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Abstract

In this paper, we study the problem of re-
covering the community structure of a net-
work under federated myopic learning. Under
this paradigm, we have several clients, each
of them having a myopic view, i.e., observ-
ing a small subgraph of the network. Each
client sends a censored evidence graph to a
central server. We provide an efficient algo-
rithm, which computes a consensus signed
weighted graph from clients evidence, and re-
covers the underlying network structure in
the central server. We analyze the topological
structure conditions of the network, as well
as the signal and noise levels of the clients
that allow for recovery of the network struc-
ture. Our analysis shows that exact recovery
is possible and can be achieved in polynomial
time. In addition, our experiments show that
in an extremely sparse network with 10000
nodes, our method can achieve exact recov-
ery of the community structure even if every
client has access to only 20 nodes. We also
provide information-theoretic limits for the
central server to recover the network struc-
ture from any single client evidence. Finally,
as a byproduct of our analysis, we provide
a novel Cheeger-type inequality for general
signed weighted graphs.

1 INTRODUCTION

Modern social networks have underlying community
structures (Javed et all 2018]). Take Twitter as an ex-
ample: one may assume that Twitter users with similar
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political views are more likely to interact with each
other. Community detection is the task of identifying
underlying group structures in a network given obser-
vation of node interactions (Kelley et al., 2012; |Ke
and Honorio| 2018)). At the same time, modern social
networks exhibit two opposite defining properties: big
volume, small neighborhoods. In the Twitter example,
more than 1.3 billion Twitter accounts have been cre-
ated as of the year 2019, yet the average number of
followers is 707 (Smith, 2020). Thus when studying
modern social networks, it is impractical and inefficient
to collect all data. Furthermore, due to growing privacy
concerns and regulations, it is unfavorable for a central
server to collect all users’ information.

As an emerging technique in the machine learning com-
munity, federated learning tries to address the issues
discussed above. The idea of federated learning is not
limited to any particular learning algorithm; rather, it
is a learning paradigm, under which a central server
trains a high-quality learning model with the coordina-
tion of a federation of participating clients (Konecny
et all [2016). In a typical federated learning setting,
it is often assumed that the participating clients are
large in number. At the same time, each client has a
very small and non-i.i.d. (independent and identically
distributed) dataset, very limited computational power,
and very restricted communication capabilities.

In this paper we study the problem of community de-
tection under a federated learning paradigm. We focus
on a myopic setting, in which every client has a limited
and non-identical access to the network. Each client
observes a small subgraph of the whole network, and
sends a censored evidence graph to a central server.
The server then computes a consensus graph from the
evidence sent by the clients, and recovers the underly-
ing community structure of the full network. To model
community interaction we adopt a generative approach
similar to the one in the stochastic block model (SBM).
In other words, we assume nodes from the same group
are more likely to be connected than those from differ-
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ent groups. We try to answer the following questions:

e Does there exist an efficient central server algo-
rithm that takes the censored clients’ local obser-
vation as the input, and recovers the underlying
community structure of the full network?

e Under what topological and statistical conditions,
the central algorithm will work correctly?

In community detection tasks, one of the most impor-
tant properties is the edge expansion. In general, for
undirected unweighted graphs, the edge expansion mea-
sures how connected every component of the network
is. It is well-known that the Cheeger constant can
be used to measure the edge expansion property of a
graph. The edge expansion is important for successful
community detection. For example, if the subgraphs
observed by all clients do not have any intersection
at all, arguably it is not possible to correctly recover
the full community structure, as there is no observed
community interaction between nodes in different sub-
graphs (see Figure [la] for illustration). Similarly, if the
union of the subgraphs is a chain graph or a star graph,
it has a “bottleneck”. In this case, removing very few
edges will disconnect the graph (see Figure [Lb| and
for illustration). We find that the correctness of commu-
nity detection heavily depends on the bottleneck edges.
In our analysis we propose a novel Cheeger-type con-
stant, which characterizes the edge expansion property
of general signed weighted graphs (that is, weighted
graphs with potentially negative weights). We show
that the Cheeger-type constant of the server consensus
graph is critical for correct recovery of the underlying
community structure, along with the signal and noise
level parameters.

As a rapidly growing research area, federated learning
was formally defined in |[Konecny et al.| (2015} 2016])
as a general machine learning setting. Recently, both
Li et al| (2020) and Yang et al. (2019) provided an
overview of federated learning, and interestingly, both
overviews highlighted that one main challenge in feder-
ated learning is the statistical heterogeneity of clients’
local data. The framework of federated learning has
been applied to various problems such as deep networks
(McMahan et al., 2017, principal component analysis
(Grammenos et al., 2020) and sparse linear regression
(Barik and Honoriol [2020)), to mention a few. On the
other hand, federated learning for community detection
tasks has not been studied yet. |Mercado et al.| (2018)
studied a tangentially related problem called multilayer
graph clustering, however the topological structure in
that case is much simpler, and the weights are assumed
to be nonnegative. To the best of our knowledge, we are
providing the first community detection model under a
federated myopic learning setting, where the clients ob-

serve a non-identical small subgraph of the full network.
Many federated learning algorithms only have some
convergence guarantee, i.e., the output gets close to
the true solution. Our federated community detection
algorithm, arguably more challenging, aims at exact
recovery of the underlying community structure. In
other words, our algorithm does not require rounding of
the solution. Our theorem states that if the statistical
conditions are met, the proposed algorithm will always
return the exact true community structure.

Related Works. There are several different general-
izations of signed graphs and the Laplacian (Bronski
and DeVille), 2014)). One variation studied in |[Kunegis
et al.| (2010); |Cucuringu et al.| (2019); Knyazev] (2017)
is the so-called signed degree matrix. The idea is that
instead of summing all edge weights directly, they sum
over the absolute value of the edge weights, and their
signed Laplacian matrix can be defined in a similar way.
Readers should be aware that this is different from our
approach, and more importantly, only our approach
fulfills the Karush-Kuhn-Tucker (KKT) conditions re-
quired by our algorithm. There are also some works on
the application of signed networks, for example, |Dor{
eian and Mrvar| (2009) proposed a heuristic algorithm
to partition signed social networks, and |Giotis and Guj{
ruswami| (2006) proposed an approximation algorithm
to maximize agreements in a graph. Our theorems
focus on the spectral analysis of the signed weighted
graph, and provide provable theoretical guarantees for
efficient exact recovery.

