Variational Continual Proxy-Anchor for Deep Metric Learning

Ricardo Guerrero
Samsung Al Center
Cambridge, UK

Minyoung Kim
Samsung Al Center
Cambridge, UK

Abstract

The recent proxy-anchor method achieved out-
standing performance in deep metric learning,
which can be acknowledged to its data efficient
loss based on hard example mining, as well
as far lower sampling complexity than pair-
based approaches. In this paper we extend
the proxy-anchor method by posing it within
the continual learning framework, motivated
from its batch-expected loss form (instead
of instance-expected, typical in deep learn-
ing), which can potentially incur the catas-
trophic forgetting of historic batches. By re-
garding each batch as a task in continual learn-
ing, we adopt the Bayesian variational contin-
ual learning approach to derive a novel loss
function. Interestingly the resulting loss has
two key modifications to the original proxy-
anchor loss: i) we inject noise to the prox-
ies when optimizing the proxy-anchor loss,
and ii) we encourage momentum update to
avoid abrupt model changes. As a result, the
learned model achieves higher test accuracy
than proxy-anchor due to the robustness to
noise in data (through model perturbation
during training), and the reduced batch for-
getting effect. We demonstrate the improved
results on several benchmark datasets.

1 INTRODUCTION

Deep metric learning (DML) is the task of learning a
metric (similarity or distance measure) between two
data points (e.g., images), which can be useful for
numerous downstream computer vision tasks includ-
ing image retrieval (Sohn, |2016; [Song et al., [2016b;
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Movshovitz-Attias et al.||2017)), few-shot learning (Qiao
et al.l 2019; |Sung et al., |2018]), face verification (Schroff
et al., 2015} [Liu et al., [2017), among others. Although
metric learning has been a relatively well-studied prob-
lem in machine learning for the last decades (Shalev-
Shwartz et al.l |2004; |(Chopra et al.l [2005; |Goldberger
et al.l 2005; Weinberger and Saul, |2009), DML was re-
cently resurrected with great success due to the advance
and popularity of deep learning.

In most DML approaches, learning a metric between
two data points z and z’ typically boils down to learn-
ing an embedding function f : X — R? where the
similarity is defined as a dot product (or angle) be-
tween f(z) and f(2’) in the d-dimensional embedded
space. The typical setup (which we follow in this paper
as well) is that training data consist of labeled data
points (z,y), where the labels come from a predefined
class label set C'(3 y), which is disjoint from the class
labels of the test points. That is, we need to exploit the
supervision so that the embedding function learns the
intrinsic semantic (dis)similarity between data points
that is generalizable to unseen class labels.

Recent DML approaches can be broadly categorized
into two schools: pair-based and proxy-based. The for-
mer is based on the intuitive idea of contrastive learn-
ing (Chopra et al. 2005; [Hadsell et al., |2006; Wang
et al.l [2014} |Schroff et al., [2015; Sohn, 2016; [Song et al.|
2016b; [Wu et al.| [2017; [Harwood et al. 2017 [Yuan
et al.l 2017; \Wang et al.,|2019b), where the instances of
the same (different) classes should be pulled together
(pushed away from each other, resp.). Proxy-based
methods on the other hand introduce learnable proxy
vectors in the embedded space which allow the loss
function to be defined only in terms of distances be-
tween proxy vectors and data instances (Qian et al.,
2019; Movshovitz-Attias et al., [2017; Kim et al. 2020).

In this paper, we seek for further improvement over
the latest proxy-based method called the proxy-anchor
method (Kim et al., |2020)) specifically, which showed
the pronounced performance among the state-of-the-
arts. In particular, we closely inspect the proxy-anchor
loss function, and interpret it as a batch-based loss
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Figure 1: Tllustration of momentum update for proxies (KL term in ) (a) True class boundaries for two
classes 1 and 2. (b) For the first batch data at t = to, shown as unfilled circles (class 1) and squares (class 2),
both proxy-anchor (Kim et al., |2020) (denoted by PA) and our approach (VCPA) update the proxies toward
the empirical class centers of the batch data (filled circle p; and square ps). (¢) For batch at t =t; (> tg), PA
updates the proxies toward class centers of the new batch data (without momentum) since it ignores the previous
proxies (p°'? — p™*®). (d) On the other hand, VCPA regularizes the proxy update by momentum so that p™¢*’s
are not far away from p°@’s. (e-f) As a result, for unseen data points (circle/square filled with diagonal pattern),
PA fails to find the correct proxies while VCPA succeeds, indicated by the thick-arrow nearest prediction.

in the sense that the loss is not decomposed instance-
wisely, but rather dependent on the samples in a batch
in a complex way. Hence there is a potential issue
of batch forgetting, namely that the current batch is
rarely revisited in the future, making the model forget
useful information from historic batches.

This batch forgetting issue is analogous to the well-
known catastrophic forgetting in continual learn-
ing (Kirkpatrick et al., |2017; |Zenke et al., 2017} [Serra
et al.|, 2018} Nguyen et all 2018; [Ebrahimi et al.| 2020;
Benjamin et al., [2019; |Pan et al., |2020). To this end,
we frame the proxy-anchor loss optimization within
continual learning. We regard each batch as a task
in continual learning, and adopt the variational con-
tinual learning approach (Nguyen et al., [2018), which
leads to a novel loss function with intuitive interpreta-
tion. Specifically, we end up with two modifications to
the proxy-anchor loss: Random perturbation of proxy
vectors, and momentum update of the variational pa-
rameters of the proxies. The former is beneficial for
producing a robust model (less sensitive to the un-
known noise or domain shift at test time), while the
latter is useful for preventing the model from forget-
ting useful information from historic batches. These
two core concepts are illustrated in diagrams in Fig.
(momentum update) and Fig. [2[ (stochastic proxies).

We evaluate the proposed variational continual proxy-

anchor (VCPA) method on the standard benchmark
datasets (CUB, Cars, In-Shop, and SOP datasets), and
achieve significant improvements over the proxy-anchor.
Additionally, our approach exhibits less sensitivity to
small batch sizes (due to the momentum update of
the variational proxies) and is more generalizable when
small amounts of training data are used (due to the
stochastic sampling of the proxies).

