DEANN: Speeding up Kernel-Density Estimation using Approximate
Nearest Neighbor Search

Matti Karppa
IT University of Copenhagen,
BARC

Abstract

Kernel Density Estimation (KDE) is a non-
parametric method for estimating the shape
of a density function, given a set of sam-
ples from the distribution. Recently, locality-
sensitive hashing, originally proposed as a
tool for nearest neighbor search, has been
shown to enable fast KDE data structures.
However, these approaches do not take ad-
vantage of the many other advances that have
been made in algorithms for nearest neigh-
bor algorithms. We present an algorithm
called Density Estimation from Approximate
Nearest Neighbors (DEANN) where we apply
Approximate Nearest Neighbor (ANN) algo-
rithms as a black boxr subroutine to compute
an unbiased KDE. The idea is to find points
that have a large contribution to the KDE
using ANN, compute their contribution ex-
actly, and approximate the remainder with
Random Sampling (RS). We present a theo-
retical argument that supports the idea that
an ANN subroutine can speed up the evalua-
tion. Furthermore, we provide a C+-+ imple-
mentation with a Python interface that can
make use of an arbitrary ANN implementa-
tion as a subroutine for kernel density esti-
mation. We show empirically that our imple-
mentation outperforms state of the art imple-
mentations in all high dimensional datasets
we considered, and matches the performance
of RS in cases where the ANN yield no gains
in performance.

Proceedings of the 25" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

Martin Aumiiller
IT University of Copenhagen

Rasmus Pagh
University of Copenhagen,
BARC

1 INTRODUCTION

Kernel Density Estimation (KDE) is a nonparametric
method for estimating the shape of a density func-
tion, given a sample from the distribution. For a
dataset X C R% and a kernel function Ky, : R xR —
[0,1], the kernel density estimate of the gquery vec-
tor y € R? is given by

KDEx (y) = % > Ku(z,y). (1)
rxeX

A common choice for the kernel function is the Gaus-
stan kernel

Kn(z,y) = exp <—W> ; (2)

where the constant h > 0 is the bandwidth parameter.
In the one-dimensional case, the KDE has a simple in-
terpretation with this kernel function: given a set of
points, plot a Gaussian Probability Density Function
(PDF) centered at each point, and the KDE is the
density function we get by taking the average of all
these PDFs at each point. The bandwidth is thus the
variance parameter, controlling the width of each bell
curve. The KDE may thus be viewed as a generaliza-
tion of the histogram with soft bins, and is routinely
used for smoothing with libraries such as Seaborn.!

The Gaussian kernel is an example of a radially de-
creasing kernel, that is, its value depends only on
the distance between the two operands x and y, and
is monotonically decreasing, exponentially so. This
family includes, for example, the exponential ker-

_lz=yll
h

nel Ky = exp() and the Laplacian kernel

R

). Other common kernels include
the Epanechnikov kernel, the rectangular (or tophat)
kernel, or the triangular (or linear) kernel (Silverman,

1986, Chapter 3), see also (scikit-learn developers,

"https://seaborn.pydata.org/, see particularly the
function kdeplot.

https://seaborn.pydata.org/

DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search

2021, Section 2.8.2). Though our methods will ap-
ply to any radial kernel, we focus on the exponentially
decreasing radial kernels.

The KDE is easily generalized into the multivariate
case. The bandwidth may also be generalized into a
cross-dimensional matrix that corresponds to the co-
variance matrix, but we restrict ourselves to scalar con-
stant bandwidth. For kernels dependent only on the
distance between points, the bandwidth parameter can
be seen as a scaling parameter for the distances, and
in practical applications, the choice of proper band-
width is important to ensure that the KDE values are
meaningful, that they show essential features of the un-
derlying distribution without becoming overly smooth
while at the same time avoiding the introduction of
sampling artifacts (Jones et al., 1996). It is immediate
from Equation (2) that, if we let h — oo, the contribu-
tion of each summand in Equation (1) approaches 1;
conversely, if we let h — 0, only the nearest neighbors
have significant contribution to the sum.

The KDE has seen use in applications such as esti-
mating gradient lines of densities (Arias-Castro et al.,
2016) and outlier detection (Schubert et al., 2014). In
machine learning, KDE is used in classification (Gan
and Bailis, 2017).

The problem with a naive application of Equation (1)
to compute the KDE value is that the sum depends on
all points in the dataset; that is, an individual query
requires (nd) operations. If the number of queries is
large, this may be prohibitively expensive. An imme-
diate improvement over the naive summation is to use
Random Sampling (RS): it can be shown that com-
puting the KDE on a subset of m = O(ﬁ) points,
sampled uniformly at random with or without repe-
tition, yields an unbiased estimator that provides a
relative (1 + ¢)-approximation guarantee on KDE val-
ues in the excess of 7, with constant probability.? De-
spite this simplicity, it has turned out to be difficult to
improve on RS asymptotically whilst preserving the-
oretical guarantees in high dimensions (Charikar and
Siminelakis, 2017).

1.1 Owur Contribution

In this paper:

(i) We introduce an algorithmic approach to speed
up kernel density estimation using approximate
nearest neighbor algorithms as a black box. We
call our approach DEANN, for Density Estima-
tion from Approximate Nearest Neighbors,

2If p > 7 is the KDE value, the estimate E produced
by the algorithm satisfies max{E/u, u/E} < (1 +) with
constant probability.

(ii) We provide a theoretical justification for the un-
biasedness, and for the correctness and viability
of our approach on real-world data, and

(iii) We report on an extensive experimental study
that compares our implementation to previous
state-of-the-art approaches.

All of our code is available online® under the MIT li-
cense, inlcuding the experimental pipeline.* The code
includes dataset generation and preprocessing as well
as post-processing of results, allowing for reproducibil-
ity and serving as a starting point for future work.

In more detail, a central idea in the attempt to speed
up the evaluation of KDE sums of the form of Equa-
tion (1) is to split the sum into near and far compo-
nents, depending on the distance to the dataset points
from the query vector. We then wish to compute the
contributions of the near points exactly, and approxi-
mate the contribution of the far away points. However,
we cannot hope to retrieve the actual nearest neigh-
bors of the query point in a high-dimensional space
efficiently, so we resort to ANN and compute the ex-
act contribution of an approximate nearest neighbors
set. Combining ANN and random sampling naively
does not result in an unbiased estimator, but we show
how to efficiently correct for this bias. In fact, we ob-
tain an estimator that is unbiased regardless of the
quality of the ANN data structure. Only the variance
of the resulting estimator is affected by the quality of
the nearest neighbors approximation.

In Section 3 we formally define the DEANN algorithm,
prove that it is an unbiased estimator of the KDE
value, and provide theoretical arguments that support
the idea that (and when) nearest neigbors can help in
the estimation of KDE values. In Section 4, we dis-
cuss our actual C++ implementation with a Python
interface that can utilize an arbitrary ANN implemen-
tation as a black box, and show in Section 5 that the
result performs well in a practical experimental set-
ting. Due to lack of space, we have relegated some of
the additional experiments into the appendix.

Limitations. While our work is very general, this
generality also manifests itself in that we have so far no
theoretically grounded way to choose the parameters
except empirical grid search of the parameter space.
Also, we are dependent on the ANN subroutine which
means we cannot provide a theoretical runtime analy-
sis for the algorithm without knowing the internals of
the ANN algorithm.

3https://github.com/mkarppa/deann
‘https://github.com/mkarppa/deann-experiments

https://github.com/mkarppa/deann
https://github.com/mkarppa/deann-experiments

Matti Karppa, Martin Aumiiller, Rasmus Pagh

1.2 Related Work

Kernel density estimation. Three independent
lines of research can be identified based on space-
partitioning trees, data sparsification, and Locality-
Sensitive Hashing (LSH). Methods based on creating
a tree structure for partitioning the search space in-
clude (Gray and Moore, 2000, 2003; Lee et al., 2005;
Lee and Gray, 2008; Morariu et al., 2008; Ram et al.,
2009), but these methods are prone to suffer from the
curse of dimensionality. An interesting development of
this line of research is ASKIT (March et al., 2015) that
is in some cases able to perform also with high dimen-
sional data if the data exhibits suitable structure; the
authors provide an implementation as free software.

In particular, March et al. (2015) also use the idea of
splitting up the contributions of near and far points,
but compute the contribution of far points in a differ-
ent way. They prune the KDE computation in a tree-
based space partitioning by approximating the contri-
butions to the KDE value during a sub-tree traversal.
To apply this pruning, they run a bottom-up phase
in the tree construction. For each node in the tree,
they look at the nearest neighbor information among
the nodes in the sub-tree and enrich these results with
random samples. From that, they can store a short
summary in the node. This allows them to prune the
computation at intermediate nodes in the top-down
traversal for points that are guaranteed to be far away
from the query. In contrast to the approach of March
et al. (2015), we use simple, data-independent random
sampling, which is not only faster but also has the
benefit of providing an unbiased estimator.

A second line of research includes e-samples or core-
sets (Phillips, 2013; Zheng et al., 2013; Phillips and
Tai, 2020), subsamples of the data that offer ap-
proximation guarantees. Optimal coresets are often
constructed as random samples with high-probability
guarantees, and thus offer performance similar to RS.

The third line of work was initiated with the Hashing
Based Estimators (HBE) of Charikar and Siminelakis
(2017). They applied importance sampling to model
KDE values through the collision probability of Eu-
clidean Locality Sensitive Hashing (ELSH) (Datar
et al., 2004). Follow-up work includes Hashing Based
Sketches (HBS) (Siminelakis et al., 2019) that was em-
pirically shown to outperform ASKIT, and the work
of Backurs et al. (2019) who presented an improve-
ment on the space usage. Very recently, Charikar et al.
(2020) further improved the asymptotic running time
and space complexity in this line of research by using
data-dependent LSH (Andoni et al., 2017).

A more detailed discussion of the different methods is
presented in Appendix B.

Approximate Nearest Neighbor Search. Near-
est neighbor search is a key primitive in many data
mining and machine learning applications. If vectors
are embedded in a high-dimensional space, as is stan-
dard in computer vision (Netzer et al., 2011) or natural
language processing (Pennington et al., 2014), ezact
nearest neighbor search becomes difficult, an instance
of the curse of dimensionality.

A long line of research focused on providing efficient
implementations to find approrimate nearest neigh-
bors. While these approaches often lack theoretical
guarantees, they provide a large speed-up over an ex-
act linear scan with only a small loss in accuracy
on real-world data; see for example the large-scale
evaluation study in Aumiiller et al. (2020). Several
techniques can be used to build efficient ANN sys-
tems: graph-based approaches, such as Iwasaki and
Miyazaki (2018) and Malkov and Yashunin (2020),
provide fast query times but are expensive in prepro-
cessing; cluster-based techniques like Johnson et al.
(2017) and Guo et al. (2020) feature faster index build-
ing times with a small loss in throughput. LSH-based
approaches such as Andoni et al. (2015) and Aumdiller
et al. (2019) give theoretical, probabilistic guarantees
on the result quality, but are often slower than the
aforementioned approaches in practice.

2 PRELIMINARIES

We write [n] = {0,1,...,n — 1}. We say that a bijec-
tion 7: [n] = [n] is a permutation.

We define the KDE problem formally as follows.

Definition 1 (Kernel Density Estimate). Given a
dataset X = {xg,z1,...,2,_1} C R? of d-dimensional
vectors, a constant bandwidth A > 0, a kernel function
K, :R?* x RY = R, and a query vector y € RY, we say
that the Kernel Density Estimate (KDE) of y is

n—1
1
KDEx (y) = - E Ky (zi,y) .
i=0

We often write 4 = KDEx (y) when y, X, h, and K},
are clear from the context.

We call kernels that are monotonically decreasing func-
tions of the distance between a pair of points radially
decreasing. If the kernel K}, is a function of the Eu-
clidean distance of the pair of points, such as the Gaus-
sian or exponential kernels, we say it is Fuclidean.

Given the dataset X C R? and a query vector y € R?,
we denote with (z(, ..., 2},_;) the sequence of dataset
vectors sorted by distance to y.

We say that a random variable Z is an unbiased es-
timator of p if F[Z] = u. We present the following

DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search

well-known result that the KDE can be efficiently ap-
proximated with random sampling.

Lemma 2 (Random Sampling). Let X C R, y € R9.
Let T € (0,1) such that KDEx (y) > 7. Drawing a uni-
form random sample X' C X (with repetition) of size
m = O(==) and computing KDEx (y) yields an unbi-
ased (1+5) approzimation of KDEx (y), with constant
probability.

Proof. See Appendix C. O

The bound on m in Lemma 2 is tight up to a constant
for worst-case input (see Appendix C).

3 ALGORITHMIC APPROACH
AND THEORETICAL
FOUNDATIONS

3.1 Decomposing the KDE

We start by proving the following lemma that states
that the KDE of a query y can be estimated from
individual estimates on a partition of the dataset.

Lemma 3. Let the n-vector dataset X C R? be par-
titioned into two non-empty parts A, B C R?, that is,
X =AUB and ANB = 0. Lety € R? be an arbitrary
query vector, and let Za4 and Zp be unbiased estima-
tors of KDE 4(y) and KDEg(y), respectively. Then,

A B
EL
n n

AR
is an unbiased estimator for KDEx (y).

Proof. By linearity of expectation and the definition
of unbiased estimators, we have

4] |B| A B
|A‘
= | | E + | | E Kr(b,y)

beB
1
=~ Y Knu(z,y) = KDEx(y) .
r€EAUB

E[Z'] =

3.2 Algorithmic Approach

Given a query y € R? and a dataset X =
{20,71,...,2n_1} C R? of n points, assume we have
access to a black box subroutine ANNy (y) that re-
turns (the indices of) k approximate nearest neighbors
X1 C X ofy € R, We can apply Algorithm 1 to com-
pute an unbiased estimate I/(_]\)/Ex(y) of the KDE.

Algorithm 1 DEANN.

Input: Dataset X = {xg,71,...,2,_1} C R%,
query vector y € RY, kernel function
K : R¥xR? — R, approximate nearest
neighbor function ANNy : R? — [n]*.

Output: Unbiased est. Ia:\)/EX(y) of KDEx (y).

1: function DEANN(X, Kj, ANNy, y)
2: X1 < {z;:i€ ANNx(y)}. > Find k¥ ANN
3: Xo+— X\ X5. > {Xl,XQ} is a partition of X.
4: Z, + KDEy, (y Z Kp(z,y).

:I:EX1
5: S ¢ size-m umform random sample from Xs.

6: Zy < KDEg(y ZKh z,7).

IES
n—=k

__ k
7 KDEx(y) «— ﬁZl + ZQ.

8: return Ia\)_l/*]x(y)
9: end function

The algorithm works by partitioning the dataset into
two parts: one where all data points are close to the
query vector, and the remainder. The contribution
of the near vectors is computed exactly, and the re-
mainder is approximated by random sampling. This
idea bears resemblance to that of the hierarchical tree
methods, but is expressed very concisely, and the near-
est neighbors algorithm is treated as black box. In-
deed, the algorithm is very general: it admits arbitrary
kernels, metrics, and ANN algorithms, assuming they
are compatible with one another.

The algorithm has two parameters: the number of
neighbors to query k and the number of random sam-
ples m. At the extremes, when either k or m is zero,
the algorithm either falls back to simple random sam-
pling, or simply discards all far points. Both cases
may be appropriate for certain datasets at very small
or very large bandwidth values. This also guarantees
that the algorithm performs asymptotically at least as
well as simple random sampling.

Since KDEx, (y) is the exact contribution of k data
points to the KDE of y, and a random sample on X\ X
results in an unbiased estimator of KDEx\ x, (y), we
may conclude by Lemma 3 that Algorithm 1 returns
an unbiased estimator.

Corollary 4. The value KDEy (y) in DEANN (Algo-
rithm 1) is an unbiased estimator of KDEx (y).

The estimate is unbiased no matter the quality of the
near neighbors returned by ANNy (y). This property
is crucial: it allows us to use fast ANN implementa-
tions in practice that have no theoretical guarantees
on the quality of their answers.

