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Abstract

We study prediction of future outcomes with
supervised models that use privileged informa-
tion during learning. The privileged informa-
tion comprises samples of time series observed
between the baseline time of prediction and
the future outcome; this information is only
available at training time which differs from
the traditional supervised learning. Our ques-
tion is when using this privileged data leads
to more sample-efficient learning of models
that use only baseline data for predictions at
test time. We give an algorithm for this set-
ting and prove that when the time series are
drawn from a non-stationary Gaussian-linear
dynamical system of fixed horizon, learning
with privileged information is more efficient
than learning without it. On synthetic data,
we test the limits of our algorithm and the-
ory, both when our assumptions hold and
when they are violated. On three diverse real-
world datasets, we show that our approach
is generally preferable to classical learning,
particularly when data is scarce. Finally, we
relate our estimator to a distillation approach
both theoretically and empirically.
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Figure 1: Prediction with intermediate time-series privi-
leged information. The goal at test time is to predict Y
based only on X1 but the learner has access to samples
from the full series X1, X2, ..., XT , Y during training.

1 INTRODUCTION

Prediction of future outcomes is a central learning prob-
lem in many domains. For example, accurate prediction
of the progression of chronic disease allows for iden-
tification of patients at higher risk and may be used
to trigger interventions. Standard supervised learning
algorithms for this task minimize the empirical risk in
predicting the outcome using features collected at a
baseline time point. When data is scarce, variance can
plague this approach and reduce its potential impact.
However, in practice, data is often collected not only
at the time for prediction and the time of the outcome,
but at multiple time points between them; in health-
care, disease markers, lab values and treatments of
patients are recorded at regular intervals. These data
that could be used for more efficient learning.

Making use of variables for learning that are unavail-
able at test time has been called learning using privi-
leged information (LuPI) (Vapnik and Vashist, 2009)
or learning with side information (Jonschkowski et al.,
2015). A general way to utilize privileged information
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is via distillation (Lopez-Paz et al., 2016; Hayashi
et al., 2019), where a student model is trained to mini-
mize its error in predicting both true labels and soft
targets generated by a teacher trained on the privi-
leged information. While these paradigms have shown
promise both theoretically (Vapnik and Vashist, 2009)
and empirically (Hayashi et al., 2019; Tang et al., 2019),
performance guarantees for practical algorithms remain
elusive (Serra-Toro et al., 2014).

In particular, it remains unclear when learning using
privileged information is preferable to learning without
it—as discussed by Jonschkowski et al. (2015), incorpo-
rating privileged information in learning can harm more
than it helps. This work studies a special case in which
the privileged information constitutes the intermediate
part of a time series starting with baseline features and
ending with the target outcome, see Figure 1.

Contributions. We study a strategy that uses privi-
leged information to learn the dynamics of the full time
series and makes test-time predictions from baseline by
recursively simulating the dynamics and the outcome.
Instantiating this idea in Gaussian-linear dynamical
systems, we compare it to the best unbiased estimator
that uses only baseline data—ordinary least squares
regression. In this (well-specified) setting, we prove
using a Rao-Blackwell argument (Rao, 1945; Black-
well, 1947) that our recursive strategy is always more
sample efficient, without bias and with lower variance,
compared to learning without privileged information.
Additionally, we show that combining this strategy
with distillation learning leads to a principled way of
trading off bias and variance in the misspecified case.

We study the limits of our theory in synthetic exper-
iments, where our assumptions hold and where they
do not. We find that the gap identified by our theory,
between our method and the best baseline, grows when
more time steps are available and assumptions hold
and that it decreases when assumptions are violated
(bias is non-zero). Finally, we apply the idea to three
diverse real-world problems, where the underlying data-
generating process is unknown, showing multiple cases
where the approach improves over both non-LuPI and
LuPI baselines, and cases where performance is worse.

2 PROBLEM SETTING

We learn models that use baseline variables X1 ∈ Rd
to predict outcomes Y ∈ R, see Figure 1. For a given
loss function, L : R × R → R, our goal is to find a
function h ∈ H ⊆ {h : Rd → R} of only the baseline
variables X1, which minimizes the expected risk over
the variables with respect to a distribution p,

R(h) := EX1,Y [L(h(X1), Y )] .

This goal is shared with classical supervised learn-
ing. However, in our setting, the learner has access
to privileged information in the form of time series
sampled from states X2, ..., XT , observed chronolog-
ically after X1 and before Y . The information is
privileged as it is unavailable when the model is used.
Time series xi,1, ..., xi,T , yi, indexed by i = 1, ...,m,
are observed as independent random samples from an
unknown distribution p(X1, ..., XT , Y ). For simplic-
ity,1 we assume that Xt ∈ Rd and define the data
matrices Xt = [x1,t, ..., xm,t]

>, for t = 1, ..., T , and
Y = [y1, ..., ym]>, where rows represent different series.
We let D = (X1, ...,XT ,Y) denote the full dataset.

Without additional assumptions, learning using priv-
ileged information (LuPI) need not lead to smaller
risk (Vapnik and Vashist, 2009). Here, we set out to
identify conditions on the distribution p under which
there is a LuPI algorithm which is provably better than
any algorithm learning only from samples of (X1, Y ).
Throughout, unless stated otherwise, we assume that
the full time series X1, X2, ..., XT , Y is Markov.
Assumption 1 (Markov time series). For all time
points t ∈ {3, ..., T},

Xt ⊥⊥ X1, ..., Xt−2 | Xt−1 Y ⊥⊥ X1, ..., XT−1 | XT .

Under Assumption 1, X1 is predictive of Y only through
the privileged information.

3 LEARNING USING PRIVILEGED
TIME SERIES IN LINEAR
DYNAMICAL SYSTEMS

A natural strategy for predicting Y in a Markov system
is to successively predict X2 from X1, then X3 from
the prediction X̂2, and so on. In time-series modeling,
this is referred to as recursive prediction, in contrast to
direct prediction (Chevillon, 2007). Unlike time-series
modeling, we study prediction of outcomes Y , which
are at a fixed time T and distinct in nature from X. A
survey of related work is found in Section 5.

We use the recursive strategy in a linear estimator
which learns using privileged time series (LuPTS, Algo-
rithm 1). The prediction at each step t is made using
a learned linear model X̂t+1 = Â>t Xt, with Ât ∈ Rd×d.
The final prediction is given by another linear model,
Ŷ = β̂>XT , with β̂ ∈ Rd, learned from samples of
(XT , Y ). At test time, only X1 is observed, and the
models are combined to form Ŷ = (Â1 . . . ÂT−1β̂)>X1.
Algorithm 1 has a flag to indicate whether the tran-
sitions are assumed to be stationary. We begin by
analyzing the non-stationary case.

1That X1, ..., XT have the same dimension is not neces-
sary for our main result but simplifies exposition.
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Algorithm 1: Learning using privileged time series
(LuPTS) in linear dynamical systems
Flag: Stationarity (True / False)
Data: {(xi,1, ..., xi,T , yi)}mi=1 ∼ pm(X1, ..., XT , Y )

if Stationarity then

Ã = arg min
A

T−1∑
t=1

m∑
i=1

‖A>xi,t − xi,t+1‖22
m(T − 1)

Â = ÃT−1

else
for t = 1, ..., T − 1 do

Ât = arg min
A

m∑
i=1

‖A>xi,t − xi,t+1‖22
m

Â = Â1Â2 · · · ÂT−1
β̂ = arg minβ

1
m

∑m
i=1(β>xi,T − yi)2

return θ̂ = Âβ̂

We study Algorithm 1 in discrete-time Gaussian-linear
dynamical systems, where the time series X1, ..., XT

and the outcome Y evolve according to noisy linear
Markov dynamics, as follows.
Assumption 2 (Gaussian-linear system). The privi-
leged information and outcome evolve as

Xt =A>t−1Xt−1 + εt for t = 2, ..., T

Y =β>XT + εY
(1)

where At are a set of transition matrices that determine
the behavior (and stability) of the system. Noise terms
are assumed to be zero-mean Normal random variables,
εt ∼ N (0,Σ), for t=2, ..., T, and εY ∼ N (0, σ2

Y ). We
make no assumption on the distribution of X1.

Due to the linearity of the transitions and outcome,
Y is a linear function of the variable Xt for any t.
Most importantly, it is easy to show that Y is also a
Gaussian-linear function of X1,

Y = θ>X1 + ε̃ with θ = A1 · · ·AT−1β

and

ε̃ = β>
( T−1∑
t=2

[ T−1∏
t′=t

At′

]>
εt + εT

)
+ εY .

Our goal is now to learn estimates of θ as efficiently as
possible, i.e., with the smallest error and/or risk for a
given number of samples. It is well-known that the OLS
estimator θ̂OLS := (X>1 X1)−1X>1 Y is the minimum-
variance mean-unbiased estimator that is based only
on samples of (X1, Y ), see e.g., Johnson et al. (2002,
Chapter 7); This makes θ̂OLS the strongest possible
baseline among estimators that do not make use of
privileged information.

3.1 Variance Reduction Through
Rao-Blackwellization

Next, we show that, in the Gaussian-linear setting
of Assumption 2, with the additional assumption of
isotropic noise in transitions, the output of the LuPTS
algorithm is a Rao-Blackwell estimator (Rao, 1945;
Blackwell, 1947) of θ, which has improved statistical
properties over θ̂OLS. However, to show this, we first
prove the following lemma.
Lemma 1. Let K̂ = (Â1, . . . , ÂT−1, β̂) be the pa-
rameters learned by Algorithm 1 without stationarity,
and let (X1, . . . ,XT ,Y) be a random dataset from the
Gaussian-linear system defined in Assumption 2, with
isotropic noise, ∀t : εt ∼ N (0, σ2

t I). Then, for any
t = 2, . . . , T we have that

E[Xt|Xt−1, K̂] = Xt−1Ât−1 E[Y|XT , K̂] = XT β̂ .

A proof is given in the Appendix. The isotropic noise
assumption simplifies the analysis, although it is feasi-
ble to prove this lemma in the anisotropic case as well.
We give a brief remark in the Appendix highlighting
how the analysis differs.
Remark 1. Lemma 1 says that the expected state at t,
across datasets of the same size for which Algorithm 1
returns Âβ̂, is equal to the estimated state at t given
the previous state at t− 1. This is a result of the fact
that the same OLS estimator would be obtained if we
had samples that were mirrored along the estimated
plane of best fit, and that such a dataset is equally
likely to occur. Lemma 1 can be used to prove a second
lemma, which is found in the Appendix, stating that
the output of the algorithm is indeed a Rao-Blackwell
estimator, i.e. E[θ̂|Â, β̂] = Âβ̂. With these two lemmas,
our main results in Theorem 1 follow using mostly
standard arguments (Rao, 1945; Blackwell, 1947).