2 OUR APPROACH

We begin with introducing notations. We let = be a
data instance (e.g., image), z = fp(z) € R? be the d-
dimensional embedded vector for z (the output of the
embedding network f with weight parameters ), and
p € R? be a proxy vector (Sec. [2.1for details). In proxy-
based methods, only the similarity score between data
instance and proxy vector is required during training,
where the similarity between image x and proxy p is
defined as the cosine similarity,
2Tp

S(w,p)zm, z = f(x). (1)

2.1 Proxy-Anchor Method Revisited

The recent proxy-anchor (PA) method (Kim et al.
2020) aims to achieve the goal of so-called prozy-
centered separation of data samples, where each proxy is
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Figure 2: Ilustration of stochastic proxies of the proposed VCPA. Suppose that we have noisy observation &; for
the true (but unknown) x; from class 1 (Z2 and x5 similarly). (a) The embedding network fy is suboptimal in
that z1 = fo(x1) and 2o = fp(x2) are too close (distance below the margin §), although the embeddings Z; and 2
of noisy data are distant enough (above the margin). (b) However, PA would accept fy since the distance between
proxy p; and Zs is large enough (above the margin), and similarly for p» and Z; (highlighted as yellow). (c) On
the other hand, VCPA refuses this embedding since the sampled proxy p; ~ q(p1) = N (p1; pt1,0?) (shown in the
circle with center p; and radius o7) is too close to Z, violating the margin constraint. (d) To meet the VCPA’s
constraint, both the embedding network and the variational proxy density q(p1) = N (p1; p1,0?) (and also q(p2))
need to be adjusted such a way that the sampled proxy p; is distant from Zo with large margin (similarly for po

and Z7), as suggested in the layout.

a representative for each class. This specifically means
that for each proxy p; for the class j € C, the similarity
s(x, p;) between the data point x and p; should be large
(e.g., greater than some margin § = 0.1) if  belongs to
the class j (denoted as z € D;-r)7 whereas the similarity
needs to be small (e.g., less than —¢) if = belongs to
a different class (z € D;7). This desideratum can be
expressed succinctly in the follow (full-batch) loss:

ull 1 6—s(x,pj
£{9A :@Z log { 1+ Z ea( (%,p5)) +

jec weD;T
log <1+ Z 6&(5(I,Pj)+5)>}. (2)
xED;

Note that is the full-batch version of the loss func-
tion, in which D;‘ consists of entire training data points
that have class label j (D} defined similarly).

Since dealing with the full-batch data D; /Dy is infea-
sible, in (Kim et al., 2020)) they instead used minibatch
versions, namely B;T, the positive (class j) samples in
a minibatch B, and B; likewise. And it boils down to

the proxy-anchor loss:

Lpa=Ep[Lpa(B)] where (3)
1
‘CPA(B) = ? Z {log (1 + Z ea(&—s(w,;;ﬂ)) +
| | jec ZEEB;—
log <1 + Z 604(5(%7?]‘)“1’5)) }’ (4)
ZEEB;

where the expectation is taken over the i.i.d. random
batch set B, sampled from the training data. In (Kim
et al., 2020) they performed the stochastic gradient
descent (SGD) optimization of ; that is, sample
a batch B, and update the embedding network and
proxies by the gradient of Lp4(B). Despite the fact
that the expectation of each log term in cannot
be an unbiased estimator for the corresponding term
in , the proxy-anchor method showed significant
improvement over the existing DML approaches. In
this paper, we seek for further improvement over the
proxy-anchor method by modifying the optimization
strategy for the loss (3)).
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Our key motivation is that the loss has the form of
expectation-over-batches, apart from the conventional
expectation-over-instances (i.e., E,) that arises in most
machine learning and computer vision problems. In
the latter, when we use a minibatch, we essentially
perform multi-sample Monte-Carlo estimation, which
can reduce the variance of the gradient estimate, and
hence facilitates fast convergence to a local optimum.
On the other hand, the batch-expected loss in (3|) rather
treats a batch B (as a whole) as a single instance. In
this view, the optimization used in (Kim et al., 2020)
can be seen as an SGD optimization with a single-
instance minibatch; i.e., for each gradient update, we
do not sample multiple different B’s from data, but just
one B. Although this still admits an unbiased estimate
for , the sampling complexity becomes high since
there is little chance that a current batch B is revisited
in the futureﬂ And the consequence is that the model
may easily forget useful information from the historic
batches in the course of learning, and be biased towards
the latest batches.

To address this issue, one can treat instances as a set,
such as the Neural Statistician (Edwards and Storkeyl,
2017)), where we sample a minibatch of batches B’s.
However, this becomes computationally infeasible due
to the large GPU memory requirement. Under this
scenario, if batch B is understood as a task, then this
can be recognized as catastrophic forgetting in con-
tinual learning (Kirkpatrick et al., 2017} |Zenke et al.)
2017} [Serra et al., |2018 Nguyen et al., [2018}; [Ebrahimi
et al.l [2020; |Benjamin et al., 2019; [Pan et al., 2020)),
although the latter typically deals with a sequence of
datasets/tasks instead of a sequence of minibatches.
Our motivation here is that we can apply continual
learning approaches to the loss of to attenuate the
aforementioned issue of the minibatch approximation.

2.2 Continual Learning Approach

If we follow the SGD learning, we are given a sequence
of batches By, Bs, ... sampled from the training data,
and update the model for each B; using the loss func-
tion . Due to the aforementioned sampling complex-
ity, it is easy for the model to forget the information
from the historic batches. We need a mechanism to
prevent the model from forgetting the previous batches,
and come up with the learning strategy that can make
the model perform well on all historic batches. If we
regard the batches as tasks, this resembles the issues of
catastrophic forgetting in the continual learning, whose
goal is to make the model that performs well on all

!Specifically, the probability of seeing the same batch
again is 1/(‘1}\3]‘) where N is the training set size, and |B| is
the batch size. With N = 10,000 and batch size 100, the
probability becomes less than 107290,

historic tasks (batches in our case).

Motivated from the probabilistic continual learning
approaches (Kirkpatrick et al., 2017; Nguyen et al.
2018), we adopt a Bayesian framework. We first impose
a prior distribution on the proxy Vectorﬂ P ={pj}jec.
We adopt the factorized Gaussian as our prior,

p(P) =[] M(p;;0,1). (5)

jeC

Then the observed sequence of batches By, Bs, ..., are
presumed to be i.i.d. samples given the model, i.e.,
pe(B|P), which we define as:

po(B|P) = exp(—Lpa(B)/T), (6)

where Lp4(B) is the proxy-anchor loss and 7 is a
scaling (temperature) parameter. We use the subscript
0 to indicate dependency on 6.

Preventing the model (i.e., the proxies P) from for-
getting historic batches in the course of training, can
be naturally and effectively carried out by posterior
inference in the Bayesian framework. That is, we infer
po(P|B1, Ba,...). Using the Bayes rule, this can be
done recursively: at the current batch iteration ¢ (once
we observe By),

po(P|By - By) < pg(P|B1 -+ Bi_1) - po(Be| P). (7)

Note that the density normalizer in (7)), denoted by
Zy(0) = [ po(P|B1 - Bi—1)pe(B|P)dP, depends only
on the data Bj,..., By, given 6. Initially at ¢t = 0
(before we observe the first batch Bj), the posterior
coincides with the prior p(P) in .

