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Abstract

HSIC Lasso is one of the most effective sparse
nonlinear feature selection methods based on
the Hilbert-Schmidt independence criterion.
We propose an adaptive nonlinear feature se-
lection method, which is based on the HSIC
Lasso, that uses a stochastic model with a
family of super-Gaussian prior distributions
for sparsity enhancement. The method in-
cludes easily implementable closed-form up-
date equations that are derived approxi-
mately from variational inference and can
handle high-dimensional and large datasets.
We applied the method to several synthetic
datasets and real-world datasets and verified
its effectiveness regarding redundancy, com-
putational complexity, and classification and
prediction accuracy using the selected fea-
tures. The results indicate that the method
can more effectively remove irrelevant fea-
tures, leaving only relevant features. In cer-
tain problem settings, the method assigned
non-zero importance only to the actually rel-
evant features. This is an important charac-
teristic for practical use.

1 INTRODUCTION

The effective selection of important features inher-
ent in high-dimensional and large datasets is a long-
standing challenge in machine learning and statistics.
Generally, feature extraction creates new features from
functions of the original features, whereas feature se-
lection returns a subset of the features. Thus, many
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real-world applications, such as for microarray data
and text mining, have also been proposed (Forman,
2008; Abusamra, 2013), since feature selection main-
tains the physical meanings of the original features and
gives models better interpretability by keeping some of
the original features.

The simplest feature selection method is to incorporate
L1 regularization into the model, such as the Least Ab-
solute Shrinkage and Selection Operator (Lasso) (Tib-
shirani, 1996). Lasso-based feature selection methods
are useful because they are computationally inexpen-
sive, and feature selection is carried out simultaneously
with the training of the model. Hence, Lasso has been
widely applied, and its theoretical properties have been
extensively studied (Zou, 2006; Hastie et al., 2015).
On the other hand, Lasso is basically a feature selec-
tion method limited to linear models, and there is no
guarantee that it can capture nonlinear relationships.

A widely used approach for accurately capturing non-
linear relationships is the maximum relevance (MR)
feature selection, which introduces a statistical score
that evaluates the nonlinear relationship between each
feature and the target variable and selects the top
features with the greatest relevance to the output
(Peng et al., 2005). Generally, the mutual informa-
tion (Cover and Thomas, 2006), distance correlation
(Székely and Rizzo, 2009), and the Hilbert-Schmidt
independence criterion (HSIC) (Gretton et al., 2005)
are often used as scores. Although MR feature selec-
tion methods are efficient and can be applied to high-
dimensional and large sample problems without dif-
ficulty, they are apt to select redundant features be-
cause they only use input-output relevance and not
input-input relevance. To overcome this, the minimum
redundant maximum relevance (mRMR) feature selec-
tion can select a subset of non-redundant features that
are highly relevant to the output (Peng et al., 2005).
Although mRMR has been experimentally shown to
be superior to MR feature selection methods, three
disadvantages have been pointed out mainly: the op-
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timization problem is discrete, this problem must be
solved using a greedy approach, and the mutual infor-
mation estimation is difficult (Walters-Williams and
Li, 2009; Climente-González et al., 2019).

In contrast, Yamada et al. (2014) proposed a kernel-
based mRMRmethod, called HSIC Lasso. HSIC Lasso
adopts HSIC instead of the mutual information as
the score to measure the dependence between vari-
ables and can select a subset of features using an L1

penalty term. HSIC Lasso is a convex optimization
problem, which can find the globally optimal solution
and has been empirically reported to be superior to
most feature selection methods. The Sparse HSIC
(SpHSIC) regression framework that included HSIC
Lasso can be regarded as a continuous optimization
variant of mRMR, and more recently, its asymptotic
theory has been established (Poignard and Yamada,
2020). Furthermore, some application methods based
on HSIC Lasso have also been proposed, such as unsu-
pervised nonlinear feature selection methods (Huang
et la., 2020) and local interpretable model explana-
tion methods for Graph Neural Networks (Huang et
la., 2020). Of course, focusing on HSIC as an in-
dependence criterion, for example, HSIC-based post-
selection inference (PSI) algorithm that can find a set
of statistically significant features from non-linearly re-
lated data (Yamada et al., 2018) and PSI framework
for divergence measure, which can introduces a general
hypothesis test for PSI and select a set of statistically
significant features that discriminate two distributions
(Yamada et al., 2018), have been proposed.

HSIC Lasso is very attractive, and to the best of our
knowledge, is currently one of the most effective fea-
ture selection methods. However, although the empiri-
cally obtained solutions are sparse, the number of non-
zero solutions is rather large compared with the true
optimal number of features, and this tends to lead to
the adoption of a strategy of selecting from the top in
order with a predefined number of selections, as with
many other nonlinear feature selection methods. In
certain problem settings, the boundary between rele-
vant and irrelevant features is ambiguous. Overcoming
this problem is the main motivation for this study.