We evaluate estimates θ̂ using the mean squared er-
ror (MSE) w.r.t. θ, and the prediction risk R(θ̂), as
defined below, where expectations are taken over the
randomness in θ̂, determined by the dataset D,

MSE(θ̂) := ED[‖θ̂ − θ‖22] ,

R(θ̂) := ED[EX1,Y [(θ̂>X1 − Y )2]] .

We can now state the following result, relating θ̂OLS

and θ̂LuPTS, the output of Algorithm 1.
Theorem 1. Let D = (X1,X2, ...,XT ,Y) be a ran-
dom dataset with θ̂OLS := (X>1 X1)−1X>1 Y, and let
θ̂LuPTS = Âβ̂ be the output of Algorithm 1 without
stationarity. Under the Gaussian-linear system of As-
sumption 2 with isotropic noise as in Lemma 1, θ̂LuPTS

is unbiased, and

MSE(θ̂LuPTS) =MSE(θ̂OLS)− E
D

[Var(θ̂OLS | θ̂LuPTS)]
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where Var is the sum of element-wise conditional vari-
ances and the expectation is taken over datasets D,
since both estimators are functions of them. Further,

R(θ̂LuPTS) =R(θ̂OLS)− E
D,X1

[ Var
θ̂OLS

(θ̂OLSX1 | θ̂LuPTS)] .

Since the variances are non-negative, θ̂LuPTS is at least
as good as θ̂OLS in both metrics.

Theorem 1 states that, in the Gaussian-linear case, the
LuPTS estimator is never worse on average across same-
size datasets than the best unbiased estimator learning
only from (X1, Y ), irrespective of the distribution ofX1.
In other words, privileged information is provably useful
in this case. If there is significant uncertainty about
θ̂OLS after θ̂LuPTS is determined, Var(θ̂OLS | θ̂LuPTS) is
high and LuPTS is favored more strongly.

As a byproduct of the proof of Theorem 1, we further
have for the gap in MSE, G,

G := ED[Var(θ̂OLS | θ̂LuPTS)] = ED[‖θ̂OLS−θ̂LuPTS‖2].

We can express this gap more explicitly when T = 2.

Corollary 1. Under Assumption 2, for T = 2, with
H1 = (X>1 X1)−1X>1 , H2 = (X>2 X2)−1X>2 , both func-
tions of the dataset D, it holds for the MSE gap G,

G = ED[‖(AH2 −H1 +H1ε2H2)εY ‖2] .

Whenever εY = 0, G = 0 irrespective of other factors.
If ε2 = 0 and A is invertible, G = 0 as well (ε2 = 0 =⇒
X2 = X1A and AH2 = H1). In other words, in the
case where either the dynamics or the outcome are
noiseless, the LuPTS estimator reduces to the OLS
estimator. More importantly, if neither noise term
is 0, the difference will not be 0 in general. As a
consequence, Var(θ̂OLS | θ̂LuPTS) > 0, and LuPTS is
strictly preferable over OLS on average. In Section 4,
we confirm empirically that LuPTS is more efficient and
examine the gap as a function of problem parameters.

Bias & Variance. When the models of both sys-
tem dynamics and the outcome are well-specified, the
gains from the LuPTS estimator come from variance
reduction, since both the OLS and LuPTS are unbiased
and the irreducible risk due to noise is shared between
them. However, in misspecified settings, θLuPTS may
be biased even when θOLS is not. For example, let
Y =

√
X2 + ε and X2 = (X1)2 for X1 with support on

the positive real line. The Markov condition holds, OLS
is unbiased, but LuPTS is not. In the misspecified case,
the benefits of LuPTS come down to a tradeoff between
bias and variance. This is explored in Section 4.3.

Learning From Stationary Systems. When the
stationarity flag is false in Algorithm 1, the estima-
tor treats transitions at different time points t, t′ as
independent mechanisms. Then, while the privileged
information provides additional samples with increas-
ing T , the number of functions to estimate increases
with T as well. When we apply Algorithm 1 with the
stationarity flag set to true, we exploit the assumption
that we observe m× (T − 1) (dependent) samples of
the same linear transformation. This dependency is
the primary reason for why Theorem 1 does not readily
extend to the stationary case. However, we observe
improvements over baseline and the non-stationary
LuPTS model for real-world experiments in Section 4.

3.2 Relation To Distillation Approaches

Generalized distillation (Lopez-Paz et al., 2016) is a
technique for learning using privileged information, uti-
lized by Hayashi et al. (2019) in the context of privileged
time series. Distillation methods train a student model
to minimize its prediction error on both true labels
and soft targets provided by a teacher model trained
on the privileged data, in the hope to increase sam-
ple efficiency by transferring knowledge from teacher
to student. However, to the best of our knowledge
there are no results proving gains from distillation of
privileged information which apply in our setting.

In the linear setting with squared loss, the distillation
loss function is defined as

min
θ

λ||Y −X1θ||22 + (1− λ)||Ŷsoft −X1θ||22 (2)

where λ ∈ [0, 1] and Ŷsoft comprises predictions made
by a teacher model. We will now consider the special
case of distillation where the LuPTS estimator is used
as teacher model, i.e., Ŷsoft = X1θ̂LuPTS. In this case,
we can present the following theorem.

Theorem 2. Let θ̂LuPTS be the output of Algorithm 1
and θ̂OLS = (X>1 X1)−1X>1 Y. For θ̂Dist, the solution
to (2) with Ŷsoft = X1θ̂LuPTS and λ ∈ [0, 1], it holds
that

θ̂Dist = λθ̂OLS + (1− λ)θ̂LuPTS . (3)

Additionally, under Assumption 2, it holds that

MSE(θ̂LuPTS) ≤ MSE(θ̂Dist) ≤ MSE(θ̂OLS) .

A proof can be found in the Appendix. Theorem 2
states that using distillation with a linear student model
and LuPTS as teacher leads to an estimate θ̂Dist that
is a convex combination of θ̂OLS and θ̂LuPTS. In the
well-specified case (under Assumption 2), since both
θ̂OLS and θ̂LuPTS are unbiased, θ̂Dist is unbiased as well,
and the MSE of θ̂Dist is bounded between the MSE
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of θ̂OLS and θ̂LuPTS. Interestingly, in the misspecified
case, eq. (3) shows that using distillation leads to a
principled way of trading off bias and variance. For
an optimal choice of λ, θ̂Dist is never worse than using
either θ̂OLS or θ̂LuPTS, and may improve on both.

In Section 4.3, we implement two variants of the dis-
tillation approach: Distill-Seq, where Ŷsoft comprises
predictions made by LuPTS, and Distill-Concat, where
Ŷsoft are the predictions made by a traditional lin-
ear model trained on a concatenation of the privileged
time points, akin to the teacher in Hayashi et al. (2019)
(Theorem 2 does not hold for the latter).

4 EXPERIMENTS

We evaluate properties of the LuPTS estimator in a
series of experiments2. First, in a synthetic setting,
we verify our theoretical findings under the assump-
tions stated in Section 3. An example of what happens
when the Markov assumption is violated is also shown.
Second, on three real-world datasets, the PM2.5 pol-
lution dataset (Section 4.3) and two clinical datasets
(Section 4.4), we study the gain in predictive perfor-
mance with the LuPTS estimator compared to the
baseline OLS estimator. Our results on real-world
data demonstrate the bias-variance tradeoff implied
by our approach as well as its utility in improving
predictive performance for both regression and binary
classification tasks. Third, we compare LuPTS to the
distillation approaches described in Section 3.2. Finally,
we compare the stationary and non-stationary versions
of LuPTS, demonstrating that the preferred version
depends on the domain and prediction task.

4.1 Experimental Setup

The LuPTS algorithm computes several OLS estimates
(see Algorithm 1). All OLS estimates, including the
baseline model used for comparison, use the (unregular-
ized) implementation LinearRegression of the Python
module scikit-learn (Pedregosa et al., 2011). Although
it would be of interest to also study regularized variants
of these models, we leave it as future work for a more
thorough investigation, both theoretically and exper-
imentally. When extending the algorithm to binary
classification tasks, the baseline model and the outcome
model in the LuPTS algorithm are implemented using
the LogisticRegressionCV class from scikit-learn. We
perform 5-fold cross-validation on the training portion
to tune the L2 regularization parameter, which we vary
from 1× 10−4 to 1× 104. Models are evaluated us-
ing the coefficient of determination (R2) for regression

2Code available at
github.com/RickardKarl/LearningUsingPrivilegedTimeSeries.

tasks and the Area Under the ROC Curve (AUC) for
classification tasks. In all plots, Baseline refers to OLS
or Logistic Regression (depending on the task), LuPTS
refers to the output of Algorithm 1 without stationarity,
and Stat-LuPTS to the output with stationarity.

4.2 Synthetic Experiments

To verify and further investigate our theoretical results,
we sample from a synthetic dynamical system where
Markovianity and linearity with additive isotropic Gaus-
sian noise hold. The elements of At ∈ Rd×d for
t = 1, . . . , T − 1 and β ∈ Rd×1 are drawn from a
Normal distribution with the exception of the diagonal
elements in the transition matrices, which are set to
1. The eigenvalues (λ1, . . . , λd) of At influence the sys-
tem’s behavior and stability. Unstable linear systems,
i.e., those with large eigenvalues, are easier to estimate
(Simchowitz et al., 2018), and therefore we enforce the
spectral radius ρ(At) to equal κ for all t, with κ > 1.
We refer the reader to the Appendix for a more in-
depth description of the system generation. For all
experiments, we use the following default values unless
otherwise stated: κ = 1.5, n = 1000, T = 10, d = 25,
and Var(εt) = Var(εY ) = 1 for t = 1, . . . , T−1. Finally,
the input distribution is p(X1) = N (µ = 0, σ2 = 5).

Parameter Recovery Figures 2a, 2b and 2c present
the relative MSE, ||θ− θ̂||22/||θ||22, of the Baseline (OLS)
and LuPTS estimates of the synthetic system described
above. We investigate the impact of the number of
training samples n, sequence length T , and variance of
system noise on the MSE by varying one variable and
keeping the other two fixed. Compared to the baseline
estimates, the LuPTS estimates are closer in general to
the true parameter, as predicted by Theorem 1. Both
methods improve as we increase the number of training
samples, but LuPTS is consistently better or equally
good. The difference between them increases for larger
T , which can be explained by the fact that there is
more uncertainty between X1 and Y as T gets larger.
Notably, when the system noise is removed completely,
LuPTS and OLS coincide, as expected.