Due to the complex dependency of the loss Lp4 on P
in (6)), the normalizing constant Z(6) cannot be com-
puted exactly. Similar to (Nguyen et al. 2018)) in the
continual learning, we adopt the variational approxima-
tion. We denote by ¢;(P) the Gaussian approximation
of the posterior at the ¢t-th step, that is,

def
po(P|B1- By) =~ q(P) = HN(Pj§N§,Dg(U§)2)a
jec

where Dg(a) is the diagonal matrix with vector a on
the diagonal, and (u?,o?) (with abbreviation ut :=
{ti}jec and o := {0} ;cc) are the variational param-
eters for ¢;(P). At t =0, we have gy coincide with the

2Although we can impose a prior on both embedding
network parameters § and P, treating only one of them as
random variate, and the other as deterministic, is sufficient.
It is because the two variables appear in the loss function
as an interactive form only through s(z,p), and the contin-
ual learning (or reduced forgetting) effect endowed in one
variable naturally propagates to the other accordingly by
alignment/misalignment. Treating P as random variate is
more attractive in terms of computational cost than 6.
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prior, that is, u? = all-0 vector and 0;-) = all-1 vector
for all j € C.

Now, we minimize the KL divergence between the pos-
terior and the variational ¢;(P). By approximating
pe(P|By---Bi—1) in with ¢;—1(P), we can derive
the KL divergence as follows:

KL(q:(P) || po(P|B1 - By)) (8)
KL(g:(P) [| qi-1(P) - po(Bi|P) / Z¢(0)) (9)
Z4(0) - q:(P)
Qt—l(P) .e—Lpra(By)/T

KL(allar1) + Eq [Cpa(B)] +log Z,(6). (11

Q

(10)

eq(p) log

As Z,(6) does not depend on the variational parameters
of ¢, the variational approximation at the t-th step
becomes:

. 1
min Ly = KL(gtllge-1) + ~Eq,(p)[Lra(Br)] (12)

Note that the KL term in admits a closed form
(Supplement for details). The second term is the ex-
pected proxy-anchor loss with respect to the varia-
tional density ¢;(P). As widely adopted, this can be
approximated by the one-sample Monte-Carlo estimate
with the reparametrization trick (Kingma and Welling}
2014). That is, we sample P = u' 4+ o' @ € where
e ~N(0,1), and evaluate the loss £pa(B;) with P.

Looking closely at , there are two modifications to
the proxy-anchor method of (Kim et al., [2020). First,
we use noisy perturbed proxies P when evaluating the
proxy-anchor loss. This can help making the model
more robust to noise since the proxies and embedded
data points get aligned to each other with larger margin,
making small perturbation in the embedded data points
less influencing. And this increased margin can lead
to better generalization (e.g., viable to small training
data) (Vapnikl |1998; |Grandvalet and Bengio, 2004).
Secondly, the KL term can be seen as momentum
(proximal) regularization, which discourages abrupt
proxy changes from the previous iterates, useful for
keeping historic information and reducing catastrophic
forgetting. Along this line, the proposed model can
be affected less by small batch sizes (Sec. [4] for related
empirical results).

To optimize , although one can follow several (first-
order) gradient descent, we realize that £, is nearly a
convex function of (u?,ot): the KL is convex in both
parameters, and Lp4(B;) has the form of log-sum-
exp of s(x,p) where s(x,p) is linear in p (except for
the normalization by ||p||). Hence we can employ a
second-order method (esp., the Newton update) which
usually converges quickly to the optimum (Nocedal
and Wright|, 2006). To deal with the non-convexity

Algorithm 1 Variational Continual Proxy Anchor.

Input: Scale 7, learning rate v, # Newton steps M.
Initialize: 6 (e.g., pre-trained model), u° = 0,0% = 1.
fort=1,2,... do
Sample a batch B, ~ data.
Warm start: (p?,0f) < (u'=1,071).
form=1,...,M do
P=pt+otec, e~N(0,I).
Compute g = VL;, H = V2L; wrt (ut,atP.
Newton update: (u', o) < (u*,0') — H™'g.
Clamp: o' + max{at,amm} (e.8., Omin = 1075),
end for )
Evaluate Lpa(B;) with P = ' +0'ee, € ~ N(0,1).
Update: 6 < 0 —yVoLpa(B:).
end for

originating from ||p||, we regard it as constant during
the gradient /Hessian computation. The (approximate)
gradient/Hessian of £; admits closed forms (Supple-
ment for details). Then we take M steps (e.g., M = 10)
of the Newton update:

,ut<—/f‘—H;tlg#t, ot ot —H gy, (13)

o

where H and g are approximate Hessian and gradient
of Ly, respectively. For tractability, H is diagonalized.

Since the objective L; of is an upper bound (neg-
ative ELBO) of the negative conditional log-likelihood,
ie, Ly > —logZi(0) = —logpe(B|By -+ Bi_1), we
can use it to update the model . Once the Newton
optimization of with respect to (ut, o?) is done, we
fix (uf, o?) and update 6 by gradient descent with L,
which boils down to the second term L p 4 (B;) evaluated
on P. Our method, called Variational Continual
Proxy Anchor (VCPA), can be described as pseudo
codesE| in Alg. |1l Note that we use the clamping oper-
ation after each update of ! to keep it positive. We
usually set the number of Newton steps M = 10.

3 RELATED WORK

Deep metric learning approaches broadly fall into
two schools: pair-based and prozxy-based. Pair-based ap-
proaches commonly rely on the idea of contrastive learn-
ing (Chopra et al., [2005; [Hadsell et al.l 2006), where
the instances of the same (different) classes should be
pulled together (pushed away from each other, resp.).
Beyond the intuitive triplet forms (Wang et al., [2014;
Schroff et al.l 2015), more sophisticated losses were
introduced; in (Sohnl [2016; |Song et al., |2016b) each
anchor is contrasted with a positive and multiple neg-
ative pairs to take into account hard examples, while
in (Wang et al., |2019alb)) every pair in a batch is incor-
porated into the loss with some importance weighting

3In the actual implementation, we use the re-scaled
loss function, £; := TKL(g¢||qi—1) + Eq,(py[Lpa(B:)] for
numerical stability.
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schemes. Pair-based approaches inherently suffer from
computational overhead as the sampling complexity
becomes super-linear in the training data size. Al-
though there have been attempts to focus on a small
number of the most important samples in the batch,
they typically resort to sophisticated sampling strate-
gies (Wu et al} 2017 [Harwood et al.| 2017} [Yuan et al.,
|2017; [Wang et al., 2019b)), which often involve difficult
hyperparameter search.