In this paper, we propose an extension of HSIC Lasso
for selecting important nonlinear features more clearly
by setting weights for the coefficients that evaluate the
association between each feature and the target vari-
able and adaptively adjusting these weights from the
data on the basis of a stochastic model. Introduc-
ing a prior distribution that induces sparsity gener-
ally breaks the conjugate property with the likelihood.
Moreover, when the non-negative constraints on the
coefficients specific to HSIC Lasso are also incorpo-
rated into the model in the form of a truncated prior

distribution, inference becomes even more expensive.
Our main contribution is that the proposed method
does not use a truncated prior but directly add non-
negative constraints to the closed-form update rules
derived from variational inference, which allows us to
select nonlinear features more clearly and effectively.
In addition, the proposed method is simple to im-
plement, which is highly preferable for practitioners.
Furthermore, various innovations proposed as deriva-
tives of HSIC Lasso (Yamada et al., 2018; Climente-
González et al., 2019) can be integrated into the
proposed method, and scalability to high-dimensional
and large datasets is higher than HSIC Lasso, exper-
imentally. Experiments on synthetic and real-world
datasets showed that the proposed method is promis-
ing, and in certain problem settings, it assigned non-
zero importance only on the correct set of the rele-
vant features in model selection by maximizing the
marginal likelihood.

2 BACKGROUND

In this section, we briefly review the current feature
selection methods related to the proposed method.

2.1 Problem Description

Let X ⊂ RP be the domain of input vector x and
Y ⊂ R be the domain of output sample y. Suppose we
are given N independent and identically distributed
(i.i.d.) paired samples D = {(x(n), y(n)) ∈ X × Y|n =
1, . . . , N} drawn from a joint distribution. Then, with
the p-th feature as xp ∈ RN , we denote the original
input data as X = [x1, . . . ,xP ] ∈ RN×P . The pur-
pose of supervised feature selection is to find as few
M features (M < P ) as possible in the input data X
that are involved in predicting the output vector y.

2.2 mRMR

Let Sc(·, ·) ≥ 0 be an association score between two
variables. Using this, the objective function of the
ordinary mRMR feature selection method can be re-
formulated as

arg max
I

1

|I|
∑
i∈I

Sc(xi,y)−
1

|I|2
∑
i,j∈I

Sc(xi,xj)

= arg max
β∈{0,1}P

P∑
p=1

βp
∥β∥1

Sc(xp,y)−
P∑

p,p′=1

βpβp′

∥β∥21
Sc(xp,xp′)

(1)

where I is the set of selected feature indices, and β is
the binary vector based on I (Peng et al., 2005). Note
that when Sc(·, ·) takes large negative values if the se-
lected features are not mutually independent, the first
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term in (1) selects features that are non-independent
of the output vector y, and the second term is the pe-
nalized term that selects independent features. Thus,
by selecting features by maximizing (1), we can select
features that are dependent on the output, and the
selected features are mutually independent. For the
association score Sc, HSIC can be used as well as the
mutual information commonly seen.

HSIC is a kernel-based independence measure (Gret-
ton et al., 2005). For N -dimensional sample vector
z ∈ RN , we denote the kernel matrix as [Kz]ij =
k(z(i), z(j)), with k(z, z′) as the kernel function. Fur-
thermore, let K̄z = ΓNKzΓN be the centered kernel
matrix, where ΓN = IN − 1

N 1N1⊤
N is the centering

matrix, IN is the N dimensional identity matrix, and
1N is the N dimensional vector with all ones. Using
such a centered Gram matrix, the HSIC estimator be-
tween two sample vectors zp, zp′ ∈ RN , can be simply
expressed as HSIC(zp, zp′) = Tr(K̄zp

K̄zp′ ).

The normalized cross-covariance operator (NOCCO)
is also important as a kernel-based dependence mea-
sure related to HSIC (Fukumizu et al., 2008). Using
K̃z = K̄z(K̄z + ϵNIN )−1 instead of K̄z, NOCCO is
formulated as NOCCO(zp, zp′) = Tr(K̃zpK̃zp′ ), simi-
lar to HSIC, where ϵ > 0 is the regularization parame-
ter. Because NOCCO was shown to be asymptotically
independent of the choice of kernels, it is expected to
be less sensitive to the kernel parameter choice than
HSIC (Yamada et al., 2014).

2.3 HSIC Lasso

Note that β is a sparse binary vector; thus, we can
obtain the following optimization problem from (1) re-
laxed by ω ∈ RP

+, using HSIC as the association score,

arg max
ω∈RP

+

P∑
p=1

ωpHSIC(xp,y)

−
P∑

p,p′=1

ωpωp′HSIC(xp,xp′)− λ∥ω∥1 (2)

where λ ≥ 0 is the regularization parameter. The
non-negative constraint is then added to ω because
the original β is non-negative. Yamada et al. (2014)
focused on the fact that (2) is a convex optimization
problem and proposed the following HSIC Lasso as an
equivalent optimization problem that can handle high-
dimensional problems,

min
ω∈RP

+

1

2

∥∥∥∥∥K̄y −
P∑

p=1

ωpK̄xp

∥∥∥∥∥
2

F

+ λ∥ω∥1. (3)

For the specific optimization of (3), the dual aug-
mented Lagrangian (DAL) algorithm (Tomioka et al.,