Breaking The Markov Assumption In Figure 2d,
we introduce a coefficient δ, generated in the same way
as β, which controls a direct dependence of Y on X1,
i.e., Y = XTβ +X1δ. We scale δ to vary the ratio of
the norms ||δ||2||β||2 (x-axis), and observe that predictions
from LuPTS get worse in terms of R2 score (y-axis)
as the ratio increases. In spite of the bias, we see that
LuPTS still performs equally well as the baseline for
small non-zero ratios. This result can be explained by
the fact that the privileged information contains useful
knowledge, which offsets the bias when it is small.

https://github.com/RickardKarl/LearningUsingPrivilegedTimeSeries
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(a) Parameter recovery (b) Parameter recovery (c) Parameter recovery (d) Prediction error

Figure 2: Synthetic system showing relative MSE of the parameter estimate or the prediction error and one standard
deviation. Parameter recovery (Left three; lower is better): Varying either only number of samples n, sequence length T ,
or noise standard deviation Var(εt). Breaking the Markov Assumption (Right-most figure; higher is better): Adding
a direct linear relationship between X1 and Y with coefficient δ. Larger value on x-axis leads to more deviation from
Markov assumption.

4.3 Forecasting Air Quality

Due to the serious health risks caused by chronic air pol-
lution in China, predicting how air quality changes over
time is vital (Kelly et al., 2012). The PM2.5 dataset
contains hourly meteorological recordings between the
years 2012 and 2015 of the fine particle (PM2.5) con-
centration in Beijing, Chengdu, Guangzhou, Shanghai
and Shenyang (Liang et al., 2016), as well as seven
weather features, including temperature, humidity and
combined wind direction. We refer the reader to the
Appendix for a complete description of the data and
pre-processing steps. We also report additional results
for all five cities.

We forecast the PM2.5 concentration for several hori-
zons, 6, 12, or 24 hours into the future. Comparing
results across different horizons is informative since 1)
predictions further into the future are more challenging,
and 2) for longer horizons, more time points can be
used as privileged information. We further compare
LuPTS to Distill-Concat and Distill-Seq, introduced in
Section 3.2, as well as non-linear baselines models. For
the distillation methods, we tune λ on the validation
set, varying it across 0.25, 0.5, and 0.75. At time t = 1,
we observe the features X1, which also contains the
current PM2.5 concentration. Based on this informa-
tion, we wish to predict the PM2.5 concentration T + 1
hours into the future. The spacing between adjacent in-
termediate measurements X2, . . . , XT—the privileged
information—is one hour.

Bias-variance Trade-off When Varying Se-
quence Length And Privileged Information
Results for two forecast horizons with a different num-
ber of evenly spaced time points used as privileged
information are shown in Figures 3a and 3b. The re-
sults depict an interesting example of the bias-variance
trade-off of LuPTS. For the 6 hour forecast (Figure 3a),
we see improved performance using LuPTS for all sam-
ple sizes. In addition, adding more privileged time

points is beneficial. For the 24 hour forecast (Fig-
ure 3b), LuPTS is consistently worse than baseline.
Interestingly, in the case where LuPTS performs worse
already, adding more privileged time points is not bene-
ficial. This result may be due to the learned dynamical
system being biased, and consequently, the bias com-
pounds when the predicted “roll-out” is longer. This
argument also explains why using more privileged time
points is subpar if the bias is large already. On the
other hand, adding more privileged information reduces
the variance, as seen in both Figure 3a and 3b.

Combining LuPTS And Distillation Can Lead
To Even Greater Performance Figure 3c and
3d show the results comparing the distillation-based
methods, Distill-Concat and Distill-Seq, which use the
same privileged information as LuPTS during training.
When forecasting 6 hours ahead (Figure 3c), we see that
LuPTS performs better than both distillation-based
methods. Distill-Seq, which uses LuPTS as teacher
model, also has a higher R2 score than Distill-Concat,
where the latter method lies close to the baseline. As
previously posited, the bias is likely small in this case,
and the empirical result conforms closely to Theorem
2, which states that the MSE, or equivalently R2, of
Distill-Seq is bounded by the MSEs of LuPTS and OLS
in the well-specified case.

For the 12 hour forecast (Figure 3d), the distillation-
based methods perform best, with Distill-Seq still out-
performing Distill-Concat. As before, LuPTS is prefer-
able to the baseline although the difference is only
observed for a lower number of samples. This result
is a good example of how, in the misspecified setting,
Distill-Seq can do no worse than LuPTS or OLS, given
that λ is well chosen. Finally, we find that Distill-Seq
does better than Distill-Concat in both cases, which
can be attributed to the benefit of using LuPTS as a
teacher model to derive better soft targets.
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(a) 6 hour forecast
Shenyang

(b) 24 hour forecast
Shenyang

(c) 6 hour forecast
Shenyang (Distillation)

(d) 12 hour forecast
Chengdu (Distillation)

Figure 3: 3a, 3b) Changing the amount of privileged information for the LUPTS for different time horizons,
where the X in LuPTS_XPTS indicates the number of privileged time points. 3c, 3d) Comparing LuPTS to the
distillation-based approaches, which use the same privileged information. Metric used is R2 (Higher is better);
shaded region indicates one standard deviation across 75 iterations.

(a) Predicting MMSE (b) Predicting AD

Figure 4: Alzheimer’s disease progression tasks.
Follow-up at 12, 24 and 36 months after baseline as privi-
leged information. Metrics used are R2/AUC; shaded region
corresponds to one standard deviation across 100 iterations.

Comparison to non-linear baselines In addition
to the distillation-based baselines, we compare LuPTS
to non-linear baselines in the form of random forest
(RF) and k-nearest neighbors regression (KNN). Re-
sults with a fixed sample size of 200 and a prediction
horizon of 6 hours for all cities are shown in Table 1.
For all cities, the LuPTS or it’s distillation equiva-
lent empirically performs better than these non-linear
models without access to privileged information in a
setting where linearity, Markovianity or Gaussianity
are likely not to hold. One possible reason for this
is that non-linear models tend to overfit in low-data
settings. See Appendix D for implementation details
of the non-linear models and results for a prediction
horizon of 12 hours (Table 4).

4.4 Modeling Progression Of Chronic Disease

Alzheimer’s Progression Modeling In this exper-
iment, we predict progression of Alzheimer’s disease
(AD) as measured by two different subject outcomes
(i) the diagnostic status (AD or not), and (ii) cognitive

(a) Early/Late Progressor (b) Treatment Response

Figure 5: MM Progression Task (Left): AUC as a
function of the training set size is shown for 4 privileged
time points. Treatment Response Task (Right) for 2
privileged time points are used. Shaded region for both
tasks indicates one standard deviation over all trials.

function as assessed by the Mini Mental State Examina-
tion (MMSE) score (Galea and Woodward, 2005). The
Alzheimer’s Disease Neuroimaging Initiative (ADNI)
is a large multi-site research study tracking the brains
of over 2000 participants through genetic, imaging and
biospecimen biomarkers.3 Subjects are followed over
several years with measurements taken every three
months, with some missingness in the observations.

We observe outcomes (Y ) at a fixed follow-up time, 48
months after baseline measurements (X1) are taken.
Privileged information is collected at intermediate time
points, here restricted to samples from follow-ups at 12,
24, and 36 months after baseline. See the Appendix for
all selected features and details on data pre-processing.

Multiple Myeloma Progression Modeling
Given the limited samples available due to the relative
rarity of the disease, Multiple Myeloma (MM) provides
a suitable setting to demonstrate the utility of using
temporal, post-baseline data in improving predictive
performance. We use a data registry released by the

3ADNI: http://adni.loni.usc.edu

http://adni.loni.usc.edu
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Table 1: Comparison of regression methods on the air quality forecasting task with a fixed sample size n = 200
and a prediction horizon of 6 hours. Metric used is R2 (Higher is better); mean value for each method with
standard deviation across 200 iterations. The methods with highest R2 and lowest variance are marked in bold
for each city.

Method Beijing Shanghai Shenyang Chengdu Guangzhou

Baseline 0.64 ± 0.02 0.58 ± 0.06 0.66 ± 0.04 0.63 ± 0.04 0.45 ± 0.06
LuPTS 0.64 ± 0.03 0.62 ± 0.03 0.70 ± 0.03 0.65 ± 0.03 0.49 ± 0.04
Stat-LuPTS 0.64 ± 0.02 0.62 ± 0.04 0.69 ± 0.03 0.65 ± 0.03 0.50 ± 0.04
Distill-Seq 0.65 ± 0.02 0.62 ± 0.03 0.68 ± 0.03 0.67 ± 0.02 0.49 ± 0.05
Distill-Concat 0.65 ± 0.02 0.60 ± 0.04 0.66 ± 0.04 0.66 ± 0.03 0.46 ± 0.07
RF 0.62 ± 0.03 0.58 ± 0.07 0.53 ± 0.06 0.61 ± 0.04 0.48 ± 0.05
KNN 0.57 ± 0.04 0.51 ± 0.23 0.49 ± 0.05 0.51 ± 0.04 0.26 ± 0.09

Multiple Myeloma Research Foundation (MMRF)
through the CoMMpass clinical trial (NIH, 2016),
which contains de-identified clinical data collected at
2-month intervals for 1143 patients. Preprocessing of
the data was done through ML-MMRF, an open-source
library provided by Hussain et al. (2021). We refer the
reader to the Appendix for a detailed description of
the features. We focus on two clinically important
predictive tasks for multiple myeloma:

Early/Late Progression Task : The first task is pre-
dicting whether or not a patient will progress "early"
(Y = 1) (before 18 months post-treatment induction) or
"late" (Y = 0) (after 18 months post-treatment induc-
tion). We experiment with using privileged time points
within the first "line" (or sequence) of treatment.

Treatment Response Task : The second task is predicting
a patient’s treatment response (given a fixed treatment
policy) as either "Progressive Disease" (PD, Y = 1) or
"non-Progressive Disease" (non-PD, Y = 0). These are
used by oncologists to make treatment decisions and
assess disease burden. The outcome is recorded after
two lines of treatment have been completed. We have
privileged information at the end of first line treatment
(t = 2) and at the end of second line treatment (t = 3).

For all tasks outlined in this section, we do repeated (50
repeats) 2-fold cross validation with different training
and test splits across multiple training set sizes. Note
that when T = 2 (one privileged time point), LuPTS
and Stat-LuPTS return the same estimator. Hence,
only LuPTS is shown in these figures.

