
On the Generalization of Representations in Reinforcement Learning

Charline Le Lan Stephen Tu Adam Oberman
University of Oxford Google Brain McGill University

Rishabh Agarwal Marc Bellemare
Google Brain Google Brain

Abstract

In reinforcement learning, state representa-
tions are used to tractably deal with large
problem spaces. State representations serve
both to approximate the value function with
few parameters, but also to generalize to
newly encountered states. Their features may
be learned implicitly (as part of a neural net-
work) or explicitly (for example, the succes-
sor representation of Dayan (1993)). While
the approximation properties of representa-
tions are reasonably well-understood, a pre-
cise characterization of how and when these
representations generalize is lacking. In this
work, we address this gap and provide an in-
formative bound on the generalization error
arising from a specific state representation.
This bound is based on the notion of effec-
tive dimension which measures the degree to
which knowing the value at one state informs
the value at other states. Our bound applies
to any state representation and quantifies the
natural tension between representations that
generalize well and those that approximate
well. We complement our theoretical results
with an empirical survey of classic representa-
tion learning methods from the literature and
results on the Arcade Learning Environment,
and find that the generalization behaviour of
learned representations is well-explained by
their effective dimension.

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

Figure 1: A deep RL architecture seen as a deep repre-
sentation φ and a value prediction V̂φ,w.

1 INTRODUCTION

At the heart of reinforcement learning (RL) is the
problem of predicting the expected return that can
be obtained from different states. In most practical
situations, these predictions are made on the basis of
parametric function approximation, needed in order
to make accurate predictions on the basis of limited
samples – technically speaking, to estimate the value
function (Sutton and Barto, 2018). Linear function
approximation, for example, estimates the value func-
tion using a fixed state representation φ which maps
states to vectors in Rk; general-purpose algorithms for
constructing state representations include tile coding
(Sutton, 1996), the Fourier basis (Konidaris et al., 2011),
local basis functions (Ratitch and Precup, 2004), and
methods based on properties of the transition function
(Mahadevan and Maggioni, 2007; Ghosh and Bellemare,
2020). Common deep RL network architectures such as
DQN (Mnih et al., 2015) use multiple layers of nonlin-
ear transformations to map perceptual inputs to a final
layer which is linearly transformed into a value function
prediction (Figure 1); accordingly, we may also view
this final layer as a (time-varying) state representation
φ (Levine et al., 2017; Chung et al., 2018).



On the Generalization of Representations in Reinforcement Learning

It is generally believed that auxiliary tasks, known to
improve performance in deep reinforcement learning
(Jaderberg et al., 2017; Bellemare et al., 2017), play an
important role in shaping the learned state representa-
tion (Bellemare et al., 2019; Dabney et al., 2020; Lyle
et al., 2021). This motivates the need to understand
how representation learning impacts policy evaluation.
In this paper, we give a theoretical characterization
of the generalization properties of a given or learned
representation. While there are a number of results
characterizing the approximation error due to a repre-
sentation (Petrik, 2007; Parr et al., 2008), its effect on
statistical error is relatively unknown.

Our first contribution is a bound on the generalization
error (approximation + estimation) that arises when
performing Monte Carlo value function estimation with
a given k-dimensional representation φ (Section 3).
Critically, this bound depends on the (in)coherence of
the feature matrix Φ (Candès and Recht, 2009), which
in turns defines the effective dimension of the represen-
tation. This effective dimension determines how many
samples are needed to obtain a good generalization of
the value function with the chosen representation; it
may be as low as k, indicating that generalization is as
good as possible, or as high as |S|, the number of states,
indicating no generalization at all. The bound applies
more broadly to the generalization error incurred in
least-squares regression problems where a subset of a
larger set of points is observed.

In Section 4, we demonstrate the usefulness of our
bound by specializing it to study the generalization
properties of the successor representation (SR) (Dayan,
1993). Specifically, we consider the state representation
constructed from the top k singular vectors of the SR
(Stachenfeld et al., 2014; Machado et al., 2017; Behza-
dian and Petrik, 2018). Empirically, we find that the
effective dimension of this representation – and conse-
quently its generalization characteristics – can vary sub-
stantially according to the transition structure of the en-
vironment. We also show empirically that the effective
dimension is important to determine the generalization
capacity of different theoretically-motivated represen-
tations in the four room domain (Sutton et al., 1999).

In an empirical study on the Arcade Learning
Environment (Bellemare et al., 2013), we find that
the notions of incoherence and effective dimension
correlate with the observed empirical performance of
existing value-based deep RL agents (Subsection 5.2).
Furthermore, we find that a simple auxiliary loss
motivated by our bound shows promising gains in the
offline deep RL setting.

