Counterfactual Explanation Trees: Transparent and Consistent
Actionable Recourse with Decision Trees

Kentaro Kanamori
Hokkaido University

Takuya Takagi
Fujitsu Limited

Abstract

Counterfactual Explanation (CE) is a post-
hoc explanation method that provides a per-
turbation for altering the prediction result of
a classifier. An individual can interpret the
perturbation as an “action” to obtain the de-
sired decision results. Existing CE methods
focus on providing an action, which is opti-
mized for a given single instance. However,
these CE methods do not address the case
where we have to assign actions to multi-
ple instances simultaneously. In such a case,
we need a framework of CE that assigns ac-
tions to multiple instances in a transparent
and consistent way. In this study, we propose
Counterfactual Explanation Tree (CET) that
assigns effective actions with decision trees.
Due to the properties of decision trees, our
CET has two advantages: (1) Transparency:
the reasons for assigning actions are sum-
marized in an interpretable structure, and
(2) Consistency: these reasons do not con-
flict with each other. We learn a CET in two
steps: (i) compute one effective action for
multiple instances and (ii) partition the in-
stances to balance the effectiveness and inter-
pretability. Numerical experiments and user
studies demonstrated the efficacy of our CET
in comparison with existing methods.

1 INTRODUCTION

Complex machine learning models, such as deep neural
networks and tree ensembles, have been applied to crit-
ical decision-making tasks in the real world (e.g., med-
ical diagnoses, hiring decisions, and loan approvals).

Proceedings of the 25" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

Yuichi Ike
The University of Tokyo

Ken Kobayashi
Fujitsu Limited

Tokyo Institute of Technology

While these models have achieved high prediction ac-
curacy, they often lack explainability (Doshi-Velez and
Kim, 2017). Consequently, several post-hoc methods
for extracting local explanations from each prediction
of these models have been attracting much attention
over the last few years (Ribeiro et al., 2016; Lundberg
and Lee, 2017; Koh and Liang, 2017). These expla-
nations assist human-users in understanding the de-
cisions given by complex models and accepting them
with confidence (Goodman and Flaxman, 2017).

To provide users with better insights, post-hoc lo-
cal explanations need to show both why the unde-
sirable predictions are given and how users should
act to obtain the desired prediction results (Miller,
2019). Counterfactual Explanation (CE) (Wachter
et al., 2018) is a post-hoc explanation method that
satisfies these requirements. For a given classifier
f: X = Y, a target class y* €), and an instance
x € X such that f(x) # y*, CE attempts to provide
a perturbation vector a that flips the prediction result
into the desired outcome, i.e., f(z + a) = y*. The
individual x can execute the perturbation a as an “ac-
tion” for obtaining the desired decision result y* from
the classifier f (e.g., reducing the BMI and blood glu-
cose levels to reduce the risk of diabetes). To achieve
this, most of the existing studies consider the following
optimization problem (Karimi et al., 2020b):
minimize

bject t =y*
nim subject to f(z + a) = y*,

c(a]| z)
where A is a set of feasible actions, i.e., perturbation
vectors, and ¢ is a cost function that measures the
required efforts of executing an action a. Recently, this
procedure of providing individuals with actions is also
known as Actionable Recourse (Ustun et al., 2019).

In the practical deployment of machine learning mod-
els, however, actions are not necessarily executed by
the individuals themselves, and are often assigned to
multiple instances simultaneously, which contrast with
the standard assumption of existing CE (Karimi et al.,
2020b). For example, let us consider the case where a
company uses a classifier to predict employee attrition,

Counterfactual Explanation Trees

== + OverTime

BusinessTravel

False; True A :
1
- i =" " (Action3) . f
' -| BusinessTravel = "Frequently "Frequently” Action 2 :
False ! True 1
v '
--------- 1
(Action2) ')
"Rarely" 1 Action 3
Effectiveness : '
HowToChange Cost Flip rate Action 1 '
JSIIEE Monthlylncome : + 12825 017 83% "No Travel” E ©
£
/\&ile]s074" BusinessTravel : "Frequently" — "Rarely” 0.19 80 % ; » =
Fal True 2
el iefs OverTime : True — False 0.27 86 % alse)

Figure 1: Example of our CET learned on the IBM HR Analytics Employee Attrition dataset (Kaggle, 2017).

and attempts to assign an action to each employee for
reducing one’s attrition risk (Kaggle, 2017). In this
case, these actions are executed by the company rather
than each employee, e.g., promoting one or increasing
one’s salary. Such actions may result in changing the
personnel or payroll systems and affect not only the in-
dividual but also the entire employees. In such a case,
to assign actions to the entire employees, the company
need to satisfy the following requirements:

1. Transparency: The company should explain how
the actions are determined for the entire employ-
ees. That is, the company needs to ensure trans-
parency by providing the reason why the action
is assigned to each employee. If these reasons
are unclear, the employees may doubt the validity
of each assigned action, e.g., unjustified disparity
among employees (Rawal and Lakkaraju, 2020).

2. Consistency: The company should provide con-
sistent reasons for the assigned actions. For ex-
ample, an employee who is transferred as the as-
signed action for the reason of “age > 40” may
complain to the company if another employee over
40 is promoted. To avoid such conflicts between
employees, the company needs to provide the rea-
sons that are consistent with each assigned ac-
tion (Rudin and Shaposhnik, 2019).

Existing CE frameworks fail to satisfy these require-
ments because they only focus on giving an action for
a single input instance and thus cannot take the entire
input space into account, as with other local explana-
tion methods (Ribeiro et al., 2018; Gao et al., 2021).

To satisfy these requirements, we aim to partition the
input space in an interpretable manner and assign an
appropriate action to each subspace. For that pur-
pose, we introduce Counterfactual FExplanation Tree
(CET), a new framework of CE for assigning actions

to multiple instances with a decision tree h: X — A.
A decision tree is a popular model that consists of a
set of exclusive if-then-else rules expressed as a binary
tree (Breiman et al., 1984). Since it is interpretable
for humans (Rudin, 2019) and has high potential rep-
resentability (Lee and Jaakkola, 2020; Vidal and Schif-
fer, 2020), decision trees have been used not only in su-
pervised learning, but also in other practical decision-
making (see, e.g., Bertsimas et al. (2019); Elmachtoub
et al. (2020); Lakkaraju and Rudin (2017); Silva et al.
(2020)). Due to the characteristics of decision trees,
our CET has the following advantages:

1. For any instance x € X, our CET can provide a
reason for an assigned action as a form of a rule,
i.e., subspace of X where the action is assigned.
Since these reasons are summarized as an inter-
pretable tree structure, we can easily understand
how the actions are assigned to the instances over
the entire input space X (Guidotti et al., 2018).

2. Our CET guarantees to assign a unique pair of an
action and the reason to any instance since it par-
titions the input space X into distinct subspaces
and only one leaf is determined for any input (Fre-
itas, 2014). It ensures that there is no conflict of
reasons for assigned actions between instances.

Our strategy to learn a CET is the following two steps:
(i) assign the most effective single action to multiple
instances in the sense of its required cost and rate of
flipping the predictions into the desired result, and
(ii) construct a decision tree partitioning a set of in-
stances to balance a trade-off between the effectiveness
and interpretability. We formulate these problems and
propose an efficient algorithm to solve them.

1.1 Owur Contributions

Our contributions are summarized as follows:

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike

1. We introduce CET, a decision tree that assigns an
effective action to an input instance over the in-
put space. By taking advantage of decision trees,
our CET (1) provides a transparent process of as-
signing actions, and (2) assigns a unique pair of
an action and the reason to any instance.

2. We formulate the task of learning a CET from
a given set of instances as an optimization prob-
lem, and propose an algorithm to solve it with
stochastic local search. Our algorithm can utilize
a pruning strategy based on an objective bound.

3. We conduct experiments on public datasets to
evaluate the efficacy of our CET by comparison
with the existing methods. Additionally, our user
studies showed that our CET is easy for human-
users to understand.

Figure 1 presents an example of our CET on the
IBM HR Analytics Employee Attrition dataset (Kag-
gle, 2017). The task is to predict the attrition risks of
the individual employees. We trained a CET on the
dataset and a Light GBM classifier (Ke et al., 2017).
Figure 1 demonstrates that our CET is (1) easy to
understand how each action is assigned to instances
over the input space, and (2) able to assign a unique
pair of an action and the reason as a form like “this
action is effective for 86% of the employees who work
overtime” to any instance. We note that our CET can
use various existing cost functions (e.g., max percentile
shift (Ustun et al., 2019)), and quickly assign actions
for unseen instances once it is trained, like amortized
explanation (Chen et al., 2018; Jethani et al., 2021).

1.2 Related Work

Several post-hoc methods for extracting local ex-
planations from complex models have been pro-
posed (Ribeiro et al., 2016; Koh and Liang, 2017;
Lundberg and Lee, 2017). Counterfactual Ezplana-
tion (CE), also referred to as Actionable Recourse, is
one of the post-hoc explanation methods that have at-
tracted increasing attention in recent years (Karimi
et al., 2020b). Most of the existing CE methods fo-
cus on providing a single action (Wachter et al., 2018;
Karimi et al., 2020a; Kanamori et al., 2020; Schut
et al., 2021) or multiple diverse actions (Ustun et al.,
2019; Mothilal et al., 2020) for a given single instance.

While various local explanation methods have been
proposed, recent studies have pointed out some issues
with them, e.g., the lack of robustness (Ghorbani et al.,
2019; Dombrowski et al., 2019) and improper assump-
tions (Barocas et al., 2020; Venkatasubramanian and
Alfano, 2020; Karimi et al., 2021). One of the critical
problems is that the region where the explanations can

be applied is unclear (Ribeiro et al., 2018; Rudin and
Shaposhnik, 2019). Due to this issue, local explana-
tion methods often fail to explain the global behavior
of complex models (Rudin, 2019), and have a potential
risk of malicious manipulation (Aivodji et al., 2019).

To address the above issue, several frameworks for a
global summary of local explanations have been pro-
posed (Pedreschi et al., 2019). Our CET is most
closely related to AReS (Rawal and Lakkaraju, 2020),
which is a global summary of the actions expressed
by a two-level rule set. AReS assists users to globally
understand the recourse, i.e., actions, which are ex-
tracted from complex classifiers. However, AReS can-
not ensure transparency and consistency in the process
of assigning actions due to the properties of rule sets;
that is, (1) it does not necessarily cover the entire in-
put space, and (2) it may assign multiple actions to a
single input instance (Freitas, 2014). MAME (Rama-
murthy et al., 2020) and GIME (Gao et al., 2021) are
global summaries of general local explanation meth-
ods (e.g., LIME (Ribeiro et al., 2016)), which are
expressed by hierarchical clustering and interpretable
topic modeling, respectively. However, to the best of
our knowledge, there is no existing method that ex-
plicitly achieves both transparency and consistency.