Proxy-based methods reduced the computational com-
plexity to linear by introducing the so-called proxy
vectors in the embedded space. The proxies are learn-
able parameters, and typically serve as class represen-
tatives (e.g., class centers), and hence the loss function
can be defined solely with distances between data in-
stances and proxy vectors, without requiring pairwise
distances, reducing the sampling complexity to linear.
Whereas proxy-NCA (Movshovitz-Attias et al., [2017)
builds a loss function based on the popular neighbor-
hood component analysis (Goldberger et al., [2005),
SoftTriple (Qian et al. [2019) derives the loss function
by extending the softmax classification. More recently,
proxy-anchor (Kim et al., |2020)) addresses the data
inefficiency issue of the proxy-NCA by incorporating
data-to-data relations into the loss function.

Other recent approaches in DML focus on different
aspects. In (Mohan et al.| |2020), a direction regular-
ization strategy was introduced to explicitly account
for the layout of sampled pairs as well as orthogonality
in the representations. In (Zheng et all 2020) they
aimed to learn a sample assessment strategy, via an
episode-based meta learning algorithm, to maximize
the generalization of the trained metric. While some
approaches aim to generate synthetic data points for
the purpose of augmentation and generalization
et al., 2018} [Duan et al., 2018; |Zheng et al. [2019),
learning additional generative networks along with the
main embedding network can be a considerable over-
head. This issue was addressed in (Ko and Gul[2020) by
generating synthetic points from feature combination
while keeping the augmentation information.

Continual learning emerged recently to address the
drawback of the current deep learning methods where
the models tend to quickly forget previously learned
skills when learning a new task. The main goal of con-
tinual learning is to make the model perform well on all
tasks it has seen during training. To achieve the goal,
the most popular approach is to regularize the network
weights to stay close to those learned from the previ-
ous tasks (Kirkpatrick et al.l 2017} |Zenke et all [2017
Serra et al] 2018} [Nguyen et all 2018} [Ebrahimi et al.
2020). Recently, there have been attempts to directly
regularize the function outputs of the model instead
of network weights, which often yields performance

improvement at the expense of added computational
overhead (Benjamin et all [2019; Pan et al., |2020).

4 EXPERIMENTS

We empirically test our VCPA on the popular bench-
mark DML datasets (Sec. following the experi-
mental setups (Sec. . The comparison with the
state-of-the-art DML methods is reported in Sec.
We also empirically highlight the two benefits of the
proposed method, namely robustness to biased noisy
data, esp., small training data (Sec. , and reduced
effect of historic batch forgetting via small batch sizes
(Sec. . In Sec. we perform ablation study to
show that both stochastic proxy sampling and the mo-
mentum proxy KL loss in our VCPA are important
to achieve the highest performance. We also compare
our VCPA with other popular momentum update ap-

proach (He et all 2019), to show the effectiveness of

our approach (Sec. [4.7)).

4.1 Datasets

The proposed method is evaluated on CUB-200-
2011 (Welinder et al., 2010)), Cars-196 (Krause et al.

2013), Stanford Online Product (SOP) (Song et al.
2016a)) and In-shop Clothes Retrieval (In-Shop) (Liu

et al., datasets following the standard data split
protocols as used in previous literature. For CUB-200-
2011 the first 100 classes (5,864 images) are used for
training, while the other 100 classes (5,924 images)
for testing. For Cars-196, the first 98 classes (8,054)
are used for training, while the remaining 98 classes
are used for testing. In SOP the standard data splits
as provided in (Song et al., |2016a; Kim et al., 2020)
are used, which consist of 11,318 classes (59,551 im-
ages) for training and 11,316 classes (60,502 images)
for testing. Finally, for In-Shop we use data splits as
described in (Kim et all [2020), mainly the first 3,997
classes (25,882 images) are used for training, while the
remainder test classes 7970 (28,760 images) are split
into query and gallery sets of 3,985 (14,218 images)
and 3,985 classes (12,612 images), respectively.

4.2 Experimental Setups

For fair comparison with many of the existing DML
methods, we use the BN-Inception backbone, which is
initialized with the ImageNet pre-trained model. Also,
the embedding dimension is chosen as 512, and a fully
connected output head is attached to the backbone
final layer. For the optimization, we follow the similar
setups as (Kim et al) 2020) for the learning rates,
schedules, number of epochs, and so on. The scaling
and margin parameters in the PA loss are o = 32,
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6 = 0.1. Moreover, the images are randomly cropped
and resized to (224 x 224) pixels, as is standard.

4.3 Comparison with State-Of-The-Arts

Our main results are summarized in Table[ll We follow
the standard protocols, and the scores of the competing
methods are excerpted from their publications.

PA vs. VCPA: Statistical Significance. In our
main results (Table , we see that VCPA performs the
best among all methods for all datasets. To check the
statistical significance, we take the two best models,
PA and VCPA, and perform further statistical anal-
ysis. Since there exist a few sources of randomness
in the training of PA and VCPA (e.g., location of ini-
tial proxies in PA and proxy sampling in VCPA), we
perform multiple runs on the CUB and Cars datasets.
Table [2 shows that VCPA outperforms PA with strong
statistical significance on both datasets.

4.4 Impact of Small Training Data

We verify our claim that the stochastic sampling for
the proxies in our VCPA can improve robustness to
input noise or domain shift. To this end, we train our
VCPA and PA with small training data by reducing
the number of samples per class. This experiment can
be useful to judge how flexible the models are adapted
from the initial pre-trained model to a new domain.
Recall that the pre-trained model is used for embedding
network initialization, and obtained from the ImageNet
domain training, different from the domains of the
datasets (e.g., CUB) that we train our models on.

We reduce the training data sizes to 2 ~ 10% of the orig-
inal training sets. On CUB, they roughly correspond
to 1 ~ 6 training samples per class. These few training
sets exhibit highly biased and noisy samples, adequate
for testing the robustness of the models. The results
are summarized in Fig. [3] where we also report the per-
formances of the 1024-dim features directly extracted
from the pre-trained BN-Inception model (IncepFeat)
and the random projection head attached on top of the
Inception features (RandHead). As shown, VCPA is
more robust than PA. Looking at 10% reduction, we
see that the Inception features alone (without head)
attains RQ1 = 54.7, and adding a random head makes
it worse (50.2), but training with 10% data using PA
makes it better (56.3), while training with our VCPA
achieves the best score 58.6. Similar result was ob-
tained for the Cars 10% reduced data: IncepFeat: 48.8,
RandHead: 43.3, PA: 58.6, and VCPA: 59.5.