Summary of Our Contribution. Our work is mostly
theoretical. We provide a series of novel results in this

paper:

e We introduce a highly-general federated myopic
learning framework with one-shot communica-
tion for community detection tasks. Under this
paradigm, every client observes a small subgraph
of the full network and sends a censored evidence
graph to a central server. The central server com-
putes a consensus signed weighted graph, and re-
covers the underlying network structure.

o We provide provable theoretical guarantees for
efficient exact recovery of the community structure.
We analyze the topological structure conditions
of the consensus graph, as well as the signal and
noise levels of the clients that allow for recovery
of the community structure. We establish the
regime in which exact recovery is possible and can
be achieved in polynomial time. We also provide
information-theoretic limits for any algorithm to
recover the local community structure from any
single client evidence.

o We propose a novel Cheeger-type inequality for
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(a) Chain graph (smallest edge
expansion)

(b) Star graph (median edge
expansion)

(c) Regular graph (largest edge
expansion)

Figure 1: Graph topology examples. Figure [la|shows a chain graph, where two clients observe subgraph G()
and G| respectively. In this case it is impossible for any algorithm to recover the full network structure, since
there is no observed interaction between the two subgraphs. Figure [1b[shows a star graph, in which every edge
connecting the highlighted node in the center is a “bottleneck,” i.e., removing any of the three edges disconnects
the graph. Figure [lc|shows a 3-regular graph, in which every component is connected with no “bottleneck.”

general signed weighted graphs with potentially
negative weights, from a graph theoretical point of
view. The inequality relates the eigenvalue gap of a
signed weighted graph to a Cheeger-type constant.

e Our method is computationally efficient on large
scale networks. In particular, our experiments
show that in an extremely sparse network with
10 000 nodes, our method can achieve exact recov-
ery of the community strucutre even if every client
has access to only 20 nodes.

2 PRELIMINARIES

In this section, we present an overview of federated
myopic learning. We formally define the community
detection task under this paradigm, and present an
central server algorithm that solves the problem by
using the censored subgraph information reported by
the clients. We also introduce the notations that will
be used later in the paper.

Without specification we use lowercase letters (e.g.,
a,b,u,v) for scalars and vectors, and uppercase letters
(e.g., A, B,C) for matrices and sets. For any natural
number n, we use [n] to denote the set {1,...,n}. For
clarity when dealing with a sequence of objects, we
use the superscript (i) to denote the i-th object in
the sequence, and subscript j to denote the j-th entry.
For example, for a sequence of vectors {x(i)}ie[n], xgl)
represents the second entry of vector (). We use R
to denote the set of real numbers. We use 1 to denote
the all-one vector. For any matrix A, we use A, (A)
to denote its mth-smallest eigenvalue. For any vector
u, we use diag (u) to denote the diagonal matrix with
u in the diagonal. For every graph mentioned in this
paper, without further discussion we always assume
there exists no self loops.

2.1 Federated Myopic Community Detection

Paradigm
A federated myopic learning model
M(n, K, {Q(’“)7p(k), q®, T(k)}szl | y*) consists

of n nodes and K clients, and every client is equipped
with a tuple {Q®) p*) ¢*) ()1 In this model
y* € {+1, —1}" is the node label vector of the network,
indicating the underlying community structure. We
use V = [n] to denote the set of nodes.

For every single client k € [K], Q%) c |V| x |V] is
the field of view (FOV) of client k, p*), ¢®) are the
local signal and noise level parameters, and r(*) is the
local censorship parameter. We say client k is myopic,
if its field of view is not equal to the complete graph
spanned by V, i.e., QF) £ V| x |[V].

Now, nature generates a local subgraph G®*) =
(V&) E®) for every client k using the following rule:
for every viewable pair (i, 5) € Q) with i # j, connect
(i,7) with probability p(*) if the labels are equal, i.e.,
y; = y;; otherwise connect (7, j) with probability q®).
After that, remove all isolated nodes from V*)  and
denote n¥) .= ‘V(k)’. We call G = (VE) E(F)) the
local subgraph observed by client k.

Next, client k£ constructs the corresponding censored
evidence graph G*) = (V*) E®)) from the observed
subgraph G®*) as follows: the edge set E(*) starts
empty. For every viewable pair (i,j) € Q%) with
i # j,if (i,7) is an edge in E®) add (i,j) to E®*)
with probability 1 —r*); if (i, ) is not an edge in E®*),
add it to E® with probability r*). Each client sends
its censored evidence graph to a central server.

We now summarize the federated myopic learning task
in this paper. It is worth mentioning, that one can only
recover the node label vector y* up to permutation of
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Figure 2: Examples of client fields of view (Q(l), 0@ 9(3)), client-observed subgraphs (G(l)7 G2, G(?’))7 and server
consensus signed weighted graph. In FOVs, each viewable edge is represented by a dashed line. In subgraphs,
each edge is colored red, and each non-edge is colored blue. The consensus graph is the weighted summation of all
subgraphs, such that each edge is counted as +1, and each non-edge is counted as —1. In the particular examples
above, it is assumed that clients do not censor evidence graphs, i.e., G*) = G*)| for simplicity of visualization.
In the rest of the paper, we assume that clients censor evidence graphs.

the groups without prior knowledge. We define the com-
munity structure matrix Y* := y*y* T € {+1, —1}"*",
For any pair of nodes ¢ and j, if they are in the same
community then Y;7 = 1; if they are not in the same
community then ¥;; = —1. Note that the recovery of
Y* is equivalent to the recovery of y*, up to permuta-
tion of the groups.

Definition 1 (Federated Myopic Community Detec-
tion). Unknown: Community structure matrix Y* =
y*y* T indicating the underlying network community
structure. Observation: Censored evidence graphs

{é(k)}szl sent by the clients, which are generated from

the local subgraphs {G®*)}X_  observed by the clients;
fields of view {Q*)}X | of the clients. Problem: Re-
cover the hidden community structure matrix Y* from
the censored evidence graphs {G(*)}5X

3 SIGNED WEIGHTED
CHEEGER-TYPE INEQUALITY

In this section, we provide a novel Cheeger-type in-
equality, which relates the spectral gap of a signed
weighted graph Laplacian to the signed weighted edge
expansion of the graph. Readers should be aware that
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the graph results in this section is general, and not
limited to our model.

Assume G = (V,E,w) with V = [n] is a general
weighted graph, and w : E — R is a general weight func-
tion. We use W to denote the corresponding weighted
adjacency matrix. For any edge (i,j) € E, we have
Wi; == w(i, j); otherwise W;; := 0. We define the
signed weight matrix W+, W~ as follows: for every en-
try (i,7), W5 = max(Wi;,0), and W, = min(W;,0).
We now introduce the essential graph definitions.
Definition 2 (Boundary of a Set). For any set S C V,
denote its boundary as 05 = {(i,j) | i € S,j ¢ S}.

Definition 3 (Boundary Weight). For any set S C V,
let wt(9S) and w™(9S) denote its signed boundary
weights, and let w(9S) denote its boundary weight, for-
mally defined as w*(9S) = >"cq j¢s W w™ (9S) =

Zies,jgs Wi ,w(dS) = ZieS,ngS Wi

Definition 4 (Node Degree and Set Degree). For any
node i € V, let d*(i) and d~ (i) denote its signed
node degree, and let d(i) denote its node degree,
formally defined as d* (i) = >, W, e d=(i) =

iz Wi d(i) = > ;4 Wij. Similarly for any
set S C V, let d(S) and d=(S) denote its signed
set degree, and let d(S) denote its set degree, for-
mally defined as d*(S) = >, .qdt(i), d—(S) =
2iesd (1), d(S) =D icqd(i).