2011) can be computationally highly efficient and in-
corporate the non-negative constraint without losing
its computational advantages. Moreover, an efficient
Least Angle Regression (LARS) (Efron et al., 2004)
based method has been proposed that can scale up
HSIC Lasso to handle high-dimensional and large-scale
datasets (Yamada et al., 2018). Additionally, Block
HSIC Lasso, which greatly reduces the memory com-
plexity of the kernel matrices, by splitting the data in
blocks, and using the block HSIC estimator (Zhang et
al., 2018) to estimate the HSIC terms has also been
proposed (Climente-González et al., 2019). Recently,
the SpHSIC regression framework, which includes the
HSIC Lasso, has been proposed. In the framework,
theoretical considerations such as the oracle property
have been made. (Poignard and Yamada, 2020).

Note that the NOCCO introduced in subsection 2.2
can be formulated as NOCCO Lasso by using K̃ in-
stead of K̄ in (3) (Yamada et al., 2014). The exten-
sions to HSIC Lasso introduced in this subsection can
be applied to NOCCO Lasso.

3 PROPOSED METHOD

In this section, we formally describe our stochastic
model and a suitable approximate inference scheme.

3.1 Key Ideas

For the first key idea, we weight the parameter ω in
(3) with η ∈ RP

+, aiming for a more distinct nonlin-
ear feature selection than with HSIC Lasso. In this
process, we introduce a stochastic model based on
the HSIC Lasso optimization problem and adaptively
infer the optimal weights η from paired samples D.
The second key idea is to derive approximate closed-
form update equations from variational inference and
add HSIC-Lasso-specific non-negative constraints di-
rectly to these update equations. The family of super-
Gaussian distributions is assumed as a prior distribu-
tion to induce sparsity in the proposed method. Deal-
ing with such a distribution as a truncated prior de-
fined only in R+, sampling methods with high compu-
tational complexity or approximate inference is needed
to to learn parameters. We confirmed that the pro-
posed method avoids these problems and achieves very
high feature selection performance with shorter execu-
tion time than HSIC Lasso.

3.2 Problem Formulation

Let κ̄ ∈ RN2

be a vector of kernel matrix K̄ appropri-
ately flattened and κ̄X = [κ̄x1 , . . . , κ̄xP

] ∈ RN2×P be
a matrix of all flat vectors for features. Then, the loss
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term of HSIC Lasso in (3) can be rewritten as follows:∥∥∥∥∥K̄y −
P∑

p=1

ωpK̄xp

∥∥∥∥∥
2

F

= ∥κ̄y − κ̄Xω∥22 . (4)

On the basis of (4), we assume the classical Gaussian
linear model with i.i.d. noise with variance σ2, that is,

κ̄y | ω ∼ N (κ̄Xω, σ2I). (5)

We also assume that {ωp}Pp=1 are jointly independent,
and each ωp has a symmetric density with inverse scale
parameter ηp as follows:

p(ω|η) =
P∏

p=1

p(ωp|ηp) =
P∏

p=1

q(|ωp|η
1
2
p )η

1
2
p , (6)

where q is a distribution inducing sparsity. This is a
common assumption used in Bayesian Lasso (Park and
Casella, 2008), and in addition, correlations tend to be
eliminated by the mRMR framework. Given samples
D, our aim is to infer the parameters, including η, by
maximizing the marginal likelihood p(κ̄y|η).

3.3 Super-Gaussian Priors

In this paper, we use scale mixtures of Gaussians prior
as the family of distributions that induce sparsity. Let
q be a Gaussian scale mixture for a mixing density
r(t), that is, q(u) =

∫∞
0
N (u|0, t)r(t)dt. This formula-

tion includes the Laplace distribution and Student ’s
t, which are often used in Bayesian Lasso due to their
suitability for modeling sparsity (Park and Casella,
2008; Shervashidze and Bach, 2015; Van Erp et al.,
2019). For learning such models, we introduce an ap-
proximate Gaussian posterior and derive variational
optimization with closed-form update equations.

Focusing on the fact that q is also super-Gaussian,
log q(u) is convex and non-increasing in u2. Thus, ac-
cording to previous study (Palmer et al., 2006), we can
obtain representation of the following form by convex
conjugacy,

log q(u) = sup
s∈R+

{
−u

2

2s
− ϕ(s)

}
, (7)

where ϕ(s) is convex in 1/s and the expression inside
the supremum in (7) has a unique maximizer. Conse-
quently, we obtain the following variational represen-
tation for p(ωp|ηp) by combining (6) and (7),

p(ωp|ηp) = η
1
2
p sup

sp∈R+

{
N
(
ωp

∣∣∣∣0, spηp
)(

2πsp
ηp

) 1
2

exp(−ϕ(sp))

}
.

