

.

(40)

In addition when Bξ,B are square matrices, we have

E
[
‖xK‖2 + ‖yK‖2

]
≤ PK+1(η) · ‖x0‖2 + ‖y0‖2

(K + 1)2
. (41)

In above the prefactor is defined as14

PK+1(η) ≡


+∞ if λmin(BB>)

(
1 + η2λmin(BB>)

)
≤ 2ησ2

B

√
λmax(B>B)(

2+
√

2η2(σ2
B+η2σ2

B,2)QK+1(η)
)2

η2λmin(BB>)(1+η2λmin(BB>))−2η3σ2
B

√
λmax(B>B)

otherwise
,

where QK(η) was earlier defined as in Eq. (21), and by setting η as

η̄M(α) ≡ ηM ∧
αλmin(BB>)

2σ2
B

√
λmax(B>B)

, (7)

we have

PK+1(η̄M(α)) ≤ 2

(1− α)λmin(BB>)

(√
2

η̄M(α)2
+

√(
σ2
B + η̄M(α)2σ2

B,2

)
(K + 1)

)2

. (42)

Lemma D.1 can be seen as a fine-grained version of Theorem 3.1, and its proof is provided in §D.4.1. To
understand it consider Theorem D.1 in the case where Bξ is nonstochastic so σB = σB,2 = 0, taking η as the
maximal ηM = 1√

λmax(B>B)
then Eq. (42) achieves the optimal prefactor which is bounded by the quadruple

condition number of B>B. In the general case where Bξ is stochastic, the convergence rate upper bound Eq. (41)
has the nonrandom component as O(1/K2) as well as the random component of O(1/K).

To prepare the proof we first introduce the following “metric conversion” lemma that translates bounds between
two metrics:

13We used the Taylor’s asymptotic expansion (
√
x+ a−

√
x)2 = a(

√
1 + x/a−

√
x/a)2 = a−O(

√
ax) as x→ 0+ for

fixed positive a.
14Here we interpret 0 · (+∞) as +∞ whenever it occurs.
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Lemma D.2 We have for any x ∈ Rn, y ∈ Rm that

‖By + ηMx‖2 +
∥∥∥B>x− ηM̂y

∥∥∥2

=

∥∥∥∥[B> −ηM̂
ηM B

] [
x
y

]∥∥∥∥2

≥
(
λmin(BB>)

(
1 + η2λmin(BB>)

)
− 2ησ2

B

√
λmax(B>B)

)[
‖x‖2 + ‖y‖2

]
.

(43)

Lemma D.2 establishes a lower bound on a modified version of the Hamiltonian metric by (a constant multiple
of) the squared Euclidean norm metric. The proof of the above inequality is due to an estimation of the spectral

lower bound of a matrix. To take a first glance note in the nonrandom case σB = 0, M̂ = B>B and M = BB>

and we conclude Eq. (43) in the form

‖By + ηMx‖2 +
∥∥∥B>x− ηM̂y

∥∥∥2

=
∥∥By + ηBB>x

∥∥2
+
∥∥B>x− ηB>By

∥∥2

= x>
(
BB> + η2(BB>)2

)
x + y>

(
B>B + η2(B>B)2

)
y

≥ λmin(BB>)
(
1 + η2λmin(BB>)

) [
‖x‖2 + ‖y‖2

]
.

We prove the lemma for the general stochastic Bξ case; details are deferred to §D.4.2.

We are ready for the proof of Theorem 3.3.

Proof.[Proof of Theorem 3.3] From Lemma D.1 we have

E
[
‖xK‖2 + ‖yK‖2

]
≤ 2

(1− α)λmin(BB>)

√ 2

η̄M(α)2(K + 1)2
+

√
σ2
B + η̄M(α)2σ2

B,2

K + 1

2 [
‖x0‖2 + ‖y0‖2

]
,

so after K steps the metric E
[
‖xK‖2 + ‖yK‖2

]
≤ 1

e2

[
‖x0‖2 + ‖y0‖2

]
, i.e. we only need√

2

(1− α)λmin(BB>)

√ 2

η̄M(α)2(K + 1)2
+

√
σ2
B + η̄M(α)2σ2

B,2

K + 1

 ≤ 1

e
,

i.e.
2

K + 1
+

√
2η̄M(α)2

(
σ2
B + η̄M(α)2σ2

B,2

)
· 1√

K + 1
≤
√

(1− α)η̄M(α)2λmin(BB>)

e2
≡ RATE,

solving the above inequality and ignoring the infeasible solutions gives for any prescribed α ∈ (0, 1)