We use the shorthand notation d;f; := min;cy d* (i) to
denote the minimum positive node degree. We can sim-
ilarly define the maximum degree dyax := max;cy d(i),
and the minimum degree dp,i, := min;ey d(i). We now
define the signed weighted edge expansion, an impor-
tant Cheeger-type constant that will be used in our

analysis.

Definition 5 (Signed Weighted Edge Expansion).
Given a graph G = (V, E,w), for any non-empty set
S cV, let qbg and ¢g denote the signed weighted
edge expansion of S, and let ¢ denote the signed
weighted edge expansion of graph G, formally de-

+ — _
fined as ¢ = d+((i.s)) , pg = w(95), ba =

Sdf i mingev g+ (s)<a+ (v)2(05)? + 2mingcv ¢y -

We use L := D — W to denote the graph Laplacian G,
where D := diag (d(1),...,d(n)) is the degree matrix.
Note that 1 is always an eigenvector of any graph
Laplacian L, with the corresponding eigenvalue being 0.
We use ;1 (L) to denote the smallest eigenvalue of L,
with the corresponding eigenvector being orthogonal to
1. As a side note, for unweighted graphs and positively
weighted graphs, A1 (L) is exactly equivalent to Ao(L),
the second smallest eigenvalue of the graph Laplacian.
This quantity is also called the algebraic connectivity of
graph G. We now present our Cheeger-type inequality
for signed weighted graphs.

Theorem 1 (Cheeger-type Inequality for Signed
Weighted Graphs). For any general signed weighted
graph G = (V, E, w) with graph Laplacian L, we have

A(L) > dc -

4 FEDERATED MYOPIC EXACT
RECOVERY

In this section, we present a central server algorithm,
which recovers the hidden community structure of a
network by computing a consensus graph and solving
a semidefinite program (SDP).

Algorithm 1 Central Server Community Detection

Input: Evidence graphs {G" 1} | client fields of view
{3,
Output:
Y
1: Initialize G as a weighted complete graph spanned
by V
Set all edge weights in G to 0
for k € [K] do
for (i,7) € Q) do
if (i,7) € G®) then
w(t, )  w(i,j)+1
else
end if
end for
end for
: W <« weighted adjacency matrix of G
: Solve the following semidefinite program

Estimated community structure matrix

—_ =

—_ =
w N

Y = arg max
Y

WY)

subject to Yi=1,Y=0. (1)

Algorithmcomputes a consensus graph G = (V, E, w),
where w : E — R is a weight function for edges. For
every client k and every pair (4,7) in the field of view
of client k, if it is an edge in the evidence graph, the
server increments the corresponding weight w(i, j) in
the consensus graph by 1; otherwise, the server decre-
ments the weight by 1. We use matrix W € R"*™ to
denote the weighted adjacency matrix of the consensus
graph, where W;; := w(i, ). The server then solves
program for YV, the estimated community structure
matrix.

Claim 1. Efficient exact recovery of the community
structure is possible. Under certain topological and
statistical conditions, Algorithm [1] recovers the true
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community structure matriz Y™ perfectly and efficiently.

Figure [2] illustrates an example federated myopic learn-
ing model with n = 6 nodes and K = 3 clients. We
show fields of view of the clients, the local subgraphs,
and the consensus weighted graph from top to bottom.

Here we list and discuss the assumptions that will be
used in our analysis. For simplicity of analysis, it is
assumed that the groups are balanced, i.e., 1Ty* =
0. If the groups are unbalanced, one can solve the
semidefinite program in Algorithm [I] by adding an
extra constraint. For example, suppose 1"Ty* = ng,
where ng # 0; then one can solve the SDP with the
help of an extra constraint <Y, 11T> =nd.

We also assume that for each client, the signal and
noise level parameters fulfill 0 < ¢*) < p(*) < 1. The
motivation is that nodes from the same group are more
likely to be connected than those from different groups.
Similarly, we assume that the censorship parameter (*)
is in the range (0,0.5). If7(*) = 0, there is no censorship
at all, and if 7(*) = 0.5, the censored evidence graph is
pure noise and provides no information.

Finally, our analysis focuses on the scenario, where ev-
ery client is myopic. Our model reduces to a weighted
version of the stochastic block model (SBM), if clients
are not myopic and observe the whole network. Recov-
ery in the SBM has been studied extensively in prior
literature (Abbe, |2017)). In this paper we are interested
in the signal and noise level parameters, as well as the
network FOV topology of the clients (i.e., {Q®}5_ ).
Thus we focus on the myopic regime.

4.1 Exact Recovery Conditions

In this section, we investigate the conditions for effi-
cient exact recovery of the community structure in a
federated myopic learning model. We say an algorithm
achieves exact recovery, if the estimated community
structure matrix Y is identical to the true matrix Y*.
Our analysis provides provable guarantee of efficient
exact recovery through Algorithm [I}

Before we proceed, we first introduce the definition of
the signed consensus graph.

Definition 6 (Signed Consensus Graph). For a con-
sensus graph G with the weighted adjacency matrix
W as in Algorithm [I} and the community structure
matrix Y* as in Definition |1, we use G to denote the
graph generated from the adjacency matrix E [W]o Y™,
where o denotes the Hadamard product. We call G the
signed consensus graph of G.

Naturally, ¢4 is defined as the edge expansion of the
signed consensus graph G as in Definition |5} For the

readers’ convenience, here we restate the optimization
problem in Algorithm

max}i/mize (W, Y)
subject to Y;;=1,Y =0. (2)

It is clear that in Algorithm [} the computation of the
weighted adjacency matrix W and the signed consensus
graph G can be done in polynomial time in terms of n.
Also note that Problem (2) is a semidefinite program. It
is known that semidefinite programs are convex and can
be solved efficiently in polynomial time using existing
solvers (Boyd et all [2004). Thus the whole server
algorithm can be run in polynomial time efficiently.

It remains to prove the correctness of Algorithm [T}
In other words, we want to know under what con-
ditions, Problem returns the correct community
structure matrix Y* from input W, the weighted ad-
jacency matrix of the consensus graph. For simplicity
of presentation, we define a signal coefficient 51(‘?) for
every node pair i,j € V and every client k € [K] as

follows. If pair (i, j) ¢ Q)| we define sgf) := 0. Other-
wise, we define sff) i= pF) 4 p(B) — 2p(R)p (k) jf g — (e
and sgf) i= ¢ + ) — 2¢Mpk) f g o 4 We now
present our main theorem.