LuPTS For Disease Progression Modeling Us-
ing LuPTS improves predictive performance for all of
the clinical tasks and leads to a reduced variance in
estimation, as shown in Figures 4 and 5. This result
intuitively implies that it is easier to predict clinical
outcomes of chronic diseases from an intermediate set
of longitudinal features than from baseline features

alone. Indeed, in the context of the MM tasks, the PD
category is often determined by temporal changes in a
patient’s lab values, and recurrence of disease is often
measured by temporal changes in a patient’s serum
immunoglobulins (Kyle and Rajkumar, 2009). We per-
form additional experiments comparing Stat-LuPTS
with LuPTS. For the AD progression tasks, using a
stationary transition matrix results in further perfor-
mance gains (see Figure 4). However, for the MM tasks,
Stat-LuPTS does not outperform the baseline model
(see Figure 5). This makes sense since the longitudinal
dynamics of a myeloma patient may differ across differ-
ent lines of treatment, justifying a separate transition
matrix for each line.

Assessing Feature Importance For MM
Early/Late Progression Task In Figure 12 in the
Appendix, we show the feature weights of the LuPTS
and baseline outcome models in the top and bottom
rows of the heatmap, respectively. We find that for the
LuPTS estimator, the highest weighted features are
the ISS stage and the projected serum M-protein of the
patient. This result is consistent with current clinical
understanding of myeloma, which measures disease
burden based on a patient’s M-protein and ISS risk
score. On the other hand, we find that the relevant
features for the baseline estimator are the myeloma
subtypes and not the biomarkers. This is most likely
due to the fact that the baseline model takes the
biomarkers at the first time step as input, which
may be less associated with the overall progression
of the patient. This result indicates that using the
LuPTS estimator results in a more clinically intuitive
explanation for its prediction.

5 RELATED WORK

Making use of information only available at training
time was first systematically studied in the context of
Learning using Privileged Information (LuPI) (Vapnik
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and Vashist, 2009).

We study prediction of future outcomes (Makridakis,
1994; Ing, 2003; Sorjamaa et al., 2007), where the inter-
val between baseline and prediction target is assumed
sufficiently long to collect intermediate privileged infor-
mation. This is related to multi-step prediction in time-
series forecasting, with common strategies including
direct (Chevillon, 2007) and recursive prediction (Ku-
nitomo and Yamamoto, 1985; Ing, 2003), corresponding
to the baseline and LupTS strategies used in this work.
However, unlike time-series forecasting, which predicts
a future state of a continually evolving variable, our goal
is to predict a distinct outcome variable at a fixed finite
horizon. Ing (2003) showed for time-series forecasting
that in stationary Gaussian-linear systems, recursive
prediction is asymptotically preferable to direct predic-
tion. This is consistent with our findings, but these are
for the non-stationary case and non-asymptotic.

Our main analysis tool is the Rao-Blackwell theo-
rem (Rao, 1945; Blackwell, 1947), used widely for
variance reduction of statistical estimators, such
as in the Rao-Blackwellization of MCMC sampling
schemes (Casella and Robert, 1996). This use is dis-
tinct from ours. It has also been used to improve policy
evaluation in RL (Li et al., 2018), general variational
inference (Ranganath et al., 2014), and estimation of
field goal percentage in basketball (Daly-Grafstein and
Bornn, 2019). However, to the best of our knowledge,
the result has not previously been used to prove gains
from learning using privileged information.

The question of leveraging explicit models of dynamics
commonly arises in reinforcement learning (RL) (Sut-
ton and Barto, 2018). In model-based RL, a learned
model of system dynamics is used to simulate state tran-
sitions in order to predict (long-term) future rewards.
This problem maps onto ours when there is a single
available action with the reward being given at a fixed
future time step. The question of when the bias due to
the use of a model in model-based RL is preferable to
the higher variance model-free RL remains open (Fein-
berg et al., 2018; Thomas and Brunskill, 2016).

6 DISCUSSION

In this work, we studied prediction of future outcomes
in a setting where privileged information is available in
the form of a time series observed between prediction
and outcome time points. We proved that a recursive
estimator that makes use of this privileged information
yields improved parameter recovery and improved ex-
pected risk compared to the best estimator that does
not use privileged information. Through experiments
on synthetic and real-world data sets, we showed that
our estimator, dubbed LuPTS, often results in bet-

ter predictive performance and variance reduction in
both regression and classification tasks. We also pro-
posed a method for using LuPTS in combination with
distillation-based learning to reduce prediction risk in
the misspecified case by trading off bias and variance.

Interestingly, compared to prior work on learning us-
ing privileged information, our results are qualitatively
different. Instead of providing asymptotic bounds on
generalization error as done before Vapnik and Vashist
(2009); Lopez-Paz et al. (2016) we prove an explicit
gap on the improvement in the finite-sample case. A
possibly fruitful direction for research could be to fur-
ther explore the connections between our results and
previous results within the topic.

There are some notable limitations to our work. First,
the theory is limited to time series from discrete-time
linear dynamical systems with isotropic Gaussian noise
where the transition matrices for each time step are
estimated separately. Furthermore, we assume that the
particular structure of the time series is Markov. Ex-
tending the theory and algorithm to include non-linear
transitions and estimators or exploit stationary series
is interesting future work as it will broaden the under-
standing and applicability of learning using privileged
time series. As a start, we provide a general algorithm
for arbitrary estimators in the Appendix.
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Appendix

The appendix contains the following sections. We also highlight the key takeaways or descriptions associated with
each section.

A. Proof of Theorem 1: This section provides the full proof of Theorem 1, including two lemmas that are
central to the argument. We also show how one can relax the isotropic noise assumption on the Gaussian-linear
system and generalize the first lemma to the anisotropic case.

B. Proof of Theorem 2: This section provides a full proof of Theorem 2, showing how using a distillation-
approach with LuPTS as a teacher model returns the convex combination of the OLS estimator and output
from Algorithm 1. We further show that the MSE of the estimator using LuPTS with distillation is bounded
between the MSEs of the OLS and LuPTS estimators.

C. LuPTS with Non-linear Estimators: This section includes a bound on the expected risk of the LuPTS
estimator in the case where the transition functions and outcome model are non-linear.

D. Experimental Details

D1. Computational Resources - We give a brief description of the computational resources that were
used to generate the experimental results as well as the running time required to reproduce them.

D2. Synthetic Experiments - We present a more detailed description of how the synthetic data is generated.
Additionally, we test empirically in the synthetic setting how the Stat-LuPTS, LuPTS, and baseline
OLS estimators compare when stationarity holds and when it does not.

D3. Forecasting Air Quality - We provide a detailed description of the features used for this task as well
as the training and evaluation procedure. Finally, we present additional experimental results comparing
the LuPTS and baseline OLS estimators for the other Chinese cities.

D4. Alzheimer’s Progression Modeling - Along with giving the full list of features and our pre-processing
procedures used, we present the results from the main paper in tabular form. This gives a more granular
look at which sample sizes LuPTS yields the most gain in AUC and reduction in variance.

D5. Multiple Myeloma Progression Modeling - We give a description of the features used for the
Multiple Myeloma experiments as well as the pre-processing procedures used to handle missingness and
censorship. We then present a brief description of our evaluation procedure on this dataset. Finally,
we end with a qualitative experiment looking at the most highly-weighted features in the LuPTS and
baseline outcome models for the early/late progression task.
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A PROOF OF THEOREM 1

To prove Theorem 1, we begin by proving the following lemma of OLS estimates.

Lemma 1. Let K = (Â1, . . . , ÂT−1, β̂) be the output of Algorithm 2, and let (X1, . . . ,XT ,Y) be a random
dataset from the Gaussian-linear Markov dynamical system as defined in Assumption 2, with isotropic noise,
εt ∼ N (0, σ2

t I). Then, for any t = 2, . . . , T we have that

E[Xt | Xt−1,K] = Xt−1Ât−1

and
E[Y | XT ,K] = XT β̂ .

The main difference between the above equations is the dimensionality of Xt and Y, respectively, where we have
previously stated, without loss of generality, that Xt ∈ Rn×d and Y ∈ Rn×1.

Proof. We will first show E[Xt | Xt−1,K] = Xt−1Ât−1 and then explain how the same arguments are applied to
prove E[Y | XT ,K] = XT β̂.

Let Rt = Xt −Xt−1Ât−1 be the residual of the OLS estimate, Ât−1. We will show that for all Rt, we have that
p(Xt = Xt−1Ât−1 + Rt | Xt−1,K) = p(X′t = Xt−1Ât−1 −Rt | Xt−1,K), which implies the statement in the
lemma if we assume isotropic Gaussian noise.

To show this, we first use Bayes formula:

p(Xt | Xt−1,K) =
p(K | Xt,Xt−1)p(Xt | Xt−1)

p(K | Xt−1)

=
p(β̂, ÂT−1, . . . , Ât | Xt)p(Ât−1 | Xt,Xt−1)p(Â1, . . . , Ât−2 | Xt−1)p(Xt | Xt−1)

p(K | Xt−1)

In the second equality, we have used the Markov property, which implies the following statements:

Â1, . . . , Ât−2 ⊥⊥ Xt | Xt−1

Ât, . . . , ÂT−1, β̂ ⊥⊥ Xt−1 | Xt

Ât−1 ⊥⊥ Â1, . . . , Ât−2, Ât, . . . , ÂT−1β̂ | Xt,Xt−1.

For p(Xt | Xt−1,K) = p(X′t | Xt−1,K) to hold, we look at the factors that depend on Xt. This tells us that we
need to prove the following three statements:

(a) p(Xt | Xt−1) = p(X′t | Xt−1)

(b) p(Ât−1 | Xt,Xt−1) = p(Ât−1 | X′t,Xt−1)

(c) p(β̂, ÂT−1, . . . , Ât | Xt) = p(β̂, ÂT−1, . . . , Ât | X′t)

We will now prove each of these statements:

Statement (a): We first define ε′t = ε− 2Rt where we have that Xt = Xt−1At−1 + ε. Then, note that

Xt−1At−1 + ε′t = Xt−1At−1 + ε− 2Rt = Xt − 2Rt = Xt−1Ât−1 −Rt = X′t (4)

Eq. 4 implies that showing (a) equates to showing that p(ε) = p(ε′t), since the noise is independent of Xt−1. For
Gaussian noise, these probabilities are determined by the inner product of the noise, hence it is sufficient to prove

ε>ε = ε′
>
ε′

We have that

ε′
>
ε′ = ε>ε− 4ε>Rt + 4R>t Rt
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and thus, we need to show
R>t (ε−Rt) = 0 .