Matti Karppa, Martin Aumiiller, Rasmus Pagh

3.3 Contribution of Nearest Neighbors in
Real-World Datasets

According to Dong et al. (2008), the distance distribu-
tion of distances from query points follows a Gamma
distribution in many real-world datasets. While the
shape and scale parameters of the distribution may
differ widely between various datasets, they can be
estimated efficiently from a small sample. As Dong
et al. (2008) observe, the same is true for the distance
distribution of the k-th nearest neighbors. In partic-
ular, Pagel et al. (2000) propose that the average dis-
tance of the k-th nearest neighbor under squared Eu-
clidean distance can be modeled as a power-law func-
tion a(k/n)?, where a > 0 is a constant depending on
d, and 1/8 > 1 is the intrinsic dimensionality of X.

A rule of thumb for the selection of the bandwidth is to
pick the median distance to the nearest neighbor as a
bandwidth parameter (Jaakkola et al., 1999). The fol-
lowing lemma shows that, given a distance distribution
that follows a power-law distribution, this bandwidth
selection rule results in KDE values dominated by the
contribution of a poly-logarithmic number of nearest
neighbors. Deviating from this rule by much results in
KDE values that are meaningless: too close to 0 or 1.

Lemma 5. Given a,1/38 >0, X C R? with |X| = n,
and y € R?, assume that ||z} — y||3 = a((i + 1)/n)?
for i € [n]. For the Gaussian kernel Kp(x,y) =
exp (—||lz — y[|3/(2h?)), it holds that

(a) If h2 = (a/2)n=P, the contribution of the first
k = ©(log"/? n) nearest neighbors is a (1+ o(1))-
approzimation of the KDE value.

(b) Let 7 € (0,1). If h®* < (a/2)n~"/In(1/7),
KDEx(y) < 7.

(¢) IF 2 > n(1/(1 - 6))a/(26), KDEx(y) > 1 6.

Proof. See Appendix D. O

3.4 How Nearest Neighbors Help Random
Sampling

While the previous subsection gave a theoretical rea-
son why the rule-of-thumb for bandwidth selection is
useful in practice, it assumed exact distances and ig-
nored the fact that, in practice, logl/ﬁn might be
a large number. In general, every partition of the
dataset X into S and X \ S in Algorithm 1 results
in an unbiased estimator. However, it is unclear how
the random sampling approach improves the estimate
when the contribution of the k-nearest neighbors is
known. This is because the number of samples m in
Algorithm 1 is independent of the size n — | S| of X'\ S
(see Lemma 2). The following definition and the re-
sulting lemma show that the larger the contribution

of the nearest neighbors, the fewer samples suffice to
obtain a (1 4 ¢)-approximation of the KDE value.

Definition 6. Givenn > 1,6 € (0,1), and k € [n], let
X C RY with | X| = n. Given y € R?, we say that the
pair (k,0) dominates KDEx (y) if Zf:_ol Kp(zh,y) =
(1-6) 3150 Kn(afy)-

The following lemma says that if the KDE value is
(k,0)-dominated, a d-fraction of random samples is
sufficient to obtain a (1 + ¢)-approximation.

Lemma 7. Let ¢ > 0, and KDEx(y) > 7. If (k,0)
dominates KDEx (y), then usingm = © (2=) samples
guarantees that with constant probability, KDE x(y) is
a (1 + &)-approximation.

Proof. See Appendix E. O

4 IMPLEMENTATION AND
ENGINEERING CHOICES

Implementation. We have implemented our algo-
rithm in C++, using Intel MKL as backend for linear
algebra and vectorized array computations. The im-
plementation can be used as a Python module, and ac-
cepts arbitrary ANN libraries as a black box through
a Python interface. We provide example interfaces
for using scikit-learn NearestNeighbors as a baseline,
and FAISS (Johnson et al., 2017) as a practical ANN
implementation. The code is available online® under
the MIT license and includes the naive algorithm, ran-
dom sampling, and DEANN.

Optimizations for Euclidean kernels. While Al-
gorithm 1 is agnostic to the choice of the kernel, some
further optimizations are possible if we restrict our-
selves to Euclidean kernels. We make the following
observation regarding the Euclidean norm. Using of
the identity ||z — y|13 = ||=]|3 +||y||3 — 2 (z,y) enables
the use of the matrix-matrix multiplication primitive
GEMM to speed-up batch evaluation of FEuclidean dis-
tances, described in more detail in Appendix F.

Optimizing random sampling. A practical limi-
tation of the random sampling routine is that a di-
rect implementation would mandate random access to
memory. To make effective use of a CPU’s prefetching
ability, data must be accessed in a linear or other-
wise well-predictable fashion. We speed up our ran-
dom sampling scheme by permuting the dataset vec-
tors during preprocessing. We can then take a contigu-
ous subset of the permuted vectors as the sample which
can also be combined with the matrix multiplication
optimization described above, using the matrix-vector

Shttps://github.com/mkarppa/deann

https://github.com/mkarppa/deann

DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search

multiplication primitive GEMV. For completeness, pseu-
docode is given in Appendix G. For a single query, this
permuted random sampling amounts to random sam-
pling without replacement; however, we lose indepen-
dence when considering multiple queries. Although
problematic when facing an adversary, the results are
equally good in practice, as shown in the next section.

5 EXPERIMENTS

Implementations. All implementations considered
in our experiments are listed in Table 1. We dis-
ambiguate implementations from abstract algorithms
by writing the name of the implementation in type-
writer typeface. For example, we distinguish between
the naive and permuted random sampling implemen-
tations by writing RS and RSP, respectively. We refer
to the variants of DEANN that use naive and per-
muted random sampling as a subroutine by DEANN and
DEANNP, respectively. We evaluate our implementation
against the HBE implementation of Siminelakis et al.
(2019), and the standard implementation provided by
scikit-learn (Pedregosa et al., 2011).

The variant of HBE considered is called AdaptiveHBE
in the code of Siminelakis et al. (2019), and uses the
HBS procedure (Siminelakis et al., 2019, Algorithm 4)
for subsampling the data and the Adaptive Mean Re-
laxation (AMR) procedure (Siminelakis et al., 2019,
Algorithm 2) for early termination of queries. For
completeness, we also evaluate the AdaptiveRS vari-
ant of random sampling provided by Siminelakis et al.
(2019) that uses AMR with the RS estimator, and
denote it by RSA. To our understanding, these are
the particular varieties evaluated in Siminelakis et al.
(2019). We instrumented their code to produce the
output necessary in post-processing; the full version of
their code used for this paper is accessible through the
deann-experiments repository.

We include the KernelDensity from scikit-learn (Pe-
dregosa et al., 2011) as a baseline since scikit-learn
is widely used in practical data science applications.
This implementation uses k-d trees or ball trees with
an optional error tolerance parameter for accelerating
KDE evaluations. We denote the two different choices
for data structure by SKKD and SKBT, respectively.

We use FAISS (Johnson et al., 2017) as the ANN im-
plementation with our estimator algorithms. In par-
ticular, we use their inverted file index which runs k-
means on the dataset. From the centroids of k-means,
it builds a linear-space data structure in which each
dataset point is assigned to its closest centroid. When
answering a query, it inspects all points associated
with the n, closest centroids to the query. Both &
and n, are user-defined parameters that are provided

Table 1: Implementations Used in the Experiments.
Name Description Reference

Naive FExact using GEMM Section 4

RS Naive RS Lemma 2

RSP Permuted RS Section 4

DEANN DEANN with RS Section 4

DEANNP DEANN with RSP Section 4

HBE HBE estimator Siminelakis et al. (2019)
RSA Adaptive RS Siminelakis et al. (2019)

SKKD sklearn k-d-tree Pedregosa et al. (2011)

SKBT sklearn balltree ~ Pedregosa et al. (2011)
Table 2: Description of the Datasets.

Dataset n d Reference

ALOI 108,000 128 Geusebroek et al. (2005)

CENSUS 2,458,285 68 US Census Bureau

CovTYPE 581,012 54 Blackard and Dean (1999)

GLOVE 1,193,514 100 Pennington et al. (2014)

LAST.FM 292385 65 Celma (2010)

MNIST 60,000 784 Lecun et al. (1998)

MSD 515,345 90 Bertin-Mahieux et al. (2011)

SHUTTLE 58,000 9 NASA

SVHN 531,131 3072 Netzer et al. (2011)

to the implementation. Although FAISS supports ex-
tensive parallelism with GPUs, we limit ourselves to
the single-threaded CPU version. This is because our
implementation is entirely single-threaded to make it
comparable with pre-existing single-threaded imple-
mentations; we also disabled multithreading in MKL.

In the appendices, we provide additional evaluation re-
sults that include (i) further considerations on the ro-
bustness of parameter choices in Appendices H and I,
and (ii) experiments using the Gaussian kernel (includ-
ing ASKIT by March et al. (2015) as a competitor)
in Appendix J. The trends observed in the main text
translate well into these settings.

Datasets. The datasets considered are presented in
Table 2. The names of datasets are written in small
caps. The choice of datasets includes the ones that
were used in previous works (Siminelakis et al., 2019;
Backurs et al., 2019) for the sake of reproducibility
of results, and also present variation in the quality
of data, the size of the dataset, and the number of
dimensions. In all cases, we split the datasets in three
disjoint subsets: a validation set of 500 vectors, a test
set of 500 vectors, and a training set consisting of the
remainder of the data. The training set is used as the
set X against which the KDE values are computed.
The validation and the test set are used as queries.

Bandwidth selection. Following the approach
in Backurs et al. (2019), we chose four target KDE
values 1072, 1073, 1074, and 10~° and applied binary

Matti Karppa, Martin Aumiiller, Rasmus Pagh

search on the validation set to find a bandwidth pa-
rameter h such that the median exact KDE value of
the validation set vectors is within a relative error 6 of
0.01 from the target value. The reason for this choice
of multiple bandwidth values is that the KDE values
are very sensitive to a right choice of bandwidth; as
the bandwidth serves as a scaling factor to distances,
a very large bandwidth will make the distances mean-
ingless and it does not matter which points we look
at, whereas a very small bandwidth together with the
exponential decay of the kernel as a function of dis-
tance means that the nearest neighbors completely
determine the KDE values. By trying different band-
widths, we explore the intermediate region where both
far-away points and nearby points contribute to the
typical density values. For brevity, we will sometimes
refer to the target value by the letter p in the remain-
der of this section.

Experimental pipeline. We evaluate the validation
set using the exponential kernel on different algorithms
and with different parameter values. The supplemen-
tary material includes additional experiments with the
Gaussian kernel. The parameters were chosen by a
grid search over pre-selected parameter ranges; see the
supplemental code for detailed hyperparameter ranges.
We exclude the parameter choices that exceed relative
error 0.1, and then choose the fastest set of parameters
with respect to average query time.

The best choice of parameters is used to evaluate the
test set, on which we report the relative error, average
query time, and the number of samples looked at, as
an average of five independent repetitions. For HBE,
we treat the relative approximation error ¢ and the
minimum KDE value 7 as free parameters to be op-
timized. For the scikit-learn-based implementations
SKKD and SKBT, the parameters are relative tolerance ¢,
which controls which subtrees the implementation dis-
regards, and the leaf size ¢ of the evaluation tree,
where the implementation falls back to brute force.
For DEANN, the parameters are the number of near-
est neighbors k, the number of random samples to con-
sider m, the number of clusters FAISS constructs ny,
and the number of clusters FAISS queries n,.

Machine details. The experiments were run on a
shared computer with two 14-core Intel Xeon E5-2690
v4 CPUs, amounting to 28 physical CPU cores, run-
ning at 2.6 GHz, 512 GiB RAM, and using Ubuntu
16.04 LTS. The code was compiled with CLang 8.0.0,

SFor an individual query vector y, let the estimated
KDE be Z and the correct KDE be p. We then say
that the relative error is |Z — p|/p. For a query set
Q ={q1,q2,-..,9m} such that the estimated KDE for the
query vector ¢; is Z; and the correct KDE is p;, we say

that the average relative error is - e 1 Z5 = wsl/ g

against Intel MKL version 2020.2, and the experiments
were run using CPython 3.8.5, NumPy 1.19.2, scikit-
learn 0.23.2, and FAISS version 1.7.0. The Python
environment, inlcuding MKI and FAISS, were man-
aged through Anaconda 2020.11. A small amount of
other load was present on the computer.

Results on validation set. Computing the KDE
value with different methods on the validation set pro-
vided the following insights: For target KDE values
of 1072 and 1073, DEANN will usually fall back to
random sampling which provides faster query times.
For smaller KDE values, the best query times were
achieved by combining the contribution of the nearest
neighbors and random sampling. Notable exceptions
were LAST.FM where using k nearest neighbors pays off
even for large KDE values, and GLOVE and SVHN,
where random sampling was the best choice for all u.

Table 3 lists the parameters that achieved the best
query time with respect to the validation set at rela-
tive error below 0.1 for a subset of datasets. For lack
of space, only the parameters for RSP, DEANNP, HBE,
and SKKD are reported; the parameters for other al-
gorithms are very similar. The subset was chosen to
represent three different cases: a mixed case (ALOI)
where DEANNP performs the best for some bandwidth
choices and is on par with RSP for others, a case that
favors DEANNP (LAST.FM), and a case where RSP per-
forms the best (SVHN) and DEANNP essentially falls
back to random sampling. The full set of parameters
is reported in Appendix H.

Table 4 shows the average recall rates for FAISS at
the choice of parameter that provided the best re-
sults. The subset of results is different from Table 3
to highlight the extrema. The average fraction of true
neighbors returned ranged from 0.23 (ALOI, k = 400,
p=1073) to 0.98 (SHUTTLE, k = 50, u = 10~°) with
a wide range of different values attained between these
extrema. The full set of results together with an ex-
tended discussion is presented in Appendix H.

Results on test set. A subset of the main results
are reported in Table 5, the same subset as in Table 3.
The full set of results is presented in Appendix H. The
table lists the average query time per query vector in
milliseconds, ordered by the dataset and the target u.

Performance discussion. In almost all cases, either
DEANNP or RSP was the fastest implementation, as indi-
cated by bold typeface (with the exception of Covtype
at u = 107°). In cases where RSP was the fastest al-
gorithm, DEANNP does not lose significantly because it
falls back to random sampling; the runtimes are very
similar in those cases, apart from the slight overhead
of the more complex implementation. RSP provides
speedups of a factor of 2-10 for most workloads com-

DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search

Table 3: The Best Choice Of Parameters Achieving Less Than 0.1 Relative Error For A Subset Of
Dataset/Target 1 Choices.
RSP DEANNP HBE SKKD

Dataset Target p h m k m ngng € T 4 it
ALOI 0.01 3.3366 230 0 170 512 1 1.1 0.001 40 0.2
ALOI 0.001 2.0346 1800 0 2100 512 1 0.6 0.0001 90 0.2
ALOI 0.0001 1.3300 29000 170 500 1024 5 n/a n/a 80 0.2
ALOI 0.00001 0.8648 78000 120 430 1024 5 n/a n/a 90 0.2
LAST.FM 0.01 0.0041 75000 60 350 1024 1 n/a n/a 10 0.2
LAST.FM 0.001 0.0026 85000 70 800 512 1 n/a n/a 10 0.15
LAST.FM 0.0001 0.0019 160000 50 350 2048 5 n/a n/a 20 0.1
LAST.FM 0.00001 0.0015 200000 80 450 2048 5 n/a n/a 100 0.15
SVHN 0.01 632.7492 150 0 120 512 1 1.2 0.0001 70 0.2
SVHN 0.001 391.3900 400 0 350 512 1 n/a =n/a 60 0.2
SVHN 0.0001 277.1836 900 0 800 512 1 n/a n/a 60 0.2
SVHN 0.00001 211.4066 1900 0 2000 512 1 n/a n/a 60 0.2

Table 4: Average Recall Rates For The Approximate Nearest Neighbors Returned By FAISS.

DEANN DEANNP
Dataset Target u k m ng Ng R k m nyg Ng R
ALOI 0.001 170 400 512 1 023 n/a n/a n/a n/a n/a
ALOI 0.0001 200 430 1024 5 0.72 170 500 1024 5 0.74
LAST.FM 0.01 50 400 2048 1 024 60 350 1024 1 0.88
LAST.FM 0.001 70 200 2048 5 0.86 70 800 512 1 097
MSD 0.00001 210 1800 4096 10 0.45 210 2100 2048 5 0.43
SHUTTLE 0.00001 50 0 512 5 0.98 50 0 512 5 0.98

Table 5: Results of Evaluating the Different Algorithms Against the Test Set in Milliseconds / Query.