Theorem 2 (Exact Recovery of Community Struc-
ture). For a federated myopic learning model

M(n, K, {Q(k)»P(lf), q®) eIV y*) with the signed
consensus graph G, if ¢ > 0 and

2 1
T B s :O<¢G b6 Ogn>’

) logn
JEV,KE[K]
(3)

then Problem (2) achieves exact recovery of the com-
munity structure, i.e., Y =Y* = y*y* T, in polynomial

time with probability tending to 1.

max
i€V

5 IMPOSSIBILITY OF CLIENT
LOCAL RECOVERY

In this section, we investigate the information-theoretic
lower bounds for any algorithm to recover the local
community structure from a single client’s evidence
graph G*) = (V#®) E(®)). One question may rise from
Algorithm [1] is whether it is possible for the clients to
run the semidefinite program (or any other algorithm)
locally, and obtain correct local community structure,
without sending the information to the server. This
is often unwanted from a federated learning point of
view, as the community structure information should
be kept confidential. As a result, we are interested in
an impossibility guarantee for any client to recover its
local community structure without the assistance of
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a server. Equivalently, this provides an impossibility
guarantee for the server to recover the local community
structure from a single client’s input.

Consider client k € [K]. Intuitively, for any node that
is not in V(*) there is no way to recover its label.
We define a subgraph community structure matrix
YR e {41, 71}”“‘&”(“, as the matrix obtained by
removing all rows and columns that are not in V¥,
As a side note, it is worth mentioning that recovery
the true edge set E*) from the censored edge set E(*)
is very difficult, as the probability of recovering any
single edge is 1 — r.

For simplicity, we introduce two client signal coefficients
sf),s(fc), where sf) = p®) 4 () — 2p(R)p(K) - and
s(f) = ¢ 4 ) — 24 () We now present the
impossibility theorem.

Theorem 3. For each client k € [K], any algorithm a

learner could use to guess the local community structure
Y &) awill fail with probability at least 1/2, if

(1 —2rF))2(ptk) — ¢(k))2 o (k)
min(s{ (1 — (), s =)\ [2W] )
(4)

6 ILLUSTRATIVE EXAMPLES

We first discuss the relationship between the proposed
signed weighted edge expansion ¢, the regular Cheeger
constant h(G), and the Laplacian matrix L, for any
general graph G. The case-by-case discussion in Ap-
pendix is broken down into three parts: 1) G as an
unweighted graph; 2) G as a positively weighted graph;
and 3) G as a signed weighted graph.

It is worth highlighting that the regular Cheeger con-
stant h(QG) is only defined for unweighted graphs. The
Laplacian matrix of any positively weighted graph is
always positive semidefinite, which can be proved by in-
voking Gershgorin circle theorem and the diagonal dom-
inance property. Algebraically, diagonal dominance
requires that |d(i)| = ‘Z#i Wij‘ > 352 Wi for ev-
ery node ¢. The direction above, however, does not
hold in the case of signed weighted graphs. If there
exists some W;; that is less than 0, The right-hand
side will be strictly greater than the left-hand side,
thus breaking diagonal dominance of the Laplacian. To
this end, the proposed signed weighted edge expansion
¢ and Theorem [l| provides a one-way guarantee for
positive semidefiniteness of the Laplacian: if ¢¢ is non-
negative, then the related graph Laplacian is positive
semidefinite.

Consider the following example graphs in Figure [3]

(a) Star graph (b) Regular graph

(c) Complete graph

Figure 3: Signed weighted graph with one edge per-
turbation. In each graph, a red edge has a positive
weight of 1. The blue edge is the the perturbed edge:
its weight goes from 1 to —1. The signed weighted edge
expansion ¢ of every graph is recorded in Table E

Every graph is a signed weighted graph with n =
10 nodes. A red edge is assigned a weight of 1 and
remains constant. The blue edge is a variable edge: its
weight is assigned to be 1,0.5,0,—0.5 and 1 in each
iteration respectively. We check the signed weighted
edge expansion of each graph and report the values
in Table[I] Note that in terms of the signed weighted
edge expansion ¢¢g, the complete graph is the most
robust one, and the star graph is the least. We also
test if the graph Laplacians are positive semidefinite
and mark the results in italic font. The test shows
that the Laplacian of a star graph is more prone to
the perturbation of a negatively weighted edge without
breaking PSD, while the complete graph is less prone.

Table 1: Signed weighted edge expansion ¢g of every
graph in Figure [3| with different weights assigned to the
blue edge. Graphs breaking positive semidefiniteness
are marked in italic font.

Perturbed Edge Weight
1 0.5 0 -0.5 -1

Star 0.02 0.01 0.00 -1.00 -2.00
Regular 0.17 0.11 0.06 -0.94 -1.94
Complete 1.39 1.29 1.19 0.19 -0.81
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6.1 Simulation Results

In this section, we validate the proposed Algorithm [I]
and Theorem [2] through synthetic experiments.

Experiment 1: We test the proposed algorithm on
a small graph using CVX. We fix the parameters p, ¢
and r to be the same across all clients. In particular,
we set p = 0.9,¢ = 0.1. The number of nodes is
fixed to be n = 30. We control the field of view of
each client as follows: every client randomly samples
M nodes, and the FOV of the client is the complete
subgraph spanned by the sampled nodes. Thus, the
parameters are the size of the field of view M, and the
number of clients K. These are the x-axis and y-axis in
Figure 4] respectively. Furthermore, we are interested
in comparing two regimes. One is the multiview regime,
in which there are few clients (maximum of 20), but
every client sends an evidence graph with a high signal-
to-noise ratio (r = 0.1). The other one is the federated
regime, in which there are many clients (maximum of
200), but every client sends a noisy evidence graph
(r=204).

We run Algorithm [T] and check agreement between the
recovered label vector ¢, and the ground truth vector y*.
We solve the semidefinite program in Algorithm [T using
CVX (Grant and Boyd, 2014} [2008)). For each pair of
parameters, we calculate the empirical probability that
the recovered label vector is identical to the ground
truth. The experiment shows that exact recovery of the
community structure can be achieved in both regimes,
with a tradeoff between the signal-to-noise ratio and
the number of clients.

Experiment 2: We test the proposed algorithm on a
large scale graph. In this experiment we fix the number
of nodes n to be 10000. It is known that CVX can
be inefficient to solve large scale semidefinite programs
due to the large memory cost. To test the proposed
algorithm with more nodes, we implement a gradient
method SDP solver [Yurtsever et al.| (2021)).

We fix the parameters p, ¢ and r to be the same across
all clients. In particular, we set p = 0.9,¢ = 0.1, and
r = 0.1. The number of clients K iterates from 1000
to 10000 with an interval of 1000, and every client
randomly observes a subgraph of only M = 20 nodes.
We run the experiment for 10 trials.

We report the average number of correctly recovered
labels, and the empirical probability of exact recovery,
in Figure[5] Our result suggests that even in the highly
sparse, large scale case (10000 nodes in total, each
client observes only 0.2% of the graph), exact recovery
of the community structure can be achieved efficiently
through the proposed federated learning algorithm.