By definition,
Rt = Xt −Xt−1Ât−1

and so

R>t (ε−Rt) = R>t (Xt −Xt−1At−1 − (Xt −Xt−1Ât−1)) = −R>t (Xt−1(At−1 − Ât−1)) = 0

since R>t Xt−1 = 0 is a property of the OLS estimator. This proves statement (a).

Statement (b): Now, we see that

Â′t−1 = (X>t−1Xt−1)−1X>t−1X
′
t

= (X>t−1Xt−1)−1X>t−1(Xt − 2Rt)

= Ât−1 − 2(X>t−1Xt−1)−1X>t−1Rt = Ât−1 .

since, again, X>t−1Rt = 0. This implies that the distribution of Ât−1 is the same if conditioned on Xt or X′t,
which proves statement (b).

Statement (c): We can factorize p(β̂, ÂT−1, . . . , Ât | Xt) as

p(β̂ | ÂT−1, . . . , Ât,Xt)p(ÂT−1 | ÂT−2, . . . , Ât,Xt) . . . p(Ât+1 | Ât,Xt)p(Ât | Xt)

Let Ck = (Âk, Âk−1, . . . , Ât) for k = t, . . . , T − 1. Then, we can summarize the problem as the following: we need
to show that each factor in the above equation is the same for both Xt and X′t, i.e.,

p(β̂ | CT−1,Xt) = p(β̂ | CT−1,X′t)
p(Âk | Ck−1,Xt) = p(Âk | Ck−1,X′t), k = t+ 1, . . . , T − 1

p(Ât | Xt) = p(Ât | X′t)

The first two equations could be seen as the distribution of OLS estimators with a (conditional) random design,
while the third is the distribution of Ât with a fixed design matrix Xt. Assuming mean-zero and uncorrelated
Gaussian noise εt ∼ N (0, σ2

t I) and εY ∼ N (0, σ2
Y I), the distributions of the OLS estimators are known, see

Chapter 14 in Rice (2006), and we can show,

β̂ | CT−1,Xt ∼N
(
β, σ2

Y E
[(
X>TXT

)−1 | CT−1,Xt

])
Â

(row i)
k | Ck−1,Xt ∼N

(
A

(row i)
k , σ2

k+1E
[(
X>kXk

)−1 | Ck−1,Xt

])
, k = t+ 1, . . . , T − 1

Â
(row i)
t | Xt ∼N

(
A

(row i)
t , σ2

t+1

(
X>t Xt

)−1)
where i = 1, . . . , d corresponds to the OLS estimators which are d× d matrices. Now, it is sufficient to show that

E
[(
X>kXk

)−1 | Ck−1,Xt

]
= E

[(
X>kXk

)−1 | Ck−1,X′t] , k = t+ 1, . . . , T

and the special case where X>t Xt = X′
>
t X
′
t. For the latter, we have

(Xt−1Ât−1 ±Rt)
>(Xt−1Ât−1 ±Rt) =

= (Xt−1Ât−1)>(Xt−1Ât−1)± 2(Xt−1Ât−1)>Rt + R>t Rt

= (Xt−1Ât−1)>(Xt−1Ât−1) + R>t Rt

where we have used that the cross term (Xt−1Ât−1)>Rt = Â>t−1X
>
t−1Rt = 0 because X>t−1Rt = 0. As the cross

term is the only thing which differs in X>t Xt and X′
>
t X
′
t, the above derivation implies that they must be equal.



Karlsson, Willbo, Hussain, Krishnan, Sontag, Johansson

For E
[(
X>kXk

)−1 | Ck−1,Xt

]
with k = t + 1, . . . , T , we use the same expression as before but observe the

following recursive relationship between the inner product of Xk and Xk−1:

X>kXk = (Xk−1Âk−1)>Xk−1Âk−1 + R>kRk = Â>k−1 X
>
k−1Xk−1︸ ︷︷ ︸

Inner product

Âk−1 + R>kRk

Hence, we get that

X>kXk =

k−1∏
i=t

Â>i (X>t Xt)

k−1∏
i=t

Âi +

k−1∑
j=t+1

R>j Rj

k−1∏
i=j

Âi + R>kRk

We see that X>kXk is directly dependent on X>t Xt, noting that the residuals and OLS estimators are fixed
given that we condition upon them. Since we already have shown that X>t Xt = X′

>
t X
′
t, this means that

E
[(
X>kXk

)−1 | Ck−1,Xt

]
= E

[(
X>kXk

)−1 | Ck−1,X′t] for k = t + 1, . . . , T , which completes the proof for
statement (c).

Since we have proven all three statements that were presented in the beginning of this proof, we have shown that
p(Xt = Xt−1Ât−1 + Rt | Xt−1,K) = p(X′t = Xt−1Ât−1 −Rt | Xt−1,K).

Finally, to show that E[Y | XT ,K] = XT β̂, we can use the same arguments as before to show p(Y = XT β̂+RY |
XT ,K) = p(Y′ = XT β̂ −RY | XT ,K), although only statements (a) and (b) are necessary for this case.

Remark 2. For the anisotropic case, the analysis becomes slightly different. The noise in the data Xt is
εt = [εt,1, . . . εt,n]> ∈ Rn×d. The rows corresponds the the noise in a particular sample, while the columns are for
the different features. Furthermore, the covariance of the ith feature is Cov(ε

(column i)
t ) = σ2

t,iIn for i = 1, . . . , d
where In is the n-dimensional identity matrix. With anisotropic noise, we have σt,i 6= σt,i′ for i, i′ = 1, . . . , d.
Then, the above lemma will be feasible using a similar analysis as we can show that,

Â
(row i)
k ∼ N

(
A

(row i)
k , σ2

k+1,i E
[(
X>kXk

)−1 | Ck−1,Xt

])
.

Then, the analysis follows as in Lemma 1.

Now, we prove that Âβ̂ is a sufficient statistic for θ̂.

Lemma 2. Let D = (X1,X2, . . . ,XT ,Y) be a random dataset from a Gaussian-linear Markov dynamical system,
as defined in Assumption 2. Then, let θ̂LuPTS = Âβ̂ be the output of Algorithm 1 without stationarity, and
θ̂OLS := (X>1 X1)−1X>1 Y. It holds that,

ED[θ̂ | Â, β̂] = Âβ̂ .

Proof. Let smaller letters (x1, . . . ,xT ,y) indicate a value of the random dataset D and B = (x>1 x1)−1x>1 . Then,
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we have,

E[θ̂ | Â, β̂] =

∫
p(x1, . . . ,xT ,y | Â, β̂)θ̂dX1 . . . dXT dY

=

∫
p(y | xT , Â, β̂)

T∏
t=2

p(xt | xt−1, Â, β̂)p(x1 | Â, β̂)θ̂dX1 . . . dXT dY (Markov property)

=

∫
p(y | xT , Â, β̂)

T∏
t=2

p(xt | xt−1, Â, β̂)p(x1 | Â, β̂) By︸︷︷︸
=θ̂

dX1 . . . dXT dY (OLS definition)

=

∫ T∏
t=2

p(xt | xt−1, Â, β̂)p(x1 | Â, β̂)B

[∫
yp(y | xT , Â, β̂)dY

]
︸ ︷︷ ︸

=E[Y|xT ,Â,β̂]=xT β̂

dX1 . . . dXT (Lemma 1)

=

∫ T∏
t=2

p(xt | xt−1, Â, β̂)p(x1 | Â, β̂)BxT β̂dX1 . . . dXT

=

∫ T−1∏
t=2

p(xt | xt−1, Â, β̂)p(x1 | Â, β̂)B

[∫
xT p(xT | xT−1, Â, β̂)dXT

]
︸ ︷︷ ︸

=E[XT |xT−1,Â,β̂]=xT−1ÂT−1

β̂dX1 . . . dXT−1 (Lemma 1)

=

∫ T−1∏
t=2

p(xt | xt−1, Â, β̂)p(x1 | Â, β̂)BxT−1ÂT−1β̂dX1 . . . dXT−1

=

∫ T−2∏
t=2

p(xt | xt−1, Â, β̂)p(x1 | Â, β̂)B

[∫
xT−1p(xT−1 | xT−2,K)dXT−1

]
︸ ︷︷ ︸

=E[XT−1|xT−2,Â,β̂]=xT−2ÂT−2

ÂT−1β̂dX1 . . . dXT−2 (Lemma 1)

= · · · = (recursively)

=

∫
p(x1 | Â, β̂)Bx1︸︷︷︸

=I

Â1 . . . ÂT−1β̂dX1

= Â1 . . . ÂT−1β̂

∫
p(x1 | Â, β̂)dX1 = Â1 . . . ÂT−1β̂

For the final result, recall the definition of parameter mean squared error for an estimate θ̂ of θ, where the
expectation is taken over the dataset D used to fit θ̂,

MSE(θ̂) := ED[‖θ̂ − θ‖22]

and the expected risk for a prediction function hD of baseline variables X1 dependent on the random dataset D,

R(hD) := ED[R(hD)] = ED[EX1,Y [(fD(X1)− Y )2]] .

In the linear case, we let R(θ̂) denote R(θ̂>(·)).
Theorem 1. Let D = (X1,X2, ...,XT ,Y) be a random dataset with θ̂OLS := (X>1 X1)−1X>1 Y, and let θ̂LuPTS =

Âβ̂ be the output of Algorithm 1 without stationarity. Under the Gaussian-linear system defined in Assumption 2
with isotropic noise as in Lemma 1, θ̂LuPTS is unbiased, and

MSE(θ̂LuPTS) = MSE(θ̂OLS)− ED[Tr(Cov(θ̂OLS | θ̂LuPTS))] , (5)

where the expectation is taken over random datasets D, since both estimators are functions of them. Further, it
holds for the expected risk that over new, unseen samples (X1, Y ),

R(θ̂LuPTS) = R(θ̂OLS)− ED,X1
[Varθ̂OLS

(〈θ̂OLS, X1〉 | θ̂LuPTS)] . (6)
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Proof. Unbiasedness of θ̂LuPTS follows from Lemma 2 or the standard proof for unbiasedness of θ̂OLS. The
remaining result follows from Lemma 2 and standard Rao-Blackwell arguments,

MSE(Âβ̂) = ED[‖Âβ̂ − θ‖2]

= ED[‖E[θ̂ | Âβ̂]− θ‖2] (Lemma 2)

= ED[‖E[θ̂ − θ | Âβ̂]‖2]

= ED

 d∑
j=1

(E[θ̂j − θj | Âβ̂])2


= ED

 d∑
j=1

(
E[(θ̂j − θj)2 | Âβ̂]−Var

[
θ̂j | Âβ̂

])
= ED[E[‖θ̂ − θ‖2 | Âβ̂]]− ED

 d∑
j=1

Var
[
θ̂j | Âβ̂

]
= MSE(θ̂)− ED

[
Tr
(

Cov
[
θ̂ | Âβ̂

])]
.