Dataset Target p Naive RS RSP DEANN DEANNP HBE RSA SKKD SKBT
ALOI 0.01 1.061 0.050 0.022 0.025 0.016 0.623 0.808 58.498 48.353
ALOI 0.001 1.058 0.326 0.105 0.211 0.148 12.192 41.411 59.353 47.644
ALOI 0.0001 1.055 6.477 1.698 0.270 0.197 n/a n/a 55.786 47.916
ALOI 0.00001 1.05721.781 4.548 0.219 0.182 n/a n/a 47.930 49.698
LAST.FM 0.01 2.593 12.704 2.145 0.227 0.181 n/a n/a 104.039 94.147
LAST.FM 0.001 2.621 17.183 2.455 0.277 0.222 n/a n/a 99.893 86.006
LAST.FM 0.0001 2.753 48.630 4.699 0.294 0.247 n/a n/a 98.582 83.999
LAST.FM 0.00001 2.923 40.249 5.993 0.330 0.263 n/a n/a 85.621 83.367
SVHN 0.01 42.094 0.290 0.189 0.255 0.448 11.830 96.613 3447.218 2521.555
SVHN 0.001 42.172 0.747 0.500 0.698 0.938 n/a 56.270 3471.669 2509.883
SVHN 0.0001 42.260 2.207 1.096 1.503 1.459 n/a 83210.996 3455.433 2495.796
SVHN 0.00001 41.748 3.743 2.262 3.758 2.852 n/a n/a 3496.380 2445.718

pared to RS. In the small bandwidth regime where the
ANN contribution helps most, RSP is often slower by a
factor of 10 or more than DEANN. Contrasting our im-
plementations to competitors, we can compare to HBE
consistently only for target KDE value of 0.01 and,
usually, 0.001. In this setting, performance is clos-
est on COVTYPE with target KDE value 0.001 (HBE is
roughly 2.5 times slower), but we observe a speedup
of 1-2 orders of magnitudes in many other settings,
while being robust even for very small target values.

The tree-based methods of scikit-learn did not perform
very well in our experiments. This is largely due to
the fact that the datasets are high-dimensional and the
space-partitioning methods tend to scale exponentially
with dimension. Indeed, scikit-learn performed ade-
quately in comparison to our Naive implementation
only on SHUTTLE, the dataset with smallest d, and—
surprisingly—COVTYPE with smallest target KDE.

Task difficulty. Some results are missing: for SHUT-

Matti Karppa, Martin Aumiiller, Rasmus Pagh

Table 6: A Subset Of Preprocessing Times In Seconds.

Dataset Target puNaive RS RSP DEANN DEANNP HBE RSA SKKD SKBT ASKIT
ALOI 0.01 0.006 0.0000.055 0.377 8.775 22.2850.000 4.929 5.155 21.455
ALOI 0.00001 0.006 n/a n/a 0.154 0.146 n/a n/a 5.782 4.949 6.372
CeNnsus 0.01 0.0810.0000.945 3.568 14.269 101.7270.000 25573.250 22917.678 n/a
CovTyPE0.01 0.0170.0000.179 26.056 0.336 11.0080.000 5.644 4.098 572.824
CovTypPE0.00001 0.016 n/a n/a 0.593 0.621 n/a n/a 5.026 4.010 75.267
MNIST 0.01 0.0170.0000.159 1.700 0.813100.3230.000 12.369 11.154 14.053
MNIST 0.00001 0.0160.0000.155 0.447 0.443 n/a n/a 12461 11.022 4.397
MSD 0.01 0.0200.0000.223 9.319 9.395 n/a n/a 12378 10.359144.805
MSD 0.00001 0.0190.0000.224 0.446 0.460 n/a n/a 11.614 10.028 144.940
SHUTTLE 0.01 0.0010.0000.007 0.238 0.070 2.006 0.000 0.687 0.658 0.593
SVHN 0.01 0.5830.0005.590262.6131651.727 n/a n/a 454.764 473.117 n/a
SVHN 0.00001 0.7720.0005.592 16.252 16.640 n/a n/a 431.374 452.096 n/a

Table 7: Average Relative Error Against The Test Set With Best Parameters.

Dataset Target p Naive RS RSP DEANN DEANNP HBE RSA SKKD SKBT

ALOI 0.01 0.000 0.095 0.090 0.100 0.102 0.110 0.099 0.076 0.091

ALOI 0.001 0.000 0.106 0.113 0.104 0.101 0.096 0.097 0.092 0.097

ALOI 0.0001 0.000 0.102 0.099 0.100 0.100 n/a n/a 0.098 0.098

ALOI 0.00001 0.000 0.072 0.102 0.092 0.094 n/a n/a 0.099 0.098

LAST.FM 0.01 0.001 0.061 0.052 0.111 0.114 n/a n/a 0.094 0.091

LAST.FM 0.001 0.001 0.095 0.092 0.111 0.089 n/a n/a 0.086 0.056

LAST.FM 0.0001 0.002 0.056 0.086 0.109 0.108 n/a n/a 0.051 0.073

LAST.FM 0.00001 0.004 0.093 0.088 0.092 0.096 n/a n/a 0.105 0.161

SVHN 0.01 0.000 0.081 0.081 0.092 0.093 0.109 0.048 0.098 0.098

SVHN 0.001 0.000 0.084 0.084 0.088 0.090 n/a 0.080 0.099 0.099

SVHN 0.0001 0.000 0.076 0.087 0.090 0.091 n/a 0.053 0.099 0.099

SVHN 0.00001 0.000 0.090 0.098 0.089 0.091 n/a n/a 0.099 0.099

TLE at target value of 0.00001, RS would have required
more samples than there are datapoints to achieve the
desired relative error. Several HBE and RSA results are
missing due to our experimental setup, as a very small
value of 7 ought to have been used to achieve a suf-
ficiently small relative error, as we included all query
vectors in our experiments, even those with extremely
small KDE values. However, the implementation did
not permit use of sufficiently small 7 values because
either the runtimes grew excessively large or the size
of the data structure grew so large that we ran out of
RAM on our computer. For finished runs, our results
are in line with the results in Siminelakis et al. (2019).

Preprocessing times. Our algorithm has no intrin-
sic data structure to construct; the preprocessing time
is determined by the ANN algorithm, and the time it
takes to create a permuted copy of the data for per-
muted sampling. Table 6 shows a subset of preprocess-
ing times that have been collected when evaluating a
similar set of experiments against the Gaussian kernel.
As such, this table also includes ASKIT for comparison.
The data points have been cherry-picked to reflect var-

ious extreme cases, including the extreme case of over
7 hours for scikit-learn when constructing the tree for
the CENSUS dataset. For DEANN and DEANNP, the wide
variation in the construction times is determined by
the choice of the FAISS parameters which provide a
tradeoff between construction and query time. Full
results and discussion are presented in Appendix K.

Robustness considerations. Table 7 shows the rel-
ative errors achieved when evaluating the query set
against the test set with the best parameters, show-
ing that DEANN generalizes nicely: our experiments
show that this choice translated to a low average rela-
tive error also in the test set, as the greatest individual
observed value was on LAST.FM at 1 = 0.01 where the
relative error reached 0.114. The full set of results is
presented in Appendix H.

In Appendix I, we discuss robust parameter selection
for DEANN. Instead of an expensive grid search, we
report on experiments using one fixed set of parame-
ters for different datasets and different target values.
This single fixed parameter setting provided low rela-
tive error and good performance in most cases.

DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search

Acknowledgements

We thank Kexin Rong and Paris Siminelakis for help-
ful discussion regarding their code. Matti Karppa and
Rasmus Pagh are part of BARC, supported by VIL-
LUM Foundation grant 16582.

References

Ahmad Abdelfattah, Azzam Haidar, Stanimire To-
mov, and Jack J. Dongarra. Performance, de-
sign, and autotuning of batched GEMM for gpus.
In Julian M. Kunkel, Pavan Balaji, and Jack J.
Dongarra, editors, High Performance Computing
- 31st International Conference, ISC High Per-
formance 2016, Frankfurt, Germany, June 19-23,
2016, Proceedings, volume 9697 of Lecture Notes
in Computer Science, pages 21-38. Springer, 2016.
doi: 10.1007/978-3-319-41321-1\ 2. URL https:
//doi.org/10.1007/978-3-319-41321-1_2.

Alexandr Andoni, Piotr Indyk, Thijs Laarhoven,
Ilya P. Razenshteyn, and Ludwig Schmidt. Practi-
cal and optimal LSH for angular distance. In NIPS,
pages 1225-1233, 2015.

Alexandr Andoni, Thijs Laarhoven, Ilya P. Razen-
shteyn, and Erik Waingarten. Optimal hashing-
based time-space trade-offs for approximate near
neighbors. In Philip N. Klein, editor, Proceed-
ings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2017,
Barcelona, Spain, Hotel Porta Fira, January 16-
19, pages 47-66. SIAM, 2017. doi: 10.1137/
1.9781611974782.4. URL https://doi.org/10.
1137/1.9781611974782.4.

Ery Arias-Castro, David Mason, and Bruno Pelletier.
On the estimation of the gradient lines of a density
and the consistency of the mean-shift algorithm. J.
Mach. Learn. Res., 17:43:1-43:28, 2016. URL http:
//jmlr.org/papers/vl7/ariascastrol6a.html.

Martin Aumiiller, Tobias Christiani, Rasmus Pagh,
and Michael Vesterli. PUFFINN: parameterless and
universally fast finding of nearest neighbors. In ESA,
volume 144 of LIPIcs, pages 10:1-10:16. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2019.

Martin Aumiiller, Erik Bernhardsson, and Alexan-
der John Faithfull. ANN-Benchmarks: A bench-
marking tool for approximate nearest neighbor al-
gorithms. Inf. Syst., 87, 2020.

Arturs Backurs, Piotr Indyk, and Tal Wagner.
Space and time efficient kernel density estima-
tion in high dimensions. In Hanna M. Wallach,
Hugo Larochelle, Alina Beygelzimer, Florence
d’Alché-Buc, Emily B. Fox, and Roman Garnett,
editors, Advances in Neural Information Process-
ing Systems 32: Annual Conference on Neural

Information Processing Systems 2019, NeurIPS
2019, December 8-14, 2019, Vancouver, BC,
Canada, pages 15773-15782, 2019. URL https:
//proceedings.neurips.cc/paper/2019/hash/

a2ce8f1706e52936dfad516c23904e3e-Abstract.
html.

Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian
Whitman, and Paul Lamere. The million song
dataset. In Anssi Klapuri and Colby Leider, ed-
itors, Proceedings of the 12th International So-
ciety for Music Information Retrieval Confer-
ence, ISMIR 2011, Miami, Florida, USA, Octo-
ber 24-28, 2011, pages 591-596. University of Mi-
ami, 2011. URL http://ismir2011.ismir.net/
papers/0S6-1.pdf.

Jock A. Blackard and Denis J. Dean. Comparative
accuracies of artificial neural networks and discrim-
inant analysis in predicting forest cover types from
cartographic variables. Computers and FElectronics
in Agriculture, 24(3):131-151, 1999. ISSN 0168-
1699. doi: https://doi.org/10.1016 /S0168-1699(99)
00046-0. URL https://www.sciencedirect.com/
science/article/pii/S0168169999000460.

L Susan Blackford, Antoine Petitet, Roldan Pozo,
Karin Remington, R Clint Whaley, James Demmel,
Jack Dongarra, Iain Duff, Sven Hammarling, Greg
Henry, et al. An updated set of basic linear algebra
subprograms (blas). ACM Transactions on Mathe-
matical Software, 28(2):135-151, 2002.

Oscar Celma. Music Recommendation and Discovery
in the Long Tail. Springer, 2010.

Moses Charikar and Paris Siminelakis. Hashing-based-
estimators for kernel density in high dimensions. In
Chris Umans, editor, 58th IEEE Annual Sympo-
sium on Foundations of Computer Science, FOCS
2017, Berkeley, CA, USA, October 15-17, 2017,
pages 1032-1043. TEEE Computer Society, 2017.
doi: 10.1109/FOCS.2017.99. URL https://doi.
org/10.1109/F0CS.2017.99.

Moses Charikar, Michael Kapralov, Navid Nouri,
and Paris Siminelakis. Kernel density estimation
through density constrained near neighbor search.
In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA,
November 16-19, 2020, pages 172-183. IEEE, 2020.
doi: 10.1109/FOCS46700.2020.00025. URL https:
//doi.org/10.1109/F0CS46700.2020.00025.

Yutian Chen, Max Welling, and Alexander J. Smola.
Super-samples from kernel herding. In Peter
Grinwald and Peter Spirtes, editors, UAI 2010,
Proceedings of the Twenty-Sizth Conference on
Uncertainty in Artificial Intelligence, Catalina
Island, CA, USA, July 8-11, 2010, pages 109-116.

https://doi.org/10.1007/978-3-319-41321-1_2
https://doi.org/10.1007/978-3-319-41321-1_2
https://doi.org/10.1137/1.9781611974782.4
https://doi.org/10.1137/1.9781611974782.4
http://jmlr.org/papers/v17/ariascastro16a.html
http://jmlr.org/papers/v17/ariascastro16a.html
https://proceedings.neurips.cc/paper/2019/hash/a2ce8f1706e52936dfad516c23904e3e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/a2ce8f1706e52936dfad516c23904e3e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/a2ce8f1706e52936dfad516c23904e3e-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/a2ce8f1706e52936dfad516c23904e3e-Abstract.html
http://ismir2011.ismir.net/papers/OS6-1.pdf
http://ismir2011.ismir.net/papers/OS6-1.pdf
https://www.sciencedirect.com/science/article/pii/S0168169999000460
https://www.sciencedirect.com/science/article/pii/S0168169999000460
https://doi.org/10.1109/FOCS.2017.99
https://doi.org/10.1109/FOCS.2017.99
https://doi.org/10.1109/FOCS46700.2020.00025
https://doi.org/10.1109/FOCS46700.2020.00025

Matti Karppa, Martin Aumiiller, Rasmus Pagh

AUATI Press, 2010. URL https://dslpitt.org/
uai/displayArticleDetails. jsp?mmnu=1&smnu=
2%article_id=2148&proceeding_id=26.

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Va-
hab S. Mirrokni. Locality-sensitive hashing scheme
based on p-stable distributions. In Jack Snoeyink
and Jean-Daniel Boissonnat, editors, Proceedings of
the 20th ACM Symposium on Computational Geom-
etry, Brooklyn, New York, USA, June 8-11, 2004,
pages 253-262. ACM, 2004. doi: 10.1145/997817.
997857. URL https://doi.org/10.1145/997817.
997857.

Wei Dong, Zhe Wang, William Josephson, Moses
Charikar, and Kai Li. Modeling LSH for perfor-
mance tuning. In CIKM, pages 669-678. ACM,
2008.

Devdatt P. Dubhashi and Alessandro Panconesi. Con-
centration of Measure for the Analysis of Random-
ized Algorithms. Cambridge University Press, New
York, NY, USA, 2009. ISBN 978-0-521-88427-3.

Frangois Le Gall. Powers of tensors and fast matrix
multiplication. In Katsusuke Nabeshima, Kosaku
Nagasaka, Franz Winkler, and Agnes Szanto, ed-
itors, International Symposium on Symbolic and
Algebraic Computation, ISSAC 14, Kobe, Japan,
July 23-25, 2014, pages 296-303. ACM, 2014. doi:
10.1145/2608628.2608664. URL https://doi.org/
10.1145/2608628.2608664.

Francois Le Gall and Florent Urrutia. Improved rect-
angular matrix multiplication using powers of the
coppersmith-winograd tensor. In Artur Czumaj, ed-
itor, Proceedings of the Twenty-Ninth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA
2018, New Orleans, LA, USA, January 7-10, 2018,
pages 1029-1046. SIAM, 2018. doi: 10.1137/
1.9781611975031.67. URL https://doi.org/10.
1137/1.9781611975031.67.