Experiment 3: We test the runtime scalability of the

[N

K: Number of Clients
=]

o N & O

o

5 10 15 20
M: Size of FOV

(a) Multiview regime

160

K: Number of Clients
N B 2 @ B B B
8 5 8 83 3 3 3

=)

0 5 10 15 20
M: Size of FOV

(b) Federated regime

Figure 4: Validating Algorithm [1| using CVX. The x-
axis is the size of FOV of each client, and the y-axis
is the number of clients in the federation. Even in the
highly noisy case (federated regime), with a large num-
ber of clients, the central server is able to recover the
community structure of the network perfectly. There
is tradeoff between the amount of signal sent by each
client (decided by the size of FOV, as well as the sig-
nal and noise levels), and the number of clients in the
federation.

gradient method SDP solver on a large scale graph. We
iterate n from 1000 to 10000 with an interval of 1000.
Weset p=0.9,¢q=0.1,r=0.1, M = 20, and K =n.
We report the runtime of the gradient method SDP
solver in Figure [6] The runtime can be fitted almost
perfectly by a third order polynomial, suggesting the
efficiency of the method.

As a comparison, when n is set to 1000, CVX SDPT3
solver takes 36.26 seconds, and our gradient method
solver takes only 2.86. When n is set to 2000, CVX
SDPT3 solver runs out of 16GB memory, and our
gradient method solver succeeds and takes only 16.66
seconds.

Experiment 4.1: We validate Theorem [2] through
simulation. In this experiment we fix the number of
nodes n to be 1000, and set K = 500, M = 20. In the
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Figure 5: Validating Algorithm using gradient
method SDP solver (Yurtsever et al. 2021). The x-axis
is the number of clients in the federation. In a large
scale network with n = 10000, even each client has a
limited observation of M = 20, with a large number of
clients, the central server is able to recover the commu-
nity structure of the network perfectly.
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Figure 6: Runtime of the gradient method SDP solver
versus the number of nodes. The runtime can be fitted
almost perfectly by a third order polynomial, suggesting
the efficiency of the method.

experiment the signal parameters p and ¢ iterate over
the range (0, 1), with an interval of 0.05. We run 20
trials for each pair of p and ¢q. We test cases with r
being 0.1, 0.25, and 0.4, respectively.

qbé—qbe logn

We set C' := in the

log n max;ev Z]‘ev,ke[K] ng)(l—sgf))

x-axis, which is equal to the right-hand side of
divided by its left-hand side. We report the average
number of correctly recovered labels, and the empirical
probability of exact recovery, in Figure[7] Our result
suggests that if C' is greater than a threshold, the
proposed algorithm performs well and recovers the
underlying community structure with high probability.
This matches our theoretic findings in Theorem

Experiment 4.2: We run the same experiment as in
4.1 but with different sizes of subgraphs. In this case we
fix r = 0.1. We test cases with M being 20, 40, and 80,
respectively. We report the results in Figure |8] Again,
our result suggests that as long as C' is greater than a
constant threshold, the proposed algorithm performs

1100
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o
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=
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Probability of Exact Recovery

600

L
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-400  -300  -200  -100 0 100 -300 -200 -100 0 100
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o

Figure 7: Simulations using different values of signal
parameters p and ¢, and censorship parameter r. The
x-axis is set by C, and the y-axis is the number of
recovered labels and the empirical probability of exact
recovery, respectively. This matches our theoretic find-
ings in Theorem

well and recovers the underlying community structure
with high probability. This again matches our theoretic
findings in Theorem [2}

1100

1
M=20 M=20
1000 M=40 I M=40
M =80 P M =80
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Figure 8: Simulations using different values of signal
parameters p and ¢, and size of subgraphs M. The
x-axis is set by C, and the y-axis is the number of
recovered labels and the empirical probability of exact
recovery, respectively. This matches our theoretic find-
ings in Theorem @
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Supplementary Material:
Federated Myopic Community Detection
with One-shot Communication

A ADDITIONAL DISCUSSION OF ILLUSTRATIVE EXAMPLES

Here we continue the discussion in Section [6

Unweighted Graphs. Suppose G = (V, E) is an unweighted graph. Recall that the definition of the regular

Cheeger constant h(S) of a non-empty set S C V and the graph G is defined as h(S) = %, and h(G) =

mingcy,sj<n/2 M(S) . The classical Cheeger inequality states that the spectral gap Ao(G) fulfills

, 052
X (@) > = 2o S [
Q(G) — deax SCV{?S%\HS’”/Q { 2dmax ‘S|2

Without loss of generality, an unweighted graph can be reduced to a general weighted graph, by setting W;; = 1 if
there exists an edge between 7 and j. As a result, our signed weighted edge expansion ¢g of a unweighted graph
simplifies to

. dmin |8S|2
)\ G > = min - e— .
2(G) 2 de scv,|5|<|E{ 2|5

Here we would like to compare the lower bound provided by the classical Cheeger inequality and our novel result.

2
‘?;lL provides a tighter bound in the classical Cheeger inequality than in ours (because of
the |S| < n/2 constraint instead of |S| < |E|), but the term -=— can be much worse than the term dp;, in our

bound, which is at least 1 if the graph is connected. -

Intuitively, the term

One may criticize that in our bound d,;, could be 0 in some cases, making the whole bound useless. We want
to clarify that it is not true. If dy,;, = 0, there must exist some isolated node ¢ and the graph is disconnected.
In that case the edge expansion in both versions will be 0 by picking S = {i}, thus even the classical Cheeger
inequality will not provide any insight about the spectral gap.

Positively Weighted Graphs. We now assume G = (V, E, w) is a positively weighted graph, with edge weight
Wi; > 0 for every i # j. We also assume all non-zero edge weights in G are bounded between o and g with
a > B> 0. Although the regular Cheeger constant h(G) is only defined for unweighted graphs, comparison with
¢¢ is possible by introducing the following unweighted indicator graph G’ = (V, E’), where E' = {(4,7) | W;; > 0}.
In other words, an edge in G’ indicates a positively weighted edge in the original graph G. Then we have
%Q(i)gl < ¢g < O‘T;QSG/ for any positively weighted graph G. Thus, the edge expansion of a positively weighted
graph is bounded by the edge expansion of the corresponding unweighted indicator graph multiplied by a constant
factor (decided by the extreme weights of the graph).

Signed Weighted Graphs. It would be hard to make general claims about the edge expansion if the graph edge
weights are allowed to be negative. Intuitively, with more negatively weighted edges, the Laplacian is more likely
to break positive semidefiniteness. Thus, the negatively weighted edges can be interpreted as perturbation in the
Laplacian matrix, i.e., making non-diagonal entries positive. This gives rise to a question: what network topology
is more robust to the perturbation of negatively weighted edges, without breaking positive semidefiniteness of
the Laplacian? The question is also related to the federated myopic learning model, because without positive
definiteness it would be impossible to recover the network structure using the SDP approach.
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B PROOF OF THEOREM [1I

In this section, we provide the proof of the Cheeger-type inequality for signed weighted graphs as stated in
Theorem [I} Recall that G = (V, E,w) is a general weighted graph, W is the weighted adjacency matrix, D is the
degree matrix, and L = D — W is the graph Laplacian.