(8)

3.4 Variational Inference

This stochastic model described above, including the
combination of the likelihood (5) and the variational
representation of the prior (8), leads to the following
variational bound on the marginal distribution,

log p(κ̄y|η) = log

∫
RP

N
(
κ̄y

∣∣κ̄Xω, σ2I
) P∏
p=1

p(ωp|ηp)dωp

≥ sup
s∈RP

+

[
logN

(
κ̄y

∣∣∣0, κ̄XΞ−1κ̄⊤
X + σ2I

)

+
P∑

p=1

{
1

2
log ηp +

1

2
log(2π) +

1

2
log

(
sp
ηp

)
− ϕ(sp)

}]

= − inf
µ∈RP

inf
Σ⪰0

inf
s∈RP

+

[
1

2σ2
∥κ̄y − κ̄Xµ∥22 +

1

2
µ⊤Ξµ

+
1

2σ2
Tr

(
κ̄⊤

X κ̄XΣ
)
+

1

2
Tr (ΞΣ)− 1

2
log detΣ

+
P∑

p=1

{
ϕ(sp)−

1

2
log ηp

}
+

N2

2
log(2πσ2)− P

2
log(2πe)

]
=: − inf

µ∈RP
inf
Σ⪰0

inf
s∈RP

+

f(µ,Σ, s), (9)

where Ξ ∈ RP×P is a diagonal matrix such that
[Ξ]pp = ηp/sp. Note that µ ∈ RP and Σ ∈ RP×P

respectively correspond to the mean vector and co-
variance matrix of the posterior N (ω|µ,Σ), when
N (κ̄y|κ̄Xω, σ2I) is a likelihood and N (ω|0,Ξ−1) is a
prior. Since we assume that the final optimal solution
for ω is obtained by maximum a posteriori estimation,
the proposed method treats the optimal solution for µ
as the optimal solution for ω.

The reason for not using a truncated prior is that the
first integral in (9) to derive the marginal likelihood
becomes RP → RP

+. As described in subsection 3.1,
because introducing a prior distribution that induces
sparsity generally breaks the conjugate property with
the likelihood, it is very difficult to solve this integral
analytically. The non-negative constraint of the pro-
posed method is an idea to avoid computational cost.

3.5 Non-negative Constraint

With the proposed method, instead of using a trun-
cated prior distribution, we directly add a non-
negative constraint with the following penalty term
for µ in (9),

ψ(µ) :=

P∑
p=1

ψ′(µp) :=

P∑
p=1

{
∞ (µp < 0)
λµp (µp ≥ 0)

, (10)

where λ > 0 is the regularization parameter. Thus,
since ψ(µ) ≥ 0 for any µ ∈ RP , inf (f(µ) + ψ(µ)) ≥
inf f(µ) is satisfied by the infimum properties. There-
fore, the marginal distribution (9) can be set to the
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following novel variational lower bound with non-
negative constraints.

log p(κ̄y|η) ≥ − inf
µ∈RP

inf
Σ⪰0

inf
s∈RP

+

{f(µ,Σ, s) + ψ(µ)}

= − inf
µ∈RP

+

inf
Σ⪰0

inf
s∈RP

+

{f(µ,Σ, s) + λ∥µ∥1}

(11)

3.6 Update Equations

Consequently, as an approximation to maximizing the
log-likelihood, we consider optimizing the right side of
(11). However, in the form given by (11), the varia-
tional lower bound is difficult to optimize. To over-
come this problem, we regard parts of it as minima of
convex functions, design an iterative algorithm with
analytic updates, and find a local minimum. As a re-
sult, the optimization problem to be solved with the
proposed method, which also includes η and σ2, is
equivalent to iterating the following closed-form up-
date equations until convergence.

µ← arg inf
µ∈RP

+

{
1

2σ2
∥κ̄y − κ̄Xµ∥22 +

1

2
µ⊤Ξµ+ λ∥µ∥1

}
(12)

Σ← σ2
(
κ̄⊤
X κ̄X + σ2Ξ

)−1
(13)

s← arg inf
s∈RP

+

{
1

2
µ⊤Ξµ+

1

2
Tr (ΞΣ) +

P∑
p=1

ϕ(sp)

}
(14)

η ← s⊘ (µ⊙ µ+ diagΣ) (15)

σ2 ← 1

N2

(
∥κ̄y − κ̄Xµ∥22 +Tr

(
κ̄⊤
X κ̄XΣ

))
(16)

where ⊙ and ⊘ are the Hadamard product and
Hadamard division, respectively, and diagΣ is a vec-
tor formed from the diagonal ofΣ. Assuming the noise
level known, we can also choose not to include (16) in
the iteration. We finally regard the convergence value
of µ as the optimal ω.

Even with these update equations, the proposed
method also holds the advantages of HSIC Lasso. In
particular, recent extension techniques are equally ap-
plicable to the proposed method. For example, the ef-
ficient search method by LARS (Yamada et al., 2018)
can be applied to (12) as well, and the block HSIC
estimator (Climente-González et al., 2019) can be ap-
plied to K̄y and K̄xp

of the proposed method as well
because of the approximation of the kernel matrices.