1.3 Notation and Setting

For a positive integer n € N, we write [n] := {1,...,n}.
For a proposition 1, I[¢)] denotes the indicator of 1;
that is, I[1p] = 1 if 4 is true, and I[¢p] = 0 if ¢ is false.

Throughout this paper, we consider a binary classifica-
tion problem as a prediction task, which is sufficient for
CE. We can reduce a multi-class classification problem
to a binary classification problem between the target
class and other classes. We denote input and output
domains X C R” and Y = {—1, +1}, respectively. We
call a vector x = (z1,...,zp) € X an instance, and a
function f: X — Y a classifier to be explained.

2 GROUP-WISE COUNTERFAC-
TUAL EXPLANATION

We first review an existing individualized CE frame-
work (Ustun et al., 2019; Karimi et al., 2020b). We
then give its naive extension to group-wise setting and
point out its drawback. Finally, we present our pro-
posed formulation and show its theoretical properties.

2.1 Individualized CE and Its Naive
Extension to Group-wise CE

Individualized CE For an instance x € X, we de-
fine an action as a perturbation vector a € RP such

Counterfactual Explanation Trees

that x+a € X. As with existing CE methods (e.g., Us-
tun et al. (2019); Kanamori et al. (2020)), we assume
that we are given a set of feasible actions A(z) C RP
such that 0 € A(z) and A(z) C {a € R | z+a € X}.

For an instance z € X and an action a € A(z) C RP, a
cost function c: X x RP — R>(measures the required
effort of a with respect to x. To appropriately eval-
uate the required effort among actions, several useful
cost functions have been proposed, such as the max
percentile shift (Ustun et al., 2019). Throughout this
paper, we assume ¢(0 | z) = 0, which is satisfied by
most of the existing cost functions.

For a given classifier f: X —) and an instance x €
X such that f(x) # +1, the aim of Counterfactual
Ezplanation (CE) is to find an action a that alters the
prediction result into f(z 4+ a) = +1 and minimizes its
cost ¢(a |). This task can be formulated as follows:

minLr{li)ze c(a|x) subject to f(z+a)=+1. (1)
acA(x

In the rest of this paper, we fix f and ¢ and omit them
if it is clear from the context. Note that our framework
presented in Section 3 can be applied to any f and c.

Naive Extension and Drawback By extending
the above individualized CE, we consider group-wise
CFE as a problem of assigning a single effective action
to a given set of NV instances X C X, where f(z) # +1
for any = € X. A naive formulation for this task is to
find an action a that satisfies f(z + a) = +1 for any
x € X and minimizes the sum of costs c(a | z) over X.
Let A(X) == ,cx A(x) be the set of feasible actions
for X. Then, we can formulate the task as follows:
a*= —argmin) _yc(al|x)

acA(X) (2)

subject to f(x+a) =41, VreX.

However, actions that alter the prediction results of all
the given instances tend to be costly. To demonstrate
this issue, we consider the same settings as Ustun et al.
(2019). Let f be a linear classifier f(z) = sgn(w'x)
with a parameter w € RP. We assume A(z) = R for
any x € X and c(a |) = ¢; - ||a||, where ¢; > 0 is a
constant depending on z. In the following proposition,
we show an upper bound on the gap of the optimal
costs between individualized and group-wise CE.

Proposition 1 (Upper Bound on Cost Gap). For a
set of instances X C X, let a* be an optimal solution
to problem (2). For an instance x € X, let ¢*(x) be
the optimal value of problem (1). Then, we have c¢(a* |
z)—c*(z) < cp-||z—2°||, where 2° = argmingex w' .

Proposition 1 implies that an upper bound on the
cost gap between individualized and group-wise CE

depends on the farthest instance z° € X from the deci-
sion boundary of f. Let us show an example where the
cost in (2) achieves that upper bound. Assume that
we have many instances near the decision boundary
and only one instance z° far from the boundary. The
required cost for flipping all the results depends on x°,
which results in a higher cost value. In other words,
for an instance z € X, an optimal action a* of (2)
may be unrealistic in the sense of its cost c(a* |)
depending on other instances in X. This is because
the constraint in (2) that alters all the output f(x) of
x € X is too strict. These results suggest a risk that
the constraints f(x + a) = +1 for all x € X prevents
us from obtaining an effective action.

2.2 Proposed Formulation of Group-wise CE

To obtain an effective action, we balance a trade-off
between the cost ¢(a |) and constraint f(x+a) = +1
over z € X. We relax the hard constraint f(x + a) =
+1 for all x € X as with Wachter et al. (2018), and
define an invalidity score i, : X xRP — R as follows:

ir(a] @) = cla] @) +7 -l (f(x +), +1),

where v > 0 is a trade-off parameter, and lo1(9,y) =
I[§ # y] is the 0-1 loss function. We use the invalidity
iv(a | x) as a measure for evaluating the effectiveness
of an action a with respect to an instance x. Then, we
consider the following optimization problem.

Problem 1 (CE for Multiple Instances). Given a set
of N instances X C X such that Vo € X : f(z) # +1,
a set of actions A(X) = cx A(z), and a parameter
~v > 0, find an action a* € A(X) that is an optimal
solution for the following problem:

o) . '
minimize g(a | X) Y eexiy(a])

Optimization It is unclear whether existing CE
methods can be directly extended to solve Problem 1.
By extending existing CE methods based on mized-
integer linear optimization (MILO) (Ustun et al.,
2019; Kanamori et al., 2020; Parmentier and Vidal,
2021), we can formulate Problem 1 as an MILO prob-
lem for several types of classifiers. We present MILO
formulations for linear classifiers, tree ensembles, and
deep ReLU networks in the supplementary materials.

Monotonicity of g, For the objective function
g~(a | X), we show its monotonicity with respect to a
binary partition of X in the following proposition.
Proposition 2 (Monotonicity of g,). For a set of in-
stances X C X, we write a’ = argmin,e 4(x) g~(a |
X). Let X1, X2 C X be distinct subsets of X such that
XiUXy =X and X1N Xy = 0. Then, we have

gy(ax [X) = g, (ak, | X1) + gy (aX, | Xz).

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike

Proposition 2 indicates that we can assign more effec-
tive actions to the instances z € X in terms of their
objective value g,(a | X), i.e., cost ¢(a |) and loss
lo1(f(z + a),+1), by partitioning X into two distinct
subsets and optimizing an action for each of the sub-
sets. However, it is undesirable to increase the total
number of subsets, i.e., assigned actions, because it
reduces the interpretability of the entire process of as-
signing actions. In the following sections, we discuss
how to partition a given set of instances X into distinct
subsets such that a more effective action is assigned to
each of the subsets, and how to balance the trade-off
between the effectiveness and interpretability.

3 PROBLEM STATEMENT

Following the formulation of Problem 1, we introduce
our Counterfactual Ezplanation Tree (CET).

3.1 Counterfactual Explanation Tree

For a set of feasible actions A C RP, a CET is a de-
cision tree h: X — A assigning an action for an input
instance x € X'. It consists of a set of exclusive if-then-
else rules expressed as a binary tree structure. For z, a
CET h assigns an action a; € A corresponding to the
leaf | € £(h) that x reaches, where £(h) is the set of
leaves in h. The leaf [is determined by traversing the
tree from the root depending on the branching rule of
each internal node, which is expressed as a statement,
e.g., xq < bwith a feature d € [D] and threshold b € R.

For a CET h, let r; € X be the subspace correspond-
ing to a leaf I € L£(h). Each subspace r; is determined
by the branching rules on the path from the root to
[, which can be interpreted as a rule for the assigned
action a; (Guidotti et al., 2018). The set of such sub-
spaces {r; | | € L(h)} gives a partition of the input
space X (Freitas, 2014). It implies that a CET h as-
signs a unique pair of an action a; and a rule 7; to
any input instance x € X', and can be expressed as
h(z) = cpny@ - Iz € ri]. These two properties en-
sure that CET satisfies transparency and consistency.
Figure 1 shows an example of a CET and its partition.

3.2 Problem Definition

Now we formulate a learning problem of a CET h from
a given set of instances X. To guarantee the feasibility
of assigned actions, let H be a set of CETs h satisfying
h(z) € A(x) for any x € X. Then, we formulate a task
of learning a CET h € H from X as follows.

Problem 2 (Learning CET). Given a set of N in-
stances X C X such that Vo € X: f(x) # +1 and
parameters v, A > 0, find a CET h* € H that is an op-

timal solution for the following optimization problem:
minimize o,Ml(h | X) |
= N 2aex by(M@) [2) + A |L(R)].

While the first term of the learning objective o x(h |
X)) evaluates the average invalidity i (a | x), i.e., cost
cla | x) and loss lo1(f(x + a),+1), of the assigned
actions a = h(z) for € X, the second term |L(h)| is
the total number of the leaves, i.e., actions, included in
h. By tuning the parameter A\, we can adjust the trade-
off between the effectiveness of the actions assigned by
a CET h and the interpretability of h. Again note
that the framework of our CET can be applied to any
classifier f and cost function c of existing CE methods.

4 OPTIMIZATION FRAMEWORK

In this section, we propose a learning algorithm for
a CET. As with the learning problems for standard
decision trees, Problem 2 is a combinatorial optimiza-
tion problem and finding an exact optimal solution is
challenging. Moreover, unlike standard decision trees,
we need to optimize both branching rules of internal
nodes and actions of leaves simultaneously. It implies
that Problem 2 includes Problem 1 as its subproblems.

A naive algorithm is a greedy top-down partitioning
strategy like CART (Breiman et al., 1984) that re-
cursively determines a branching rule of each inter-
nal node to most improve the objective value after
splitting. However, to determine a branching rule of
each internal node, we need to solve Problem 1 for the
number of candidate branching rules, which is compu-
tationally infeasible. In preliminary experiments, we
also observed that it did not yield a decision tree of
good quality in terms of the invalidity score .. This
is because the approach often chose an inappropriate
branching rule at a node near the root and thus failed
to partition input instances X such that they are as-
signed an effective action in each leaf they reach.