Edward Gan and Peter Bailis. Scalable kernel den-
sity classification via threshold-based pruning. In
Semih Salihoglu, Wenchao Zhou, Rada Chirkova,
Jun Yang, and Dan Suciu, editors, Proceedings of the
2017 ACM International Conference on Manage-
ment of Data, SIGMOD Conference 2017, Chicago,
IL, USA, May 14-19, 2017, pages 945-959. ACM,
2017. doi: 10.1145/3035918.3064035. URL https:
//doi.org/10.1145/3035918.3064035.

Jan-Mark Geusebroek, Gertjan J. Burghouts, and
Arnold W. M. Smeulders. The amsterdam library
of object images. Int. J. Comput. Vis., 61(1):
103-112, 2005. doi: 10.1023/B:VISI.0000042993.
50813.60. URL https://doi.org/10.1023/B:
VISI.0000042993.50813.60.

Alexander G. Gray and Andrew W. Moore. 'n-body’

problems in statistical learning. In Todd K.
Leen, Thomas G. Dietterich, and Volker Tresp,
editors, Advances in Neural Information Processing
Systems 13, Papers from Neural Information Pro-
cessing Systems (NIPS) 2000, Denver, CO, USA,
pages 521-527. MIT Press, 2000. URL https:
//proceedings.neurips.cc/paper/2000/hash/
7385db9a3f11415bc0e9e2625fae3734-Abstract.
html.

Alexander G. Gray and Andrew W. Moore. Non-
parametric density estimation: Toward computa-
tional tractability. In Daniel Barbara and Chan-
drika Kamath, editors, Proceedings of the Third
SIAM International Conference on Data Min-
ing, San Francisco, CA, USA, May 1-3, 20083,
pages 203-211. SIAM, 2003. doi: 10.1137/1.
9781611972733.19. URL https://doi.org/10.
1137/1.9781611972733.19.

L Greengard and V Rokhlin. A fast algorithm for par-
ticle simulations. Journal of Computational Physics,
73(2):325-348, 1987. ISSN 0021-9991. doi: 10.1016/
0021-9991(87)90140-9.

Leslie Greengard and John Strain. The fast gauss
transform. SIAM J. Seci. Comput., 12(1):79-94,
1991. doi: 10.1137,/0912004.

Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng,
David Simcha, Felix Chern, and Sanjiv Kumar. Ac-
celerating large-scale inference with anisotropic vec-
tor quantization. In ICML, volume 119 of Pro-
ceedings of Machine Learning Research, pages 3887—
3896. PMLR, 2020.

Masajiro Iwasaki and Daisuke Miyazaki. Optimization
of Indexing Based on k-Nearest Neighbor Graph for
Proximity Search in High-dimensional Data. ArXiv
e-prints, October 2018.

Tommi S. Jaakkola, Mark Diekhans, and David Haus-
sler. Using the fisher kernel method to detect remote
protein homologies. In ISMB, pages 149-158. AAAI,
1999.

Jeff Johnson, Matthijs Douze, and Hervé Jégou.
Billion-scale similarity search with gpus. CoRR,
abs/1702.08734, 2017. URL http://arxiv.org/
abs/1702.08734.

M. C. Jones and H. W. Lotwick. On the errors
involved in computing the empirical characteristic
function. Journal of Statistical Computation and
Simulation, 17(2):133-149, 1983. doi: 10.1080/
00949658308810650.

M. C. Jones and H. W. Lotwick. Remark as r50: A re-
mark on algorithm as 176. kernal density estimation
using the fast fourier transform. Journal of the Royal
Statistical Society. Series C (Applied Statistics), 33

https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2148&proceeding_id=26
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2148&proceeding_id=26
https://dslpitt.org/uai/displayArticleDetails.jsp?mmnu=1&smnu=2&article_id=2148&proceeding_id=26
https://doi.org/10.1145/997817.997857
https://doi.org/10.1145/997817.997857
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1145/2608628.2608664
https://doi.org/10.1137/1.9781611975031.67
https://doi.org/10.1137/1.9781611975031.67
https://doi.org/10.1145/3035918.3064035
https://doi.org/10.1145/3035918.3064035
https://doi.org/10.1023/B:VISI.0000042993.50813.60
https://doi.org/10.1023/B:VISI.0000042993.50813.60
https://proceedings.neurips.cc/paper/2000/hash/7385db9a3f11415bc0e9e2625fae3734-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/7385db9a3f11415bc0e9e2625fae3734-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/7385db9a3f11415bc0e9e2625fae3734-Abstract.html
https://proceedings.neurips.cc/paper/2000/hash/7385db9a3f11415bc0e9e2625fae3734-Abstract.html
https://doi.org/10.1137/1.9781611972733.19
https://doi.org/10.1137/1.9781611972733.19
http://arxiv.org/abs/1702.08734
http://arxiv.org/abs/1702.08734

DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search

(1):120-122, 1984. ISSN 00359254, 14679876. doi: Yinan Li, Jack J. Dongarra, and Stanimire Tomov. A
10.2307/2347674. note on auto-tuning GEMM for gpus. In Gabrielle
Allen, Jaroslaw Nabrzyski, Edward Seidel, G. Dick

M. C. J ,J.S. M , and S. J. Sheather. A) ’ ’
Ones antony 2 cataer van Albada, Jack J. Dongarra, and Peter M. A.

brief f bandwidth selection for density esti-
FIET SUEVEY OF DARCW peiection JoT densihy e Sloot, editors, Computational Science - ICCS 2009,

mation. Journal of the American Statistical Associa-

tion, 91(433):401 407, 1996. doi: 10.1080/01621459. Ith International Conference, Baton Rouge, LA,

1996.10476701. URL https://www.tandfonline. USA, May 25-27, 2009, Proceedings, Part I, vol-

com/doi/abs/10.1080/01621459.1996.10476701. ume 5544 of Lecture Notes in Computer Science,

pages 884-892. Springer, 2009. doi: 10.1007/

Bo Kéagstrom, Per Ling, and Charles Van Loan. 978-3-642-01970-8\ _89. URL https://doi.org/
Gemm-based level 3 BLAS: high-performance model 10.1007/978-3-642-01970-8_89.

implementations and performance evaluation bench-
mark. ACM Trans. Math. Softw., 24(3):268-302,
1998. URL http://portal.acm.org/citation.

Yury A. Malkov and D. A. Yashunin. Efficient and
robust approximate nearest neighbor search using

cfm?id=292395 . 292412, hierarchical navigable small world graphs. IEEE
Trans. Pattern Anal. Mach. Intell., 42(4):824-836,
Raehyun Kim, Jaeyoung Choi, and Myungho Lee. 2020.

Optimizing parallel GEMM routines using auto-
tuning with intel AVX-512. In Proceedings
of the International Conference on High Perfor-
mance Computing in Asia-Pacific Region, HPC
Asia 2019, Guangzhou, China, January 14-16,

William B. March, Bo Xiao, and George Biros.
ASKIT: approximate skeletonization kernel-
independent treecode in high dimensions. STAM J.
Sci. Comput., 37(2), 2015. doi: 10.1137/140989546.

2019, pages 101-110. ACM, 2019. doi: 10. URL https://doi.org/10.1137/140989546.
1145/3293320.3293334. URL https://doi.org/ Vlad I. Morariu, Balaji Vasan Srinivasan, Vikas C.
10.1145/3293320.3293334. Raykar, Ramani Duraiswami, and Larry S.
Donald Kuuth The Art of Computer Program- Davis. Automatic online tuning for fast gaussian
ming. Volume 1. Fundamental Algorithms. Addison- summation. In Daphne K?ller, Dale SC}'lqu‘—
Wesley, Boston, MA, USA, 1997. ISBN 978-0-201- mans, Yoshua Bengio, and Léon Bottou, editors,
89683—i 3rd Eélitiorf ’ Advances in Neural Information Processing
' ' Systems 21, Proceedings of the Twenty-Second
Yann Lecun, LéOf} Bottou, Yoshua.u Bengio,. and Patrick Annual Conference on Neural Information Pro-
Haffner. Grgdlent—based lgarnmg applied to docu- cessing Systems, Vancouver, British Columbia,
ment recognition. P.roceedmgs of the IEEE, 86(11): Canada, December 8-11, 2008, pages 1113-1120.
2278-2324, 1998. doi: 10.1109/5.726791. Curran Associates, Inc., 2008. URL https:
Dongryeol Lee and Alexander G. Gray. Fast high- //proceedings.neurips.cc/paper/2008/hash/
dimensional kernel summations using the monte d96409b£894217686ba124d7356686c9-Abstract.
carlo multipole method. In Daphne Koller, Dale html.
Schuurmans, Yoshua Bengio, and Léon Bottou, Nima Mousavi, 2012. URL https://ece.uwaterloo.
editors, Advances in Neural Information Processing ca/~nmousavi/Papers/Chernoff-Tightness.pdf.
Systems 21, Proceedings of the Twenty-Second Note.

Annual Conference on Neural Information Pro-

cessing Systems, Vancouver, British Columbia, NASA. Statlog (shuttle) data set. Donated by Ja-

Canada, December 8-11, 2008, pages 929-936 son Catlett to the UCI Machine Learning Repos-
Curran7Associates Inc.7 2008., URL https:' itory., URL https://archive.ics.uci.edu/ml/
//proceedings.neurips.cc/paper/2008/hash/ datasets/Statlog+(Shuttle).

390597241£7329969845dfe4146c5660e-Abstract. Yuval Netzer, Tao Wang, Adam Coates, Alessan-
html. dro Bissacco, Bo Wu, and Andrew Y. Ng.

Reading digits in natural images with unsuper-
vised feature learning. In NIPS Workshop on
Deep Learning and Unsupervised Feature Learning

Dongryeol Lee, Alexander G. Gray, and Andrew W.
Moore. Dual-tree fast gauss transforms. In Advances
in Neural Information Processing Systems 18 [Neu-

ral Information Processing Systems, NIPS 2005, 2011, 2011. URL http://ufldl.stanford.edu/
December 5-8, 2005, Vancouwver, British Columbia, housenumbers/nips2011_housenumbers . pdf.

Canadaf, pages T747-754, 2005. URL https: Bernd-Uwe Pagel, Flip Korn, and Christos Faloutsos.
//proceedings.neurips.cc/paper/2005/hash/ Deflating the dimensionality curse using multiple
9087b0efc7c7acdlef7e1563678809c77-Abstract. fractal dimensions. In ICDFE, pages 589-598. IEEE

html. Computer Society, 2000.

https://www.tandfonline.com/doi/abs/10.1080/01621459.1996.10476701
https://www.tandfonline.com/doi/abs/10.1080/01621459.1996.10476701
http://portal.acm.org/citation.cfm?id=292395.292412
http://portal.acm.org/citation.cfm?id=292395.292412
https://doi.org/10.1145/3293320.3293334
https://doi.org/10.1145/3293320.3293334
https://proceedings.neurips.cc/paper/2008/hash/39059724f73a9969845dfe4146c5660e-Abstract.html
https://proceedings.neurips.cc/paper/2008/hash/39059724f73a9969845dfe4146c5660e-Abstract.html
https://proceedings.neurips.cc/paper/2008/hash/39059724f73a9969845dfe4146c5660e-Abstract.html
https://proceedings.neurips.cc/paper/2008/hash/39059724f73a9969845dfe4146c5660e-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/9087b0efc7c7acd1ef7e153678809c77-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/9087b0efc7c7acd1ef7e153678809c77-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/9087b0efc7c7acd1ef7e153678809c77-Abstract.html
https://proceedings.neurips.cc/paper/2005/hash/9087b0efc7c7acd1ef7e153678809c77-Abstract.html
https://doi.org/10.1007/978-3-642-01970-8_89
https://doi.org/10.1007/978-3-642-01970-8_89
https://doi.org/10.1137/140989546
https://proceedings.neurips.cc/paper/2008/hash/d96409bf894217686ba124d7356686c9-Abstract.html
https://proceedings.neurips.cc/paper/2008/hash/d96409bf894217686ba124d7356686c9-Abstract.html
https://proceedings.neurips.cc/paper/2008/hash/d96409bf894217686ba124d7356686c9-Abstract.html
https://proceedings.neurips.cc/paper/2008/hash/d96409bf894217686ba124d7356686c9-Abstract.html
https://ece.uwaterloo.ca/~nmousavi/Papers/Chernoff-Tightness.pdf
https://ece.uwaterloo.ca/~nmousavi/Papers/Chernoff-Tightness.pdf
https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
https://archive.ics.uci.edu/ml/datasets/Statlog+(Shuttle)
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

Matti Karppa, Martin Aumiiller, Rasmus Pagh

Jagdish K. Patel and Campbell B. Read. Handbook of
the Normal Distribution. Marcel Dekker, Inc., New
York, NY, USA, 1982. ISBN 0-8247-1541-1.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research, 12:
2825-2830, 2011.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. Glove: Global vectors for word
representation. In Alessandro Moschitti, Bo Pang,
and Walter Daelemans, editors, Proceedings of the
2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25-
29, 2014, Doha, Qatar, A meeting of SIGDAT,
a Special Interest Group of the ACL, pages 1532—
1543. ACL, 2014. doi: 10.3115/v1/d14-1162. URL
https://doi.org/10.3115/v1/d14-1162.

Jeff M. Phillips. e-samples for kernels. In Sanjeev
Khanna, editor, Proceedings of the Twenty-Fourth
Annual ACM-SIAM Symposium on Discrete Algo-
rithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, pages 1622-1632. STAM, 2013.
doi: 10.1137/1.9781611973105.116. URL https:
//doi.org/10.1137/1.9781611973105.116.

Jeff M. Phillips and Wai Ming Tai. Near-optimal
coresets of kernel density estimates. Discret. Com-
put. Geom., 63(4):867-887, 2020. doi: 10.1007/
s00454-019-00134-6. URL https://doi.org/10.
1007/s00454-019-00134-6.

Parikshit Ram, Dongryeol Lee, William B. March,
and Alexander G. Gray. Linear-time algorithms for
pairwise statistical problems. In Yoshua Bengio,
Dale Schuurmans, John D. Lafferty, Christopher
K. I. Williams, and Aron Culotta, editors, Ad-
vances in Neural Information Processing Systems
22: 28rd Annual Conference on Neural Infor-
mation Processing Systems 2009. Proceedings of
a meeting held 7-10 December 2009, Vancouver,
British Columbia, Canada, pages 1527-1535.
Curran Associates, Inc., 2009. URL https:
//proceedings.neurips.cc/paper/2009/hash/
2421£fcb1263b9530d£88f7£002e78eab-Abstract.
html.

Erich Schubert, Arthur Zimek, and Hans-Peter
Kriegel. Generalized outlier detection with flexi-
ble kernel density estimates. In Mohammed Javeed
Zaki, Zoran Obradovic, Pang-Ning Tan, Arindam
Banerjee, Chandrika Kamath, and Srinivasan
Parthasarathy, editors, Proceedings of the 2014
SIAM International Conference on Data Min-
ing, Philadelphia, Pennsylvania, USA, April 24-26,

2014, pages 542-550. SIAM, 2014. doi: 10.1137/
1.9781611973440.63. URL https://doi.org/10.
1137/1.9781611973440.63.

scikit-learn developers. scikit-learn wuser guide,
2021. URL https://scikit-learn.org/stable/
user_guide.html. Version 0.24.2.

Bernard W. Silverman. Algorithm as 176: Ker-
nel density estimation using the fast fourier trans-
form. Journal of the Royal Statistical Society. Se-
ries C (Applied Statistics), 31(1):93-99, 1982. ISSN
00359254, 14679876. doi: 10.2307/2347084.

Bernard W. Silverman. Density Estimation for Statis-
tics and Data Analysis. Chapman and Hall, London,
1986. ISBN 0-412-24620-1.

Paris Siminelakis, Kexin Rong, Peter Bailis, Moses
Charikar, and Philip Levis. Rehashing kernel eval-
uation in high dimensions. In Kamalika Chaud-
huri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine
Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Ma-
chine Learning Research, pages 5789-5798. PMLR,
2019. URL http://proceedings.mlr.press/v97/
siminelakis19a.html.

Eric V Slud. Distribution inequalities for the binomial
law. The Annals of Probability, 5(3):404-412, 1977.