3.7 Prior: Generalized Gaussian

The family of super-Gaussian distributions includes
Generalized Gaussian. The density of this distribu-

tion is given by

p(ωp|ηp, α, β) =
η

1
2
p β

2αΓ
(

1
β

) exp

−( |ωp|η
1
2
p

α

)β

(17)

where α ∈ R+ and β ∈ R+ are the scale and shape
parameters respectively, can be also rewritten in this
variational representation for 0 < β ≤ 2. For this
distribution,

ϕ(sp) =

 1

αβ

(
2αβ

β

) β
β−2

−
(
2αβ

β

) 2
β−2

 (2sp)
− β

β−2

− log β + log 2αΓ

(
1

β

)
. (18)

In particular, the Laplace distribution, which is often
used in Bayesian Lasso (Park and Casella, 2008), cor-
responds to β = 1, and ϕ(sp) can be simply rewritten
as

ϕ(sp) =
sp
2α2

+ log 2α. (19)

Therefore, the update equation (14) for s is rewritten
as

s← α
√
η ⊙ (µ⊙ µ+ diagΣ). (20)

3.8 Prior: Student’s t

Recently, Student’s t can be used as well as the Laplace
distribution (Van Erp et al., 2019). The density of this
distribution is given by

p(ωp|ηp, ν) =
( ηp
2π

) 1
2 Γ

(
ν + 1

2

)
Γ (ν)

(
1 +

ηpω
2
p

2

)−ν− 1
2

(21)

where ν is a shape parameter. The smaller the ν, the
heavier-tailed the distribution (note that there is no
finite variance for ν ≤ 1). For this distribution,

ϕ(sp) =
1

sp
+

(
ν +

1

2

)
log (sp) + const. (22)

Therefore, the update equation (14) for s is rewritten
as

s← 1

ν + 1
2

{
1 +

η

2
⊙ (µ⊙ µ+ diagΣ)

}
. (23)

3.9 Computational Complexity

We first need O(N2P ) to construct the kernel matri-
ces from the data D. After this calculation, the up-
date equations (12) and (13) have the highest compu-
tational complexity. Equation (12), which is an op-
timization problem similar to Elastic-Net (Zou and
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Hastie, 2005) since Ξ is a diagonal matrix, can be eas-
ily solved using well-known algorithms such as DAL
and LARS with similar uses as HSIC Lasso (Yamada
et al., 2014; Yamada et al., 2018). Then, as well as
HSIC Lasso, we can dramatically reduce the compu-
tational complexity of the kernel matrices and (12)
with previously proposed methods (Yamada et al.,
2018; Climente-González et al., 2019). For (13), while
we need O(P 3) to compute the inverse matrix, since
κ̄⊤
X κ̄X + σ2Ξ is always a positive definite matrix, we

can compute relatively fast with the Cholesky decom-
position. Empirically, compared with HSIC Lasso,
the proposed method is able to calculate significantly
faster in both N ≪ P and N ≫ P . This experiment
is shown in Experiments 4.2 (see Figures 1 (f)).

4 EXPERIMENTS

In this section, we discuss experimentally investigat-
ing the performance of the proposed and other fea-
ture selection methods using synthetic and real-world
datasets.

4.1 Set-up

On the basis of the results of several previous studies
(Gretton et al., 2005; Song et al., 2012), we adopt
the following universal kernel function for all of our
experiments. For input kernels, we first normalize the
input features to have unit standard deviation then
use the Gaussian kernel:

k(z, z′) = exp

(
− (z − z′)2

2σ2
z

)
(24)

where σ2
z is the kernel width, and we fix σz = 1. For

output kernels in regression cases (i.e., y ∈ RN ), we
similarly normalize y to have unit standard deviation
then use the same Gaussian kernel. By contrast, for
output kernels in classification cases (i.e., y is categor-
ical), we use the delta kernel:

k(z, z′) =

{
1/nz if z = z′

0 otherwise
(25)

where nz is the number of observations in class z.

As one of the metrics, we use the redundancy rate
(RED) (Zhao et al., 2010) to check whether a method
can successfully select non-redundant features:

RED(XI) =
1

|I|(|I| − 1)

∑
i,j∈I, i ̸=j

|ρi,j | (26)

where I is the index set of the selected features, and
ρi,j is the Pearson correlation coefficient between the
i-th and j-th features. A large RED indicates that se-
lected features are more strongly correlated with each

other, that is, many redundant features are selected.
Therefore, a small redundancy rate is preferable for
the feature selection methods.

We compared the proposed method applying the HSIC
or NOCCO kernel matrices with HSIC Lasso and
NOCCO Lasso (Yamada et al., 2014; Yamada et al.,
2018; Climente-González et al., 2019). The implemen-
tation is based on the following Github1. For all exper-
iments, we use Student’s t as a prior distribution and
set ν = 1.5 for the proposed method and ϵ = 10−3 in
the NOCCO kernel matrices, and then, we randomly
initialize the other parameters based on random seeds.
We also used an Ubuntu 18.04 server with 96-core Intel
Xeon Platinum 2.7 GHz and 1.5 TB RAM memory.

4.2 Synthetic Datasets

First, we considered a regression problem from a high-
dimensional input to verify the performance of the
proposed method using the following two synthetic
datasets. For comparison, we used the data gener-
ated from the same method as that used in a previous
study (Yamada et al., 2014).