From the above observations, we propose an algorithm
based on the stochastic local search. The stochastic
local search has been shown to be suitable for learn-
ing non-standard rule models (Wang, 2019; Pan et al.,
2020). Our algorithm consists of two steps: determine
branching rules of internal nodes with the stochastic
local search strategy, and optimize an action assigned
to each leaf by solving Problem 1 independently.

4.1 Leaf Size Bound

Before we describe the details of our algorithm, we
derive an upper bound on the optimal size of CETSs to
prune the search space. We show an upper bound on
the leaf size |[£(h*)| of an optimal CET h* as follows.

Counterfactual Explanation Trees

Algorithm 1 Stochastic Local Search for CET.

Input: set of instances X, trade-off parameters v, A, set
of candidate branching rules R, maximum number of
iterations T', and accept condition ACCEPT.

Output: CET h™.

1: h'® « generate an initial solution randomly;
2: h* « R,

3: fort=1,2,...,7 do

4: § ~random();

5. if § <1/3 and [L(R""V)| < (v + A)/A then

6: R « insert a node with a rule r € R to h*~
randomly;

7: elseif § <2/3 then

8: h® « delete a node from h*~Y randomly;

9: else

10: R « replace the rule of a node in h*" with
another rule » € R randomly;

11: end if

12: forl e £(h") do

13: al(t) «— argmina€A<X{t>) g~(a | Xl(t));

14: end for

15: if AccepT(t, AP, h(®) is False then
16: B h(t_l);

17 end if
18: A" < argmin, g« 0y 0y (R | X);
19: end for

20: return h*;

Theorem 1 (Leaf Size Bound). Let h* be an optimal
solution for Problem 2, i.e., h* = argminycq, 04 x(h |
X). Then, we have |L(h*)| < %

Theorem 1 indicates that the optimal leaf size |L(h*)|
is upper bounded by some constant determined by the
trade-off parameters v and A. It also suggests to us
how to determine the trade-off parameters v and A.

4.2 Stochastic Local Search Algorithm

We present an algorithm for Problem 2 based on the
stochastic local search. We assume a set of candidate
branching rules R. An element r € R is a statement
with respect to an instance x, e.g., x4 < b for contin-
uous features or x4 = b for categorical features, where
d € [D] and b € R. We can obtain R by some dis-
cretization techniques, as with recent studies on learn-
ing decision trees (Hu et al., 2019; Aglin et al., 2020).

For a CET h € H, let X; = {z € X | € i} be
the set of instances that reach a leaf [€ L(h). Since
{r1 |1 € L(h)} is a partition of the input space X, it
gives a partition of X; that is, Uleﬁ(h) X; = X and
X;N Xy =0 for any I,I' € L(h). Therefore, we can
rewrite our learning objective o, (h) as follows:

1
03 A (M) = D e pgy 9 (a0 | X0) A+ L (R

It suggests that if branching rules of the internal nodes

in h, i.e., a partition of X, is determined, then we can
optimize an action a; € A(X;) assigned to each of the
leaves | € L(h) by solving Problem 1 independently.

Algorithm 1 presents our proposed algorithm. In Algo-
rithm 1, we first randomly generate an initial solution
R and then iteratively update it until the number
of iteration reaches a given maximum number 7" € N.
Each iteration ¢t € [T] consists of two update steps.
First, we update the previous solution A=Y to A®)
with the stochastic local search strategy. The update
is done by three edit operations with approximately
equal probabilities: (1) insert an internal node with
a randomly selected rule r € R into a random posi-
tion of R(*=1), (2) delete a node of h(*~1) randomly,
and (3) replace the rule of a randomly selected node
of h{*=1) with another rule r € R randomly. Note that
we prune the search space by excluding the insert op-
eration when the leaf size |£(h(*~1)| exceeds the upper
bound of Theorem 1. Second, we optimize an action
al(t) of each leaf I € L£(h")) by solving Problem 1 for

the instances X l(t) that reach [. In each iteration, the
update is accepted depending on a given accept condi-
tion AccepT(t, h*=1 K1), Following previous stud-
ies (Wang, 2019; Pan et al., 2020), we accept it with

t=1y_g (D
probability p(t) = exp (O”’*(h) ovalh)), where

-1

0
Cy is a base temperature of simulated annealing. The

probability p(t) gradually decreases with iterations t.

5 EXPERIMENTS

To investigate the efficacy and interpretability of our
CET, we conducted numerical experiments and user
studies. All the code was implemented in Python 3.71.
All the experiments were conducted on 64-bit macOS
Catalina 10.15.6 with Intel Core i9 2.4 GHz CPU and
64 GB memory.

5.1 Experimental Settings

Cost Function As a cost function ¢, we used the
Max Percentile Shift (MPS) (Ustun et al., 2019) de-
fined as

cla]z)= ;Tel%i} |Qa(za + aq) — Qa(za)l,

where @4 is the cumulative distribution function
(CDF) with respect to a feature d. Note that the value
of MPS is bounded by [0,1]. Compared to other ex-
isting cost functions, MPS is suitable for evaluating

actions assigned to all the instances due to two advan-
tages (Ustun et al., 2019): (i) MPS is scale-invariant

LAll the code and scripts for our experiments are avail-
able at https://github.com/kelicht/cet.

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike

Table 1: Results of 10-fold cross validation.
(a) Light GBM classifier (Ke et al., 2017)

Dataset Method Train Test
Cost Loss Invalidity Cost Loss Invalidity
Clustering 0.055 +0.04 0.951 + 0.03 1.0 £0.01 0.047 £0.05 0.958+£0.06 1.01 £0.02
Attrition AReS 0.436 £0.06 0.435+0.07 0.871+0.04 0.45+0.08 0.298 +0.09 0.748 +0.09
CET 0.349 £ 0.1 0.4+£0.11 0.749 £0.05 0.383+0.12 0.318+0.19 0.701 +0.12
Clustering 0.034 +0.02 0.9154+0.05 0.949+0.04 0.039+0.02 0.917+0.05 0.956 +0.04
German AReS 0.452£0.09 0.2324+0.05 0.6834+0.11 0.467+0.12 0.265+0.08 0.732+0.14
CET 0.103£0.01 0.301 £0.07 0.404 +£0.07 0.107+0.02 0.276 +=0.11 0.384 £0.1
(b) TabNet classifier (Arik and Pfister, 2021)
Dataset Method Train Test
Cost Loss Invalidity Cost Loss Invalidity
Clustering 0.509 + 0.16 0.487 +0.24 0.996 + 0.23 0.515 £0.16 0.513 £ 0.23 1.03 £+ 0.23
Attrition AReS 0.161 £ 0.1 0.235 £ 0.1 0.396 £ 0.1 0.164 =0.1 0.281 £ 0.16 0.445 £ 0.18
CET 0.312 £ 0.12 0.198 £0.14 0.51 £0.19 0.296 = 0.13 0.258 £+ 0.21 0.554 4+ 0.23
Clustering 0.01 £0.01 0.981 + 0.02 0.99 + 0.01 0.009 + 0.01 0.99 + 0.01 0.999 + 0.01
German AReS 0.18 £ 0.08 0.405 £0.14 0.585 0.2 0.188 & 0.09 0.427 £+ 0.17 0.614 £+ 0.22
CET 0.121 £ 0.08 0.242 + 0.21 0.362 £ 0.19 0.12 = 0.08 0.234 + 0.21 0.355 £ 0.19

and able to reflect the distribution on X unlike norm-
based cost functions, and (ii) MPS is easy to interpret
and compare between multiple instances since it rep-
resents the difficulty of a for x as the maximal change
in percentile |Qq(zq + aq) — Qa(xq)| over d € [D].

Comparison Baselines We compare our CET
with two baseline methods: (1) Clustering, which
first partitions a given set of instances into a few clus-
ters by K-means clustering and then assigns an action
to each of the clusters by solving Problem 1, and (2)
AReS (Rawal and Lakkaraju, 2020), a rule set as-
signing actions for input instances. To adapt AReS
to our setting, we modified its submodular optimiza-
tion framework to handle MPS as a cost measure, and
tuned its hyperparameters to minimize the average in-
validity i, on validation datasets. The implementation
details are provided in the supplementary materials.

Datasets and Classifiers We used Attrition (N =
1470, D = 44) (Kaggle, 2017) and German (N =
1000, D = 40) (Dua and Graff, 2017) datasets. We
transformed each categorical feature into a omne-hot
encoded vector. The task for the Attrition (resp.
German) dataset is to predict whether employees will
leave their company (resp. customers will default on
their loan). As complex classifiers f, we used Light-
GBM (Ke et al., 2017) and TabNet (Arik and Pfister,
2021), which are renowned as state-of-the-art models
for tabular datasets. We trained the baseline meth-
ods and our CET on training instances that had re-
ceived undesirable predictions, such as “high risk of

attrition.” We also used the ¢3-regularized logistic re-
gression classifiers to analyze the trade-off between the
effectiveness and interpretability of each method.

Evaluation Criteria For examining assigned ac-
tions a, we measured the average values of the cost
cla| x), loss lo1(f(z + a),y*), and invalidity i~(a | x).
To make it easier to compare the values of the cost
and loss, we set v = 1.0. We measured these cri-
teria not only on training instances but also on test
instances to evaluate the generalization performance
of each method (Gao et al., 2021). We also measured
the total number of actions and running times.

5.2 Experimental Results
5.2.1 Performance Comparison

First, we compared the performance of our CET with
baselines. For interpretability, we set the number of
clusters for Clustering and the maximum number
of recourse-rules, i.e., pairs of a rule and correspond-
ing action, for AReS to 8 (Miller, 1956). We chose
A = 0.02 and T = 3000 for CET based on hold-out
validation. We report the average values of each evalu-
ation criterion measured on the train and test datasets.

Table 1 presents the results of 10-fold cross valida-
tion. The average accuracy of LightGBM and Tab-
Net on the Attrition dataset (resp. German dataset)
were 85.3% and 80.5% (resp. 69.5% and 70.6%), re-
spectively. The average number of instances to train
the baseline methods and our CET on the Attrition

Counterfactual Explanation Trees

dataset (resp. German dataset) were 229.1 for Light-
GBM and 274.1 for TabNet (resp. 310.1 for Light GBM
and 505.4 for TabNet), respectively. One example of
our CET learned on the Attrition dataset is shown in
Figure 1. Owing to the page limitation, the detailed
results are provided in the supplementary materials.
From these results, we observe the following findings:

e Our CET achieved lower invalidity for all the
datasets and classifiers than Clustering, while
Clustering optimizes the same invalidity i, as
ours. This result indicates the efficacy of our Al-
gorithm 1 that partitions instances based on the
invalidity of the action assigned to each leaf.

e Compared to AReS, our CET achieved lower
cost and loss for most of the datasets and clas-
sifiers (11/16 = 68.75%). Notably, the average
number of leaves in our CET, i.e., the total num-
ber of actions, was 6.38, whereas AReS con-
tained 8 actions. These results indicate that our
CET succeeded in assigning effective actions to
instances with fewer actions than AReS.