US Census Bureau. Us census data (1990) data set.
Donated by Chris Meek, Bo Thiesson, and David
Heckerman to the UCI Machine Learning Repos-
itory. URL https://archive.ics.uci.edu/ml/
datasets/US+Census+Data+(1990).

Da Yan, Wei Wang, and Xiaowen Chu. Demysti-
fying tensor cores to optimize half-precision ma-
trix multiply. In 2020 IEEFE International Paral-
lel and Distributed Processing Symposium (IPDPS),
New Orleans, LA, USA, May 18-22, 2020, pages
634-643. IEEE, 2020. doi: 10.1109/IPDPS47924.
2020.00071. URL https://doi.org/10.1109/
IPDPS47924.2020.00071.

Xianyi Zhang, Qian Wang, and Yunquan Zhang.
Model-driven level 3 BLAS performance optimiza-
tion on loongson 3a processor. In 18th IEEE In-
ternational Conference on Parallel and Distributed
Systems, ICPADS 2012, Singapore, December 17-
19, 2012, pages 684-691. IEEE Computer Soci-
ety, 2012. doi: 10.1109/ICPADS.2012.97. URL
https://doi.org/10.1109/ICPADS.2012.97.

Yan Zheng, Jeffrey Jestes, Jeff M. Phillips, and Feifei
Li. Quality and efficiency for kernel density esti-
mates in large data. In Kenneth A. Ross, Divesh
Srivastava, and Dimitris Papadias, editors, Proceed-
ings of the ACM SIGMOD International Confer-
ence on Management of Data, SIGMOD 2013, New

https://doi.org/10.3115/v1/d14-1162
https://doi.org/10.1137/1.9781611973105.116
https://doi.org/10.1137/1.9781611973105.116
https://doi.org/10.1007/s00454-019-00134-6
https://doi.org/10.1007/s00454-019-00134-6
https://proceedings.neurips.cc/paper/2009/hash/2421fcb1263b9530df88f7f002e78ea5-Abstract.html
https://proceedings.neurips.cc/paper/2009/hash/2421fcb1263b9530df88f7f002e78ea5-Abstract.html
https://proceedings.neurips.cc/paper/2009/hash/2421fcb1263b9530df88f7f002e78ea5-Abstract.html
https://proceedings.neurips.cc/paper/2009/hash/2421fcb1263b9530df88f7f002e78ea5-Abstract.html
https://doi.org/10.1137/1.9781611973440.63
https://doi.org/10.1137/1.9781611973440.63
https://scikit-learn.org/stable/user_guide.html
https://scikit-learn.org/stable/user_guide.html
http://proceedings.mlr.press/v97/siminelakis19a.html
http://proceedings.mlr.press/v97/siminelakis19a.html
https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
https://archive.ics.uci.edu/ml/datasets/US+Census+Data+(1990)
https://doi.org/10.1109/IPDPS47924.2020.00071
https://doi.org/10.1109/IPDPS47924.2020.00071
https://doi.org/10.1109/ICPADS.2012.97

DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search

York, NY, USA, June 22-27, 2013, pages 433—444.
ACM, 2013. doi: 10.1145/2463676.2465319. URL
https://doi.org/10.1145/2463676.2465319.

https://doi.org/10.1145/2463676.2465319

Supplementary Material:
DEANN: Speeding up Kernel-Density Estimation using Approximate
Nearest Neighbor Search

A Asymptotic notation

We use the asymptotic notation as defined by Knuth (1997, Section 1.2.11). For f,g : N — N, we write
f(n) = O(g(n)) if there exist positive constants ng and M such that f(n) < Mg(n) for all n > nyg. We also
write f(n) = Q(g(n)) if there exist positive constants ng and L such that f(n) > Lg(n) for all n > ng. We write
f(n) = O(g(n)) if f(n) = O(g(n)) and f(n) = Q(g(n)).

Finally, for real-valued functions f: N — R, we write f(n) = o(1) if lim,,—, | f(n)| = 0.

B Related work and historical perspectives on KDE

This section provides an extended discussion on the related work, and especially the historical discussion on
earlier work.

Early developments in nontrivial computation of the KDE in low dimensions include methods based on the Fast
Fourier Transform, such as Silverman (1982) and Jones and Lotwick (1983, 1984) for the univariate KDE, the
Fast Multipole Method (Greengard and Rokhlin, 1987), and the Fast Gauss Transform (Greengard and Strain,
1991). This line of work has been followed by a line of dual-tree data structures (Gray and Moore, 2000, 2003;
Lee et al., 2005; Ram et al., 2009). However, these methods suffer from the curse of dimensionality. An attempt
to mitigate this effect in higher dimensions with subspace trees, applying dimension reduction technologies such
as Principal Component Analysis (PCA) together with random sampling, was presented by Lee and Gray (2008),
but even this method requires ©(Z) samples.

Morariu et al. (2008) presented an algorithm based on tree data structures and Improved Fast Gauss Trans-
form along with an implementation called FigTree. March et al. (2015) presented ASKIT, a tree-based space-
partitioning method based on treecodes that can make efficient use of the low-rank block structure of the matrix
of pairwise kernel evaluations of the data points even in high dimensions when such structure exists. They also
provided an implementation of ASKIT as free software.”

Another line of research is focused on finding subsamples of the data set that preserve the KDE values with
arbitrary queries up to an approximation factor, called e-samples or coresets (Phillips, 2013; Zheng et al., 2013;
Phillips and Tai, 2020). However, despite offering better approximation guarantees, asymptotically coresets
require a similar @(6%) number of samples as simple Random Sampling.

There are also other approaches to subsampling the dataset, such as Kernel Herding (Chen et al., 2010), and
also HBS (Siminelakis et al., 2019) and the independent subsampling of hash tables in (Backurs et al., 2019).

Charikar and Siminelakis (2017) applied importance sampling to model the KDE values through the collision
probability of the Euclidean Locality Sensitive Hashing (ELSH) scheme of Datar et al. (2004) to create a data
structure called Hashing Based Estimators (HBE). This data structure presented first asymptotical improvement
with theoretical guarantees over simple RS in high dimensions. In particular, HBE improves upon RS in the
regime where a large amount of the contribution comes from a small number of dataset points close to the query
point.

The theoretical nature of the results of Charikar and Siminelakis (2017) were made more practical by Siminelakis
et al. (2019) who presented a data structure using Hashing Based Sketches (HBS). Roughly, the idea of their
KDE estimation algorithm is to first subsample the dataset into a number of sketches using ELSH and weighted

7 Available at https://padas.oden.utexas.edu/libaskit/.

https://padas.oden.utexas.edu/libaskit/

DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search

sampling, and then construct the HBE estimators from these subsampled datasets by reapplying ELSH, thus
“rehashing” the dataset. They also presented an adaptive variant of the algorithm whereby the ELSH data struc-
tures are constructed at a number of levels, each containing an increasing number of hash tables, corresponding
to a lower bound of the estimated KDE value. Assuming a sufficiently large KDE estimate can be made, the
query terminates early, but otherwise continues to a larger number of hash tables. They also provide an im-
plementation of their algorithm as free software® that can be used for comparison. They showed empirically
in (Siminelakis et al., 2019) that their HBE implementation is competitive with ASKIT and in some performs
an order of magnitude better than ASKIT.

Another improvement on the HBE scheme was presented by Backurs et al. (2019) who improved on the space
usage of the algorithm by observing that HBE tends to store the same points in several hash tables. They
showed that, for each hash table, it suffices to include each point hashed to the table with a certain probability
to guarantee that the point is stored in approximately one hash table, and the approximation guarantees of HBE
are still sufficiently preserved. They provided a Python implementation” and used the number of kernel function
evaluations as a proxy for the runtime in their experiments.

In recent work, Charikar et al. (2020) provided asymptotic improvements in running time and space complexity
by using data-dependent LSH.

C Proof of Lemma 2

In this appendix, we present the proof of Lemma 2. The proof is presented for completeness only without any
claim to originality. While the result is well known, it seems to be difficult to find a useful version of the proof
in the literature.

We need the following form of the Chernoff bound in the proof.

Lemma 8 (Chernoff (Dubhashi and Panconesi, 2009, Theorem 1.1, pp. 6-7)). Let X = """ | X; where X; € [0, 1]
are independently distributed random variables. Then, for e > 0,

62
Pr[X > (1+ ¢) E[X]] < exp <3 E[X]) , (3)

2
Pr[X < (1 —¢)E[X]] <exp <2 E[X]) . (4)

We recall Lemma 2. We bound the number of random samples required using the Chernoff bound with respect
to an arbitrary constant probability 9.

Lemma 2 (Random Sampling). Let X C R% y € R? Let 7 € (0,1) such that KDEx(y) > 7. Drawing
a uniform random sample X' C X (with repetition) of size m = O(==) and computing KDEx.(y) yields an

e2r

unbiased (1 + €)-approzimation of KDEx (y), with constant probability.

Proof. Fix constant 0 < § < 1. Let X' = (a},x),...,x},) be the random sample such that each «/ is drawn from
X independently and uniformly distributed at random with repetition. We treat each z as a random variable
taking values from the set X and hold the query vector y arbitrary but fixed.

For all i = 1,2,...,m, define Z; = Kj(z},y) where K; : R¢ x R? — [0,1] is the kernel function; without
loss of generality, we may assume all Z; satisfy 0 < Z; < 1 by dividing the value of the kernel function with
an appropriate constant. Clearly, E[Z;] = %Z?:l Kp(zi,y) = p, so each Z; is an unbiased estimator for
)t = KDEx (y).

Letting Z = 1" | Z;, we get by linearity of expectation that E[Z] = mE[Z;] = mpu > m7. From Equation (3),
we get

Pr{Z > (1+] < exp (—fmu) < exp (—3m) | 5)

8 Available at https://github.com/kexinrong/rehashing.
9 Available at https://github.com/talwagner/efficient_kde/.

https://github.com/kexinrong/rehashing
https://github.com/talwagner/efficient_kde/

Matti Karppa, Martin Aumiiller, Rasmus Pagh

If we let the probability on the right hand side of Equation (5) be less than or equal to the constant §, we get

€2
- <In§é,
3m7’_ n

and solving for m,
31ln %

m>——=, (6)

€“T

and by the same argument, Equation (4) yields the same bound on m up to constant, so we can thus conclude
that m = O(ﬁ) samples suffice to bound the error to the desired range. O

It should be noted that, although not present in the statement of Lemma 2, the number of random samples m
depends on the constant § by a factor of In %.

Furthermore, Lemma 2 is tight up to a constant. To see why, we must consider a worst-case input that consists
of vectors such that a 7-fraction of the dataset has kernel value of 1 and the remainder are (essentially) 0. The
random sample can be modelled as a sum of Bernoulli variables such that the kernel values are either 0 or 1 with
probability 7, which yields the correct KDE in expectation.

This input has a geometric interpretation, where the query is situated such with respect to the dataset that
a significant fraction (a 7-fraction) of the dataset essentially coincides with the query vector (possibly up to a
negligible amount of additive noise), and the remainder of the dataset resides infinitely far (with respect to the
exponential decay of the kernel). This is precisely the regime where we are looking for a needle in the haystack
and nearest neighbors essentially determine the KDE value, but we need to look at a large fraction of the dataset
at random to be able to find the needle.

We will show that, with such input, the Chernoff bound is tight up to a constant, which implies that also the
required size of the sample is tight up to a constant. To show this, we need the following lemma that we have
restated in the notation presented here.

Lemma 9 (Slud (1977, Theorem 2.1)). Let 0 < 7 < 1 and e > 0. Let X = 31" | X; with X; ~ Bernoulli(7).
Then

PT[XZ(1+6)mT]21—<I>(E T
-

Vi-t

where ® is the standard normal cumulative distribution function.

) >1—®(2ey/m7),

Lemma 10. Lemma 2 is tight up to a constant for worst-case input.

Proof. This proof is almost the same as given by Mousavi (2012) and is presented here for completeness without
claim to originality.

Let us denote random variables X; for ¢ = 1,2,...,m such that each X; ~ Bernoulli(7), yielding the worst-case
input, drawn independently and identically distributed. As before, X = > ", X;, so E[X] = m7. Let us
approximate X with the normal distribution using Lemma 9. It is known (Patel and Read, 1982, Equation 3.7.2)
that, for z > 0,
1—+/1—exp(—2z?)

5 .

Furthermore, by the fact that 1 — /2 > 1*7“”, we can approximate

1—-¢ >

Pr{X > (14 E[X]| > 1 — &(2e /) > 1—/1— eQXp(—52m7) > exp(—:ﬂmT) 7 (7

and since Equation (7) is of the same form as the Chernoff bounds of Lemma 8, we can conclude by the same
argument as in the proof of Lemma 2 that the bound is tight up to a constant for the worst-case input. O

D Proof of Lemma 5

We recall Lemma 5.

DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search

Lemma 5. Given a,1/8 > 0, X C R? with |X| = n, and y € R?, assume that ||z}, — y||3 = a((i + 1)/n)? for
i € [n]. For the Gaussian kernel Kp,(z,y) = exp (—||z — y||3 /(2h2)), it holds that

(a) Ifh? = (a/2)nP, the contribution of the first k = ©(log'/? n) nearest neighbors is a (1+o0(1))-approzimation
of the KDE value

(b) Let 7 € (0,1). If h? < (a/2)n"?/In(1/7), KDEx(y) < T

(c) If k> n(1/(1 - 6))a/(28), KDEx(y) > 1.

Proof. With h% = (o/2)n~" the kernel evaluates to Kj(z},y) = exp(—(i + 1)#). With k = O(log"/? n), we get
that Kj(«},y) = exp(—(i+1)?) = o(1/n) for all i > k. Thus KDE(. (y) =no(1l/n) = o(1), which proves
the first statement.

For the second statement, observe that with h? > (a/2)n~?/In(1/7), already the nearest neighbor evaluates to
Kp(z(,y) = exp(—=1/In(1/7)) = 7. Since all other data points contribute at most 7, KDEx (y) < .

Finally, by the inequality of arithmetic and geometric means we can lower bound the KDE value as follows:

1/niexp(—a((i+ 1)/n)?(1/h%)) > H exp (—a(i+1)n=P~1(1/h?))
i=0

=0

= exp <—(a/(h2n6+1)) Zzﬂ>

i=1

> exp(—(a/(h*f))) 21 -4

nB+1

Here, we used that 30", i = %

+0O(n?) and thus, asymptotically for large enough n, 31 i¥ <nf*1/3. O

E Proof of Lemma 7

We recall Lemma 7.

Lemma 7. Let € > 0, and KDEx(y) > 7. If (k,d) dominates KDEx (y), then using m = © (i) samples

e2r

guarantees that with constant probability, KDEx (y) is a (1 + €)-approzimation.

Proof. Given y, let X = (x{,...,2z,_;) be ordered in increasing order by distance to y. Given &’ > 0 to be set
later, let (n — k)RS(%,m’w y() be the value of an (1 4 ¢’) approximation of (n — k)KDE(%W,I;_l)(y). We
compute:

k—1 n
Zl{h(w;ay)—i_(n_k)l{s(m;c 1;71)(?/) < Kh(m;ay)+(l+5/)ZKh($;7y)
i=0 i=0 i
=nKDE(y) + ¢’ ZKh)
=n(KDE(y) + ¢ 6KDE(y)).
This means that to compute a (14 &) approximation, it suffices to compute a (1+¢’) = (1+¢/0) approximation

on (z,...,z,_1). Since KDE(w;’.,,’I;_l)(y) > 071, a sample of © (%) elements suffices to guarantee a (1 4 ¢’)
approximation with constant probability. O

F Naive algorithm

In this section, we describe how matrix multiplication can be used to speed up the evaluation of the naive KDE
sum when the kernel is Euclidean. We make no claims of originality, but simply present the material here for
completeness. In this section, we treat the dataset X as a row-major n X d matrix.

Matti Karppa, Martin Aumiiller, Rasmus Pagh

Suppose we are working in a batch processing case with a set of N queries @ = {qo,q1,...,qn—1} which we
similarly treat as a row-major N X d matrix. We want to evaluate the N-element result vector z whose elements
are given by

n—1
1
Zj :E;Kh(qj',l’i)- (8)
Assuming K, is Euclidean, the evaluation of Equation (8) for all j = 0,1,..., N — 1 can be considered to consist

of (i) evaluating the N x n matrix D whose elements are given by
Dji = llg; — will2, (9)

(ii) applying the (vectorized) functions, the composition of which equals K}, and (iii) computing the row-wise
mean of the resulting matrix.