Data1: Additive model

y = −2 sin(2x1) + x22 + x3 + exp(−x4) + ϵ (27)

where [x1, . . . , x256]
⊤ ∼ N (0256, I256) and ϵ ∼ N (0, 1).

Data2: Non-additive model

y = x1 exp(2x2) + x33 + ϵ (28)

where [x1, . . . , x1000]
⊤ ∼ N (01000, I1000) and ϵ ∼

N (0, 1).

As shown in Figures 1 (a) and (d), we set N = 1000
and λ so that the number of non-zero coefficients would
be M∗ for each method over 30 runs, where M∗ is the
number of true features (i.e. M∗ = 4 for Data1 and
M∗ = 3 for Data2). To detect important features eas-
ily, using a threshold for example, it is desirable that
non-zero coefficients of important features are suffi-
ciently larger than those of non-important features. In
order to make a fair comparison from this perspective,
we treatM∗ as a known constant in these experiments.
Clearly, the proposed method had more distinct re-
gression coefficients than HSIC Lasso for both HSIC
and NOCCO. This is because the proposed method
adaptively adjusts the weights of the regression co-
efficients on the basis of the stochastic model from
the data, which robustly keeps the important features

1https://github.com/riken-aip/pyHSICLasso
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(f) Data2: Computation time

(d) Data2: Mean regression coefficient

(e) Data2: Mean predictive metrics

+15.85%

+19.15%

+1.44%

+1.36%

-0.78%

-1.66%

-0.14%

-0.30%

(c) Data1 & Data2: Mean confusion matrix

(a) Data1: Mean regression coefficient

(b) Data1: Mean predictive metrics

+23.38%

+104.71%

+1.41%

+3.63%

-1.36% -6.42%

-0.25%

-1.19%

Figure 1: Results for two synthetic datasets. (a),(d): Mean regression coefficients of the top M∗ for N = 1000
over 30 runs. Horizontal axis denotes top M∗ features for HSIC (NOCCO in brackets), and vertical axis denotes
coefficient value. Regularization parameter λ is set so that number of non-zero coefficients isM∗ in each method.
(b),(e): Mean predictive metrics for the test data over 30 runs. These metrics are based on the loss function
(4). R2, CORR, RMSE and BIC mean coefficient of determination, correlation coefficient, root mean square
error, and bayesian information criterion, respectively. Moreover, The green arrows and numbers mean the
improvement rate of the proposed method over HSIC (NOCCO) Lasso. Note that R2 and CORR indicate the
rate of increase and RMSE and BIC indicate the rate of decrease. (c): Average of confusion matrices with
proposed method over 30 runs. We assign binary labels with (P) relevant and (N) irrelevant features, and in
prediction we consider non-zero coefficients to be relevant. Regularization parameter λ is set so that lower bound
of marginal likelihood (9) is maximized. (f): Comparison of computation time for Data2. Horizontal axis denotes
number of training samples or features, and vertical axis denotes computation time in log-scale.
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Table 1: Mean classification scores and RED values for
Gas Sensor dataset. AC, BAC, and F1 mean classifi-
cation accuracy, balanced classification accuracy, and
F1 score, respectively.

AC BAC F1 RED

Proposed (HSIC) 0.978 0.975 0.978 0.253
Proposed (NOCCO) 0.977 0.974 0.977 0.275
HSIC Lasso 0.972 0.967 0.972 0.242
NOCCO Lasso 0.972 0.967 0.972 0.235
FsNet (H = 20) 0.846 0.849 0.846 0.093
FsNet (H = 40) 0.843 0.847 0.843 0.091
FsNet (H = 60) 0.842 0.847 0.842 0.092
FsNet (H = 80) 0.834 0.838 0.834 0.089

against the increase in λ. Additionally, in this case, the
proposed method also improves the regression metrics
for the test data, as shown in Figures 1 (b) and (e).

Moreover, Figure 1 (c) shows the mean confusion ma-
trix from the proposed method when λ is tuned by
maximizing the marginal likelihood (9) over 30 runs.
We classified each feature with binary labels of relevant
features (P) and irrelevant features (N), and consid-
ered non-zero regression coefficients in the predictive
labels as relevant features. In particular, the accuracy
was perfect for 15 out of 30 runs. This suggests that
the proposed method can effectively perform model
selection with the marginal likelihood.

Finally, as shown in Figure 1 (f), we evaluated the
computation time of the proposed method with respect
to the number of samples and number of features used
with Data2. For fairness, we randomly determined λ
in each run. As a result, compared with HSIC Lasso,
the computation time of the proposed method is signif-
icantly faster in both N ≪ P and N ≫ P . Note that
the results of HSIC Lasso are consistent with previ-
ous results (Yamada et al., 2014). While these results
may depend on the convergence rate and computing
environments, we consider that the proposed method
is significantly faster than HSIC Lasso.

We consider the main reason for the advantages of the
proposed method over HSIC Lasso is that the proposed
method adopts a stochastic model and the parameter
ωp is multiplied by the weight ηp which can be adjusted
by maximizing the marginal likelihood. The main ad-
vantages are: the power to detect important features
is improved due to the larger difference between the
non-zero and zero coefficients (Figures 1 (a) and (d));
the optimization based on the marginal likelihood can
narrow down important features with high accuracy
(Figure 1 (c)); the convergence and runtime is faster,
probably due to the weights (Figure 1 (f)).