Transparency and Consistency The average ra-
tios of the instances (1) that were assigned no recourse-
rule and (2) that were assigned multiple recourse-
rules by AReS were 20.87% and 27.15%, respectively.
These results indicate that AReS failed in ensuring
transparency and consistency, i.e., assigning unique
pairs of an action and the reason over the entire in-
put space. In contrast, we note that our CET always
succeeded due to the properties of decision trees.

From these findings, our CET could assign more ef-
fective actions in terms of cost and loss than AReS,
while CET ensured transparency and consistency.

Computational Complexity Regarding the com-
putational time, the average running time of Cluster-
ing was 1,585 seconds since it only executes the K-
means clustering and assigns an action to each cluster
by solving Problem 1. Conversely, AReS and CET
were much slower than Clustering, and the average
running times were 15,099 and 12,696 seconds, re-
spectively. We observed that AReS often spent a
significant amount of time on preprocessing to gener-
ate candidate recourse-rules, especially for the German
dataset. We can control the computational complexity
of CET by tuning the maximum number of iteration
T of Algorithm 1. The convergence analyses of Algo-
rithm 1 are presented in the supplementary materials.

5.2.2 Trade-off Analysis

Next, we analyze a trade-off between the effective-
ness and interpretability. We randomly split each

Attrition German
040 —
£ o035 £02
% 0.30 2
025 '\'/o—.\. 54
4 8 12 16 20 4 8 12 16 20
#Actions #Actions

0.4 0.8
—¥— Clustering

/'/ AReS

Z
2 v 04 —e— CET
202 .\.’/4._>-<.
0.0

4 8 12 16 20 4 8 12 16 20
#Actions #Actions

Loss (test)
o
i

Figure 2: Analyses of trade-off between effectiveness
and interpretability.

Attrition German
oV V 08TV
20 16 4 ¥V Clustering
8 | 12¥ 206 @ AReS
lom A4 g ® CET
@ 20 N
20996 z 04 sV
-] 16 20 1oV
021 49 @ v -
o 16Y 1
7 By g 27 B8
0.25 0.30 035 0.40 005 010 015 020 025
Cost (test) Cost (test)

Figure 3: Scatter plot of Cost and Loss, where the
number displayed at each point indicates # Actions.

dataset into training (75%) and test (25%) instances,
and trained /s-regularized logistic regression classi-
fiers. Then, we trained the baseline methods and our
CET on the training instances by varying the number
of actions for the baselines and A for CET, respec-
tively. We measured the cost and loss of the assigned
actions to the test instances by each methods.

Figure 2 presents the trade-off between the number of
actions (#Actions) and the average values of cost and
loss. Note that increasing the number of actions does
not necessarily decrease the average values of both cost
and loss on test instances since each method optimizes
the sum of them on training instances as its learn-
ing objective. The results on training instances are
presented in Figure 5 of the supplementary materials.
Figure 3 shows the scatter plots of the cost and loss,
where the number displayed at each point indicates
#Actions. From these results, we confirmed that our
CET stably outperformed the baselines. It indicates
that our CET could assign more effective actions than
the baselines at different levels of the interpretability.

5.3 User Studies

Finally, to investigate whether our CET is easy for
human-users to understand, we conducted user stud-
ies with 35 participants. Each participant work in re-
search and development departments related to artifi-
cial intelligence in a private company.

Settings We used the Attrition dataset and trained

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike

Rule Action

If ‘OverTime=True’

Recourse AND
rule 1 ‘0! i for
(Probability: 58.2%)

OverTime=False

1g=Fals

If ‘BusinessTravel>=1" .
Recourse . BusinessTravel<1
AND ‘OverTime=False’

rule 2 o AND OverTime=False
(Probability: 13.9%)
If "JobLevel<2’
Recourse ~ AND ‘Monthlylncome<2275
rule 3 AND ‘OverTime=False’
(Probability: 12.7%)

Monthlylncome>=15170
AND OverTime=False

If ‘OverTime=True’ OverTime=False

Recourse |\ 15 < —vearsinCurrentRole<3" AND

rule 4 -
(Probability: 24.1%) 2<=YearsInCurrentRole<3
Default el Monthlylncome>=15170
rule e AND OverTime=False

(a) AReS (Rawal and Lakkaraju, 2020)

[YearsInCurrentRole]

' '
False } True False}
Action 1 Action 2: Action 3 -Action 4-
BusinessTravel : - 1 Monthlylncome : + 2276 BusinessTravel : - 1 OverTime : True — False
Monthlylncome : + 8502 OverTime : True — False Monthlylncome : + 2231 PercentSalaryHike : + 1
(Cost: 0710/ Flip rate : 94.4%) (Cost : 0303 / Flip rate : 75.0%) (Cost: 0445/ Flip rate : 100.0%) (Cost : 0274 / Flip rate : 96.9%)

(b) CET (ours)

Figure 4: Examples of learned AReS and CET shown to the participants in user study.

Table 2: Experimental results of user study.

Method User Acc. Confidence Time [s]

Clustering 68.75% 2.16+1.06 1079.0 £+ 368
AReS 95.12% 3.32+£0.60 784.8 £ 202
CET 100.0% 3.16 £ 1.06 674.0 + 392

Light GBM as a classifier f. We trained Clustering,
AReS, and CET on the instances predicted as high
risk of attrition by f. Our user studies were carried
out in the following steps: (1) randomly assign a par-
ticipant to one of the methods, (2) show an expla-
nation of the assigned method; show the action and
center of each cluster for Clustering, the rule set for
AReS, and the decision tree for CET, (3) show an
instance predicted as high risk of attrition by f, and
(4) show five actions and ask the participant to answer
which action is given by the assigned method for the
instance. We also asked participants to rate their con-
fidence level on a scale of 1 (not confident at all) to
5 (very confident). For each participant, we provided
four instances to answer. We compare the three meth-
ods in terms of (i) the user accuracy, i.e., the propor-
tion of the correct answers, (ii) the average confidence,
and (iii) the average time to answer. The participants
whose answer time exceeded one hour were excluded
when we calculated the average time. See the supple-
mentary materials for examples of our questions.

Results The numbers of participants who answered
at least one question were 8 for Clustering, 11 for
AReS, and 16 for CET, respectively. Examples of
AReS and CET shown to the participants are pre-
sented in Figure 4. Table 2 summarizes their results,
where “User Acc.,” “Confidence,” and “Time” show
the proportion of the correct answers, average confi-
dence, and average time to answer, respectively. We

find that the user accuracy of CET was the highest
out of all the methods, while the number of partic-
ipants of CET was the largest. The average confi-
dence of CET was smaller than AReS, but the dif-
ference was comparatively small. Notably, the average
time for CET was the fastest among all the methods.
From these results, we confirmed that the behavior of
our CET was easily understood by human-users.

6 CONCLUSION

We proposed Counterfactual Explanation Tree (CET)
that assigns effective actions to input instances by a
decision tree. Our CET achieves transparency and
consistency in the process of assigning actions to the
entire population of an input space. To learn a CET,
we first introduced a framework of group-wise CE for
assigning a single action to given multiple instances.
Then, we proposed an algorithm for learning a CET
based on the stochastic local search with a theoretical
pruning strategy. Our experiments and user studies
demonstrated the efficacy and interpretability of our
CET by comparing it with existing methods.

In future work, we plan to develop a more efficient
learning algorithm to handle large datasets. Because
the computational time of Algorithm 1 in our experi-
ments mainly depended on that of solving Problem 1
by MILO at each node, we expect the scalability issue
would be alleviated if we can solve Problem 1 more ef-
ficiently. Furthermore, we will extend our model to
deal with interactions among multiple instances, as
mentioned by Karimi et al. (2020b). It is also interest-
ing future work to incorporate existing individualized
CE methods that provide practical actions, e.g., mul-
tiple diverse actions (Mothilal et al., 2020), ordered
actions (Kanamori et al., 2021), and causal interven-
tions (Karimi et al., 2021), into our CET.

Counterfactual Explanation Trees

Acknowledgements

We wish to thank Hiroki Arimura for making a number
of valuable suggestions. We also thank the anonymous
reviewers for their insightful comments. This work
was supported in part by JSPS KAKENHI Grant-in-
Aid for JSPS Research Fellow 20J20654, Early-Career
Scientists 21K17817, JST ACT-X JPMJAX2108, and
JST CREST JPMJCRI18KS3.

References

G. Aglin, S. Nijssen, and P. Schaus. Learning opti-
mal decision trees using caching branch-and-bound
search. In Proceedings of the 34th AAAI Conference
on Artificial Intelligence, pages 3146-3153, 2020.

U. Aivodji, H. Arai, O. Fortineau, S. Gambs, S. Hara,
and A. Tapp. Fairwashing: the risk of rationaliza-
tion. In Proceedings of the 36th International Con-
ference on Machine Learning, pages 161-170, 2019.

S. O. Arik and T. Pfister. TabNet: Attentive inter-
pretable tabular learning. In Proceedings of the 35th
AAAI Conference on Artificial Intelligence, pages
6679-6687, 2021.

S. Barocas, A. D. Selbst, and M. Raghavan. The hid-
den assumptions behind counterfactual explanations
and principal reasons. In Proceedings of the 2020
Conference on Fairness, Accountability, and Trans-
parency, pages 80-89, 2020.

D. Bertsimas, J. Dunn, and N. Mundru. Optimal pre-
scriptive trees. INFORMS Journal on Optimization,
1(2):164-183, 2019.

L. Breiman, J. H. Friedman, R. A. Olshen, and

C. J. Stone. Classification and Regression Trees.
Wadsworth, 1984.

J. Chen, L. Song, M. Wainwright, and M. Jordan.
Learning to explain: An information-theoretic per-
spective on model interpretation. In Proceedings
of the 35th International Conference on Machine
Learning, pages 883-892, 2018.