Matrix multiplication helps in step (i) through the following observation:

llz = yll3 = llz[13 + [lyll3 — 2 (z,y) - (10)
Let us write auxiliary matrices Xgq and Qsq such that for alli=0,1,...,n—1and j=0,1,...,N — 1, we have
(Xsa)gi = llzill3 (11)

and
(@sa)ii = llaslf3- (12)

Importantly, from Equations (11) and 12, we have that
(Xsq + @sa)zi = llggll3 + |3 (13)
Now consider the matrix product QX ". From the definition of the matrix product, it is immediate that

QX ")ji = (g, @) - (14)

If we then let D? = Xy, + Qsq — 2QX ", we get from Equations (10), (13), and (14) that

D3 = llgjll3 + llwills — 2 (g, 2) = llwi — g;113.- (15)

The key observation is that it is possible to use matrix multiplication as a primitive for evaluating the inner prod-
uct matrix in Equation (15). Evaluating the values of the matrix D directly from the definition of Equation (9)
one element at a time requires ©(nNd) operations. However, matrix multiplication is asymptotically faster. For
n = N = d, the evaluation goes down to O(n*) operations for w < 2.3728639 (Gall, 2014). Assuming n = N
and d < n® for a > 0.31389, the evaluation can be performed in n2t°(1) operations (Gall and Urrutia, 2018).
Although these theoretical developments are impractical, significant gains can be made over implementing the
evaluation naively even with the elementary matrix multiplication algorithm by using, for example, the BLAS
Level 3 subroutine GEMM!? that is an aggressively optimized primitive (Kagstrom et al., 1998; Li et al., 2009;
Zhang et al., 2012; Abdelfattah et al., 2016; Kim et al., 2019; Yan et al., 2020). Highly tuned implementations of
GEMM, such as the one provided by the Intel MKL, make efficient use of the CPU features, such as vectorization
and cache hierarchy, and provide a considerable performance boost over simple implementations.

G Permuted Random Sampling

We present here for completeness the subroutine we use for taking the optimized random sample in case of
Euclidean kernels. Preprocessing and sampling are presented in Algorithm 2. We make no claim to originality,
and simply present the algorithm here for completeness.

9Generalized Matrix Multiply, a BLAS (Blackford et al., 2002) Level 3 subroutine for computing the matrix multipli-
cation operation C' < AT B 4 SC. The Intel MKL provides a highly optimized implementation of this routine.

DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search

Algorithm 2 Permuted random sampling.
Input: Dataset X = {x¢,21,...,2,_1} C R?
procedure PREPROCESS(X)

1:

2 Draw permutation 7 on n elements at random.
3: X" {x,2},..., 2, } such that] = x,¢;.
4
5

<+ 0. > Running index.
: end procedure

Input: Query vector y € R?, integer number of samples 1 < m < n
Output: A random sample estimate of KDEx (y).

1: function RANDOMSAMPLEPERMUTED(y, m)
l+m—1

2. 7 + Z Kn(% mod nY)-
i=t
3: 0 — 0+ 7711 mod n.

4: return — 7.

.m
5: end function

Importantly, if the kernel K} is Euclidean, the evaluation of the sample on line 2 can be treated as follows.
First, we have either one or two contiguous, rectangular submatrices of the permuted data matrix; the latter
case occures when the row index 7 overflows. We can then consider the evaluation to take place such that we
evaluate the Euclidean distance to all points in the sample, evaluate the kernel individually on each distance,
possibly using vectorized operations, and finally compute the mean.

Assume now that £ +m < n. Let zsq € R™ be a vector of the squared norms of the vectors in the sample,
that is, (2sq); = 1274, med nll3 for j =0,1,...,m — 1. The elements of this vector can be precomputed during
preprocessing. Then, let X" be the m x d matrix consisting of the rows xj,z} ,...,2),,,_;. The vector of
squared Euclidean norms can then be computed in terms of matrix-vector multiplication as follows:

z=asq + X"y +yll3,

where the last scalar addition is considered to be broadcast to all elements in the output vector. The matrix-
vector product X"y can be evaluated efficiently using the GEMV!! subroutine. Generalization to arbitrary cases
follows by performing the operation in two steps whenever the running index ¢ overflows the size of the data
matrix, and in all cases by applying the relevant vectorized operations for evaluating the kernel value.

H Detailed discussion of experimental evaluation with the exponential kernel

Full results. Table 8 shows the full set of results, average query time as milliseconds / query, when evaluating
the query set against the test set, with different algorithms. The best values are indicated with a bold typeface.

Results on validation set. Results of the validation step of the experiments are presented in Table 9. The
table lists the instances by dataset and target median KDE value p, the bandwidth h selected for the particular
instance by binary search with respect to the validation set, and the best performing parameters for different
algorithms. The parameters include the number of random samples m for Permuted Random Sampling (RSP), the
number of nearest neighbors k, the number of random samples m, the number of clusters ng, and the number of
clusters queried ny by our ANN estimator DEANNP when using FAISS, the relative approximation e and minimum
KDE value 7 of the HBE implementation, and the tree leaf size ¢ and relative error tolerance t, for one the
scikit-learn algorithms SKKD. Due to lack of space, the parameters for other variants are not shown but they are
very similar to the ones shown here. In some cases, particularly for HBE, no suitable choice of parameters was
found, which is indicated in the table by the text n/a.

The bandwidth values are very small in cases where the nearest neighbors help a lot with the performance.
Indeed, in some cases, such as LAST.FM, the bandwidth is below 1, meaning that it actually expands the distances

" Generalized Matrix Vector multiply, a BLAS (Blackford et al., 2002) Level 2 subroutine for computing the matrix
vector multiplication and addition operation of y +— aAx+By. The Intel MKL provides a highly optimized implementation
of this routine.

Matti Karppa, Martin Aumiiller, Rasmus Pagh

between the vectors. In some cases, such as SHUTTLE at target p of 0.00001, the random samples provide such a
small contribution to the overall KDE value that the best performing parameters for the DEANN use no random
samples at all. Conversely, in several cases, such as all instances of SVHN, the best choice of parameters for the
DEANN was to fall back to random sampling.

ANN recall. In most cases, the number of clusters in the FAISS data structure was rather large in comparison
to the size of the dataset, but only very few clusters were queried. This means that only a small fraction of the
dataset was inspected to find nearest neighbors. While this is good for the throughput of the ANN estimator, it
might result in far-away points being included as nearest neighbors, or some true neighbors being missed. Let
NNk (g) and NNg(q) be the correct set of k nearest neighbors for the query vector ¢ and the set returned by
FAISS, respectively, and let the query set) be the validation set. The average recall

|NNk ﬁNNk()|
\Q| Z INN%(q)|

is reported per dataset and target KDE value in Table 10 for both DEANN and DEANNP. The table only includes
instances where a non-zero number of nearest neighbors was queried, that is, cases where DEANN fell back to
random sampling are excluded. The table shows that a surprisingly small recall is sometimes sufficient to achieve
a small relative error. This is particularly true for datasets where the majority of the contribution came from
the random samples. The extreme cases are ALOI at p = 0.001 with & = 170 and m = 400 where a measly
R = 0.23 was sufficient to achieve the desired relative error, and, at the other end, SHUTTLE at p = 0.00001 with
k =50 and m = 0 where we got R = 0.98.

Robustness considerations. Table 11 shows empirically that DEANN generalizes nicely. The parameters
were chosen such that the average relative error did not exceed 0.1 in the validation set; the table shows that
this translates to low average relative error also in the test set. The greatest individual observed value was on
LAST.FM at a target value of 0.01 where the average relative error reached 0.114.

Figure 1 shows the dependence between different parameter choices from the validation step. Different parameter
choices are plotted and the corresponding average relative error is shown on the z-axis and the effect on runtime—
the number of queries processed per second—on the y-axis. Each individual parameter choice is presented with a
marker, and to help visualize the dependence, a lineplot is drawn between the markers. Each subplot corresponds
to a single dataset, and the different target KDE values are shown in the same plot with different colors and
markers. Only meaningful parameter choices are shown here; parameter choices that would yield a worse relative
error without gain in query speed are excluded. The figure shows that the parameter choices form a clear
tradeoff between approximation quality and runtime, meaning it is possible to tune DEANN to various use
cases, depending on the requirements on approximation quality and query times.

Figure 1: Average Relative Error Vs. Query Time Tradeoff At Different Parameter Choices, Reported For
DEANNP.

I Fixed-parameter experiments

In this section, we report on experiments that we carried out using a fized set of parameters, that is, we made an
educated guess for the constants k and m, and evaluated each dataset / target u combination against this choice
of parameters using the test set as the query set. The point of this exercise is to show that the expensive grid
search is not necessary for a practical application; that it is, in fact, possible to find good enough parameters by
evaluating a the algorithm against a small sample with a good guess of parameters. This shows the robustness
of our algorithm: that it is not sensitive to the exact correct choice of parameters.

Table 12 shows the results of evaluating DEANNP against the test set with the exponential kernel using the fixed
parameters k = 100, m = 1000, n, = 512, and n, = 1. The table lists the time per query, the average relative
error, and the corresponding runtime for the best parameters obtained from the grid search for comparison at
relative error below 0.1. As expected, a fixed choice of parameters favors some dataset/bandwidth choices more
than others, but overall, the results are encouraging. In terms of error, the worst behavior is observed in the case

DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search

Table 8: The Full Set of Results of Evaluating the Different Algorithms Against the Test Set in Milliseconds /
Query.

Dataset Target p Naive RS RSP DEANN DEANNP HBE RSA SKKD SKBT
ALOI 0.01 1.051 0.050 0.022 0.025 0.016 0.623 0.808 58.498 48.353
ALOI 0.001 1.058 0.326 0.105 0.211 0.148 12.192 41.411 59.353 47.644
ALOI 0.0001 1.055 6.477 1.698 0.270 0.197 n/a n/a 55.786 47.916
ALOI 0.00001 1.057 21.781 4.548 0.219 0.182 n/a n/a 47.930 49.698

CeEnsus 0.01 21.201 0.257 0.045 0.185 0.082 0.705 19.493 420.866 542.229
CeENsus 0.001 21.821 1.268 0.192 0.902 0.215 n/a 803.509 350.470 606.949

CENsus 0.0001 51.656 8.648 1.723 1.237 0.757 n/a n/a 253.440 462.727
CeENsus 0.00001 22.282 51.162 9.037 1.312 0.736 n/a n/a 207.266 366.852
CovTyPE 0.01 4921 1.036 0.128 0.269 0.055 0.314 20.534 46.734 50.446
CovTYPE 0.001 4913 1.797 0.222 0.678 0.279 0.629 433.858 26.425 28.755
CovTyPE 0.0001 5.992 8.182 1.824 0.596 0.473 n/a n/a 11.348 13.923
CovTYPE 0.00001 7.818 94.322 10.177 0.223 0.265 n/a n/a 3.953 6.098

GLOVE 0.01 11.302 0.011 0.001 0.005 0.003 0.347 0.207 674.429 582.650
GLOVE 0.001 11.054 0.019 0.003 0.012 0.007 6.617 0.225 699.529 586.988
GLOVE 0.0001 11.050 0.030 0.005 0.019 0.014 n/a 0.410 704.741 581.489
GLOVE 0.00001 11.101 0.048 0.015 0.041 0.022 n/a 1.804 709.414 621.037

LAST.FM 0.01 2.593 12.704 2.145 0.227 0.181 n/a n/a 104.039 94.147
LAST.FM 0.001 2.621 17.183 2.455 0.277 0.222 n/a n/a 99.893 86.006
LAST.FM 0.0001 2.753 48.630 4.699 0.294 0.247 n/a n/a 98.582 83.999
LAST.FM 0.00001 2.923 40.249 5.993 0.330 0.263 n/a n/a 85.621 83.367
MNIST 0.01 1.495 0.029 0.024 0.024 0.029 1.577 0.884 94.960 63.640

MNIST 0.001 1.507 0.090 0.062 0.091 0.065 12.073 6.886 94.545 61.830
MNIST 0.0001 1.504 0.422 0.213 0.345 0.202 n/a 8.915 89.835 59.892

MNIST 0.00001 1.524 1.172 0.773 0.609 0.536 n/a n/a 94.857 64.299
MSD 0.01 4.725 0.053 0.016 0.033 0.028 n/a 1.196 181.871 209.109
MSD 0.001 4.720 0.196 0.065 0.248 0.066 n/a 88.375 165.613 197.519
MSD 0.0001 4.729 1.301 0.234 0.461 0.266 n/a n/a 171.721 203.407
MSD 0.00001 4.754 9.898 1.482 0.754 0.405 n/a n/a 127.574 169.668
SHUTTLE 0.01 0.407 0.145 0.017 0.138 0.024 0.308 8.207 3.671 4.097
SHUTTLE 0.001 0.402 0.864 0.062 0.141 0.113 1.595 398.961 2.525 3.873
SHUTTLE (.0001 0.569 3.088 0.358 0.113 0.097 545.129 n/a 1.917 3.437
SHUTTLE 0.00001 0.672 n/a 0.527 0.070 0.065 n/a n/a 1.064 2.436

SVHN 0.01 42.094 0.290 0.189 0.255 0.448 11.830 56.613 3447.218 2521.555
SVHN 0.001 42.172 0.747 0.500 0.698 0.938 n/a 56.270 3471.669 2509.883
SVHN 0.0001 42.260 2.207 1.096 1.503 1.459 n/a 83210.996 3455.433 2495.796
SVHN 0.00001 41.748 3.743 2.262 3.758 2.852 n/a n/a 3496.380 2445.718

of CENsUS with small bandwidths, and the reason is clear: too few neighbors are looked at; this is also reflected
in the runtime which is more than a factor of 2 faster than with the parameters that achieve the error below
0.1. To the other extreme, in the case of GLOVE with the large bandwidth, we get a relative error of 0.014,
suggesting that we could have done with a lot fewer samples.

The practical implication of this exercise is that it suggests the following procedure for a practical application of
the algorithm: Choose a smallish query set, make a guess of parameters, evaluate against ground truth, and if the
results are not good enough (too high error or too high runtime), refine the parameters by taking a new guess;
since the algorithm behaves in a very predictable manner, only very few guesses should suffice in a practical
setting to find “good enough” parameters, meaning that an expensive hyperparameter tuning may not always be
necessary.

Matti Karppa, Martin Aumiiller, Rasmus Pagh

Table 9: Results Of The Validation Step Of The Experiments Including The Best Performing Parameters For
Some Algorithms.