Kthres(α) + 1 =


√

2η̄M(α)2
(
σ2
B + η̄M(α)2σ2

B,2

)
+

√
2η̄M(α)2

(
σ2
B + η̄M(α)2σ2

B,2

)
+ 8RATE

2RATE


2

,

which reduces to (11’) after rationalizing the numerator. �

D.4 Auxiliary Proofs

D.4.1 Proof of Lemma D.1

For the proof of Lemma D.1, our analysis lends help of Young’s inequality via coefficients 1 + γ, 1 + 1
γ with

optimized coefficient γ ∈ (0,∞).

Proof.[Proof of Lemma D.1] Turning to Eq. (8), setting η as in Eq. (7) and telescoping both sides of the update
rule Eq. (23) with gx

ξ,t = 0 and gy
ξ,t = 0 for t = 1, . . . ,K gives

−η2
K∑
t=1

Bξ,tB
>
ξ,txt−1 − η

K∑
t=1

Bξ,tyt−1 = xK − x0

−η2
K∑
t=1

B>ξ,tBξ,tyt−1 + η

K∑
t=1

B>ξ,txt−1 = yK − y0.
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Manipulating gives

ByK−1 + ηMxK−1 +
1

K

K∑
t=1

(Bξ,t −B)yt−1 +
η

K

K∑
t=1

(
Bξ,tB

>
ξ,t −M

)
xt−1

=
1

K

K∑
t=1

Bξ,tyt−1 +
η

K

K∑
t=1

Bξ,tB
>
ξ,txt−1 =

xK − x0

−ηK ,

and

B>xK−1 − ηM̂yK−1 +
1

K

K∑
t=1

(Bξ,t −B)>xt−1 −
η

K

K∑
t=1

(
B>ξ,tBξ,t − M̂

)
yt−1

=
1

K

K∑
t=1

B>ξ,txt−1 −
η

K

K∑
t=1

B>ξ,tBξ,tyt−1 =
yK − y0

ηK
.

Now we try to bound the sum of squared norms of the first part (i.e. first two terms) on the left hands in the
above two displays: applying Young’s inequality gives for any fixed γ ∈ (0,∞)

E
[∥∥ByK−1 + ηMxK−1

∥∥2
+
∥∥∥B>xK−1 − ηM̂yK−1

∥∥∥2
]

≤ (1 + γ)E
∥∥∥∥xK − x0

−ηK

∥∥∥∥2

+ (1 + γ)E
∥∥∥∥yK − y0

ηK

∥∥∥∥2

+

(
1 +

1

γ

)
E

∥∥∥∥∥ 1

K

K∑
t=1

(Bξ,t −B)yt−1 +
η

K

K∑
t=1

(
Bξ,tB

>
ξ,t −M

)
xt−1

∥∥∥∥∥
2

+

(
1 +

1

γ

)
E

∥∥∥∥∥ 1

K

K∑
t=1

(Bξ,t −B)>xt−1 −
η

K

K∑
t=1

(
B>ξ,tBξ,t − M̂

)
yt−1

∥∥∥∥∥
2

≤ 4(1 + γ)

η2K2

[
‖x0‖2 + ‖y0‖2

]
+

2
(

1 + 1
γ

)
K2

K∑
t=1

[
E ‖(Bξ,t −B)yt−1‖2 + E

∥∥(Bξ,t −B)>xt−1

∥∥2
]

+
2
(

1 + 1
γ

)
η2

K2

K∑
t=1

[
E
∥∥(Bξ,tB

>
ξ,t −M

)
xt−1

∥∥2
+ E

∥∥∥(B>ξ,tBξ,t − M̂
)
yt−1

∥∥∥2
]
,

where for each t = 1, . . . ,K we have, by applying Eq. (3) and Eq. (4) in Assumption 2.1 on operator norms, that

Eξ ‖(Bξ,t −B)yt−1‖2 + Eξ
∥∥(Bξ,t −B)>xt−1

∥∥2

= (yt−1)>Eξ
[
(Bξ,t −B)>(Bξ,t −B)

]
yt−1 + (xt−1)>Eξ

[
(Bξ,t −B)(Bξ,t −B)>

]
xt−1

≤
∥∥Eξ [(Bξ,t −B)>(Bξ,t −B)