Z. Cui, W. Chen, Y. He, and Y. Chen. Optimal ac-
tion extraction for random forests and boosted trees.
In Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, pages 179-188, 2015.

A.-K. Dombrowski, M. Alber, C. Anders, M. Ack-
ermann, K.-R. Miiller, and P. Kessel. Explana-
tions can be manipulated and geometry is to blame.
In Proceedings of the 33rd International Conference

on Neural Information Processing Systems, pages
13589-13600, 2019.

F. Doshi-Velez and B. Kim. Towards a rigorous
science of interpretable machine learning. arXiv,
arXiv:1702.08608, 2017.

D. Dua and C. Graff. UCI machine learning repository.
http://archive.ics.uci.edu/ml, 2017. Accessed
Feb. 21st, 2022.

A. Elmachtoub, J. C. N. Liang, and R. Mcnellis. De-
cision trees for decision-making under the predict-
then-optimize framework. In Proceedings of the
37th International Conference on Machine Learn-
ing, pages 2858-2867, 2020.

A. A. Freitas. Comprehensible classification mod-
els: A position paper. ACM SIGKDD FEzplorations
Newsletter, 15(1):1-10, 2014.

J. Gao, X. Wang, Y. Wang, Y. Yan, and X. Xie. Learn-
ing groupwise explanations for black-box models.
In Proceedings of the 30th International Joint Con-
ference on Artificial Intelligence, pages 2396-2402,
2021.

A. Ghorbani, A. Abid, and J. Y. Zou. Interpretation of
neural networks is fragile. In Proceedings of the 33rd
AAAI Conference on Artificial Intelligence, pages
3681-3688, 2019.

B. Goodman and S. Flaxman. European union regu-
lations on algorithmic decision-making and a “right
to explanation”. AI Magazine, 38(3):50-57, 2017.

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Gi-
annotti, and D. Pedreschi. A survey of methods for
explaining black box models. ACM Computing Sur-
veys, 51(5):1-42, 2018.

X. Hu, C. Rudin, and M. Seltzer. Optimal sparse deci-
sion trees. In Proceedings of the 32nd International

Conference on Neural Information Processing Sys-
tems, pages 7265-7273, 2019.

N. Jethani, M. Sudarshan, Y. Aphinyanaphongs, and
R. Ranganath. Have we learned to explain?: How
interpretability methods can learn to encode predic-
tions in their interpretations. In Proceedings of the
24th International Conference on Artificial Intelli-
gence and Statistics, pages 1459-1467, 2021.

Kaggle. IBM HR Analytics
Attrition & Performance.
//www.kaggle.com/pavansubhasht/
ibm-hr-analytics-attrition-dataset,
Accessed Feb. 21st, 2022.

K. Kanamori, T. Takagi, K. Kobayashi, and
H. Arimura. DACE: Distribution-aware counterfac-
tual explanation by mixed-integer linear optimiza-
tion. In Proceedings of the 29th International Joint
Conference on Artificial Intelligence, pages 2855—
2862, 2020.

K. Kanamori, T. Takagi, K. Kobayashi, Y. Ike, K. Ue-
mura, and H. Arimura. Ordered counterfactual ex-
planation by mixed-integer linear optimization. In
Proceedings of the 35th AAAI Conference on Artifi-
cial Intelligence, pages 11564-11574, 2021.

Employee
https:

2017.

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike

A.-H. Karimi, G. Barthe, B. Balle, and I. Valera.
Model-agnostic counterfactual explanations for con-
sequential decisions. In Proceedings of the 23rd In-
ternational Conference on Artificial Intelligence and
Statistics, pages 895-905, 2020a.

A.-H. Karimi, G. Barthe, B. Schélkopf, and 1. Valera.
A survey of algorithmic recourse: definitions,
formulations, solutions, and prospects. arXiv,
arXiv:2010.04050, 2020b.

A .-H. Karimi, B. Scholkopf, and I. Valera. Algorithmic
recourse: From counterfactual explanations to inter-
ventions. In Proceedings of the 2021 ACM Confer-
ence on Fairness, Accountability, and Transparency,
pages 353-362, 2021.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma,
Q. Ye, and T.-Y. Liu. Light GBM: A highly efficient
gradient boosting decision tree. In Proceedings of
the 31st International Conference on Neural Infor-
mation Processing Systems, pages 3149-3157, 2017.

P. W. Koh and P. Liang. Understanding black-box
predictions via influence functions. In Proceedings
of the 34th International Conference on Machine
Learning, pages 1885-1894, 2017.

H. Lakkaraju and C. Rudin. Learning Cost-Effective
and Interpretable Treatment Regimes. In Proceed-
ings of the 20th International Conference on Artifi-
cial Intelligence and Statistics, pages 166-175, 2017.

G.-H. Lee and T. S. Jaakkola. Oblique decision trees
from derivatives of relu networks. In Proceedings of
the 8th International Conference on Learning Rep-
resentations, 2020.

S. M. Lundberg and S.-I. Lee. A unified approach
to interpreting model predictions. In Proceedings of
the 31st International Conference on Neural Infor-
mation Processing Systems, pages 4765-4774, 2017.

G. A. Miller. The magical number seven, plus or minus
two : Some limits on our capacity for processing

information. The Psychological Review, 63(2):81—
97, 1956.
T. Miller. Explanation in artificial intelligence: In-

sights from the social sciences.
gence, 267:1-38, 2019.

R. K. Mothilal, A. Sharma, and C. Tan. Explaining
machine learning classifiers through diverse coun-
terfactual explanations. In Proceedings of the 2020
Conference on Fairness, Accountability, and Trans-
parency, pages 607-617, 2020.

Artificial Intelli-

D. Pan, T. Wang, and S. Hara. Interpretable com-
panions for black-box models. In Proceedings of the
23rd International Conference on Artificial Intelli-
gence and Statistics, pages 2444-2454, 2020.

A. Parmentier and T. Vidal. Optimal counterfactual
explanations in tree ensembles. In Proceedings of the
38th International Conference on Machine Learn-
ing, pages 8422-8431, 2021.

D. Pedreschi, F. Giannotti, R. Guidotti, A. Monreale,
S. Ruggieri, and F. Turini. Meaningful explanations
of black box Al decision systems. In Proceedings of
the 33rd AAAI Conference on Artificial Intelligence,
pages 9780-9784, 2019.

K. N. Ramamurthy, B. Vinzamuri, Y. Zhang, and
A. Dhurandhar. Model agnostic multilevel expla-
nations. In Proceedings of the 34th International
Conference on Neural Information Processing Sys-
tems, pages 5968-5979, 2020.

K. Rawal and H. Lakkaraju. Beyond individualized re-
course: Interpretable and interactive summaries of
actionable recourses. In Proceedings of the 34th In-
ternational Conference on Neural Information Pro-
cessing Systems, pages 12187-12198, 2020.

M. T. Ribeiro, S. Singh, and C. Guestrin. “Why
Should I Trust You?”: Explaining the predictions
of any classifier. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1135-1144, 2016.

M. T. Ribeiro, S. Singh, and C. Guestrin. Anchors:
High-precision model-agnostic explanations. In Pro-
ceedings of the 32nd AAAI Conference on Artificial
Intelligence, pages 1527-1535, 2018.

C. Rudin. Stop explaining black box machine learn-
ing models for high stakes decisions and use inter-
pretable models instead. Nature Machine Intelli-
gence, 1:206-215, 2019.

C. Rudin and Y. Shaposhnik. Globally-consistent rule-
based summary-explanations for machine learning
models: Application to credit-risk evaluation. In
Proceedings of INFORMS 11th Conference on Infor-
mation Systems and Technology, pages 1-19, 2019.

L. Schut, O. Key, R. Mc Grath, L. Costabello,
B. Sacaleanu, M. Corcoran, and Y. Gal. Gener-
ating interpretable counterfactual explanations by
implicit minimisation of epistemic and aleatoric un-
certainties. In Proceedings of the 24th International

Conference on Artificial Intelligence and Statistics,
pages 17561764, 2021.

T. Serra, C. Tjandraatmadja, and S. Ramalingam.
Bounding and counting linear regions of deep neural
networks. In Proceedings of the 35th International
Conference on Machine Learning, pages 45584566,
2018.

A. Silva, M. Gombolay, T. Killian, I. Jimenez, and
S.-H. Son. Optimization methods for interpretable
differentiable decision trees applied to reinforcement

Counterfactual Explanation Trees

learning. In Proceedings of the 23rd International
Conference on Artificial Intelligence and Statistics,
pages 1855-1865, 2020.

B. Ustun, A. Spangher, and Y. Liu. Actionable re-
course in linear classification. In Proceedings of the
2019 Conference on Fairness, Accountability, and
Transparency, pages 10-19, 2019.

S. Venkatasubramanian and M. Alfano. The philo-
sophical basis of algorithmic recourse. In Proceed-
ings of the 2020 Conference on Fairness, Account-
ability, and Transparency, pages 284-293, 2020.

T. Vidal and M. Schiffer. Born-again tree ensembles.
In Proceedings of the 37th International Conference
on Machine Learning, pages 9743-9753, 2020.

S. Wachter, B. Mittelstadt, and C. Russell. Counter-
factual explanations without opening the black box:
Automated decisions and the GDPR. Harvard Jour-
nal of Law & Technology, 31:841-887, 2018.

T. Wang. Gaining free or low-cost interpretability
with interpretable partial substitute. In Proceed-
ings of the 36th International Conference on Ma-
chine Learning, pages 6505-6514, 2019.

Supplementary Material:
Counterfactual Explanation Trees: Transparent and Consistent
Actionable Recourse with Decision Trees

A OMITTED PROOFS

A.1 Proof of Proposition 1

As mentioned in the main paper, we are given (i) a linear classifier f(x) = sgn(w'x), where w € R is a

coefficient vector, (ii) a feasible action set A(z) = RP for any z € X, and (iii) a cost function c(a | z) = ¢, - ||al|,
where ¢, > 0 is a constant depending on x. To prove Proposition 1, we first show the following three lemmas.

Lemma 1 (Optimal Cost for Individualized CE (Ustun et al., 2019)). For x € X with f(x) # +1, let ¢*(x) be
the optimal value for the problem in Eq. (1), i.e.,

c*(z) = aénj&) c(a | z) subject to f(x+a)=+1.

Then, we have c*(x) = ¢, -

Lemma 2. For a coefficient vector w of f, let x, 2’ € X be instances such that w'z < w2’ and f(x) = f(z') =
—1. Then, we have f(x+a) =+1 = f(2' +a)=+1.