Recall that X1 represents a new test point, independent of the dataset D. For the second result, we note that for
any estimator θ̂,

ED[R(θ̂)] = ED[EX1,Y [(θ̂>X1 − Y )2]] = EX1
[ED[EY |X1

(θ̂>X1 − Y )2 | X1]] .

Then, if θ̂ is unbiased for the Gaussian linear model, Y = θ>X1 + ε with ε ∼ N (0, σ2),

ED[EY |X1
[(θ̂>x1 − Y )2 | X1 = x1]] = ED[(θ̂>x1 − ED[θ̂]>x1)2]︸ ︷︷ ︸

= variance

+ (ED[θ̂]>x1 − θ>x1)2︸ ︷︷ ︸
= bias2 =0

+σ2 .

Since ED[θ̂] = θ, the variance term can then be rewritten as,

ED[(θ̂>x1 − ED[θ̂]>x1)2] = ED[〈θ̂ − θ, x1〉2] .

Then, since Âβ̂ is an unbiased estimator of θ,

ED[R(Âβ̂)] = EX1
[ED[〈Âβ̂ − θ,X1〉2]] + σ2

= EX1
[ED[〈Eθ̂[θ̂ | Âβ̂]− θ,X1〉2]] + σ2 (Lemma 2)

= EX1 [ED[Eθ̂[〈θ̂ − θ,X1〉 | Âβ̂]2]] + σ2

= EX1 [ED[Eθ̂[〈θ̂ − θ,X1〉2 | Âβ̂]−Varθ̂(〈θ̂ − θ,X1〉 | Âβ̂)]] + σ2

= ED[R(θ̂)]− ED,X1
[Varθ̂(〈θ̂ − θ,X1〉 | Âβ̂)] .

In the last step, we make use of the fact that θ̂ is unbiased and

ED[R(θ̂)] = EX1
[ED[〈θ̂ − θ,X1〉2] + σ2 .

B PROOF OF THEOREM 2

We extended the distillation-based method as described by Hayashi et al. (2019) with LuPTS as teacher model,
which we called Distill-Seq. In the linear setting with squared loss, the distillation loss function is defined as,

θ̂Dist = arg min
θ

λ||Y −X1θ||22 + (1− λ)||Ysoft −X1θ||22 (7)

where λ ∈ [0, 1] and Ysoft is the soft target provided by the teacher. In the case where a student model minimizes
the above loss function with LuPTS as teacher model, we can prove the following theorem.
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Theorem 2. Let θ̂LuPTS be the output of Algorithm 1 and θ̂OLS = (X>1 X1)−1X>1 Y. Let θ̂Dist be the solution
to (7) with Ŷsoft = X1θ̂LuPTS and λ ∈ [0, 1]. Then, it holds that

θ̂Dist = λθ̂OLS + (1− λ)θ̂LuPTS . (8)

Additionally, under Assumption 2, it holds that

MSE(θ̂LuPTS) ≤ MSE(θ̂Dist) ≤ MSE(θ̂OLS) . (9)

Proof. We will first show the first part of the theorem, namely that equation (8) holds. Then, as a consequence,
we will proceed with proving that equation (9) holds.

Since the optimization problem in (7) is convex, we can compute the derivative with respect to θ and find the
value for which the derivative is zero,

d

dθ
=
(
λ||Y −X1θ||22 + (1− λ)||X1θ̂LuPTS −X1θ||22

)
=
(

2λX>1 (Y −X1θ) + 2(1− λ)X>1 (X1θ̂LuPTS −X1θ)
)

= 2X>1

λY + (1− λ)X1θ̂LuPTS︸ ︷︷ ︸
Ỹ

−X1θ

 = 0 .

The solution is given by the OLS estimate

θ̂Dist = (X>1 X1)−1X>1 Ỹ

where we can expand Ỹ to get the following,

θ̂Dist = (X>1 X1)−1X>1

(
λY + (1− λ)X1θ̂LuPTS

)
= λ(X>1 X1)−1X>1 Y + (1− λ)(X>1 X1)−1X>1 X1θ̂LuPTS

= λθ̂OLS + (1− λ)θ̂LuPTS .

This proves the first part of the theorem. Next, we prove equation (9), which will be done element-wise, i.e. we
prove the statement for θ̂(j)Dist for some j = 1, . . . , d.

First, due to equation (7), we note that since θ̂OLS and θ̂LuPTS are unbiased estimators, θ̂Dist is also unbiased.
Hence, we can write

MSE(θ̂
(j)
Dist) = Var(θ̂

(j)
Dist) + Bias(θ̂(j)Dist)

2︸ ︷︷ ︸
=0

= Var(θ̂
(j)
Dist)

Then, we use equation (8) again to rewrite the variance of θ̂(j)Dist,

Var(θ̂
(j)
Dist) = Var(λθ̂

(j)
OLS + (1− λ)θ̂

(j)
LuPTS)

= λ2Var(θ̂
(j)
OLS) + (1− λ)2Var(θ̂

(j)
LuPTS) + 2λ(1− λ)Cov(θ̂

(j)
OLS, θ̂

(j)
LuPTS) .

We shall focus on the covariance term, and using the law of total covariance we can show the following,

Cov(θ̂
(j)
OLS, θ̂

(j)
LuPTS) =E

θ̂
(j)
LuPTS

[
Cov(θ̂

(j)
OLS, θ̂

(j)
LuPTS | θ̂

(j)
LuPTS)

]
+ Cov

θ̂
(j)
LuPTS

(
E[θ̂

(j)
OLS | θ̂

(j)
LuPTS],E[θ̂

(j)
LuPTS | θ̂

(j)
LuPTS]

)
=E

θ̂
(j)
LuPTS

E
(θ̂

(j)
OLS − E[θ̂

(j)
OLS | θ̂

(j)
LuPTS]) (θ̂

(j)
LuPTS − E[θ̂

(j)
LuPTS | θ̂

(j)
LuPTS])︸ ︷︷ ︸

=0

 | θ̂(j)LuPTS)


+ Cov

θ̂
(j)
LuPTS

(
θ̂
(j)
LuPTS, θ̂

(j)
LuPTS

)
by Lemma 2 and definition of covariance

=Var(θ̂
(j)
LuPTS) .
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Algorithm 2: Learning using privileged time series (LuPTS)
Parameters: Function classes F , G, loss function L
Data: D = {(x1,1, ..., x1,T , y1), ..., (xm,1, ..., xm,T , ym)} ∼ pm(X1, ..., XT , Y )

for t = 1, ..., T − 1 do
f̂t = arg minft∈F

1
m

∑m
i=1 L(ft(xi,t), xi,t+1)

ĝ = arg ming∈G
1
m

∑m
i=1 L(g(xi,T ), yi)

return h = ĝ ◦ f̂T−1 ◦ ... ◦ f̂1

Hence, we end up with

Var(θ̂
(j)
Dist) = λ2Var(θ̂

(j)
OLS) + (1− λ)2Var(θ̂

(j)
LuPTS) + 2λ(1− λ)Cov(θ̂

(j)
OLS, θ̂

(j)
LuPTS)

= λ2Var(θ̂
(j)
OLS) + (1− λ)2Var(θ̂

(j)
LuPTS) + 2λ(1− λ)Var(θ̂

(j)
LuPTS)

= λ2Var(θ̂
(j)
OLS) + (1− λ2)Var(θ̂

(j)
LuPTS) .

Looking at the last line of the previous equation, we know from Theorem 1 that Var(θ̂
(j)
LuPTS) ≤ Var(θ̂

(j)
OLS). Hence,

the lower bound of Var(θ̂
(j)
Dist) is obtained by setting λ = 0 and, similarly, the upper bound is obtained when

λ = 1. This is possible since we can choose λ ∈ [0, 1] freely. This leads to the following results,

Var(θ̂
(j)
LuPTS) ≤ Var(θ̂

(j)
Dist) ≤ Var(θ̂

(j)
OLS)

which, due to the unbiasedness of the estimators, can be written as

MSE(θ̂
(j)
LuPTS) ≤ MSE(θ̂

(j)
Dist) ≤ MSE(θ̂

(j)
OLS) .

Lastly, since MSE(θ̂LuPTS) =
∑d
j=1 MSE(θ̂

(j)
LuPTS) and that the inequality holds element-wise, we have that,

MSE(θ̂LuPTS) ≤ MSE(θ̂Dist) ≤ MSE(θ̂OLS) .

C LuPTS WITH NON-LINEAR ESTIMATORS

Under Assumption 1 (Markovianity), it is natural to consider the following generalized (non-linear) procedure:
a) For each time-step t, fit a transition function ft predicting Xt+1 from Xt, b) Fit g to predict Y from XT , c)
Return h = g ◦ fT−1 ◦ · · · ◦ f1. This approach outlined in Algorithm 2. The idea may be compared to model-based
value estimates in reinforcement learning (Sutton and Barto, 2018), in which predictions of future rewards are
based on simulating roll-outs under a learned policy and model of state dynamics.

In the general case, without assumptions on the data-generating process or the hypothesis classes F and G, we
may bound the expected risk of the LuPTS estimator in terms of the risk accumulated in simulating the system
dynamics through f , and that of the outcome model g.
Theorem 3 (Risk expansion). Let ĥ = ĝ ◦ f̂ be the output of Algorithm 2 with f̂ = f̂T−1 ◦ f̂T−1 ◦ · · · ◦ f̂1 the
estimated system dynamics and ĝ the prediction model of Y from XT . Then,

R(f̂ ◦ ĝ) ≤ RXT
(f̂) +RY (ĝ) + 2

√
RXT

(f̂)RY (ĝ) (10)

where R(f̂ ◦ ĝ) = E[(Y − ĝ(f̂(X1)))2] is the expected risk of predicting Y from X1,

RXT
(f) = E

[(
ĝ(f̂(X1))− ĝ(XT )

)2]
and RY (ĝ) = E

[
(Y − ĝ(XT ))

2
]
.

Here, RXT
(f) is the mean squared error in predictions of Y that stems from errors in the learned dynamical

system while RY (ĝ) is due to the error in the outcome model ĝ.
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Proof. As seen in (Feinberg et al., 2018).