Table 2: Mean classification scores and RED values for
USPS dataset. Note that abbreviations are the same
as in Table 1.

AC BAC F1 RED

Proposed (HSIC) 0.960 0.955 0.960 0.105
Proposed (NOCCO) 0.955 0.950 0.955 0.117
HSIC Lasso 0.957 0.953 0.957 0.119
NOCCO Lasso 0.948 0.942 0.948 0.135
FsNet (H = 20) 0.954 0.949 0.954 0.104
FsNet (H = 40) 0.955 0.950 0.955 0.104
FsNet (H = 60) 0.956 0.950 0.956 0.103
FsNet (H = 80) 0.955 0.950 0.955 0.104

4.3 Real-World Datasets

Next, we compared the performance of the same meth-
ods by using a multi-class classification task using real-
world datasets. First of all, we would like to strongly
argue that it is generally difficult to evaluate the per-
formance in feature selection using real data, because
important features are unknown. Therefore, a com-
mon practice is to input the selected features only into
a machine learning algorithm that is irrelevant to fea-
ture selection, and to evaluate the performance of fea-
ture selection indirectly by its score.

In this paper, we used two real-world datasets, Gas
Sensor2 and USPS3. Gas Sensor contains chemical
sensor data with 13910 instances, 128 features, and
6 classes, and USPS contains image data with 9298
instances, 256 features, and 10 classes.

For comparison in this experiment, we used DNN-
based nonlinear feature selection method, called the
feature selection network (FsNet), which comprises a
selection layer that selects features and a reconstruc-
tion layer that stabilizes the training (Singh et al.,
2020). The implementation is available at the follow-
ing Github4. Here, we changed only the parameter
“h size” (= H), which specifies the number of nodes
in the hidden layer in the code, and used the other
parameters unchanged from the original.

In this experiment, we used 80% of the samples for
training and the rest for testing. We repeated the ex-
periment 30 times by randomly shuffling training and
test samples, and λ was set so that the number of non-
zero coefficients would be 50 (i.e. M = 50). We then
used multi-class L2-regularized kernel logistic regres-
sion (KLR) (Hastie et al., 2009) with the Gaussian ker-
nel for evaluating classification scores of the selected
features. In KLR, all tuning parameters are chosen
based on 5-fold cross-validation.

2https://archive.ics.uci.edu/ml/datasets/
3https://jundongl.github.io/scikit-feature/
4https://github.com/singh-ml/fsnet
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Table 1 and Table 2 show the mean classification scores
and RED values for Gas Sensor dataset and USPS, re-
spectively. For both datasets, the proposed method
with HSIC achieved higher classification scores such
as classification accuracy, balanced classification accu-
racy, and F1 score, and indicated highly effective in
terms of classification performance. However, except
for the results of FsNet, RED value of the proposed
method was not significantly different from HSIC
(NOCCO) Lasso. FsNet is reported to have performed
better than HSIC Lasso for some datasets, but we were
not able to confirm this in terms of classification accu-
racy for these data. Interestingly, RED value of FsNet
is outstandingly low, which may suggest that reduc-
ing redundancy does not necessarily contribute to im-
proving classification accuracy. Especially for USPS,
the proposed method with HSIC achieved higher clas-
sification scores than HSIC (NOCCO) Lasso and the
same level of low RED value as FsNet, simultaneously.

5 CONCLUSION

In this paper, we proposed an effective method for the
HSIC Lasso framework, which use a stochastic model
and variational inference. The regularization parame-
ter tuned by the stochastic model-based marginal like-
lihood maximization of the proposed method can re-
fine the relevant features with high accuracy in cer-
tain problem settings. We also emphasize that the co-
efficients of relevant features are relatively high with
the proposed method, and the difference between rele-
vant and irrelevant features is not ambiguous. This is
because the proposed method adaptively adjusts the
weights of the regression coefficients on the basis of the
stochastic model from the data, which robustly keeps
the important features against the increase in the reg-
ularization parameter.

For the future work, we will consider extending the
proposed method to a hierarchical Bayesian model to
carry out learning similar to Hierarchical Multiple Ker-
nel Learning. Since such an extension can adopt multi-
task learning with different kernel functions, we expect
to implement nonlinear feature selection that is more
adaptive and with higher performance.
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Supplementary Material:
Effective Nonlinear Feature Selection Method

based on HSIC Lasso and with Variational Inference

A DERIVATION FOR VARIATIONAL BOUND

This section supplements Sections 3.3 and 3.4.

Equation (8): variational representation for p(ωp|ηp).
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Equation (9): variational bound for log p(κ̄y|η).
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where Ξ ∈ RP×P is a diagonal matrix such that [Ξ]pp = ηp/sp, and the inequality is based on the interchange of
integral and supremum.
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The first term on the right side is the solution to the following optimization problem.
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The second and third terms on the right side are the solution to the following optimization problem. We use the
properties of the Schur complementary.
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Using these equations, (9) is derived.