Proof. From the definition of f, f(z +a) = +1 implies w ' (z + a) > 0. Since w'z < w'a’, we have
w' (' +a)=w's' +wa>w z+wa=w"(z+a)>0.

Since w ' (2’ 4 a) > 0, we obtain f(z' + a) = +1. O
Lemma 3. For a given set of N instances X = {zM ... 2™} C X such that f(z) # +1 for any x € X, let

2° = argminge x w' x. Then, we consider the problem in Eq. (1) for z°, i.e.,
minimize c(a | 2°) subject to f(z°+a)= +1. (3)
acA(z°)

We also consider the problem in Eq. (2) for X, i.e.,

minjr(n%e c(a|x) subject to f(z+a)=+1,Vze X, (4)
acA(X
reX

where A(X) = (,cx A(z). Then, optimal solutions for the problems in Eq. (3) and (4) are equivalent.

Proof. Let Ayo = {a € A(z°) | f(z° 4+ a) = +1} and Ax = {a € A(X) | Vo € X: f(x +a) = +1} be the
set of feasible solutions for the problems in Eq. (3) and Eq. (4), respectively. From the definition of ¢, we have
Yowexcla] z) = C-lal, where C := 3" _\ c,. By ignoring constants in the objective function, we find that
the problem in Eq. (4) is equivalent to an unconstrained optimization problem: min,e 4, ||al|. Similarly, the
problem in Eq. (3) is equivalent to minge4_, [|al|-

By the definitions of A,. and Ax, we immediately have Ax C A,o. From Lemma 2, we also have f(z+a) = +1
for any x € X and a € Ao, which implies A, C Ax. By combining the above results, we obtain A, = Ax.
Since both their feasible solutions and objective functions are respectively equivalent, optimal solutions for the
problems in Eq. (3) and (4) are equivalent. O

Now, we give a proof of Proposition 1.

Counterfactual Explanation Trees

Proof of Proposition 1. From Lemma 3, we have

a* = min c(a|z°) subject to f(z°+a)=+1.

a€A(z)
By Lemma 1, we also have ¢*(z) = ¢, - % and c(a* |) = ¢, - lw_z%| H ” . Using the Cauchy—Schwarz inequality,
we obtain
lw T z°| lw T z|
cla* |z)—c(x)=cp ——— —Cy -
] C]
_ HCch . (wTI . ’LUTQSO) (szo < sz < O)
w
Cx T o
=— w (x—2°)
[[w]
<]l — 20 = e -l — 2
— - T
[[]]

A.2 Proof of Proposition 2

Proof of Proposition 2. By the definitions of g,, X;, and X3, we have
glal X)=) iylala)= Y iyala)+ Y iylalz)=g,y(a] X1)+g(a| Xa).
zeX reXy r€X>2
Since A(X) C A(X;) and A(X) C A(X2), we also have a% € A(X;) and a% € A(Xz). Thus, it holds that
gy(ax | X1) > gy(a%, | X1) and g, (a% | X2) > g4(a%, | X2), respectively. Therefore, we obtain

gy(ax | X) = g,(ax | X1) + gy (aX | X2) > g5(ak, | X1) + g, (ak, | X2).

A.3 Proof of Theorem 1

To obtain a bound of the optimal leaf size, we first show an upper bound on the optimal value for Problem 1.

Lemma 4. For a set of N instances X C X such that f(x) # +1 for any x € X, we have minge 4(x) g,(a |
X)<vy-N.

Proof. Since f(z) # +1 and ¢(0 | #) = 0 for any x € X, we have g,(0 | X) = > _vc(0 |) + -
Y owex (f(x+0),+1) = v- N. Since 0 € A(X), we have minge 4(x)g9,(a | X) < g4(0 | X). Therefore, we
obtain minge 4(x) gy(a | X) <y - N. O

Using Lemma 4, we give a proof of Theorem 1 as follows.

Proof of Theorem 1. Let hg be a CET that returns a single action a* = argmin,¢ 4(x) g,(a | X) for any input,
i.e., ho(z) = a* for any x € X. Since a* € A(z) for any x € X, we have hg € H and 0, x(h*) < 041 (hg). From
Lemma 4, we also have

017(h0) = 3¢ 3 s (ho(a) | 2) + A+ 1£(ho)|

zeX

NZZ'Y)+ A1

zeX

1
- — X)+ A<+
Naergl&)gw(al)+HA< Y+

Since 04,2 (h*) > X - |L(h*)|, we obtain

<’Y+)\.

AL < 0y a(h7) S 0ya(ho) <7+ A = L) < —

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike

B MILO FORMULATION FOR GROUP-WISE CE

In this section, we formulate Problem 1 as a mixed-integer linear optimization (MILO) problem. Our formulations
can be applied to the cases where we use linear classifiers (e.g., logistic regression), tree ensembles (e.g., gradient
boosted trees (Ke et al., 2017)), and deep ReLU networks. We can obtain an optimal solution for the MILO
problem by off-the-shelf MILO solvers, such as CPLEX?, and easily recover the optimal solution for Problem 1
from it. We also present a model-agnostic formulation based on linear approximation by LIME (Ribeiro et al.,
2016).

B.1 Common Ideas

As with existing methods based on MILO (Ustun et al., 2019; Kanamori et al., 2020), we assume that each
coordinate A4 of a given feasible action set A(X) = A; x --- X Ap is finite and discretized; that is, we assume
Ad = {ad71, .. .,ade}, Where Id = |Ad|

For simplicity, we also assume that the cost function ¢ can be expressed as the following linear form:

c(a | x) :chad|xd

d=1

where cq: Ag = R>(is a cost measure of the feature d that represents the effort to change x4 to 4 + aq. It
includes several existing cost functions, such as the total-log percentile shift (Ustun et al., 2019) and the weighted
{1-norm based on the inverse of median absolute deviation (Wachter et al., 2018). Note that our formulations
can be extended to handle existing non-linear cost functions, such as the max percentile shift (Ustun et al.,
2019), the Mahalanobis distance, and local outlier factor (Kanamori et al., 2020).

To express an action a € A(X), we introduce binary variables mq,; € {0,1} for d € [D] and i € [I4], which indicate

that the action aq; € Aq is selected (m4; = 1) or not (m4; = 0). The variables mq; must satisfy Zfil ;= 1
for d € [D]. Using mq,;, each element a4 of an action a = (ay,...,ap) € A(X) can be expressed as

I
aq = E Qd* Td,5-
i=1

To formulate the objective function g,(a | X) for a given set of instances X = {z(),..., 2N} we need to
express the cost c(a |) and loss I(f(z + a),+1) for z € X as linear combinations and constraints of decision
variables. For n € [N], we introduce binary variables ¢, € {0,1} such that ¢, = I(f(2™ + a),+1). Then, we
can express g(a | X) as follows:

N D I,
gy(a] X) :ZZZCW T+ ZCm
n=1

n=1d=1 i=1

(n)

where cfﬂ) > 0 is the constant such that ¢’ = ca(aq | x&n)), which can be computed when z(™ and A(X) are

given. We need to express ¢, = I(f(2(™) + a),+1) by linear constraints of decision variables for each type of
classifiers f. In the following, we present an MILO formulation of Problem 1 for each classifier.

B.2 Linear Classifier

Let f be a linear classifier f(z) =sgn (w'z +b), where w € RP is a coefficient vector and b € R is an intercept.
Then, Problem 1 with the linear classifier f can be formulated as the following MILO problem (Ustun et al.,

’https://www.ibm.com/analytics/cplex-optimizer

Counterfactual Explanation Trees

2019):

N D I,

minimize ZZZCU“ Tai + - Zgn
n=1d=1 i= lD B

subject to M, - (, < de . Zadﬂ' mq; + Fn, ¥n € [N],

d=1 i=1

la (5)
> mai=1, vd € D],
i=1
Td,i € {0, 1}, Vd € [D},Vl S [Id],
¢n € {0,1}, VYn € [N],

where F,, = w' 2™ +b and M,, = minge 4(x) w'a+ F, and are constants. These values can be computed when
f, (™ and A(X) are given.

B.3 Tree Ensembles

Let f be a tree ensemble f(x) = sgn (Z}]:1 w - fj(x)>, where f;: X — R is a decision tree, w; € R is a weight
value of the j-th decision tree f;, and J € N is the total number of decision trees. Each decision tree f; can be

expressed as f;(x) = Zl 1950 - Iz € rj,], where L; € N is the total number of leaves in f;, and ¢;; € R and
rj; C X are the predictive label and the region corresponding to a leaf [€ [L;], respectively. Then, Problem 1
with the tree ensemble f can be formulated as the following MILO problem (Cui et al., 2015; Kanamori et al.,
2020):

N D I N
minimize Z Z Z c{%) “Tdi Y Z Cn

n=1d=1i=1 n=1
subject to M, Cn<ZwJ Zyﬂ gz , Vn€|N],
I
> mai=1, vd € [D],
i=1
Iaq
Yool =1, ¥j € [J],Vn € [N], (6)

i=1

<”><Z > mai=1, VjelJVle[L;],Vn € [N],
d= lzelj.fil)(z(”))

T4, € {071}7 Vd € [D],Vl € [Id],
¢ €{0,1}, Vn € [N],
o7 € {0,1}, Vj € [J],Vj € [Ly],¥n € [N],

where I()() ={i € [I4g] | ®a + aq: € r](f?} and rﬁ) is the subspace with respect to the feature d such that

(1) (D)

X -+ X1’ M, is a constant such that M, < min,e4(x) ijl wj - fj(z 4+ a). From the properties

Th0 = T] l 7l
of decision trees, we can set M, Z _y minerwj - gj for any n € [N], which can be computed when f is
given. For example, if f is a random forest, we can set M,, = —1 since w; = % and g;; € Y for any j € [J].