601 — vcPA  —— IncepFeat
,,,,,, oA ~F incepr
”] | 1 andHead
O
N
> e
521
501

5% (3) 7% (4) 8% (5) 10% (6)

Training data size reduction rate

2% (1)

Figure 3: Small training data experiment. The paren-
theses in X axis contain numbers of samples per class.
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Figure 4: Small batch size experiment on CUB.

4.5 Impact of Small Batch Size

To show the effectiveness of the momentum update
of the variational proxies in our VCPA, we conduct
an experiment with small batch sizes. This is moti-
vated from the intuition that with small batch size, the
models are exposed to potentially more risky situation
where historic batches are more easily forgotten. The
result in Fig. [4]indicates that our VCPA is more robust
to small batch sizes than PA.

4.6 Comparative & Ablation Study

Multiple Updates of Proxies in Proxy-Anchor.
In our VCPA, we update proxies multiple (M = 10)
times per batch by the Newton update. For a fair
comparison we inspect what will happen if PA also
does similar multiple proxy updates per batch. We
perform two different update schemes with the same
number of updates M = 10: the first-order update and
the second-order Newton update. For the former, we
use the AdamW (Loshchilov and Hutter, 2017) as is
also employed for the main embedding network, while
for the latter we follow the same approximate gradien-
t/Hessian computation scheme that we proposed in our
VCPA. The results on the CUB and Cars datasets are
shown in Fig. 5] The Newton update leads to a better
model than the first-order update for CUB, while it
is the other way around for Cars. However, multiple
update of the proxies does not help improving, but
even deteriorates, the performance of the proxy-anchor
method. This result indicates that the success of our
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| CUB Cars SOP In-Shop |

|[Re@1 | 2 [ 4 [ 8 [[Re1] 2 [ 4 [ 8 J[Ra1] 10 [ 100 [1000 || R@1 | 10 [ 20 [ 40 |
Margin!2® R50 || 63.6 | 74.4 | 83.1 | 90.0 || 79.6 | 86.5 | 91.9 | 95.1 || 72.7 | 86.2 | 93.8 | 98.0 - - - -
HDC?¥? G 53.6 | 65.7 | 77.0 | 85.6 || 73.7 | 83.2 | 89.5 | 93.8 || 69.5 | 84.4 | 92.8 | 97.7 — — — —
A-BIER®!2 G 57.5 | 68.7 | 78.3 | 86.2 || 82.0 | 89.0 | 93.2 | 96.1 || 74.2 | 86.9 | 94.0 | 97.8 || 83.1 | 95.1 | 96.9 | 97.8
ABE®°!? G 60.6 | 71.5 | 79.8 | 87.4 || 85.2 | 90.5 | 94.0 | 96.1 || 76.3 | 88.4 | 94.8 | 98.2 || 87.3 | 96.7 | 97.9 | 98.5
HTL®? BN || 57.1 | 68.8 | 78.7 | 86.5 || 81.4 | 88.0 | 92.7 | 95.7 || 74.8 | 88.3 | 94.8 | 98.4 — — — —
RLL-H12 BN || 57.4 | 69.7 | 79.2 | 86.9 || 74.0 | 83.6 | 90.1 | 94.1 || 76.1 | 89.1 | 95.4 — — — — —
MS512 BN [ 65.7 | 77.0 | 86.3 | 91.2 || 84.1 | 90.4 | 94.0 | 96.5 || 78.2 | 90.5 | 96.0 | 98.7 || 89.7 | 97.9 | 98.5 | 99.1
SoftTri®1? BN || 65.4 | 76.4 | 84.5 | 90.4 || 84.5 | 90.7 | 94.5 | 96.9 || 78.3 | 90.3 | 95.9 — — — — —
ALA-MP12 G 61.6 | 73.9 | 83.1 | 89.7 || 80.5 | 87.9 | 92.8 | 95.9 || 77.0 | 89.4 | 96.1 — — — — —
EE-MS®1? G 57.4 | 68.7 | 79.5 | 86.9 || 76.1 | 84.2 | 89.8 | 93.8 || 78.1 | 90.3 | 95.8 — — — — —
DR-MSP12 G 66.1 | 77.0 | 85.1 | 91.1 || 85.0 | 90.5 | 94.1 | 96.4 — — — — 91.7 | 98.1 | 98.7 | 99.1
PAS12 BN || 68.4 | 79.2 | 86.8 | 91.6 || 86.1 | 91.7 | 95.0 [ 97.3 || 79.1 | 90.8 | 96.2 | 98.7 || 91.5 | 98.1 | 98.8 | 99.1
VCPA®2 BN [ 69.9 | 79.0 | 86.9 | 92.2 || 86.9 [ 92.3 [ 95.2 | 97.3 || 79.5 | 91.0 | 96.2 | 98.6 || 92.2 | 98.1 | 98.7 | 99.1

Table 1: Comparison on the benchmark datasets. Superscripts are embedding dimensions. The embedding
backbone networks used are indicated in the second column, R50=ResNet-50 (He et al., 2016|), BN=Inception
with batch normalization (Ioffe and Szegedyl |2015), G=GoogleNet (Szegedy et al., |2015). Competing approaches
are: Margin=(Wu et al |2017), HDC=(Yuan et al., |2017)), A-BIER=(Opitz et al.| |2020)), ABE=(Kim et al., 2018),
HTL=(Ge et al. 2018), RLL-H=(Wang et al., |2019a)), MS=(Wang et al.l 2019b)), Soft Tri=(Qian et al., 2019),
ALA-M=(Zheng et al.| [2020), EE-MS=(Ko and Gu, 2020), DR-MS=(Mohan et al., 2020), PA=(Kim et al., 2020).

RQ1 | PA®'? (Kim et al.{[2020) ‘ VCPAS!? ‘ p-value ‘
| CUB | 68.04 £ 0.08 [ 69.41£0.11 | < 0.0001 |
| Cars | 86.29 + 0.14 | 86.58£0.09 | 0.01 |

Table 2: Statistical analysis of R@Q1 in PA and VCPA.
Mean, standard error and statistical significance (paired
t-test), for CUB and Cars.

CuB Cars
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Figure 5: Multiple proxy updates per batch on CUB
and Cars. PA-1st uses the first-order AdamW, while
PA-2nd performs the (approximate) Newton update.

VCPA is not originated from merely over-optimizing the
proxy parameters, but the sophisticated loss function
derived from the Bayesian continual learning criteria.