2 BACKGROUND

We consider a Markov Decision Process (MDP) M =
〈S,A,R,P, γ〉 (Puterman, 1994) with finite state space
S, discrete set of actions A, transition kernel P : S ×
A →P(S), deterministic reward functionR : S×A →
[−Rmax, Rmax], and discount factor γ ∈ [0, 1). For
simplicity, we make the correspondence S = {1, ..., S}.
We write Pas to denote the next-state distribution over
S resulting from selecting action a in s and write Ras
for the corresponding reward.

A stationary policy π : S →P(A) is a mapping from
states to distributions over actions, describing a par-
ticular way of interacting with the environment. We
denote the set of all policies by Π. For any policy
π ∈ Π, the value function V π(s) measures the expected
discounted sum of rewards received when starting from
state s ∈ S and acting according to π:

V π(s) := E
π,P

[ ∞∑
t=0

γtRatst | s0 = s, at ∼ π(· | st)

]
.

The upper-bound value is Vmax := Rmax

1−γ . In vector

notation (Puterman, 1994), let rπ ∈ RS denote the
vector of expected rewards, and let Pπ ∈ RS×S be the
transition matrix whose entries are

Pπ(s, s′) =
∑
s′∈S
Pas (s′)π(a | s).

We then have

V π =

∞∑
t=0

(γPπ)trπ = (I − γPπ)−1rπ.

In this paper we consider approximating the value
function V π using a linear combination of features.
We call the map φ : S → Rk a k-dimensional state
representation; φ(s) is the feature vector for a state
s ∈ S. In general, we will be interested in the setting
where k � S. The value function approximation at s
is

Vφ,w(s) = φ(s)>w,

where w ∈ Rk is a weight vector. We collect the per-
state feature vectors into a feature matrix Φ ∈ RS×k.
For simplicity, we assume Φ has full column rank. In
vector form, the value function approximation (a S-
dimensional vector) is more directly expressed as

Vφ,w = Φw.

2.1 Statistical Learning Theory

We consider the batch Monte Carlo policy evaluation
setting, in which we are given a sample of training



Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc Bellemare

examples D = {(s1, y1), . . . , (sn, yn)} ∈ (S × R)n and
wish to determine a good linear approximation to V π

on the basis of this sample. Here, si is a state and yi is
a realisation of the random return Gπ(si) (Bellemare
et al., 2017; Sutton and Barto, 2018), defined by the
random-variable equation

Gπ(s) =

∞∑
t=0

γtRatst , s0 = s, at ∼ π(· | st).

We assume that si is drawn uniformly at random from
S.1 The batch Monte Carlo setting obviates some of
the technical challenges in analyzing iterative methods
such as least-squares TD (LSTD) but still allows us to
provide practically-relevant theoretical guarantees.

We measure the quality of a linear approximation Vφ,w
in terms of the expected squared error

R(Vφ,w) =
1

S

∑
s∈S

E
y∼Gπ(s)

(
Vφ,w(s)− y

)2
. (1)

For a value function V , we express this error and related
quantities in terms of the uniformly-weighted L2 norm

‖V ‖S,2 =

√
1

S

∑
s∈S

(
V (s)

)2
.

Following terminology from statistical learning theory
(Vapnik, 1995), we call R(Vφ,w) the population risk of
Vφ,w. One can verify that R(Vφ,w) is minimized when
Vφ,w = V π.

Given the dataset D and a fixed state representation φ,
least-squares regression determines the weight vector
ŵ minimizing the empirical risk function

R̂(Vφ,w) =
1

n

n∑
i=1

(Vφ,w(si)− yi)2.

Notice that R̂ is a random function as it depends on
the training sample D.

We are interested in the performance of the least-
squares approximation Vφ,ŵ compared to the true value
function V π. Let us denote by Vφ,w∗ the linear approx-
imation minimizing the population risk, such that

w∗ = arg min
w∈Rk

R(Vφ,w).

For clarity of exposition, we will assume this ap-
proximation is unique. The excess risk E(Vφ,ŵ) =
R(Vφ,ŵ) − R(V π) measures the additional error suf-
fered by the approximation Vφ,ŵ compared to the true
value function. We decompose it into an estimation

1Results for a larger class of distributions are given in
Appendix A

error term, measuring the performance gap with the
best-in-class, and an approximation error term arising
from considering a restricted set of k-dimensional value
function approximations:

E(Vφ,ŵ) = R(Vφ,ŵ)−R(Vφ,w∗)︸ ︷︷ ︸
estimation error

+R(Vφ,w∗)−R(V π)︸ ︷︷ ︸
approximation error

.

2.2 The Successor Representation

The successor representation (Dayan, 1993) describes a
state in terms of the frequency at which it visits future
states; it is also related to the fundamental matrix
in the study of Markov chains see Kemeny and Snell
(1961); Brémaud (2013); Grinstead and Snell (2012).