B.4 Deep ReLU Networks

For simplicity, we focus on a two-layer ReLU network f(x) = sgn (Z;']:1 w; - max{0, uij +b; }), where (u;,b;) €

RP+1 is a pair of a coefficient vector and an intercept of the j-th neuron, w; € R is a weight value of the j-th

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike

neuron, and J € N is the total number of neurons in the middle layer. Then, Problem 1 with the two-layer ReLU
network f can be formulated as the following MILO problem (Serra et al., 2018; Kanamori et al., 2021):

N D I, N
minimize Z Z Z C((fi) ‘Mg + - Z Cn
n=1d=1i=1 n=1
J
subject to My, - ¢, < ij ~§](."), VYn € [N],
j=1
Z?sz—l vd € [D],
s“” < Hjp ", Vj € [J],¥n € [N],
fj('n < _Hj,n'(l_yj('n))7 Vj e [J],Vn € [N], (7)

D
&M — &M =3 w03 ag - wai+ Fia, Vi€ [J],¥n € [N,
d=1]

maq € {0, 1}, Vd € [D],Vi € [I4],
Cn € {0,1}, Vn € [N],

M M >0, Vj € [J],¥n € [N],
v € {0,1}, Vj € [J],Vn € [N],

where M, H;,, ﬁjn, and Fj, are constants such that M, < min,c(x) Z}Izl w; ~max{0,fj(x(") +a)},
Hj, > max,ea(x) fi(z™ + a), Hj, < minge a(x) fj (2™ + a), and Fj,, = f;j(z™), where f;(z) = u) x + bj.

These values can be computed when f, (™, and A() are given. Note that our formulation can be extended
to general multilayer ReLU networks (Serra et al., 2018).

B.5 Group-wise AR-LIME

While we can obtain the optimal solutions for Problem 1 by solving the problems in Egs. (5), (6), and (7), the
total numbers of variables and constraints are respectively O(N) times larger than that of the individualized
CE. In fact, we observed that formulations (6) and (7) were often computationally infeasible in our preliminary
experiments on standard datasets even with N = 10.

For computational efficiency, we propose an approximation method based on AR-LIME, which has been intro-
duced by Rawal and Lakkaraju (2020) in their experiments as a comparison baseline methods. For a given single
instance x € X, AR-LIME approximates a classifier f by a linear model f (r) = w'x+bin the neighborhood of =
like LIME (Ribeiro et al., 2016), and then extracts an optimal action from f instead of f. We extend AR-LIME
to our setting of group-wise CE by approximating a linear model fn for each of the given instances z(") € X
and solving eq. (5) for fl, . fN instead of f. It can be formulated as the following MILO problem:

N
minimize Z ZZ chZ Tdi+ 7" Z Cn
n=1

n=1d=1 i=1

D Ia
subject to M, - (, < Zwén) . Zaw ~mqi + Fn, ¥n €[N,

1 = 8)
Zﬂ'd)i:L Yd e [DL

=1

7q: € {0,1}, vd € [D],Vi € [14)],

¢n € {0,1}, Vn € [N],

where w(™ € RP is a parameter of a linear model fn approximated for ("), and M,, = minge 4(x) fn(x +a) and
F, = fu((™) are constants. In our experiments, we used formulation (8) in line 13 of Algorithm 1.

Counterfactual Explanation Trees

C IMPLEMENTATION DETAILS OF BASELINE METHODS

C.1 Clustering

As a baseline, we implemented a clustering-based method, which has been introduced by Gao et al. (2021) in
their experiments as a comparison baseline method. It consists of the following two steps:

1. For a given set of training instances X C X, we divide X into 8 distinct subsets by K-means clustering with
the default parameters of scikit-learn®.

2. For each subset X’ C X, we assign an optimal action a* € A(X) by solving an MILO problem in appendix B.

For computational efficiency, we use formulation (8) described in Appendix B.5.

C.2 AReS (Rawal and Lakkaraju, 2020)

Actionable Recourse Summary (AReS) (Rawal and Lakkaraju, 2020) is an interpretable summary of actions
expressed by a rule set. It assists users to globally understand the recourse provided by underlying models with
emphasises on specific subgroups of interest. We can train an AReS from a given set of instances through sub-
modular optimization. Unlike our CET, an AReS assigns actions to input instances as a form of conditions rather
than perturbations vectors. To make a uniform comparison, we slightly adjusted their submodular optimization
framework so as to handle standard cost functions of CE and to provide perturbation vectors.

Let Q be a set of conditions, which can be constructed by a frequent itemset mining algorithm (e.g., FP-growth).
A recourse rule ¢ = (gpre, Gpost) € Q@ X Q is a pair of pre- and post-conditions gpre, gpost: X — {0,1}. For a set
of recourse rules Q C Q x Q, an AReS hg: X — A is defined as

hq(z) = ag-(x) := argmin c(a | x) subject to g, (r +a) =1,
aCA(x)
where ¢* € @ such that g;,.(z) = 1. That is, for an input instance € &, an AReS assigns a perturbation vector
a € A(x) such that the perturbed instance = + a satisfies the post-condition ¢, i-e., @50 (2 +a) = 1, where

*

7" = (pre> Gpost) 18 the corresponding recourse rule such that g;.(z) = 1. If there are multiple corresponding

recourse rules, we choose one with the highest empirical probability ‘\))((qll among them, where X C X is a given

set of training instances and X, = {2’ € X | gpre(2’) = 1}. Note that there may be no corresponding recourse
rule in @ for an input instance x € A'. In our experiments, we also computed a default recourse rule (qgre, qgost)
such that gp,.(z) = 1 for any x € X and ¢; . is optimized for the instances {x € X | Vg € Q: gpre(z) = 0}.

To learn an AReS hg from a given set of training instances X, Rawal and Lakkaraju (2020) proposed several
objective functions that measure the quality of an AReS hg. We used three of their objective functions: recourse
accuracy, coverage, and cost, which are defined as follows:

Oace(@ | X) = |X|- B=>_ {z € X | gpre(x) = 1A f(w + ho(x)) # +1}],
q€Q
0cov(@ | X) = D T3 € Q: gorelx) = 1],

reX
Ocost Q | X Z Z q() ‘ l’),

q€Q | q| TEX,

where B € N is a given maximum number of recourse rules. While the recourse accuracy 0,..(Q | X) corresponds
to our loss I(f(z+h(x)),+1), the cost 0cost (Q | X) corresponds to our cost c(h(z) |). Finally, a task of learning
an AReS hq is formulated as the following non-monotone submodular optimization problem with a cardinality
constraint:
maximize)\acc : OaCC(Q | X) +)\COV : OCOV(Q | X) -)\cost * Ocost (Q ‘ X)
QCOxXQ
subject to Q| < B,

3https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike

Table 3: Average values of the total number of actions (# Actions), ratio of test instances that had been assigned
no action (Uncover), and ratio of test instances that had been assigned multiple actions (Conflict).

#Actions Uncover Conflict
AReS CET AReS CET AReS CET
Attrition 8.0 71 13.32% 0.0% 30.70% 0.0%

Classifier Dataset

Light GBM German 8.0 6.0 51.97% 0.0% 21.33% 0.0%
TabNet Attrition 8.0 6.7 13.28% 0.0% 23.49% 0.0%
German 8.0 5.7 4.89% 0.0% 33.10% 0.0%

Average 8.0 6.38 20.87% 0.0% 27.15% 0.0%

Table 4: Average computational time on the Attrition and German datasets.
Classifier Dataset Clustering AReS CET
Attrition 24.023 + 3.77 1268.14 £+ 107.41 8021.79 + 2600.78

LightGBM 0 han 19.865 4+ 1.32 18767.0 + 538.51 5782.37 + 901.46

TabNer Attrition 203675 £ 59511 4118.18 + 375.96 27009.4 & 5801.93

abie German 4258.59 & 1012.93 36242.8 + 2844.69 9969.62 + 2463.63
Average 1584.81 15099.0 12695.8

where Aace, Acov, and Acost are given trade-off parameters. In our experiments, we solve the above opti-
mization problem by a standard greedy algorithm. We set B = 8, and chose each trade-off parameter from
{0.01,0.1,1.0,10.0,100.0} by the grid search so as to improve our invalidity score i~(hg(z) | x) on hold-out
datasets.

D ADDITIONAL EXPERIMENTAL RESULTS

D.1 Performance Comparison

We present additional experimental results of performance comparison (Section 5.2) in Tables 3 and 4. Table 3
presents average values of the total number of actions (#Actions), ratio of test instances that had been assigned
no action (Uncover), and ratio of test instances that had been assigned multiple actions (Conflict) for AReS
and CET. Note that #Actions of AReS was always 8.0 because the maximum number of recourse rules, i.e.,
actions, was set to B = 8, and that Uncover and Conflict of CET were 0.0% for all the cases due to the properties
of decision trees. The results of computational time for each method are shown in Table 4.

D.2 Analysis of Trade-off Between Effectiveness and Interpretability

Figure 5 presents the complete results of the trade-off analyses between the effectiveness of assigned actions and
interpretability of each method in Section 5.2. We measured the average values of the cost, loss, and invalidity
on both train and test datasets.

D.3 Sensitivity Analysis of Problem 1

The results of sensitivity analyses with respect to the trade-off parameter v in Problem 1 are shown in Figure 6.
We randomly sampled 10 instances from test instances, and solving Problem 1 for them by varying the value of
7. We repeated this procedure 100 times, and report the average values of the cost and loss.

D.4 Convergence Analysis of Algorithm 1

The results of convergence analyses of Algorithm 1 are shown in Figure 7. We measured the objective values
0+, of t-th solution h® and best solution h* during running Algorithm 1.

Counterfactual Explanation Trees

Cost (test)

Cost (train)

Cost (test)

0.2 .\- = = n

o4 _ g
£ e —¥— Clustering | £
£ E ~#- AReS g 047
2 034" —m = = m| g 017 —e— CET i
o Q =
o] = £ 0.3+
’—_‘\.\.\. =
0'2- T T T T T 00-_|—|—|—|—|_ 02- T T T T T
4 8 12 16 20 4 8 12 16 20 4 8 12 16 20
#Actions #Actions #Actions
0.4
0.40 A
5
— [
0.35 7 = 0.6 1
ol i i |
£ 0.2 i = = u
J 2 =
0.30 .\. » - m| 5 E 0.4
=
0.25 0\./.§.\. =
0.0
T T T T T T T T T T T T T T T
4 8 12 16 20 4 8 12 16 20 4 8 12 16 20
#Actions #Actions #Actions
(a) Attrition
0.75
—¥— Clustering = 0.75 1
0.2 1 = ~#— ARcS E
£ 0507 —e— CET = 0.50 1
£ 0.25 2
0.1 1 = £ 0.25 4
i 0\.\._._.
T T T T T 0.00 T T T T T T T T T — T
4 8 12 16 20 4 8 12 16 20 4 8 12 16 20
#Actions #Actions #Actions
08 0.8 4
0.2 = 0.6 g
8 < 0.6 1
= e
2 0.4 1 g
Q = 0.4 4
0.1 s g0
0.2 S
0.2 1 ’\o—o/.\o
T T T T T T T T T T T T T T T
4 8 12 16 20 4 8 12 16 20 4 8 12 16 20
#Actions #Actions #Actions
(b) German

Figure 5: Analyses of trade-off between effectiveness and interpretability.