]∥∥
op
‖yt−1‖2 +

∥∥Eξ [(Bξ,t −B)(Bξ,t −B)>
]∥∥
op
‖xt−1‖2

≤ σ2
B

[
‖xt−1‖2 + ‖yt−1‖2

]
,

and

Eξ
∥∥(Bξ,tB

>
ξ,t −M

)
xt−1

∥∥2
+ Eξ

∥∥∥(B>ξ,tBξ,t − M̂
)
yt−1

∥∥∥2

= (xt−1)>Eξ
(
Bξ,tB

>
ξ,t −M

)2
xt−1 + (yt−1)>Eξ

(
B>ξ,tBξ,t − M̂

)2

yt−1

≤
∥∥∥∥Eξ (B>ξ,tBξ,t − M̂

)2
∥∥∥∥
op

‖yt−1‖2 +
∥∥∥Eξ (Bξ,tB

>
ξ,t −M

)2∥∥∥
op
‖xt−1‖2

≤ σ2
B,2

[
‖xt−1‖2 + ‖yt−1‖2

]
.
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Taking expectation once again gives, by applying Eq. (13) that for t = 1, . . . ,K

E ‖(Bξ,t −B)yt−1‖2 + E
∥∥(Bξ,t −B)>xt−1

∥∥2

≤ σ2
BE
[
‖xt−1‖2 + ‖yt−1‖2

]
≤ σ2

B

(
1− η2λ∗(η)

)t−1 [‖x0‖2 + ‖y0‖2
]
,

and

E
∥∥(Bξ,tB

>
ξ,t −M

)
xt−1

∥∥2
+ E

∥∥∥(B>ξ,tBξ,t − M̂
)
yt−1

∥∥∥2

≤ σ2
B,2E

[
‖xt−1‖2 + ‖yt−1‖2

]
≤ σ2

B,2

(
1− η2λ∗(η)

)t−1 [‖x0‖2 + ‖y0‖2
]
,

so denoting QK(η) ≡∑K
t=1

(
1− η2λ∗(η)

)t−1
as in Eq. (21) concludes

E
[∥∥ByK−1 + ηMxK−1

∥∥2
+
∥∥∥B>xK−1 − ηM̂yK−1

∥∥∥2
]

≤ 4(1 + γ)

η2K2

[
‖x0‖2 + ‖y0‖2

]
+

2
(

1 + 1
γ

)
K2

K∑
t=1

[
E ‖(Bξ,t −B)yt−1‖2 + E

∥∥(Bξ,t −B)>xt−1

∥∥2
]

+
2
(

1 + 1
γ

)
η2

K2

K∑
t=1

[
E
∥∥(Bξ,tB

>
ξ,t −M

)
xt−1

∥∥2
+ E

∥∥∥(B>ξ,tBξ,t − M̂
)
yt−1

∥∥∥2
]

≤ 4(1 + γ)

η2K2

[
‖x0‖2 + ‖y0‖2

]
+

2
(

1 + 1
γ

)
K2

K∑
t=1

σ2
B

(
1− η2λ∗(η)

)t−1 [‖x0‖2 + ‖y0‖2
]

+
2
(

1 + 1
γ

)
η2

K2

K∑
t=1

σ2
B,2

(
1− η2λ∗(η)

)t−1 [‖x0‖2 + ‖y0‖2
]

≤ 4(1 + γ)

η2K2

[
‖x0‖2 + ‖y0‖2

]
+

2
(

1 + 1
γ

)
K2

(
σ2
B + η2σ2

B,2

)
QK(η)

[
‖x0‖2 + ‖y0‖2

]
.

In above we used the iterated laws of expectation as well as the property of L2 martingale at multiple occasions.
Therefore (

λmin(BB>)
(
1 + η2λmin(BB>)

)
− 2ησ2

B

√
λmax(B>B)

)
E
[
‖xK−1‖2 +

∥∥yK−1

∥∥2
]

≤ E
[∥∥ByK−1 + ηMxK−1

∥∥2
+
∥∥∥B>xK−1 − ηM̂yK−1

∥∥∥2
]

≤ inf
γ∈(0,∞)

(
4(1 + γ)

η2
+ 2

(
1 +

1

γ

)(
σ2
B + η2σ2

B,2

)
QK(η)

) ‖x0‖2 + ‖y0‖2
K2

.