First we introduce the following definitions and lemmas that will be used later in the proof.

Definition 7 (Rayleigh Quotient). Let L = D — W be an n x n graph Laplacian matrix, where D is the degree
matrix, and W is the weighted adjacency matrix. The Rayleigh Quotient of a vector v € R™ with respect to L is

defined as . )
Riow) = L0 e Wil o)
vl vl
Similarly, the signed Rayleigh Quotients are defined as
R} (v) := 2i<i Wiz(v" — o) . Ry(v):= 2icy WiJ’T(”” — o) .
vl vl

Note that Ry (v) = R} (v) + R (v).

Using the variational characterization of eigenvalues, it follows that A;. (L) = min, 1 Rp(v).

Lemma 1. For any non-zero o € R, it follows that

Ry (v) = Rp(av) .

_ (aw) " L(aw) _
Proof. Note that Rp(aw) = et = Ry (v). O

(o) T (aw)

Lemma 2. For any d € R and v € R*, v L 1, it follows that
R} (v) > R} (v+61).

Proof. Starting from the right-hand side, we have
Yo Wik ((vi +8) = (v +8))?
> (v + 5)2

_ Zi<j W;; (vi — Uj)2
> (v + 5)2

-~ Dic; WiJ; (vi — Uj)2

>, (0 + 62+ 260;)

_ Zi<j Wz’? (vi — ”j)Q

Y024+ nd2 20> v,

_ Dicy Wi—; (vi — Uj)2

- 2. v; + no

< 2y WZJJF (vi — ”j)z

— 2

i Vi
=R} (v).

Rf(v+61) =

O

We now proceed to prove the main theorem. Our proof takes a constructive approach: if we can construct
any witness set S, C V with d*(S) < d*(V)/2 fulfilling A\;1 (L) > 1df, (¢5)? + 265, then it follows from

Definition [5| that )\1L (L) > ¢G = %dr—;in minSCV,d+(S)§d+(V)/2 (¢-&S-)2 + 2mingcy ¢§
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Proof of Theorem[1l Suppose v is the eigenvector associated with the eigenvalue A\;1 (L). By definition, it follows
that v L 1. By Lemma [I} without loss of generality we assume that the eigenvector v has unit norm, i.e., [|v]| = 1.
We also assume that v is sorted in ascending order, i.e., v; < --- < v,.

Let m be the smallest integer, such that ZmH d* (i) > 2dT (V). Then v — v;,1 is centered at m. We can find
a,a’ > 0, such that

(V1 — v)? + (v —v)? =1, %0 o2 = 1.

Denote u = a(v — v, 1), and v/ = o/v. By Lemma [l and [2} it follows that R} (u) < R} (v), and R} (v') = R (v).
Our goal is to prove

Mi(L) = Ri(v) = Ry (v) + Ry (v) > R} (u) + R (u') > 2d$m<¢:§)2 + 205 - (5)

for some S, 8" C V with d*(S) <d+(V)/2.

We first prove the positive part R} (u) > édj;]m(qﬁg)z of . The proof of the negative part will be similar.

We define a random variable ¢ on the support [u1,uy,], with probability density function f(t) = 2|¢|. One can
verify that ftu:"ul 2 |t| = 1 because u? + u2 = 1, thus f(t) is a valid probability density function. Then, for any
interval [a, b], it follows that the probability of ¢ falling in the interval is

b
]P’{agtgb}:/ 2|t| = —a®sgn (a) + b*sgn (b) .

t=a
It can be verified that
(a—0)?/2<P{a<t<b}<|a—0bl(la]+b]), (6)

in the range [—1,1]. We construct a random set S; := {i | u; < t}. Note that we have >..", d* (i) > 3d™(V), and
um = 0. As a result, if t < 0, we have min(d*(S;),d™ (V' \ S;)) = d*(S;), otherwise min(d*(S;),d™(V \ S)) =
dT(V'\'S;). By Definition [4) we obtain

E [d*(S)] ZIP’{ul<t}d+() E[d"(V\S)] =Y P{u;>thd"(i).

1
2
+

It follows that

E [min(d*(S,),d"(V\8,)] = Y P {u; <t <0yd (i) + > P{u; >t >0}d* (i)

i<m i>m

= uid* (i)
We now analyze the positive boundary weight of S;. It follows that

E[wh(0S)] =E| Y

iGSt,j¢St
1<j
<Y s — g (] + Jug YW
1<j
(a)
Z ui — ;) 2W+ Z |uil + [uy] 2WJ
1<j 1<j
(03 u [ (il + s )25
1<J

(b) Rz_() 2 2
<\ Z d+ (i 22ud+
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[2RT (u
= 21;2; ) -E [mitl(d+(St),d+(V \ St))] ,

where (a) follows from the Cauchy-Schwarz inequality, and (b) follows from the definition of node degree and
picking the minimum positive node degree. Rearranging the inequality above gives us

QR%_(U) min(d+(5t)7d+(v \'Sy)) — w+(85t)] >0.

min

E

Note that inside the expectation is a function of t. Thus, there exists some ¢ fulfilling

2R} (u) .
di‘( D min(d* (8,), 4 (V'\ ) — w*(95,) > 0,
which leads to :
1 1 wt(9S)
() = 5diin(05,)° = Sdiin |~ 7oy
RL (U) = Qdmln(cbst) 2dm1n ( d+(St) ) 7 (7)

under the condition of d*(S;) < d*(V)/2.

The proof of the negative part of is similar. Instead of using the random variable ¢ on the support [uy,u,], we
define a new random variable ¢’ on the support [u}, u,]. We use the same probability density function f(¢') = 2|¢'|,
SO @ still holds for #’. For the negative boundary weight, we have

E[w (0S)] =E | > W

1€S,,J¢Sy
=D Pluj <t <uj} Wy
i<j
(a) 1
<3 (uf — )W
i<j
1__ 2
= §RL (U/) Zi:u,i
(®) 1
< §RZ(UI)

where (a) follows from the left-hand side of (6]), and (b) follows from the fact that }_, W'? > u'? 44> = 1. Thus,
there exists some ¢’ fulfilling

R (W) > 265, = 2w (9Sy). (8)
Combining (7)) and (8) completes our proof of (f). O

C PROOF OF THEOREM [2|

Before going into the proof details, we first discuss the connection between the edge expansion ¢, the exact

recovery task (as in Theorem , and the types of graphs (as in Section @, in the context of our federated myopic
model.