Attrition German
1.00 4 041
—@— cost c(a | z) (MPS)

0.75 1 —— loss l(f(x+a),+1) 0.3
0.50 0.2 1
0.25 -

0.1 A
0.00 1 T T T T T T T T T T

0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0
Y Y

Figure 6: Sensitivity analyses of the trade-off parameter ~.

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike

Objective value oy (h)

Objective value o, (h)

Objective value o, (h

Objective value o (h)

v =0.75, A =0.01 5 =0.75, A =0.03 ¥ =0.75, A =0.05

Objective value oy (h)

Objective value o, (h)

—— t-th objective value o0, \(h(*)) :: g 104
Best objective value oy x(h*) $ $
0.6 N N
E EREE
H g
° °
0.4 £ 2 0.6
B £
2 2
= o 44
2 Z 04
024— " " " " - - v - . . - - v v v . -
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Tteration ¢ Tteration ¢ Tteration ¢
7 =10, A=001 =10, A=0.03 =10, A=0.05
1.0 =12 =
= Erp
T 1.0 S
0.8 1 e £ 100
= 4 = 4 7
Z08 £
0.6 = -
£ 0.6 2 075
4 g z
o = 0.4+ £ 050
S o
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Tteration ¢ Iteration ¢ Tteration ¢
y =125 \A=001 y =125 X=003 y =125 A=0.05
—~ 1.251 150 _
= = = 15
= 1.25 <
1.00 < <
£ 1.00 E
0.75 g g 1.0
20751 2
0.50 - z E
£ 0.50 —
8 8 0.5
0.25 +— T T T T T T T T T T T T T T T T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iteration Iteration t Iteration ¢

(a) Attrition

7 =0.75, A =0.01 7 =0.75, A = 0.03

06 —— t-th objective value 0, (1) | £ g
—— Best objective value 0, y(h*) | < 087 <
N M
0.5 _3 2
£ E
2 0.6 <
1 2
g 8
0.4 = =
S 04+ =]
0 2000 1000 6000 8000 10000 0 2000 4000 6000 8000 10000 0 2000 1000 6000 8000 10000
Iteration t Iteration t Iteration t
7 =1.0,A=0.01 7 =10, A=0.03 7=1.0,A=005
S S
= =104
5 <
: :
g F 081
£ £
E < 0.6
g g
: 044 . . . - . :
0 2000 14000 6000 8000 10000 0 2000 1000 6000 8000 10000 0 2000 14000 6000 8000 10000
Iteration ¢ ITteration ¢ Iteration ¢
v =125 A=0.01 v =125 A=0.03 v =125 A=0.05
< 101 <
0.6 1 3 z
N N
_.: 0.8 1 %
0.5 2 s
£ 064 H
0.4 =2 =
: : : . . S0l : . : : ! © : : . . . :
0 2000 1000 6000 8000 10000 0 2000 1000 6000 8000 10000 0 2000 1000 6000 8000 10000
Tteration ¢ Iteration ¢ Tteration ¢

(b) German

Figure 7: Convergence analyses of Algorithm 1.

Counterfactual Explanation Trees

Table 5: IQR of the time to answer in the user study.
Method Q1 median Q3
Clustering 901.25 1094.5 1491

AReS 660.75 730. 1049.75
CET 426. 524. 997.25

E DETAILS OF USER STUDY

An example of each method and questions of our user study (Section 5.3) is shown in Figures 8 to 11. The
participants see the explanation of the assigned method; the action and center of each cluster for Cluster-
ing (Figure 8), the rule set for AReS (Figure 9), and the decision tree for CET (Figure 10). In addition, they
answered the questions displayed like in Figure 11. Each method and questions were displayed on a single page.
Therefore, the participants were able to answer the questions with referring to the method.

We have attached as supplementary material a spreadsheet that summarizes the results of all participants’
answers. Note that we excluded the participants whose answer time exceeded one hour or who did not answer
all the questions when we calculated the average time. We show IQR of the answer time for each method in
Table 5.

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike

The Al model divided the past employees into four clusters. The effective way to change the
features for each cluster is as follows:

Action for Each Cluster

HowToChange

Maonthlylncome: #7951
Action 1 PercentSalaryHike: +1
(Acc: 71.4% f Cost: 0.172)

BusinessTravel: -1
Action 2~ Monthlylncome: +15902
(Acc: 80.0% / Cost: 0.924)

Monthlylncome: +17064
Action 3 PercentSalaryHike: +2
(Acc: 61.4% / Cost: 0.86)

BusinessTravel: -1
Action 4 = Monthlylncome: +14234
(Acc: 84.6% / Cost: 0.655)

The Al classifies an employee into one of the four clusters. Then it provides "Action X" for
an employee in the "Cluster X".
The center point of each cluster is as follows:

Center of each cluster

Feature Cluster 1 Cluster2 Cluster3 Cluster 4
Age 33.86 23.80 28.18 31.62
BusinessTravel 1.25 1.33 1.45 1.62
Education 2.86 240 2.66 2.92
JobLevel 2.71 1.00 1.00 1.15
Maonthlylincome 922114 1385.80 2410.27 382046
OverTime:True 71.4% 46.7% 75.0% 84.6%
PercentSalaryHike 13.86 14.93 15.07 13.89
OutstandingPerformanceRating:True 14.3% 20.0% 18.2% 15.4%
TotalWoerkingYears 9.86 0.67 391 6.92
TrainingTimesLastYear 1.71 3.00 2.66 277
WaorkLifeBalance 243 2.80 2.66 2.08
YearsAtCompany 5.00 0.60 2od 3.62
YearsinCurrentRole 343 -0.00 1.55 2.48
YearssinceLastPromotion 3.86 0.20 0.77 23
YearswithCurrManager 3.7 0.07 148 2.38
Department:HumanResources 0.0% 6.7% 11.4% 0.0%
Department:ResearchAndDevelopment 28.6% 46.7% 59.1% 84.6%
Department:Sales 71.4% 46.7% 29.5% 15.4%
JobRoleHealthcareRepresentative 28.6% -0.0% -0.0% -0.0%
JobRole;HumanResources 0.0% 6.7% 11.4% 0.0%
JobRole:LaboratoryTechnician 0.0% 40.0% 36.4% 69.2%
JobRole:Manager 0.0% 0.0% 0.0% 0.0%
JobRole:ManufacturingCirector 0.0% 0.0% 0.0% 0.0%
JobRole:ResearchDirector 0.0% 0.0% 0.0% 0.0%
JobRoleiResearchScientist 0.0% 6.7% 22.7% 13.4%
JobRole:SalesExecutive T1.4% -0.0% -0.0% 15.4%
JobRole:SalesReprasentative 0.0% 46.7% 29.5% 0.0%

Figure 8: Example of Clustering presented in the user study.

Counterfactual Explanation Trees

The Al model constructs a set of rules for suggesting measures.

When an employee matches a rule, the Al model suggests the corresponding
action.

When an employee does not match any rule, the Al model suggests the default
action.

If more than one rule is matched, the Al model suggests the action of the rule with
the highest probability.

Rule Action

If ‘OverTime=True'

Recourse
rul:: AND 'OutstandingPerformanceRating=False’ OverTime=False
(Probability: 58.2%)
If ‘BusinessTravel>=1" .
Recourse) BusinessTravel<1
rule 2 it el AND OverTime=False
(Probability: 13.9%) I
If ‘JobLevel<2’
Recourse AND 'Monthlylncome<2275" Monthlylncome>=15170
rule 3 AND 'OverTime=False’ AND OverTime=False
(Probability: 12.7%)
If ‘OverTime=True'
Recourse OverTime=False
Ty AND '2<=YearsIinCurrentRole<3’ AND 2<=YearsinCurrentRole<3
(Probability: 24.1%) =
Default Else Monthlylncome>=15170
rule AND OverTime=False

Figure 9: Example of AReS presented in the user study.

The Al model constructs a set of rules for suggesting measures.

The Al model classifies an employee according to the following diagram from
top to bottom depending on the employee’s features.

Then it provides the action that the employee reaches in the diagram.

i
YearsinCurrentRole =0 . YearsinCurrentRole > |
v
. .
Fals.e‘:r True False & True

Action 1 Action 2 Action 4

BusinessTravel : — | Monthlylncome : + 2278 BusinessTravel : - | OverTime : True — False

Monthlylncome : + 8502 | | OverTime : True — False Monthlylncome : + 2231 PercentSalaryHike : + |
(ACT. - 844 % (Cost - 0TI0 (ACE. : 750 % { Cost - 0.303) JACC. ;1000 % Cost - 0445) (ACC. : 969 % | Cost : 0.274)

Figure 10: Example of CET presented in the user study.

Kentaro Kanamori, Takuya Takagi, Ken Kobayashi, Yuichi Ike

Q1 (1/4)

Please answer a few questions for the following employee

Feature Value
1 Age 29
2 BusinessTravel 2
3 Education 2
4 JoblLevel 1
5 Monthlylncome 2439
6 QverTime True
7 PercentSalaryHike 24
8 QutstandingPerformanceRating True

9 TotalWorkingYears 1
10 TrainingTimesLastYear 3
1 WorkLifeBalance 2
12 YearsAtCompany 1
13 YearsinCurrentRole 0

14 YearsSincelastPromotion 1

15 YearsWithCurrManager [}
16 Department ResearchAndDevelopment
17 JobRole ResearchScientist

Please choose which measure the Al model suggests. This question asks how well you
understand the Al model Please do NOT choose your answer based on your preference.

BusinessTravel: 2 -> 1 (-1)
OverTime: True > False

Monthlylncome: 2439 > 19503 (+17064)
PercentSalaryHike: 24 - 26 (+2)

Monthlyincome: 2439 = 4717 (+2278)
OverTime: True > False

Monthlylncome: 2439 -> 10390 (+7951)
PercentSalaryHike: 24 -> 25 (+1)

Monthlylncome: 2439 -= 15170 (+12731)
OverTime:True->False

Please choose your confidencs lavel
5: Very confident
4: Confident
3: Somewhat confident
2: Slightly confident

1: Not confident at all

Figure 11: Example of our survey questions.