Ablation I: Without Stochastic Sampling. In our
variational learning we used the stochastic sampling
P = pt+otee with e ~ N(0, I) when we evaluate/back-
prop the proxy-anchor loss Lp4(B;). To see the impact
of this stochastic sampling, we test our VCPA without
sampling, by using deterministic P = ut with € = 0.
The results on the CUB and Cars datasets are shown
in Fig. [0l Deterministic proxy significantly falls short
of the VCPA with stochastic sampling, implying the
importance of the stochastic treatment for robustness.

CUB 87 Cars
69.5 T ==
86
~ 69.0 -
¢ ges
68.5 ﬁ 24

68.0 - 83 -
No sampling VCPA No sampling VCPA

Figure 6: Without stochastic sampling in our VCPA.

Ablation II: Impact of Proxy KL Loss. The
proxy KL loss term KL(q:(P)||gi—1(P)) in our VCPA
has the role of preventing the proxies from abrupt
changes, crucial for avoiding historic batch forgetting
issue. To see its impact, we perform the ablation
study of reducing the impact of the KL term in the
loss during training. Note that the scale 7 in (12}
serves as the impact constant for the KL term, and we
gradually reduce 7 by one tenth from 10% down to 10~7.
The resulting test RQ1 scores for the CUB and Cars
datasets are summarized in Fig. [7] As shown reducing
the impact of the KL term significantly degrades the
performance.

4.7 Comparison to MoCo-like Model

As an alternative way of avoiding the historic batch for-
getting issue, we consider carrying out momentum up-
date for the embedding network fy as baseline compar-
ison. To this end, we modify the original proxy-anchor
method by adopting the idea from the recent MoCo
(Momentum Contrast) approach (He et al.l |2019)), pop-
ular in self-supervised learning. More specifically, we
maintain two embedding networks (of the same archi-

4Recall that we used the re-scaled version of the loss func-
tion , namely L; := 7KL(gt||qi—1) + Eq,(p)[LPa(Bt)].
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Figure 7: Impact of proxy KL loss. We vary the impact
constant 7 for the proxy KL loss term.
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Figure 8: Comparison with MoCo-like momentum up-

date scheme for proxy-anchor (denoted as MoCo-PA).

We vary the momentum parameter a. Scores of PA

and VCPA superimposed for comparison.

tecture); one is the main fy, and the other f,, is the
momentum network (parameters w). The momentum
network f,, smoothly follows the main network fy while
memorizing the previous iterates. This is done by the
momentum update of the network parameters,

w 4+ aw + (1 — «a)b, (14)

with the momentum constant « (e.g., « = 0.999). In
MoCo, we also maintain a (FIFO) queue, of size typi-
cally far larger than minibatch size, which is filled with
the latest batch data {(z = fu(2),¥)}(@y)~B every
iteration. At each iteration, we update 6 by backprop,
but we do stop-gradient for w. Hence one can harness
a large number of samples from the queue, alongside a
minibatch, to improve stochastic approximation of the
original full-batch loss .

The results on different a are shown in Fig. We
set the queue size 900, five times the batch size 180,
which deals with 1080 samples in the proxy-anchor
loss function. However, as shown, this momentum
update scheme does not improve the performance of
PA, clearly falling short of both PA and VCPA. This
implies that simply adopting off-the-shelf momentum
update strategies may fail, and signifies the impact of
the continual learning criteria employed in our VCPA

to ameliorate the historic batch forgetting issue.

4.8 Computational Complexity

Computational overhead incurred by VCPA is mainly
the M Newton update steps (against PA’s one-step
SGD). However, since the Newton update takes
the same time complexity as gradient computation
(Sec. A.2 in Supplement), the overall asymptotic com-
plexity of PA and our VCPA is the same, whereas
VCPA takes constant factor (M) more time than PA.
The number of minibatches required in VCPA and
PA is the same. We report the wall clock times; The
per-batch (of size 180) training times are: 528 msec
(VCPA) and 383 msec (PA) on a single GTX 2080ti

machine.

5 CONCLUSION

In this paper we have proposed a novel variational con-
tinual proxy-anchor method for deep metric learning,
to address the potential historic batch forgetting issue.
With the Bayesian variational treatment, we derive a
novel loss function that is also intuitively appealing
and beneficial in two aspects: 1) random perturbation
of proxy vectors to lead to a model robust to bias or
domain shift in the data, and 2) momentum update
of the variational proxies to reduce the batch forget-
ting effect. In the empirical study, the proposed model
achieved the pronounced performance, outperforming
the best state-of-the-arts with large margins, while the
claimed benefits were well verified.
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Supplementary Material:
Variational Continual Proxy-Anchor for Deep Metric Learning

Detailed derivations (Sec. [A).

Visualization of learned proxies and embeddings (Sec.

Qualitative retrieval results (Sec. [C).

e Hyperparameters and Additional Experiments (Sec. @

A DETAILED DERIVATIONS

All mathematical operations in this section are element-wise.

A.1 Derivation of Proxy KL Loss

It follows from the KL divergence between two Gaussians that:

KL(q:(P) || gi-1(P)) = > KL (uf, Dg(0})?) || N (5, Dg(oj)%) (15)
Jjec
t 2 t—1 t
= ]EZC ILT( le " (N(U;Mlj)2) —2log ? 1> + const., (16)

where 1 is the all-1 vector of the same dimension as the proxies.

A.2 Derivation of Gradients and Hessians for L,

We derive the gradients and Hessians, denoted by g,,, g, and H,,, H,, resp., of our VCPA loss function £;, which
are required in the Newton update of the variational proxy parameters (u, o) of g(P). Recall that the loss of our
VCPA is (for the given embedding network 6):

Li1',056) = KL(@u(P) || g 1(P)) + 2By, p[Lpa(B)],  where (17)

£PA ‘C‘ Z{log <1+ Z ea(é—s(r,l’j))) + log (1+ Z eoc(s(m,l?_y)-‘ré))}7 (18)

jec QCEB;T z€EB;
< p
s(z,p) = ———, z= fo(x). (19)
211 - 1lpll”
For the expectation term in , we use the Monte Carlo estimation with a reparametrized sample P~ q:(P),

{log <1+ 3 exp (a(a—s(m,pg.)))) + log (1+ 3 exp (a(s(x,ﬁg.)m)))},

+ —_
EBj wEB].