E
[(
ĝ(f̂(x1))− y

)2]
=E

[(
ĝ(f̂(x1))− y + ĝ(xT )− ĝ(xT )

)2]
=E

[(
(ĝ(f̂(x1))− ĝ(xT ))− (y − ĝ(xT ))

)2]
=E

[(
ĝ(f̂(x1))− ĝ(xT )

)2]
+ E

[
(y − ĝ(xT ))

2
]

− 2E
[(
ĝ(f̂(x1))− ĝ(xT )

)
(y − ĝ(xT ))

]
≤ E

[(
ĝ(f̂(x1))− ĝ(xT )

)2]
+ E

[
(y − ĝ(xT ))

2
]

+ 2

√
E
[(
ĝ(f̂(x1))− ĝ(xT )

)2]
E
[
(y − ĝ(xT ))

2
]

(11)

The first equalities are algebra, and the inequality step comes from the Cauchy-Schwarz inequality for random
variables.

Remark 3. A similar result appears in Feinberg et al. (2018) for the case of model-based value expansion for
model-free reinforcement learning. Although the bound cannot be compared directly to the risk of the baseline
method, it gives an indication about how the LuPTS algorithm behaves. RXT

(f) can be expected to increase as
T becomes larger since XT gets "further away" from X1, making XT more difficult to predict. Meanwhile, RY (ĝ)
is unaffected by this.

D EXPERIMENT DETAILS

D.1 Computational Resources

All procedures for pre-processing real-world datasets, generating synthetic datasets, training and evaluating
models are implemented in Python with the help of standard scientific modules such as NumPy and scikit-learn.
The experiments are run on mid-tier laptops generally utilizing one CPU core. Running times for each individual
experiment under this setup rarely exceed a couple of minutes. The full set of experiments can be reproduced in
less than 48 hours.

D.2 Synthetic Experiments

We give a detailed description of how the synthetic data we use in the experiments is generated. As a reminder,
the Gaussian-linear dynamical system of interest is

Xt = A>t−1Xt−1 + εt, for t = 2, . . . , T

Y = β>XT + εY .

To verify and further investigate our theoretical results, we sample from a synthetic dynamical system where
Markovianity and linearity with additive isotropic Gaussian noise hold. The parameters At ∈ Rd×d and β ∈ Rd×1
were generated in the following way: For each t = 1, . . . , T − 1, all elements in At are sampled independently
from a Normal distribution N (µ = 0, σ = 0.2), except for the diagonal elements of At which were set to 1. The
linear parameter for the outcome model β was sampled from the same distribution, i.e. βj ∼ N (µ = 0, σ = 0.2)
for j = 1, . . . , d.

As mentioned, the eigenvalues of At influence the system’s behavior and stability, hence we enforce the spectral
radius ∀t : ρ(At) = κ = 1.5 for all t for the experiments in Section 4.2. This is by factorizing At into its spectral
decomposition UtΛtU−1t and computing Λ

(new)
t = κ

ρ(At)
Λt. Then, an update At = UtΛ

(new)
t U−1t is performed

where κ becomes the new spectral radius of At.

For all experiments, we use the following default values unless otherwise stated: κ = 1.5, n = 1000, T = 10, d = 25,
and Var(εt) = Var(εY ) = 1 for t = 1, . . . , T − 1. Finally, the input distribution is p(X1) = N (µ = 0, σ2 = 5).
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(a) Stationarity is true. (b) Stationarity is violated.

Figure 6: Parameter recovery with or without stationarity when varying the number of training samples n. R2

used as metric; shaded region corresponds to one standard deviation over 200 iterations.

Additional Experiments: Testing Stationary Systems

For the experiments in Section 4.2, we solely consider synthetic systems with time-dependent transition At. We
also include an experiment for systems where the transitions are stationary, that is At = At′ , t, t

′ = 1, . . . , T − 1.
The generation process is identical with the exception that only one transition matrix is sampled, A. In the case
with more than one privileged time point, this enables us to evaluate the potential benefits that using Stat-LuPTS
(instead of the non-stationary variant) have in a setting where the assumptions holds true.

When the stationary assumptions is true (Figure 6a), LuPTS does better than baseline, as before. More
importantly, Stat-LuPTS is closer to the true parameter estimate than both of them. Meanwhile, as expected,
when breaking the stationary assumption (Figure 6b), Stat-LuPTS performs significantly worse while LuPTS and
baseline remain about the same. These experiments indicate that the stationary variant of LuPTS is preferable
when the stationarity assumption is true.

D.3 Forecasting Air Quality

Implementation Of Distillation Methods We implement the distillation models and loss function, as
described in Section 3.2, in PyTorch v1.7. The loss function is optimized using Adam (Kingma and Ba, 2014),
and the models are trained for 200 epochs. Error bars on all our plots are generated by training and evaluating
on different train/test splits over 100 iterations.

Pre-processing Due to the prevalence of missing values for the PM2.5 concentration levels in the dataset, the
first pre-processing step is to extract all non-overlapping sequences of length T that have no missing values for
the PM2.5 concentration. In addition, we enforce a rule that there must be at least a gap of six hours between
adjacent sequences to decrease correlations between them. Finally, dummy encoding was used for the categorical
features in the dataset.

Evaluation During training, the dataset was split into a training and test set portion consisting of 80% and
20% of the data respectively. The training procedure on the dataset for the forecasting task is the following:
We vary the number of training samples, and for each sample size, data points are randomly sampled from
the training set without replacement. Then, before training the algorithms on this set, we apply zero-mean
unit-variance standardization and mean imputation where applicable. Each algorithm is then evaluated after
training on a held-out test set, which is the same for every run, and the corresponding R2 score is noted. This
process is iterated 200 times per sample size.

Additional Experiments

In this section, we show additional experiments performed on the air quality forecasting task.
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Table 2: Features in the PM2.5 dataset.

Feature Type

Temperature Numerical
Humidity Numerial
Dew Point Numerical
Pressure Numerical
Cumulated wind speed Numerical
PM2.5 concentration Numerical
Season Categorical
Combined wind direction Categorical

(a) 6 hour forecast (b) 24 hour forecast (c) 6 hour forecast (d) 12 hour forecast

Figure 7: Shenyang: 7a, 7b) Changing the amount of privileged information for the LUPTS for different time
horizons, where the X in LuPTS_XPTS indicates the number of privileged time points. 7c, 7d) Comparing
LuPTS to the distillation-based approaches, which use the same privileged information. Metric used is R2 (Higher
is better); shaded region indicates one standard deviation across 75 iterations.

More Cities We present the same results as shown in Section 4.3 for all of the Chinese cities in the dataset;
Shenyang, Beijing, Chengdu, Shanghai and Guangzhou. These are shown in Figure 7, 8, 9, 10 and 11, respectively.

Comparison To Non-linear Baselines In addition to the distillation-based baselines in the main paper, we
compare LuPTS to non-linear baselines in the form of random forest (RF) and k-nearest neighbors regression
(KNN). These can be found in Table 3 and Table 4 where we have a fixed sample size n = 200 and a prediction
horizon of either 6 or 12 hours. First, we describe the implementation details for RF and KNN regression.
We use the RandomForestRegressor and KNeighborsRegressor implementations of the Python module scikit-
learn Pedregosa et al. (2011). The model parameters are tuned using randomized search with 2-fold cross
validation. For the RandomForestRegressor we tune the number of trees, max depth of the trees, whether
bootstrap sampling is used, the minimum number of samples required to split a node and the minimum number
of samples required to be at a leaf node. For the KNeighborsRegressor we tune the number of neighbors used,
weight function used in prediction, the size of the leaves and the power parameter for the Minkowski metric (p = 1
or p = 2). The specific ranges for each parameter can be found in the attached code to this paper.

For the 6 hour predictions (see Table 3), we see that all linear methods (Baseline, LuPTS variants and distillation-
based variants) perform better than both RF and KNN for all cities, although the gap between LuPTS and RF is
relatively small for Beijing and Guangzhou in particular. For the 12 hour predictions (see Table 4), the results
look similar except for Guangzhou where RF performs the best among all the methods. A possible explanation
for why the non-linear methods in almost all cases perform worse could be due to the low-sample regime which is
not as suitable for their larger flexibility. In particular, a benefit of the linear methods is that they either do not
need model parameter tuning at all or to a smaller degree in comparison to the non-linear methods.
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(a) 6 hour forecast (b) 24 hour forecast (c) 6 hour forecast (d) 12 hour forecast

Figure 8: Beijing: 8a, 8b) Changing the amount of privileged information for the LUPTS for different time
horizons, where the X in LuPTS_XPTS indicates the number of privileged time points. 8c, 8d) Comparing
LuPTS to the distillation-based approaches, which use the same privileged information. Metric used is R2 (Higher
is better); shaded region indicates one standard deviation across 75 iterations.

(a) 6 hour forecast (b) 24 hour forecast (c) 6 hour forecast (d) 12 hour forecast

Figure 9: Chengdu: 9a, 9b) Changing the amount of privileged information for the LUPTS for different time
horizons, where the X in LuPTS_XPTS indicates the number of privileged time points. 9c, 9d) Comparing
LuPTS to the distillation-based approaches, which use the same privileged information. Metric used is R2 (Higher
is better); shaded region indicates one standard deviation across 75 iterations.

(a) 6 hour forecast (b) 24 hour forecast (c) 6 hour forecast (d) 12 hour forecast

Figure 10: Shanghai: 10a, 10b) Changing the amount of privileged information for the LUPTS for different time
horizons, where the X in LuPTS_XPTS indicates the number of privileged time points. 10c, 10d) Comparing
LuPTS to the distillation-based approaches, which use the same privileged information. Metric used is R2 (Higher
is better); shaded region indicates one standard deviation across 75 iterations.

D.4 Alzheimer’s Progression Modeling

In this section, we present the entire feature set used for the Alzheimer’s disease progression modeling tasks
(see Table 5). All experimental results are also found in tabular form with values rounded to two decimals (see
Tables 6 and 7). Lastly, we give a detailed description of the data pre-processing that was performed for the
dataset (ADNIMERGE).

Pre-processing There are a significant number of missing values in the observations from the ADNI dataset.
The missingness varies with the time of measurement, as does which subjects are present at certain follow-ups.
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(a) 6 hour forecast (b) 24 hour forecast (c) 6 hour forecast (d) 12 hour forecast

Figure 11: Guangzhou: 11a, 11b) Changing the amount of privileged information for the LUPTS for different
time horizons, where the X in LuPTS_XPTS indicates the number of privileged time points. 11c, 11d) Comparing
LuPTS to the distillation-based approaches, which use the same privileged information. Metric used is R2 (Higher
is better); shaded region indicates one standard deviation across 75 iterations.