(44)

Note by optimizing over γ ∈ (0,∞) in above the identity is

inf
γ∈(0,∞)

(
4γ

η2
+

2

γ

(
σ2
B + η2σ2

B,2

)
QK(η)

)
= 2

√
8

η2

(
σ2
B + η2σ2

B,2

)
QK(η),

so the prefactor on the right hand of Eq. (44) reduces to

4

η2
+ 2

(
σ2
B + η2σ2

B,2

)
QK(η) + 2

√
8

η2

(
σ2
B + η2σ2

B,2

)
QK(η) =

(
2

η
+

√
2
(
σ2
B + η2σ2

B,2

)
QK(η)

)2

,

concluding Eq. (40) by replacing K by K + 1.

Now to finish the proof, by setting η as η̄M(α) defined as in Eq. (7), we have a tight upper bound of the prefactor
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as the step size η over interval (0, η̄M(α)] for a prescribed α ∈ (0, 1), as

PK+1(η) =

(
2 +

√
2η2

(
σ2
B + η2σ2

B,2

)
QK+1(η)

)2

η2λmin(BB>) (1 + η2λmin(BB>))− 2η3σ2
B

√
λmax(B>B)

≤

(
2 +

√
2η2

(
σ2
B + η2σ2

B,2

)
(K + 1)

)2

(1− α)η2λmin(BB>) (1 + η2λmin(BB>))

≤ 2

(1− α)λmin(BB>)

(√
2

η2
+

√(
σ2
B + η2σ2

B,2

)
(K + 1)

)2

,

which is just

PK+1(η) ≤ 2

(1− α)λmin(BB>)

(
2

η2
+

2
√

2(K + 1)

η
·
√
σ2
B + η2σ2

B,2︸ ︷︷ ︸
linearization

+ (K + 1) ·
(
σ2
B + η2σ2

B,2

)︸ ︷︷ ︸
higher-order term

)
.

(42)

It is straightforward to verify that for a prescribed α ∈ (0, 1), η̄M(α) simply minimizes the upper bound in the

last line of Eq. (42) when dropping the higher-order term in
√
σ2
B + η2σ2

B,2, since such a linearized prefactor is

nonincreasing over η ∈ (0, η̄M(α)]. This completes the proof of Eq. (40) and the full version of Lemma D.1.15 �

15Note one can further optimize the above prefactor over α ∈ (0, 1) (so that the convergence rate upper bound is
minimized), but finding an interpretable closed-form solution can be unrealistic. An initial attempt on this thread is to

optimize a surrogate function
η2M

(1−α)η̄M(α)2
, α ∈ (0, 1), which is upper-bounded by

1

1− α +
1

α2(1− α)

(
2ηMσ

2
B

√
λmax(B>B)

λmin(BB>)

)2

≡ 1

1− α +
A

α2(1− α)
,

In the regime of A → 0+, its closed-form solution is available but hard to interpret, and standard asymptotic analysis

indicates that α ∼ A1/3 =

(
2ηMσ2

B

√
λmax(B>B)

λmin(BB>)

)2/3

minimizes the above display.
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D.4.2 Proof of Lemma D.2

Proof.[Proof of Lemma D.2] The left hand of Eq. (43) reads

‖By + ηMx‖2 +
∥∥∥B>x− ηM̂y

∥∥∥2

=

∥∥∥∥[B> −ηM̂
ηM B

] [
x
y

]∥∥∥∥2

=
[
x> y>

] [ B ηM

−ηM̂ B>

] [
B> −ηM̂
ηM B

] [
x
y

]
=
[
x> y>

] [ BB> + η2M2 −ηBM̂ + ηM>B
−ηM̂B> + ηB>M B>B + η2M̂2

] [
x
y

]
=
[
x> y>

] [BB> + η2(BB>)2 0
0 B>B + η2(B>B)2

] [
x
y

]
+
[
x> y>

] [η2M2 − η2(BB>)2 0

0 η2M̂2 − η2(B>B)2

] [
x
y

]
+
[
x> y>

] [ 0 −ηBM̂ + ηM>B
−ηM̂B> + ηB>M 0

] [
x
y

]
= x>

[
BB> + η2(BB>)2

]
x + y>

[
B>B + η2(B>B)2

]
y

+ x>
[
η2M2 − η2(BB>)2

]
x + y>

[
η2M̂2 − η2(B>B)2

]
y

+ 2y>
(
−ηM̂B> + ηB>M

)
x

≡ I + II + III,

where

I = x>
[
BB> + η2(BB>)2

]
x + y>

[
B>B + η2(B>B)2

]
y

=
∥∥By + ηBB>x

∥∥2
+
∥∥B>x− ηB>By

∥∥2
.