EQt[‘CPA( |C‘ Z

jec
(20)

where p’ = p 4 0% e ¢; with ¢; ~ N(0,1) for j € C.
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The loss L; in is nearly a convex function of (uf,o?): the KL term in is convex in both parameters, and
has the form of log-sum-exp of s(z, p) where s(x, p) is linear in p, and hence linear in u and o, except for the
normalization by ||p||. To deal with the non-convexity originating from ||p||, we regard it as constant during the
gradient /Hessian computation. First,

t t
i — s g 1
VeKL="2_'"J = v KL=-—2L __ — 21
K (0,;—1)2 j (0,;—1)2 U; ( )
V2KL= 1 V2KL= 4 1 (22)
SRS e (o)

Note that ensures that Hessians are positive, thus KL being convex. For the proxy-anchor loss part, we first
let:
+(p) — 5t — () — 5t = @)
h (z) := exp a0 — s(x,pj)) . hy(x) =exp a(s(a:,pj) +46)), flz)= TF@N (23)
Then we first take the gradient with respect to p; (superscript ¢ dropped for simplicity in notation). By regarding
[lp;]| as constant, we have:

_ erB;r hf(ﬂf)m _ erB; hj_ (z)f(z)
(G; —G), where Gf = 1+ Za;ij+ hi(z) Gy = 1+ ZmEB; b (x) (24)

a 1
IC {1551

Vi, Lpa =

The Hessian with respect to p; can be derived as:

— 2 P ——
@ 1 (CepMOTD L, T @@
ICHIBIP\ 1+ X peps b (@) ! 142 ep: hy(2) )

Using the chain rule, the gradients and Hessians of Lp4 with respect to the variational parameters p; and o; are
derived as follows:

V2 Loan (25)

VujﬁpAZijﬁpA, Vg].[,pAZEjVﬁjﬁpA, (26)
VijﬁpAZV?;jﬁpA, VijﬁpAzeivgjﬁpA, (27)

where ¢;’s are those that were used in the Monte Carlo sampling, p; = p; + o; ®€;.

Finally, combining the above results, the gradients and Hessians of the VCPA loss function £; can be written as:
1 1
gu§ ZV#;KL—F;V#;EPA, gg; ZVU;qKL—F;VU;[:pA, (28)

1 1
H, =V>KL+=-V2,Lps, H, =V2,KL+=V2Lpy, (29)
g Hj T Hi J i T %

B VISUALIZATION OF LEARNED PROXIES AND EMBEDDINGS

In this section we visualize the embeddings and the variational proxies that are learned from our VCPA. To
visualize the 512-dimensional embedded space, we use the t-SNE for 2D visualization. We show the embeddings of
the data points together with the proxies for the CUB dataset in Fig. @ Overall, most of the classes (in different
colors) are separated well in the embedded space, while each proxy roughly lies at the center of the corresponding
class.

For the variational proxies, recall that we have mean vectors p;’s and standard deviation vectors o;’s for the
training classes. As an intrinsic uncertainty measure, we define the normalized standard deviation for each
variational proxy, as a trace of the empirical standard deviation matrix of the unit-norm normalized proxy samples.
More specifically, the normalized standard deviation of the j-th proxy is defined as a scalar value from the follow
formula:

Ak-: K
ajTr<Std<{ P; } )), where ﬁ?:uj+ajoek, e ~N(©O,I), k=1,...,K, (30)

18511 =
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Figure 9: t-SNE visualization of the proxies and embeddings of the data samples on the CUB dataset. Our
variational proxies (means and standard deviations) are represented as concentric circles at @@ / 25 / 37. Different
colors represent different classes.

where std({ay }%_,) means the empirical standard deviation using the K samples {a)}X_ ;. We use K = 1000. In
the t-SNE plot (Fig. E[), we also visualize these normalized standard deviations together with the proxy means
(shown as the circles of radii proportional to @;’s). As shown, these intrinsic uncertainties () are visually well
aligned with the degrees of dispersion of the samples in classes. E.g., if 7;, or the size of the circle, is larger
(smaller), the samples in the class are more dispersed (concentrated, resp.). We also verify this quantitatively: the
Pearson correlation score between § (the median cosine similarity between the proxy mean and the data samples
in the class) and & is —0.81; meaning that if a class has large data-to-proxy similarity s (i.e., concentrated), the
learned proxy uncertainty & tends to be small, and vice versa.

Pairs of closest/farthest proxies. From the learned proxies, we visualize the pair of the closest classes and
the pair of the farthest (according to the proxy-proxy similarity score) in Fig. It can be seen that visually the
images from the two closest classes look very similar to each other. On the other hand, the images from the two
farthest classes exhibit substantially different appearance. This indicates that the proximity between the learned
proxies are well aligned with the visual similarity between the corresponding classes.

Comparison of the most certain and the most uncertain proxies. Next, we contrast the proxy with the
smallest uncertainty o against the proxy with the largest uncertainty. Intuitively, we conjecture that if a proxy
has a large @ (high uncertainty), the corresponding class has much variation for its samples, and vice versa. We
verify this in Fig. Visually, the images from the RED class (the most certain proxy) have less diversity, while
those from the PURPLE class (the most uncertain proxy) exhibit substantial appearance variation in its data
samples. This signifies that the proxies and their intrinsic uncertainty measures learned by our VCPA successfully
capture the degree of diversity of each class.
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Figure 10: TOP: The pair of the closest classes according to their learned proxies (cosine similarity = 0.87). (a)
t-SNE visualization of their variational proxies (shown as RED and PURPLE). (b) Samples from the RED class
“Acadian Flycatcher” and (c) PURPLE “Least Flycatcher”. Visually, the images from the two classes look very
similar. Bottom: The pair of the farthest classes according to their learned proxies (cosine similarity = 0.22).
(d) t-SNE visualization of their variational proxies (shown as RED and PURPLE). (e) Samples from the RED
class “Ringed Kingfisher” and (f) PURPLE “Horned Lark”. The images from the two classes exhibit substantially
different appearance.
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Figure 11: Visualization of the most certain proxy and the most uncertain proxy. (a) t-SNE visualization of
the two variational proxies: the most certain proxy (RED; the smallest & = 1.25) and the most uncertain proxy
(PURPLE; the largest @ = 2.04). (b) Samples from the RED class “American Crow” and (¢) PURPLE “Dark
eyed Junco”. Visually, the images from the RED class (certain) have less diversity, while those from the PURPLE
class (uncertain) exhibit substantial appearance variation.

Results on the Cars dataset. We perform similar experiments for the Cars dataset, and the results are shown
in Fig. [12] (t-SNE), Fig. [L3| (pairs of closest/farthest proxies), and Fig. [14] (the most certain/uncertain proxies).