Recall that in our federated myopic learning model, W is the weighted adjacency matrix computed by the server,
as in Algorithm (I} Intuitively, for every pair ¢ and j, E [W;;] represents the average connection strength between
these two nodes in the network. In other words, if E [W;;] > 0, node i and j are more likely to be in the same
community; if E [IW;;] < 0, they are more likely to be in different communities. In the proof we will show that
Zke[K] sz(.f) =E [W;;]. We call (4, ) a “good” edge if Zke[K] sgf)y;‘yj = E [Wi;]y;y; >0, and a “bad” edge if
> kelK] sﬁf)y;"y; =E [Wi;]yfy; <0. By Deﬁnition@ the adjacency matrix of G is E [W] o Y*. As a consequence,



Chuyang Ke, Jean Honorio

the signed consensus graph G and the corresponding edge expansion @& are heavily related to the chance of
successful community detection. In the proof we use L* to denote the graph Laplacian of G. We show that
successful exact recovery requires that the second smallest eigenvalue of L* is strictly positive. By Theorem
this is fulfilled as long as the edge expansion ¢ is strictly positive.

Now we discuss two types of graphs characterized by the signed consensus graph G and the signed weight matrix
E[W]oY*™.

Positively Weighted Graphs. In this case, every entry in E [IW]o Y™ is greater than or equal to 0. This implies
that every edge in the graph is a “good” edge. Community detection is easy in this case, as long as the graph is
connected. In fact, exact recovery in this case can be achieved through a greedy algorithm: the algorithm adds
the first node to either community, and then adds the neighboring nodes to the same community if they are
connected by a positive edge W;; > 0, or adds them to the other community if connected by a negative edge
Wi;; < 0. The algorithm repeats until all nodes are assigned to a community. The edge expansion ¢ is strictly
positive in this case.

Signed Weighted Graphs. In this case, every entry in E [W] o Y* is greater than, less than, or equal to
0. Community detection is harder, since “bad” edges exist in this case. One can see that the simple greedy
algorithm described above will not be able to find consistent assignments because of the “bad” edges. Just like
the experiments in Figure [3| and Table [1} the chance of successful community detection depends on how many
negative entries exist in E [IW] o Y* and how negative the entries are: recovery becomes hard if there are many
“bad” edges, or some edges are “really bad.” The edge expansion ¢z can be positive or negative in this case.

In the proof of Theorem [2] we will characterize the relationship between the chance of exact recovery and the
edge expansion ¢ in a more rigorous way.

C.1 Main Proof

For every client k with evidence graph G*), we introduce a weighted matrix W) defined as follows. For every
pair (i, ), if (i,7) ¢ Q) we assign Wi(jk) = 0. If (i,7) € Q®) and (4,7) is an edge in G*), we assign Wi(jk) =1;
otherwise we assign Wi(jk) = —1. From Algorithm one can see that the server weighted adjacency matrix is the
summation of the clients’ weighted matrices, i.e., W = ZkG[K] W),

We take a primal-dual witness approach to show that the SDP achieves exact recovery. For the readers’
convenience, here we restate the SDP :

max}i/mize (W, Y)
subject to Yi=1,Y =0.

Suppose the Lagrangian dual variables are A (for Y;; = 1) and B (for Y = 0), respectively, where A is a diagonal
matrix of size R"*" and B > 0 is a PSD matrix of the same size. The Lagrangian dual problem of is

miniAmize tr (A)

subject to A is diagonal ,A — W = 0. (9)

We now list the Karush-Kuhn—Tucker (KKT) conditions for a primal and dual pair (Y, A, B) to be optimal.

A-W-B=0, (Stationarity)
Yi=1, Y =0, (Primal Feasibility)

A is diagonal, B >0, (Dual Feasibility)
(B,Yy=0. (Complementary Slackness)

To guarantee Y* = y*y* T is an optimal solution to the SDP , all KKT conditions need to be fulfilled. First note
that Y* fulfills (Primal Feasibility|) trivially. Next, combining (Stationarity]) and (Complementary Slackness)), we
obtain that an optimal solution must fulfill

(A—W,Y*) =0. (10)
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To fulfill (I0), we can construct the dual variables A* and B as follows: Aj; := Y i Wiyiyy for every i € [n],

and B* := A* — . Then it only remains to prove that our construction (Y*, A*, B*) fulfills (Dual Feasibility])
and ((Complementary Slackness)), i.e.,

B*=A"-W>0.

One can verify that by our constriction, y* is always an eigenvector of A* — W with the corresponding eigenvalue
of 0. Thus the inequality above is equivalent to

XAa(A* = W) >0, (11)

The KKT conditions, once fulfilled, guarantee that Y* = y*y* " is an optimal solution to the primal problem.
However there could exist other sets of primal and dual variables satisfy all KKT conditions above. To illustrate
thls we construct a set of example primal and dual variables (Y A B) as follows: Y := 117 is the all-one matrix,

Nii == 2,4 Wij for every i € [n], and B:= A —W. One can verify that (Y, A, B) fulfill all KKT conditions

above, and as a result, ¥ = 117 is an optimal solution to the primal SDP.

To ensure that Y* = y*y* T is the unique optimal solution to and eliminate all other undesirable solutions, we
present the following lemma about uniqueness.

Lemma 3 (Uniqueness Condition). The SDP achieves exact recovery and returns the unique optimal solution
(A" =W) >0,

where A* is a diagonal matriz, such that A}, = Zj# Wijyiy; for every i € [n].

Proof. First note that (Y*, A*, B*) constructed above fulfill all KK'T conditions given that Ao(A* — W) > 0. Thus
Y* = y*y*T is an optimal solution to the SDP (2).

Now, by enforcing the strict inequality A2(A* — W) > 0, we obtain that for every vector v that is not a multiple
of y*, we have <A* - W, U’UT> > 0 strictly. Thus to fulfill the optimality condition , the solution Y must be a
multiple of Y*. Furthermore, given the constraint Y;; = 1 (Primal Feasibility]), the only possible optimal solution
that fulfills all KKT conditions is Y*. O

We now begin to prove the main theorem.

Proof of Theorem[3 We first investigate the value of Wi(jk). If (¢,7) is not observed by client k, the value of
w s 0. Otherwise, if Y7 = 1, we obtain that W = 1 with probability p®) (1 — 7(F)) + (1 — p*))r) = sgf),

ij
and W(k) —1 with probablhty 1-— (f) Slmllarly, if Y5 = —1, we obtain that Wi(jk) = 1 with probability

l

g® (1 =70y 4 (1 — ¢R)r(k) = SZ(?), and Wi(f) = —1 with probability 1 — sgf)
Our goal is to prove A\y(A* — W) > 0. Note that

Ao(A* = W) = A(A* =W —E[A* = W]+ E[A* —W]) >0
< XA —E[A*]) + A(E[W] — W) + Mo (E[A* — W]) > 0
EMAT —EA]) + ME[W] - W) + A (E[A* — W]) > 0. (12)

Thus it is sufficient to prove holds with high probability.