RSP DEANNP HBE SKKD
Dataset Target u h m k- m ngng € Y
ALOI 0.01 3.3366 230 0 170 512 1.1 0.001 40 0.2

ALOI 0.001 2.0346 1800 0 2100 512
ALOI 0.0001 1.3300 29000 170 500 1024
ALOI 0.00001 0.8648 78000 120 430 1024
CENsUs 0.01 3.6228 1000 0 800 512
CENsUS 0.001 1.9416 6000 0 5000 512
CeNsUs 0.0001 1.1907 40000 700 5500 1024
CeNsus 0.00001 0.7826 300000 800 5000 4096
CovTyPE 0.01 245.8858 5000 0 1300 512
CovTyPE 0.001 119.2450 9000 0 8500 512
CovTypE 0.0001 63.4887 70000 1300 1400 2048
CovTyPE 0.00001 33.1331 350000 300 500 2048
GLOVE 0.01 1.5782 20 0 20 512
GLOVE 0.001 1.0372 50 0 50 512
GLOVE 0.0001 0.7674 90 0 90 512
GLOVE 0.00001 0.6028 160 0 160 512
LAST.FM 0.01 0.0041 75000 60 350 1024
LAST.FM 0.001 0.0026 85000 70 800 512
LAST.FM 0.0001 0.0019 160000 50 350 2048
LAST.FM 0.00001 0.0015 200000 80 450 2048
MNIST 0.01 532.9814 40 0 40 512
MNIST 0.001 348.4158 150 0 150 512
MNIST 0.0001 255.3234 600 0 600 512
MNIST 0.00001 198.7733 2200 140 450 512
MSD 0.01 498.4585 230 0 230 512
MSD 0.001 312.7048 1200 0 1000 512
MSD 0.0001 222.0082 5500 0 5300 512
MSD 0.00001 168.9344 36000 210 2100 2048
SHUTTLE 0.01 4.9727 1900 0 1900 512
SHUTTLE 0.001 2.3504 11000 200 500 512
SHUTTLE 0.0001 1.1605 45000 100 500 512
SHUTTLE 0.00001 0.5648 52000 50 0 512
SVHN 0.01 632.7492 150 0 120 512
SVHN 0.001 391.3900 400 0 350 512
SVHN 0.0001 277.1836 900 0 800 512
SVHN 0.00001 211.4066 1900 0 2000 512

0.6 0.0001 90 0.2
n/a n/a 80 0.2
n/a n/a 90 0.2
0.95 0.0006 80 0.4
n/a n/a 100 0.25
n/a n/a 10 0.2
n/a n/a 60 0.2
1.3 0.0001 90 0.3
1.5 0.0001 100 0.2
n/a n/a 30 0.2
n/a n/a 100 0.2
1.2 0.001 90 0.15
0.75 0.0001 50 0.2
n/a n/a 50 0.1
n/a n/a 90 0.2
n/a n/a 10 0.2
n/a n/a 10 0.15
n/a n/a 20 0.1
n/a n/a 100 0.15
1.2 0.001 50 0.2
1.056 0.0001 50 0.0
n/a n/a 100 0.5
n/a n/a 50 0.0
n/a n/a 90 0.2
n/a n/a 90 0.2
n/a n/a 90 0.1
n/a n/a 20 0.2
1.1 0.0001 20 0.2
1.0 0.00001 60 0.2
0.1 0.000005 100 0.2
n/a n/a 10 0.2
1.2 0.0001 70 0.2
n/a n/a 60 0.2
n/a n/a 60 0.2
n/a n/a 60 0.2

= = s O O O = U = = = O = b = O O = b e e e e O O = = O = = O O =

J Experiments with the Gaussian kernel

This section details supplementary experiments that were evaluated with respect to the Gaussian kernel. The
experiments also included ASKIT (March et al., 2015) as a competitor.

The experiments were performed on the same physical hardware as those with the exponential kernel, but with an
improved experimental framework where all implementations ran inside Docker containers to isolate them from
the rest of the environment; in particular, this enabled us to run ASKIT which depends on the Intel toolchain,
including the Intel MPI libraries, for compilation. The scripts for creating the Docker images are included in the
code!'?. In the experiments, all implementations were limited to 32 GiB of memory, and any runs that exceeded
the memory limitation were terminated. The total runtime of a run (including preprocessing) was limited to 6
hours, excluding SKKD and SKBT; this means that if the implementation could not build its datastructures and

2https://github. com/mkarppa/deann-experiments

https://github.com/mkarppa/deann-experiments

DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search

Table 10: Recall Rates For Approximate Nearest Neighbors Returned By FAISS At Different Parameter Values.
DEANN DEANNP

R k m g ng R

3

Dataset Target p k m nyg

q
ALOI 0.001 170 400 512 1 023 =n/a n/a n/a n/a n/a
ALOI 0.0001 200 430 1024 5 0.72 170 500 1024 5 0.74
ALOI 0.00001 200 2v0 1024 5 0.72 120 430 1024 5 0.78
CENSUS 0.001 500 3000 4096 1 031 =n/a n/a n/a n/a n/a
CENSUS 0.0001 1300 3000 4096 5 050 700 5500 1024 1 0.69
CENSUS 0.00001 1400 3000 4096 10 0.77 800 5000 4096 5 0.58
CovTYPE 0.001 1200 1100 1024 5 097 =n/a n/a n/a n/a n/a
CovTtypPE 0.0001 900 1000 1024 5 0.99 1300 1400 2048 5 0.72
CovTYPE 0.00001 350 0 2048 5 085 300 500 2048 5 0.86
LAST.FM 0.01 50 400 2048 1 024 60 350 1024 1 0.88
LAST.FM 0.001 70 200 2048 5 0.86 70 800 512 1 097
LAST.FM 0.0001 70 300 2048 5 0.86 50 350 2048 5 0.90
LAST.FM 0.00001 80 400 2048 5 0.86 80 450 2048 5 0.86
MNIST 0.00001 400 300 512 5 077 140 450 512 5 0.95
MSD 0.0001 140 1000 2048 5 046 =n/a n/a n/a n/a n/a
MSD 0.00001 210 1800 4096 10 0.45 210 2100 2048 5 043
SHUTTLE 0.001 300 350 512 5 0.84 200 500 512 5 0.87
SHUTTLE 0.0001 200 200 512 5 0.87 100 500 512 5 0.89
SHUTTLE 0.00001 50 0 512 5 0.98 50 0 512 5 0.98

evaluate the queries with a certain set of parameters within the time limit, the run was terminated, and any
subsequent runs whose parametrization would imply a longer runtime were not allowed to run either.

For DEANN and DEANNP, we fixed n, = 1 and let n, € {32,64, 128,256, 512,1024, 2048,4096}. The perception here
is that, for example, the choice ny = 2,n; = 64 is essentially the same as n, = 1,n, = 32 since we would expect
to look at a similar number of near neighbors, assuming the points in the training set are somewhat well-behaved
in their distribution among the different clusters in the k-means that FAISS does in its index building. The
parameters k and m were selected to be from multiple scales using the formula

k,me{10-(vV2)':i=0,1,...}, (16)

such that k and m satisfy k +m < n. A cartesian product of the parameters (k,m,ny) was then probed against
the validation set.

For RS and RSP, the candidates for the parameter m were chosen by the same formula of Equation (16) such that
m < n.

For SKKD and SKBT, the parameter ¢ was set to round(10 - (v/2)?) for i € {0,1,...,9}. The parameter ¢, was set
to {0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45,0.5}. A cartesian product of the values (¢, t,) was probed against
the validation set.

For HBE and RS, the parameter € was set to {0.1,0.15,0.2,...,1.5} and the parameter 7 was set to 0.01/(1/2)"
for i € {0,1,...,19} and rounded to 5 decimal digits, so 7 ranged from 0.01 to 0.00001. A cartesian product of
the values (¢, 7) was probed against the validation set.

For ASKIT, we followed the suggestions provided by March et al. (2015). For the initial pilot experiments, we set
idge) to 107 with —10 < i < 2, provide x = 100 nearest neighbors for each dataset and query set point, set the max
number of points m to 2! with 6 < i < 12, and set the oversampling factor to f € {2,5,10}. After noticing that we
could not obtain low relative error for small bandwidth choices by exploring these parameter choices, we further
set skeleton targets tsel € {2,5,10} and and set the minimum skeleton level to fge € {2,5,10,20}. After these
initial experiments, we pruned the parameter space and details can be seen in the script generate_askit.py in
the GitHub repository'®. We remark that ASKIT assumes that the nearest neighbors for the whole dataset and

3https://github.com/mkarppa/deann- experiments

https://github.com/mkarppa/deann-experiments

Matti Karppa, Martin Aumiiller, Rasmus Pagh

Table 11: Average Relative Error Against The Test Set With Best Parameters.
Dataset Target p Naive RS RSP DEANN DEANNP HBE RSA SKKD SKBT
ALOI 0.01 0.000 0.095 0.090 0.100 0.102 0.110 0.099 0.076 0.091
ALOI 0.001 0.000 0.106 0.113 0.104 0.101 0.096 0.097 0.092 0.097
ALOI 0.0001 0.000 0.102 0.099 0.100 0.100 n/a n/a 0.098 0.098
ALOI 0.00001 0.000 0.072 0.102 0.092 0.094 n/a n/a 0.099 0.098
CeENsus 0.01 0.001 0.081 0.087 0.087 0.094 0.090 0.079 0.092 0.087
CENsUS 0.001 0.002 0.087 0.082 0.094 0.091 n/a 0.064 0.091 0.095
CENsUs 0.0001 0.002 0.084 0.088 0.103 0.105 n/a n/a 0.088 0.099
CEeNsUs 0.00001 0.001 0.077 0.079 0.095 0.103 =n/a n/a 0.094 0.098
CovTyPE 0.01 0.001 0.047 0.045 0.094 0.094 0.095 0.086 0.098 0.099
CovTYyPE 0.001 0.000 0.093 0.094 0.098 0.097 0.099 0.065 0.081 0.088
CovTYPE 0.0001 0.000 0.142 0.097 0.096 0.092 n/a n/a 0.090 0.090
CovTyPE 0.00001 0.000 0.074 0.098 0.098 0.093 =n/a n/a 0.092 0.087
GLOVE 0.01 0.000 0.095 0.096 0.095 0.097 0.124 0.089 0.069 0.096
GLOVE 0.001 0.000 0.093 0.092 0.093 0.093 0.091 0.090 0.097 0.070
GLOVE 0.0001 0.000 0.095 0.095 0.102 0.098 n/a 0.108 0.047 0.080
GLOVE 0.00001 0.000 0.097 0.098 0.096 0.098 n/a 0.060 0.090 0.020
LAST.FM 0.01 0.001 0.061 0.052 0.111 0.114 n/a n/a 0.094 0.091
LAST.FM 0.001 0.001 0.095 0.092 0.111 0.089 n/a n/a 0.086 0.056
LAST.FM 0.0001 0.002 0.056 0.086 0.109 0.108 n/a n/a 0.051 0.073
LAST.FM 0.00001 0.004 0.093 0.088 0.092 0.096 n/a n/a 0.105 0.161
MNIST 0.01 0.000 0.090 0.094 0.091 0.092 0.103 0.093 0.082 0.093
MNIST 0.001 0.000 0.098 0.097 0.094 0.096 0.093 0.083 0.000 0.000
MNIST 0.0001 0.000 0.088 0.095 0.092 0.093 n/a 0.104 0.006 0.000
MNIST 0.00001 0.000 0.102 0.100 0.098 0.094 n/a n/a 0.000 0.000
MSD 0.01 0.000 0.103 0.097 0.097 0.100 n/a 0.068 0.080 0.087
MSD 0.001 0.000 0.101 0.148 0.091 0.107 n/a 0.097 0.091 0.095
MSD 0.0001 0.000 0.148 0.096 0.107 0.098 n/a n/a 0.047 0.098
MSD 0.00001 0.000 0.096 0.091 0.103 0.100 n/a n/a 0.096 0.099
SHUTTLE 0.01 0.000 0.094 0.095 0.096 0.098 0.105 0.091 0.080 0.093
SHUTTLE 0.001 0.000 0.119 0.102 0.099 0.101 0.090 0.069 0.091 0.095
SHUTTLE 0.0001 0.002 0.120 0.065 0.096 0.102 0.097 n/a 0.095 0.094
SHUTTLE 0.00001 0.002 n/a 0.084 0.073 0.073 n/a n/a 0.094 0.090
SVHN 0.01 0.000 0.081 0.081 0.092 0.093 0.109 0.048 0.098 0.098
SVHN 0.001 0.000 0.084 0.084 0.088 0.090 n/a 0.080 0.099 0.099
SVHN 0.0001 0.000 0.076 0.087 0.090 0.091 n/a 0.053 0.099 0.099
SVHN 0.00001 0.000 0.090 0.098 0.089 0.091 n/a n/a 0.099 0.099

query set are given as input during preprocessing, which is extremely costly. On our setup, it took 16 hours using
FAISS with multi-threading using 48 threads to precompute this information for the 9 datasets in question. In
contrast, our variants of DEANN compute these neighbors during query time.

When computing the relative error (especially in the validation step), we excluded points whose exact KDE value
was below 10716, since the single-precision floating-point arithmetic turned out to be numerically too unstable
to be useful at that point.

The main results are shown in Table 13. The results agree with the those obtained with the exponential kernel;
in almost all cases, either DEANNP or RSP is the fastest algorithm, and DEANNP is seldom very far behind, as it can
fall back to essentially the same random sampling algorithm. Surprisingly, in the cases of LAST.FM and MNIST
at target KDE value of 0.00001, the Naive algorithm turned out to be unbeatable. Low error requires too many
points to be looked at for approximate algorithms to be very effective in this low bandwidth regime.

Table 14 shows complementary results where we have limited ourselves to the case that k = m when tuning
the parameters of DEANN and DEANNP. To make the effect even clearer, Table 15 shows the ratio of the runtime
for DEANN and DEANNP from Table 14 divided by the runtime with the best parameters from Table 13. While

DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search

Table 12: Query Times in Milliseconds / Query and Relative Errors Using Fixed Parameters (kK = 100, m = 1000,
ng = 512, ny = 1) vs. Parameters from Grid Search.

Grid Search Fixed parameters
Dataset Target p Query Time Query Time Relative Error
ALOI 0.01 0.014 0.188 0.036
ALOI 0.001 0.156 0.169 0.070
ALOI 0.0001 0.229 0.167 0.117
ALOI 0.00001 0.209 0.167 0.174
CENSUS 0.01 0.031 0.329 0.082
CENSUS 0.001 0.189 0.334 0.179
CENSUS 0.0001 0.876 0.345 0.317
CENSUS 0.00001 0.889 0.331 0.452
CovrypPE 0.01 0.046 0.177 0.099
CovTtypPE 0.001 0.272 0.176 0.206
CovTtYPE 0.0001 0.536 0.222 0.358
CovTtyPE 0.00001 0.357 0.184 0.359
GLOVE 0.01 0.001 0.316 0.014
GLOVE 0.001 0.003 0.321 0.020
GLOVE 0.0001 0.005 0.316 0.029
GLOVE 0.00001 0.008 0.321 0.039
LAST.FM 0.01 0.204 0.253 0.073
LAST.FM 0.001 0.240 0.230 0.140
LAST.FM 0.0001 0.269 0.226 0.109
LAST.FM 0.00001 0.286 0.230 0.214
MNIST 0.01 0.015 0.492 0.018
MNIST 0.001 0.052 0.494 0.034
MNIST 0.0001 0.212 0.490 0.059
MNIST 0.00001 0.724 0.493 0.104
MSD 0.01 0.012 0.202 0.047
MSD 0.001 0.054 0.201 0.083
MSD 0.0001 0.266 0.199 0.126
MSD 0.00001 0.426 0.208 0.175
SHUTTLE 0.01 0.025 0.091 0.090
SHUTTLE 0.001 0.133 0.120 0.143
SHUTTLE 0.0001 0.111 0.109 0.224
SHUTTLE 0.00001 0.078 0.101 0.274
SVHN 0.01 0.145 3.133 0.032
SVHN 0.001 0.423 2.925 0.052
SVHN 0.0001 1.063 2.929 0.079
SVHN 0.00001 2.404 2.894 0.117

it is clear that sometimes the number of nearest neighbors and random samples that one ought to look at are
unbalanced, the situation is not desperate, and in many cases useful results can be obtained even while restricting
the search space.

K Preprocessing Times

Table 16 lists the preprocessing times for the various algorithms. The reported times are in seconds and were
obtained when evaluating the test using the Gaussian kernel.

Generally, RS has the smallest construction time, which is almost zero, since there is no data structure to
construct; the code only stores a pointer to the data. The larger (but still insignificant) construction time for
Naive is explained by the fact that, upon construction, the data structure stores the Euclidean norm of each

Matti Karppa, Martin Aumiiller, Rasmus Pagh

Table 13: Results of Evaluating the Different Algorithms Against the Test Set in Milliseconds / Query with the
Gaussian Kernel.