In addition, we have from Assumption 2.1 that M−BB> = E
[
BξB

>
ξ

]
−BB> = E

[
(Bξ −B)(Bξ −B)>

]
� 0

and analogously M̂−B>B = E
[
B>ξ Bξ

]
−B>B = E

[
(Bξ −B)>(Bξ −B)

]
� 0 that almost surely

II ≥ x>
[
η2M2 − η2(BB>)2

]
x + y>

[
η2M̂2 − η2(B>B)2

]
y ≥ 0.

The third term

III = 2y>
(
−ηM̂B> + ηB>M

)
x

satisfies

|III| =
∣∣∣2y> (−ηM̂B> + ηB>M

)
x
∣∣∣

= 2
∣∣∣y>(−ηM̂B> + ηB>BB> + ηB>M− ηB>BB>)x

∣∣∣
≤ 2η

∣∣∣−y> (M̂−B>B
)
B>x

∣∣∣+ 2η
∣∣y>B> (M−BB>

)
x
∣∣

≤ 2η
∥∥∥(M̂−B>B

)
y
∥∥∥∥∥B>x∥∥+ 2η

∥∥(M−BB>
)
x
∥∥ ‖By‖

≤ 2ησ2
B ‖y‖

∥∥B>x∥∥+ 2ησ2
B ‖x‖ ‖By‖

≤ 2ησ2
B

√
λmax(B>B)

[
‖x‖2 + ‖y‖2

]
,

where we have from Eq. (3) and Eq. (4) of Assumption 2.1 that for all x ∈ Rn,y ∈ Rm that
∥∥∥(M̂−B>B)y

∥∥∥ ≤
σ2
B ‖y‖ and

∥∥(M−BB>)x
∥∥ ≤ σ2

B ‖x‖.
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One final piece is that for any given x ∈ Rn,y ∈ Rm and η > 0∥∥By + ηBB>x
∥∥2

+
∥∥B>x− ηB>By

∥∥2

= x>
[
BB> + η2(BB>)2

]
x + y>

[
B>B + η2(B>B)2

]
y

≥
(
1 + η2λmin(BB>)

) [∥∥B>x∥∥2
+ ‖By‖2

]
≥ λmin(BB>)

(
1 + η2λmin(BB>)

) [
‖x‖2 + ‖y‖2

]
.

(45)

Now to conclude Eq. (43), we apply Eq. (45), and the above analysis (taking the expectation) gives the following
result

‖By + ηMx‖2 +
∥∥∥B>x− ηM̂y

∥∥∥2

= I + II + III ≥ I− |III|

=
∥∥By + ηBB>x

∥∥2
+
∥∥B>x− ηB>By

∥∥2 − 2ησ2
B

√
λmax(B>B)

[
‖x‖2 + ‖y‖2

]
,

which is no less than(
λmin(BB>)

(
1 + η2λmin(BB>)

)
− 2ησ2

B

√
λmax(B>B)

)[
‖x‖2 + ‖y‖2

]
,

again due to Eq. (45). �

E ADDITIONAL EXPERIMENTAL RESULTS

Experiments on GANs. We conduct GANs experiments on MNIST [LeCun, 1998] understand more the
empirical performance of our restarted iteration-averaged SEG in non-convex non-concave minimax optimization
problems. Specifically, we adopt the DCGAN network architecture proposed in Radford et al. [2015] and use the
loss proposed in Goodfellow et al. [2014]. We adopt ExtraAdam [Gidel et al., 2019] as the optimizer and denote
the ExtraAdam with averaging by SEG-Avg. Meanwhile, we apply restarting at iteration 2000 (halfway the total
run) for SEG-Avg and denote the restarting method by SEG-Avg-Restart. We apply Fréchet Inception distance
(FID) [Heusel et al., 2017] score for measuring GAN performances, and compare the performance of SEG-Avg
and SEG-Avg-Restart in Figure 6. We observe that proper restarting schedule improves the model performance
w.r.t. FID score (lower scores indicate better performance).

(a) FID comparison. (b) SEG-Avg. (c) SEG-Avg-Restart.

Figure 6: GAN experimental results. (a). Comparing GAN performance (measure by FID score) of SEG-Avg
and SEG-Avg-Restart. (b). Images generated by SEG-Avg. (c). Images generated by SEG-Avg-Restart.
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