First we bound the third term in . We introduce a matrix L* defined as L* := (A* — W) o Y*, where o
denotes the Hadamard product. It is worth mentioning that A* — W and L* share the same eigenvalues, since
L*=A"=—W)oY*=A0Y*"—WoV* = A* W o Y*. Furthermore, L* satisfies the definition of graph
Laplacians, such that L;; = Z]# Zﬁéz ; for every i_E V,and L;; = —W;;Y;% for every i # j. Then by
Definition @ one can see that E [L*] is the Lapla(ﬂan of graph G, with the weighted adjacency matrix E [IW] o Y*.
By Theorem it follows that as long as ¢ > 0, we have A;. (E [L*]) > ¢ > 0. Since 1 is always an eigenvector
of E [L*] with the eigenvalue 0, this implies that all other eigenvalues of E [L*] are strictly positive, which leads
to the conclusion that

A2(E [L7]) = Ag2 (E[L7]) = ég > 0.
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Since A* — W and L* share the same eigenvalues, we obtain

M(E[A"=W]) > g (13)

Next we bound the first term in . For every i,j € V, k € [K], we construct a matrix ®(7F) € R"*" as follows:

(k) (k) y s
e

37

(i0:k) ,_ pp (k) y s
o\ = Wiy

17
and all other entries are 0. Then it follows that
A*—E[A] = Z ik _ | [q)(i,j,k)} .
i,jEV,kE[K]

To bound the minimum eigenvalue of the expression above, we use the matrix Bernstein inequality (Tropp,

2012). Note that each matrix o(ik) _ | [<I>(i’j’k)] is independent, has zero mean, and the maximum eigenvalue

is bounded above by 1. Also, since Wi(jk) is a +1/—1 random variable with parameter sgf), we obtain that

> m (e e o)) | amar) sl

1,jEV,kE[K] JEVkE[K]

We denote the right-hand side expression above by 03. Applying the matrix Bernstein inequality, we obtain that
for every t > 0,

42
P (A" —E[A%]) < —t} < nexp (%’;f/g) .

By setting ¢t = ¢ /2 and requiring the probability to be bounded above by n~!

3(;% — 8¢a logn
48logn

, we obtain that

o3 < (14)

Finally we bound the second term in (12)). For every i, € V, k € [K], we construct a matrix W(Jk) ¢ R"*" a5
follows: -
v = Py

17 Ji

i,5,k) . )y %

17
and all other entries are 0. Then it follows that

EW]l-w= > E [q;(iﬂ%k)} _ glidk)
i,jEV,kE[K]

To bound the minimum eigenvalue of the expression above, we use the matrix Bernstein inequality again. Similar

to the previous case, each matrix E [¥(#7:F)] —¥(#5:%) is independent, has zero mean, and the maximum eigenvalue

is bounded above by 1. Also, since Wi(jk) is a +1/—1 random variable with parameter sl(?), we obtain that

S OE [(E |:\Ij(i7j;k7)j| _ \I;(i,j,k)>2] < S sBa s

i,jEV,kE[K] JEV,kE[K]

Note that the right-hand side expression above is exactly the same as the one in the previous case. Thus by
invoking the matrix Bernstein inequality, setting ¢t = ¢ /2, and requiring the probability to be bounded above by

n~1, we obtain the same condition

3¢% — 8¢pglogn

1
48logn (15)

Ué <
Combining the results of , , and , we obtain that Ao(A* — W) > 0 holds with probability at least
1—2n"1, as long as

302 — 8¢~ logn
Z ng)(l_s(k)) < o5 — 8¢ log

4
rfle%/}'( 48logn

JEVkE[K]

This completes our proof. O
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D PROOF OF THEOREM [3

Proof of Theorem[3 We use Y®) to denote the hypothesis class of the local community structure of client k.
One can see that the size of the hypothesis space is |y<k>| =on™, By Fano’s inequality (Cover}, |1999) for any
estimator Y(®)_ it follows that

IY®* Wk) +1log2 - I(Y (R k) 4 1og 2
log Y(¥) N n(k) log 2 ’

P {yaz) £ y(’f)*} >1-—

where I(Y(®)* 1)) denotes the mutual information between the two matrices. We use KL(P;||P,) to denote
the Kullback—Leibler divergence between two distributions P; and P,. Using a pairwise KL-based bound (Yu,
1997, p. 428) we obtain

1
Iy®-wh)y<——s % KL(Pyyr o0y o) [| Py iy o)
N . ,
Yy () ey

< max  KL(Pyooye [Py ye)
Y k) Yy () ey

max KL (A (k) |y (k) P, (k) |y (k)!
Y y () ey ( WY H WY )

Py ooy m
= max Pw(k) vy (k) lOg —_
ORACIS V;;) I Py jy ey
Y Q(k)’ P 1 Py
> © max (k) |y (k) 108
et T By
(b) (k) 1 s® (k) 1 W
< ‘Q(k)’ - max (53@ log oy (1- sf)) log o ;5% log = (1- s(k)) log ST

5(_k) 1-— s(_k) sf) - 1-— sf)

= [@®| - max (KL %), KL(s®1s$)) |

where Py )|y denotes the distribution of W) given Y*) | and (a) follows from an entrywise decomposition. (b)
holds by the fact that given Y;; = 1, Wi(jk) = 1 with probability p*) (1 —7*)) 4 (1 —pF))rk) = sf), and Wi(f) =-1
with probability 1 — sff); similarly, given Y* = —1, Wi(f) = 1 with probability ¢(*) (1 — 7)) 4 (1 — ¢F))r*) = sgf),

and Wi(f) = —1 with probability 1 — sgf)

*
J

SB) (B2

Next we give a upper bound for max (KL(sf)Hs@),KL(s(f)Hsf))). Note that ]K]L(sgf)HS(f)) < 72(:)(1—;“))) =

_op ()2 (k) _ (k)2 )y (k (s —g(F)y2 _op())2 (k) _ (k)2 . } .

a 25(k>>(1<fs(k))q L and KL(s™[|s!) < St = a stf(l(fswf )" This lead to
- - + + + +

(1 —2rR)2(pth) — g(k))2
min (sf)(l — sgf)), S(_k)(l — Sg«))) .

max (KL(ST)HS(_M), KL(S@HST))) <

Now going back to the Fano’s inequality, we obtain

I(Y®* k) 4 1og2
n(k) log 2
(k) (1-2r™)?(p*) —q))?
’Q | ' min(sﬁf)(1—31‘)),5(,’“)(1—5(,’”)

n*) log 2

P {yu«) ” y(k)*} >1-—

+log2
)

>1-
Z 5 ’

(1—27F))2(p(k) _g(k))2 n(k)
(T (1) AT = ZJam]

where last inequality holds given that This completes our proof. O
m
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