C QUALITATIVE RETRIEVAL RESULTS

We present qualitative results on the four benchmark datasets to demonstrate the superiority of our proposed
VCPA in comparison with Proxy-Anchor (Kim et al.l [2020) and Proxy-NCA (Movshovitz-Attias et al. [2017).
In these examples, all methods share the underlying embedding network with Inception-BN backbone, but
it is trained with different loss functions hence the results are distinctively dissimilar. Fig. [I5] illustrates the
top-3 retrievals of the three methods on the CUB dataset. The inherent large intra-class variance (view-point,
background) and inter-class similarity (foreground appearance) make this dataset challenging for the image
retrieval task in general. However, the embedding network trained by our VCPA outperforms Proxy-Anchor and
Proxy-NCA, with more accurate retrieval results. In particular, the third and fourth rows in Fig. [15| show that our
proposed method can retrieve the correct samples despite the large variation in the view-point and background
between the query and retrievals, whereas Proxy-Anchor and Proxy-NCA are unable to produce accurate results.
Fig. [16] demonstrates the top-3 retrievals of the three methods on the Cars dataset. In the second and fifth rows
of this figure, our proposed method can retrieve the correct samples despite the significant color difference from
the query. Proxy-Anchor and Proxy-NCA also retrieve the samples with similar color (red), but they belong to
different classes. The retrievals on the SOP and In-Shop datasets are shown in Fig. [I7] and [I§] respectively. In
the second row of Fig. [I7] the query image is vague as it shows the label with the small BMX bike at the corner
and the barcode, but the embedding network trained by our VCPA can still retrieve the correct samples, while
the other two methods fail to return accurate results. Fig. [18shows that our proposed method is also robust to
view-point changes.

D HYPERPARAMETERS AND ADDITIONAL EXPERIMENTS

D.1 Hyperparameters

The optimization hyperparameters used in our experiments are as follows.

e For the CUB dataset: embedding-dim = 512, 7 = 0.01, 0,4, for proxies = le — 5, Ir = 0.0001, PA loss
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Figure 12: t-SNE visualization of the proxies and embeddings of the data samples on the Cars dataset. The same
interpretation as Fig. [0
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Figure 13: On the Cars dataset. TOP: The pair of the closest classes according to their learned proxies (cosine
similarity = 0.77). (a) t-SNE visualization of their variational proxies (shown as RED and PURPLE). (b) Samples
from the RED class “Audi A5 Coupe 2012” and (c¢) PURPLE “Audi S5 Coupe 2012”. Visually, the images from
the two classes look very similar. Bottom: The pair of the farthest classes according to their learned proxies
(cosine similarity = 0.24). (d) t-SNE visualization of their variational proxies (shown as RED and PURPLE). (e)
Samples from the RED class “BMW X5 SUV 2007” and (f) PURPLE “Buick Regal GS 2012”. The images from
the two classes exhibit substantially different appearance (SUVs for RED and Sedans for PURPLE).
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Figure 14: On the Cars dataset. Visualization of the most certain proxy and the most uncertain proxy. (a)
t-SNE visualization of the two variational proxies: the most certain proxy (PURPLE; the smallest @ = 0.51) and
the most uncertain proxy (RED; the largest @ = 0.76). (b) Samples from the PURPLE class “Audi S5 Coupe
2012” and (c) RED “Cadillac SRX SUV 2012”. Visually, the images from the PURPLE class (certain) have less
diversity, while those from the RED class (uncertain) exhibit substantial appearance variation.

Proxy-Anchor

Figure 15: Qualitative results on the CUB dataset comparing our proposed method with Proxy-Anchor and
Proxy-NCA methods. For each query image (leftmost), top-3 retrievals are presented. The result with red
boundary is a failure case.
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Figure 16: Qualitative results on the Cars dataset comparing our proposed method with Proxy-Anchor and
Proxy-NCA methods. For each query image (leftmost), top-3 retrievals are presented. The result with red
boundary is a failure case.

VCPA (Ours) Proxy-Anchor Proxy-NCA

Figure 17: Qualitative results on the SOP dataset comparing our proposed method with Proxy-Anchor and
Proxy-NCA methods. For each query image (leftmost), top-3 retrievals are presented. The result with red
boundary is a failure case.
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Figure 18: Qualitative results on the In-Shop dataset comparing our proposed method with Proxy-Anchor and
Proxy-NCA methods. For each query image (leftmost), top-3 retrievals are presented. The result with red
boundary is a failure case.

Size |224 x 224[256 X 256324 x 324|448 x 448
PA 68.4 71.1 74.0 7.3
VCPA| 69.9 71.5 74.9 7.7

Table 3: Large image resolution experiments (RQ1, CUB).

margin a = 32, 6 = 0.1, and AdamW optimizer with batch size 180, 60 epochs, weight-decay = le — 4,
Ir-decay-step = 10, Ir-decay-gamma = 0.5, and newton updates per batch nupb = 10.

e For the Cars dataset: embedding-dim = 512, 7 = 0.01, 0, for proxies = le — 5, Ir = 0.0001, PA loss
margin a = 32, § = 0.1, and AdamW optimizer with batch size 180, 100 epochs, weight-decay = le — 4,
Ir-decay-step = 20, Ir-decay-gamma = 0.5, and newton updates per batch nupb = 10.

e For the SOP dataset: embedding-dim = 512, 7 = 0.001, Ir = 0.0006, PA loss margin o = 32, § = 0.1, and
AdamW optimizer with batch size 180, 100 epochs, weight-decay = le —4, Ir-decay-step = 20, Ir-decay-gamma
= 0.5, and no newton update.

e For the In-Shop dataset: embedding-dim = 512, 7 = 0.001, I = 0.0006, PA loss margin o = 32, § = 0.1, and
AdamW optimizer with batch size 180, 60 epochs, weight-decay = le — 4, Ir-decay-step = 20, Ir-decay-gamma
= 0.25, and no newton update.

Note that we had best results with 7 < 1 (e.g., 7 = 0.01 (CUB) and 7 = 0.001 (Cars)), which is in line with
GVCL (Loo et al, [2020), related to the structural granularity of learned distributions.

D.2 Large Image Resolutions

We also test VCPA on large image resolutions. For the CUB dataset, we increase the image sizes from (224 x 224)
to (256 x 256), (324 x 324), and (448 x 448). The results are summarized in Table 3. For all image resolutions,
our VCPA outperforms PA consistently.
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Table 4: PA and VCPA on CUB and Cars datasets. Averaged over 5 random runs.
CUB R@1 2 1 8 Cars R@1 2 1 8
PA 68.04F0-08 | 78 33F0-16 185 g9F0-16 1791 31F0-09 | ['PA 86.29F0-1 1 91.71F0-18 | 95 06F0- 11 | 97.23F0-10
VCPA | 69.41F%TT | 79.40F010 | 87.01F098 | 92.15F0-01 | [ VCPA | 86.58F°09 | 91.98F0-98 | 95 28F0-07 | 97.31F0-0°

D.3 Standard Errors in Main Results

Table 4 shows the standard errors in R@1 for the CUB and Cars datasets, which were missing in Table [1| due to
the space limit. For SOP and InShop, it is rather difficult to perform multiple runs due to large training time.
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