Table 3: Comparison of regression methods on the air quality forecasting task with a fixed sample size n = 200
and a prediction horizon of 6 hours. Metric used is R2 (Higher is better); mean value for each method with
standard deviation across 200 iterations. The methods with highest R2 and lowest variance are marked in bold
for each city.

Method Beijing Shanghai Shenyang Chengdu Guangzhou

Baseline 0.64 ± 0.02 0.58 ± 0.06 0.66 ± 0.04 0.63 ± 0.04 0.45 ± 0.06
LuPTS 0.64 ± 0.03 0.62 ± 0.03 0.70 ± 0.03 0.65 ± 0.03 0.49 ± 0.04
Stat-LuPTS 0.64 ± 0.02 0.62 ± 0.04 0.69 ± 0.03 0.65 ± 0.03 0.50 ± 0.04
Distill-Seq 0.65 ± 0.02 0.62 ± 0.03 0.68 ± 0.03 0.67 ± 0.02 0.49 ± 0.05
Distill-Concat 0.65 ± 0.02 0.60 ± 0.04 0.66 ± 0.04 0.66 ± 0.03 0.46 ± 0.07
RF 0.62 ± 0.03 0.58 ± 0.07 0.53 ± 0.06 0.61 ± 0.04 0.48 ± 0.05
KNN 0.57 ± 0.04 0.51 ± 0.23 0.49 ± 0.05 0.51 ± 0.04 0.26 ± 0.09

Table 4: Comparison of regression methods on the air quality forecasting task with a fixed sample size n = 200
and a prediction horizon of 12 hours. Metric used is R2 (Higher is better); mean value for each method with
standard deviation across 200 iterations. The methods with highest R2 and lowest variance are marked in bold
for each city.

Method Beijing Shanghai Shenyang Chengdu Guangzhou

Baseline 0.37 ± 0.05 0.29 ± 0.06 0.53 ± 0.07 0.35 ± 0.08 0.07 ± 0.11
LuPTS 0.40 ± 0.04 0.33 ± 0.04 0.51 ± 0.07 0.42 ± 0.04 0.05 ± 0.14
Stat-LuPTS 0.40 ± 0.04 0.33 ± 0.04 0.51 ± 0.07 0.42 ± 0.04 0.05 ± 0.14
Distill-Seq 0.41 ± 0.03 0.31 ± 0.04 0.52 ± 0.08 0.43 ± 0.04 0.07 ± 0.11
Distill-Concat 0.41 ± 0.03 0.31 ± 0.04 0.52 ± 0.08 0.43 ± 0.04 0.07 ± 0.11
RF 0.36 ± 0.05 0.23 ± 0.08 0.40 ± 0.07 0.38 ± 0.06 0.14 ± 0.10
KNN 0.30 ± 0.05 0.24 ± 0.07 0.35 ± 0.06 0.31 ± 0.06 -0.05 ± 0.12

Hence, a subset of the subjects in the study needs to be selected in order to carry out the experiments. This
means that subjects without an observation of the target outcome at the follow-up at 48 months are excluded.
Furthermore, it is required that the subjects with an observation of the target at this time point also are present
at the intermediate follow-ups used as privileged information, which are 12 months, 24 months and 36 months
after baseline. Categorical features, here considered to consist of biological sex (PTGENDER) and APOE4 gene
expression, are one-hot encoded. Additionally, if any feature has more than 70% of the observations missing for
the selected subjects at any of the time points in consideration, they are excluded. The features excluded as a
result of this constraint are FDG, ABETA, TAU and PTAU. Finally, mean imputation is used for missing values
and the data is zero-mean unit-variance standardized.
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Table 5: Features used for the ADNI experiments

Feature tags

AGE PTGENDER PTEDUCAT
APOE4 FDG AV45
ABETA TAU PTAU
CDRSB ADAS11 ADAS13
ADASQ4 MMSE RAVLT_immediate

RAVLT_learning RAVLT_forgetting RAVLT_perc_forgetting
LDELTOTAL TRABSCOR FAQ

MOCA EcogPtMem EcogPtLang
EcogPtVisspat EcogPtPlan EcogPtOrgan
EcogPtDivatt EcogPtTotal EcogSPMem
EcogSPLang EcogSPVisspat EcogSPPlan
EcogSPOrgan EcogSPDivatt EcogSPTotal
Ventricles Hippocampus WholeBrain
Entorhinal Fusiform MidTemp

ICV

Table 6: MMSE prediction experiment results, average R2 score with one standard deviation in parenthesis from
100 iterations. Left: One privileged time point used. Right: three privileged time points used.

Samples Baseline LuPTS

80 -0.02 (0.34) 0.14 (0.24)
100 0.12 (0.29) 0.27 (0.17)
120 0.27 (0.14) 0.36 (0.1)
140 0.36 (0.08) 0.42 (0.06)
160 0.39 (0.08) 0.44 (0.05)
180 0.42 (0.06) 0.46 (0.05)
200 0.44 (0.05) 0.48 (0.04)
220 0.45 (0.05) 0.49 (0.04)

Samples Baseline LuPTS Stat-LuPTS

80 -0.02 (0.34) 0.25 (0.16) 0.39 (0.09)
100 0.12 (0.29) 0.34 (0.11) 0.43 (0.06)
120 0.27 (0.14) 0.41 (0.06) 0.46 (0.05)
140 0.36 (0.08) 0.44 (0.05) 0.47 (0.04)
160 0.39 (0.08) 0.46 (0.04) 0.47 (0.04)
180 0.42 (0.06) 0.48 (0.05) 0.49 (0.04)
200 0.44 (0.05) 0.48 (0.04) 0.49 (0.03)
220 0.45 (0.05) 0.49 (0.03) 0.5 (0.03)

Table 7: AD prediction experiment results, average AUC with one standard deviation in parenthesis from 100
iterations Left: one privileged time point used. Right: three privileged time points used.

Samples Baseline LuPTS

80 0.86 (0.04) 0.85 (0.04)
100 0.86 (0.06) 0.87 (0.04)
120 0.88 (0.03) 0.9 (0.03)
140 0.89 (0.03) 0.9 (0.02)
160 0.9 (0.02) 0.91 (0.02)
180 0.9 (0.02) 0.92 (0.02)
200 0.91 (0.02) 0.92 (0.02)
220 0.91 (0.02) 0.92 (0.02)

Samples Baseline LuPTS Stat-LuPTS

80 0.86 (0.04) 0.87 (0.04) 0.9 (0.03)
100 0.86 (0.06) 0.89 (0.03) 0.91 (0.02)
120 0.88 (0.03) 0.91 (0.02) 0.92 (0.02)
140 0.89 (0.03) 0.91 (0.02) 0.92 (0.02)
160 0.9 (0.02) 0.92 (0.02) 0.93 (0.02)
180 0.9 (0.02) 0.92 (0.02) 0.93 (0.02)
200 0.91 (0.02) 0.93 (0.02) 0.93 (0.02)
220 0.91 (0.02) 0.93 (0.02) 0.93 (0.02)

D.5 Multiple Myeloma Progression Modeling

We elaborate on the specific features used for the multiple myeloma prediction tasks, as well as the preprocessing
done on those features. The data is available via the Multiple Myeloma Research Foundation (MMRF) Researcher
Gateway: https://research.themmrf.org/.

Features Patient biomarkers are real-valued numbers whose values evolve over time. They include: absolute
neutrophil count (x109/l), albumin (g/l), blood urea nitrogen (mmol/l), calcium (mmol/l), serum creatinine

https://research.themmrf.org/


Using Time-Series Privileged Information for Provably Efficient Learning of Prediction Models

Figure 12: Heatmap of Feature Weights for Early/Late Progression Task: We display weights of the
outcome logistic regression model for LuPTS and baseline OLS estimators. The x-axis shows each feature. Blue
and white bounding boxes are around most important features for the LuPTS and OLS estimators, respectively.

(umol/l), glucose (mmol/l), hemoglobin (mmol/l), serum kappa (mg/dl), serum m protein (g/dl), platelet count
x109/l, total protein (g/dl), white blood count x109/l, serum IgA (g/l), serum IgG (g/l), serum IgM (g/l), serum
lambda (mg/dl).

We also have access to a set of static features, which we assume are available at each time step. These include
demographics, risk metrics, and genomic data. With respect to the genomic features, RNA-sequencing data of
CD38+ bone marrow cells are available for 769 patients. Samples from patients were collected at initiation into
the study. For these patients, we use the Scanpy package in Python to identify the top 200 most variable genes,
limiting the downstream analyses to these genes (Wolf et al., 2018). Subsequently, we use principal component
analysis (PCA) to further reduce the dimensionality of the RNA-seq data. The projection of each patient’s
RNA-seq data onto the first 40 principal components serves as the final genetic features in the model.

Other static features include gender, age, and revised ISS stage, a common risk stratification score used in
myeloma (Palumbo et al., 2015). Finally, binary variables detailing the patient’s myeloma subtype, including
whether or not they have heavy chain myeloma and presence/absence of various monoclonal proteins, are part of
this set of features as well.

Pre-processing We utilize the same preprocessing strategy used by Hussain et al. (2021). For the longitudinal
patient biomarkers, we first clip the values to five times the median values to account for outliers or errors in the
data. The biomarkers are then normalized by subtracting the maximum value of the biomarker’s healthy range
from the unnormalized value. Subsequently, the value is multiplied by a biomarker-dependent scaling factor that
ensures that it lies within the range, [−8, 8]. Aside from PCA done on the genomic data, we do zero mean, unit
variance standardization on all the static features.

The data has significant missingness, with around ∼ 66% of the values missing. For static features aside from
the genetic features, we use mean imputation. For the genetic features, a patient’s missing values are imputed
with the average genetic PCA features of their five nearest neighbors, which are determined using the Minkowski
distance calculated on the ISS stage, age, and other demographic features. The missing values in the longitudinal
biomarkers are forward-fill imputed from the previous 2-month time point.

Evaluation We do repeated (50 repeats) 2-fold cross validation with different training and test splits across
multiple training set sizes. For the early/late progression task, we exclude patients who are not eligible for
autologous stem cell transplant (ASCT), resulting in 314 late progressors, 103 early progressors, and 84 right-
censored patients. The privileged information for this task consists of labs taken at four equally spaced time
points across the patient’s first line. For the treatment response task, we restrict to patients who were given a
second line of therapy, resulting in 149 PD patients, 181 non-PD patients, and 48 right-censored patients. We use
two privileged time points in this case, which correspond to the end of the first line and the end of the second
line, respectively. Censored patients are not included in computing AUCs. All labels have been checked with an
oncologist for reliability.
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