B DERIVATION FOR UPDATE EQUATIONS

This section supplements Section 3.6.

Update equations (12), (13), (14), (15), and (16).

Adding the optimization problem for η and σ2 from (11), the variational bound is rewritten as
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We then extract the local minimization problems. Equation (12) is trivial and becomes an optimization problem
similar to Elastic-Net. Equation (13) is derived as follows.
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Therefore, the local optimal solution is
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.

Equation (14) is also trivial, but the local optimal solution depends on ϕ derived from the prior distribution on
the basis of (7). Equation (15) is derived as follows.
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Therefore, the local optimal solution is

η = s⊘ (µ⊙ µ+ diagΣ).

Equation (16) is derived as follows.
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C DETAILS FOR PRIOR DISTRIBUTIONS

This section supplements Section 3.7 and 3.8.

C.1 Variational Representations

Defining g(u) := − log q(u
1
2 ), ϕ(s) satisfying (7), can be represented as follows:

ϕ(s) = −g∗
(

1

2s

)
where g∗ is the concave conjugate of g.

The − log q(u) = g(u2) can be represented in the following convex variational form from Theorem 1 of Palmer
et al. (2006),
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Consequently, ϕ(s) can be rewritten from (7) as
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C.2 Prior: Generalized Gaussian

The generalized Gaussian, such as
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where α ∈ R+ and β ∈ R+ are the scale and shape parameters respectively, can be also rewritten in this
variational representation for 0 < β ≤ 2. In this case, q(u) can be rewritten as
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and its concave conjugate g∗ can be represented as
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where p is a conjugate variable of u, satisfying p = g′(u). Consequently, ϕ(sp) can be rewritten as
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In particular, the Laplace distribution, which is often used in Bayesian Lasso (Park and Casella, 2008), corre-
sponds to β = 1, and ϕ(sp) can be simply rewritten as

ϕ(sp) =
sp
2α2

+ log 2α

Additionally, (14) can be rewritten in the closed-form update equation (19), which is derived as follows.

∂

∂s

{
1

2
µ⊤Ξµ+

1

2
Tr(ΞΣ) +

s

2α2

}
=

1

2

{
s⊙ s

α2
− η ⊙ (µ⊙ µ+ diagΣ)

}
⊘ (s⊙ s)

Therefore, the local optimal solution is

s = α
√
η ⊙ (µ⊙ µ+ diagΣ)

C.3 Prior: Student’s t

Student’s t can be rewritten in this variational representation. We consider the following density,

p(ωp|ηp, ν) =
( ηp
2π

) 1
2 Γ

(
ν + 1

2

)
Γ (ν)

(
1 +

ηpω
2
p

2

)−ν− 1
2

,

and q(u) can be rewritten as

q(u) =

(
1

2π

) 1
2 Γ

(
ν + 1

2

)
Γ (ν)

(
1 +

u2

2

)−ν− 1
2

.

Therefore, g(u) can be obtained as

g(u) =

(
ν +

1

2

)
log
(
1 +

u

2

)
− log

(
Γ
(
ν + 1

2

)
Γ (ν)

)
+

1

2
log (2π) ,

and its concave conjugate g∗ can be represented as

g∗(p) = −2p+
(
ν +

1

2

)
log (2p) + log

(
Γ
(
ν + 1

2

)
Γ (ν)

)
−
(
ν +

1

2

)(
log

(
ν +

1

2

)
− 1

)
− 1

2
log (2π)

where p is a conjugate variable of u, satisfying p = g′(u). Consequently, ϕ(sp) can be rewritten as

ϕ(sp) =
1

sp
+

(
ν +

1

2

)
log (sp)− log

(
Γ
(
ν + 1

2

)
Γ(ν)

)
+

(
ν +

1

2

)(
log

(
ν +

1

2

)
− 1

)
+

1

2
log(2π)

Additionally, (14) can be rewritten in the closed-form update equation (23), which is derived as follows.

∂

∂s

{
1

2
µ⊤Ξµ+

1

2
Tr(ΞΣ) +

1

s
+

(
ν +

1

2

)
log (s)

}
=

{(
ν +

1

2

)
s−

(
1 +

η

2
⊙ (µ⊙ µ+ diagΣ)

)}
⊘ (s⊙ s)

Therefore, the local optimal solution is

s =
1

ν + 1
2

{
1 +

η

2
⊙ (µ⊙ µ+ diagΣ)

}



Kazuki Koyama, Keisuke Kiritoshi, Tomomi Okawachi, Tomonori Izumitani

D ESTIMATION OF COMPUTATIONAL COMPLEXITY

This section supplements Section 3.9. We estimate the computational complexity of update equations.

• Equation (12) for ω: O(MN3P )

(if we use LARS and select M features)

• Equation (13) for Σ: O(P 3)

(but we can compute relatively fast with the Cholesky decomposition)

• Equation (14) for s: O(P )
(if we use Student’s t for prior)

• Equation (15) for η: O(P )

• Equation (16) for σ2: O(N2P + P 2)

Therefore, we can estimate the computational complexity per one iteration as O(MN3P + P 3).
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