Dataset Target p Naive RS RSP DEANN DEANNP HBE RSA SKKD SKBT ASKIT
ALOI 0.01 1.036 0.329 0.084 0.286 0.089 4.748 15.502 51.882 43.581 0.491
ALOI 0.001 1.002 7.858 1.676 0.768 0.296 n/a 971.296 48.001 44.614 1.242
ALOI 0.0001 1.079 16.646 5.128 1.552 0.519 n/a n/a 36.452 41.628 1.252
ALOI 0.00001 1.894 n/a n/a 0.515 0.446 n/a n/a 24.127 31.434 1.236
CeENsus 0.01 21.167 0.718 0.117 0.749 0.207 2.056 69.093 286.878 375.744 n/a
CeEnsus 0.001 22.291 6.963 1.239 1.550 0.891 n/a n/a 160.692 353.577 n/a
CEnsus 0.0001 23.465 65.938 15.354 2.350 1.400 n/a n/a 116.222 295.493 n/a
CENsus 0.00001 28.710278.683 62.955 2.520 1.582 n/a n/a 88.905 249.631 n/a
CovTyPE0.01 6.305 0.612 0.091 0.637 0.128 0.708 43.133 23.449 24.650 3.334
CovTYPE 0.001 6.467 4.844 0.808 1.294 0.672 6.032 n/a 8982 10.943 4.970
CovTYPE0.0001 5.984 47.721 6.112 1.423 1.079 n/a n/a 2900 4.348 5.289
CovTYPE 0.00001 5.027 n/a n/a 0.242 0.225 n/a n/a 0.628 1.171 5.495

GLOVE 0.01 10.650 0.021 0.004 0.021 0.005 8.908 0.867 577.850 549.691 n/a
GLOVE 0.001 10.675 0.071 0.021 0.065 0.013 n/a 1.769 574.288 551.816 1.423
GLOVE 0.0001 10.447 0.163 0.042 0.162 0.069 n/a 38.040 578.709 551.685 3.548
GLOVE 0.00001 10.320 0.830 0.189 0.429 0.167 n/a 1862.553 630.915 499.688 n/a

LASTFM 0.01 2.989 32.091 5.142 0.583 0.321 n/a n/a 90.750 78.711 n/a
LASTFM 0.001 3.022 51.482 7.119 1.018 0.496 n/a n/a 83.927 86.719 n/a
LASTFM 0.0001 3.046 43.680 7.196 2.683 0.848 n/a n/a 89.954 87.373 n/a
LASTFM 0.00001 2.888 n/a 7.133 7.260 3.841 n/a n/a 88.133 n/a n/a
MNIST 0.01 1.477 0.132 0.087 0.105 0.06716.628 8.517 95.594 63.673 0.684

MNIST 0.001 1.466 0.939 0.602 0.679 0.382 n/a 146.002 90.962 59.170 3.058
MNIST 0.0001 1.594 5.409 3.385 1.655 1.085 n/a19838.656 96.430 63.810 2.984

MNIST 0.00001 1.457 32.994 13.151 3.743 2.602 n/a n/a 95.879 63.010 3.226
MSD 0.01 4.891 3.546 0.434 0.574 0.256 n/a n/a 161.008 188.234 5.108
MSD 0.001 5.224 36.903 6.724 1.603 0.663 n/a n/a 131.380 162.818 5.251
MSD 0.0001 5.585 70.699 13.940 4.316 1.693 n/a n/a 128.709 180.890 5.126
MSD 0.00001 5.982101.900 13.78410.268 3.783 n/a n/a 115.804 175.152 5.262
SHUTTLE 0.01 0.519 0.368 0.045 0.270 0.086 1.153 16.054 2.291 2.919 0.329
SHUTTLE 0.001 0.555 2993 0.233 0.316 0.17536.222 n/a 1.297 2.631 0.331
SHUTTLE 0.0001 0.497 n/a n/a 0.084 0.087 n/a n/a 0.622 2.230 0.363
SHUTTLE 0.00001 0.411 n/a n/a 0.049 0.047 n/a n/a 0.284 1972 0.407
SVHN 0.01 40.710 1.129 0.836 0.856 1.145 n/a n/a 2797.2061925.226 n/a
SVHN 0.001 40.653 4.440 4.545 4.377 2.841 n/a n/a 2570.958 1920.286 n/a
SVHN 0.0001 40.241 55.776 23.58712.62711.466 n/a n/a 2548.3591930.954 n/a
SVHN 0.00001 41.309279.773140.98652.18136.585 n/a n/a2529.7781869.640 n/a

vector in the training set. The construction time for RSP consists of copying the training set into memory in
random order.

For DEANN and DEANNP, there is a huge variance among the construction times. This is explained by the fact
that it is dominated by the construction time for FAISS, and is very sensitive to the parameter n,, the number
of clusters. Thus the construction time can range from almost-insignificant to rather long, depending on the
construction time of the underlying NN object. Like RS, DEANN has no construction time of its own, whereas
DEANNP performs the same initialization of random sampling as RSP.

In all instances where a comparison could be made, DEANNP and DEANN can be constructed considerably faster
than HBE or ASKIT. SKKD and SKBT are in a class of their own with respect to construction times, reaching over
7 hours for the CENSUS dataset.

DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search

Table 14: Results of Evaluating the Different Algorithms Against the Test Set in Milliseconds / Query with the
Gaussian Kernel with the Restriction that k& = m.

Dataset Target p Naive RS RSP DEANNDEANNP HBE RSA SKKD SKBT ASKIT
ALOI 0.01 1.036 0.329 0.084 0.270 0.193 4.748 15.502 51.882 43.581 0.491
ALOI 0.001 1.002 7.858 1.676 0.768 0.338 n/a 971.296 48.001 44.614 1.242
ALOI 0.0001 1.079 16.646 5.128 2.586 1.245 =n/a n/a 36.452 41.628 1.252
ALOI 0.00001 1.894 n/a n/a 7.061 2393 n/a n/a 24.127 31.4341.236
CeEnsus 0.01 21.167 0.718 0.117 0.778 0.561 2.056 69.093 286.878 375.744 n/a
CENsus 0.001 22.291 6.963 1.239 2.098 1.192 n/a n/a 160.692 353.577 n/a
CENsSUs 0.0001 23.465 65.938 15.354 3.503 2.570 =n/a n/a 116.222 295.493 n/a
CENSUs 0.00001 28.710278.683 62.955 3.496 2.625 n/a n/a 88.905 249.631 n/a
CovTYPE 0.01 6.305 0.612 0.091 0.654 0.399 0.708 43.133 23.449 24.650 3.334
CovTyPE 0.001 6.467 4.844 0.808 1.900 0.983 6.032 n/a 8.982 10.943 4.970
CovTyPE 0.0001 5.984 47.721 6.112 2.443 1.924 n/a n/a 2.900 4.348 5.289
CovTypPE(.00001 5.027 n/a n/a 0.594 0.477 n/a n/a 0.628 1.171 5.495

GLOVE 0.01 10.650 0.021 0.004 0.172 0.168 8.908 0.867 577.850 549.691 n/a
GLOVE 0.001 10.675 0.071 0.021 0.283 0.234 n/a 1.769 574.288 551.816 1.423
GLOVE 0.0001 10.447 0.163 0.042 0.393 0.359 =n/a 38.040 578.709 551.685 3.548
GLOVE 0.00001 10.320 0.880 0.189 0.693 0.471 n/a 1862.553 630.915 499.688 n/a

LASTFM 0.01 2.989 32.091 5.142 1.077 1.029 n/a n/a 90.750 78711 n/a
LASTFM 0.001 3.022 51.482 7.119 7.126 3.992 n/a n/a 83.927 86.719 n/a
LASTFM 0.0001 3.046 43.680 7.196 14.758 6.060 n/a n/a 89.954 87.373 n/a
LASTFM 0.00001 2.888 n/a 7.133 30.810 10.142 n/a n/a 88.133 n/a n/a
MNIST 0.01 1.477 0.132 0.087 0.300 0.31016.628 8.517 95.594 63.673 0.684
MNIST 0.001 1.466 0.939 0.602 0.679 0.572 =n/a 146.002 90.962 59.170 3.058
MNIST 0.0001 1.594 5.409 3.385 1.655 1.392 1n/a19838.656 96.430 63.810 2.984
MNIST 0.00001 1.457 32.994 13.151 4.944 3.987 n/a n/a 95.879 63.010 3.226
MSD 0.01 4.891 3.546 0.434 1.118 0.671 n/a n/a 161.008 188.234 5.108
MSD 0.001 5.224 36.903 6.724 2.635 2.143 n/a n/a 131.380 162.818 5.251
MSD 0.0001 5.585 70.699 13.940 13.175 6.986 n/a n/a 128.709 180.8905.126
MSD 0.00001 5.982101.900 13.784 18.616 15.204 n/a n/a 115.804 175.1525.262
SHUTTLE 0.01 0.519 0.368 0.045 0.270 0.194 1.153 16.054 2.291 2.919 0.329
SHUTTLE 0.001 0.555 2.993 0.233 0.316 0.27236.222 n/a 1.297 2.631 0.331
SHUTTLE 0.0001 0.497 n/a n/a 0.133 0.156 n/a n/a 0.622 2.230 0.363
SHUTTLE 0.00001 0.411 n/a n/a 0.051 0.052 n/a n/a 0.284 1.972 0.407
SVHN 0.01 40.710 1.129 0.836 4.370 3.141 n/a n/a2797.2061925.226 n/a
SVHN 0.001 40.653 4.440 4.545 6.220 6.680 n/a n/a2570.958 1920.286 n/a
SVHN 0.0001 40.241 55.776 23.58713.814 14.836 n/a n/a2548.3591930.954 n/a

SVHN 0.00001 41.309279.773140.986 52.181 43.192 n/a n/a2529.778 1869.640 n/a

Matti Karppa, Martin Aumiiller, Rasmus Pagh

Table 15: Runtime Ratio Between Best Parameters and & = m Parameters.
Dataset Target p DEANNDEANNP

ALOI 0.01 0.943 2.178
ALOI 0.001 1.000 1.141
ALOI 0.0001 1.666 2.397
ALOI 0.00001 13.707 5.366
CENsuUs 0.01 1.040 2.707
CENsUs 0.001 1.353 1.339
CENsUs 0.0001 1.491 1.836
CENSUS 0.00001 1.387 1.659
CovTYPEO0.01 1.028 3.122
CovTyPE0.001 1.468 1.463
CovTYPE 0.0001 1.716 1.784
CovTYPE0.00001 2.454 2.115
GLOVE 0.01 8.295 33.587
GLOVE 0.001 4.378 18.506
GLOVE 0.0001 2.430 5.221
GLOVE 0.00001 1.616 2.811
LAST.FM 0.01 1.848 3.209
LAST.FM 0.001 7.000 8.051
LAST.FM 0.0001 5.500 7.148
LAST.FM 0.00001 4.244 2.640
MNIST 0.01 2.861 4.647
MNIST 0.001 1.000 1.500
MNIST 0.0001 1.000 1.282
MNIST 0.00001 1.321 1.532
MSD 0.01 1.949 2.618
MSD 0.001 1.644 3.234
MSD 0.0001 3.052 4.126
MSD 0.00001 1.813 4.019
SHUTTLE 0.01 1.000 2.245
SHUTTLE 0.001 1.000 1.550
SHUTTLE 0.0001 1.576 1.779
SHUTTLE 0.00001 1.044 1.106
SVHN 0.01 5.103 2.743
SVHN 0.001 1.421 2.351
SVHN 0.0001 1.094 1.294
SVHN 0.00001 1.000 1.181

DEANN: Speeding up Kernel-Density Estimation using Approximate Nearest Neighbor Search

Table 16: Preprocessing Times When Evaluating the Different Algorithms Against the Test Set with the Gaussian
Kernel in Seconds.

Dataset Target pNaive RS RSP DEANN DEANNP HBE RSA SKKD SKBT ASKIT
ALOI 0.01 0.0060.0000.055 0.377 8.775 22.2850.000 4.929 5.155 21.455
ALOI 0.001 0.0060.0000.059 1.078 0.975 n/a0.000 5.349 5.680 6.626
ALOI 0.0001 0.0060.0000.056 0.146 0.153 n/a n/a 5.588 5.756 6.425
ALOI 0.00001 0.006 n/a n/a 0.154 0.146 n/a n/a 5.782 4.949 6.372
CeENsus 0.01 0.0810.0000.945 3.568 14.269101.7270.00025573.25022917.678 n/a
Census 0.001 0.0770.0000.922 14.238 39.615 n/a n/a25405.12025516.643 n/a
CENsus 0.0001 0.0750.0000.971 3.346 6.440 n/a n/a25486.341 25455.323 n/a
CeNsus 0.00001 0.0680.0000.938 2.498 3.345 n/a n/a23033.75023078.722 n/a
CovTyPE0.01 0.0170.0000.179 26.056 0.336 11.0080.000 5.644 4.098 572.824
CovTYPE 0.001 0.0170.0000.189 0.439 7.590 40.260 n/a 5.413 4.360 339.547
CovTYyPE(0.0001 0.0160.0000.186 0.336 0.340 n/a n/a 5.443 4.576 76.198
CovTyPE0.00001 0.016 n/a n/a 0593 0.621 n/a n/a 5.026 4.010 75.267
GLOVE 0.01 0.0520.0000.553 1.067 2.521135.0740.000 29.145 30.301 n/a
GLOVE 0.001 0.0490.0000.553 13.145 2.561 n/a0.000 28.012 30.064 175.622
GLOVE 0.0001 0.0440.0000.553 1.240 1.267 n/a0.000 28.417 30.106578.841
GLOVE 0.00001 0.0440.0000.542144.898 12.779 n/a0.000 33.952 26.619 n/a
LAST.FM 0.01 0.0100.0000.106 2.320 7.022 n/a n/a 4.327 3.140 n/a
LAST.FM 0.001 0.0100.0000.105 2.317 2.331 n/a n/a 4.168 3.226 n/a
LAST.FM 0.0001 0.0090.0000.108 0.249 2.312 n/a n/a 4.148 3.193 n/a
LAST.FM 0.00001 0.009 n/a0.107 0.794 0.850 n/a n/a 4.125 n/a n/a
MNIST 0.01 0.0170.0000.159 1.700 0.813100.3230.000 12.369 11.154 14.053
MNIST 0.001 0.0170.0000.156 1.739 1.650 n/a0.000 12.051 10.671 4.424
MNIST 0.0001 0.0160.0000.163 0.838 1.768 n/a0.000 12.097 11.201 4.423
MNIST 0.00001 0.0160.0000.155 0.447 0.443 n/a n/a 12.461 11.022 4.397
MSD 0.01 0.0200.0000.223 9.319 9.395 n/a n/a 12.378 10.359 144.805
MSD 0.001 0.0210.0000.227 0.443 0.785 n/a n/a 10.183 9.093 143.934
MSD 0.0001 0.0190.0000.223 0.432 0.435 n/a n/a 11.974 10.106 145.066
MSD 0.00001 0.0190.0000.224 0.446 0.460 n/a n/a 11.614 10.028 144.940
SHUTTLE 0.01 0.0010.0000.007 0.238 0.070 2.0060.000 0.687 0.658 0.593
SHUTTLE 0.001 0.0010.0000.007 0.049 0.067 63.746 n/a 0.659 0.621 1.634
SHUTTLE 0.0001 0.001 n/a n/a 0.046 0.048 n/a n/a 0.670 0.639 1.679
SHUTTLE 0.00001 0.001 n/a n/a 0.262 0.257 n/a n/a 0.636 0.619 1.542
SVHN 0.01 0.5830.0005.590262.6131651.727 n/a n/a 454.764 473117 n/a
SVHN 0.001 0.5820.0005.624 35.396 13.996 n/a n/a 446.738 462.035 n/a
SVHN 0.0001 0.6570.0005.662 36.748 35.219 n/a n/a 445.377 463.516 n/a
SVHN 0.00001 0.7720.0005.592 16.252 16.640 n/a n/a 431.374 452.096 n/a

	INTRODUCTION
	Our Contribution
	Related Work

	PRELIMINARIES
	ALGORITHMIC APPROACH AND THEORETICAL FOUNDATIONS
	Decomposing the KDE
	Algorithmic Approach
	Contribution of Nearest Neighbors in Real-World Datasets
	How Nearest Neighbors Help Random Sampling

	IMPLEMENTATION AND ENGINEERING CHOICES
	EXPERIMENTS
	Asymptotic notation
	Related work and historical perspectives on KDE
	Proof of Lemma 2
	Proof of Lemma 5
	Proof of Lemma 7
	Naïve algorithm
	Permuted Random Sampling
	Detailed discussion of experimental evaluation with the exponential kernel
	Fixed-parameter experiments
	Experiments with the Gaussian kernel
	Preprocessing Times