Definition 1. The successor representation (SR) with
respect to a policy π for a state s ∈ S is the expected
discounted sum of future occupancies for each state
s′ ∈ S. Specifically, ψπ(s) = (ψπ(s, s′))s′∈S , where

ψπ(s, s′) = E
π,P

[ ∞∑
t=0

γtI [st = s′] | s0 = s

]
.

Expressed as a matrix Ψπ ∈ RS×S, the successor rep-
resentation can be written as:

Ψπ = (I − γPπ)
−1
.

As a consequence of the Bellman equation, we can
express the value function in terms of the successor
representation as follows:

V π = Ψπrπ.

This makes it a particularly appealing candidate to
use as a state representation. In particular, it is well-
established that the top eigenvectors (Mahadevan and
Maggioni, 2007) or singular vectors (Behzadian and
Petrik, 2018) of the successor representation form a
useful representation (Stachenfeld et al., 2014). Petrik
(2007) derived an analytical bound on the approxima-
tion error for linear value function approximation for a
representation made of the top eigenvectors of Ψπ in the
particular setting where Pπ is symmetric. By contrast,
in this paper, we consider the more general setting
of an arbitrary transition matrix Pπ and consider a
generalization bound that accounts for the statistical
nature of the learning process.

3 CHARACTERIZING EXCESS
RISK

Our first result characterizes how the choice of repre-
sentation affects the generalization of value functions.
Theorem 1 applies beyond the setting of reinforcement



On the Generalization of Representations in Reinforcement Learning

learning, and more generally characterizes the excess
risk of a broad class of least-squares regression prob-
lems.

To begin, we assume that the labels y1, . . . , yn satisfy

yi = V (si) + ηi,

where V : S → R and ηi is i.i.d. zero mean σ-sub-
Gaussian noise (Vershynin, 2010). This includes the
batch Monte Carlo setting, in which case V = V π and

ηi
D
= Gπ(si) − V π(si), where Gπ(si) is the random

return from si.

For a feature matrix Φ, we write PΦ for the orthogo-
nal projector onto its column space, and P⊥Φ for the
orthogonal projector onto the corresponding nullspace.
We have

PΦ = Φ(ΦTΦ)−1ΦT P⊥Φ = IS − PΦ.

In particular, the approximation error for a given state
representation φ is

R(Vφ,w∗)−R(V ) = ‖P⊥Φ V ‖2S,2.

A key quantity in our analysis is the notion of the
effective dimension of a state representation, which
dictates the number of samples required to achieve a
low estimation error.

Definition 2 (Effective dimension). Let Φ ∈ RS×k be
a feature matrix. The effective dimension of Φ (vis-a-
vis the standard basis (ei)) is defined as the quantity

deff(Φ) := S max
i=1,...,S

‖PΦei‖22,

where PΦ is the orthogonal projector onto the column
space of Φ.

It is simple to check that the effective dimension is only
a function of the column space of Φ and that deff(Φ)
satisfies

rank(Φ) 6 deff(Φ) 6 S.

Our notion of effective dimension is derived from the
coherence of Φ, defined as

µ(Φ) =
deff

rank(Φ)
.

The notion of coherence is from Candès and Recht
(2009), who demonstrate that coherence can be used to
characterize the feasibility of low-rank matrix recovery.
Informally, µ(Φ) (and deff(Φ)) measure the (lack of)
sparsity of the column space of Φ. At one extreme, if
Φ ∈ RS×1 is the all-ones vector, then deff(Φ) = rank(Φ),
saturating the lower bound. On the other hand, if
Φ = ei for some i ∈ {1, . . . , S} then deff(Φ) = S,
saturating the upper bound. As we now show, the
effective dimension of Φ can be used to bound the
excess risk of least-squares regression applied to the
state representation φ.

Theorem 1 (Excess risk). Fix any δ ∈ (0, 1). Suppose
that n > 8deff(Φ) log(6k/δ). With probability at least
1− δ, the empirical risk minimizer Vφ,ŵ satisfies:

E(Vφ,ŵ) 6 ‖P⊥Φ V ‖2S,2 + 384c
deff(Φ)

n
‖P⊥Φ V ‖2S,2

+ 48σ2 2k + 3c

n
+

64

3

deff(Φ)

n2
‖P⊥Φ V ‖2∞c2,

where c = log(3/δ) and ‖·‖∞ denotes the usual supre-
mum norm.

Proof. The proof is given in Appendix A, and follows
arguments for the analysis of random design linear
least-squares problems (Hsu et al., 2012b) and matrix
concentration inequalities (Tropp, 2015). The result
can also be obtained by instantiating Theorem 1 of
Hsu et al. (2012b) to our setting, at the cost of added
complexity.

In Theorem 1, the term ‖P⊥Φ V ‖2S,2 is the approximation
error and reflects the error due to using a k-dimensional
linear approximation. The remainder of the bound
corresponds to the estimation error. The theorem
demonstrates that the ability of a representation to
generalize is quantified not only by the approximation
error but also the effective dimension deff(Φ). Not only
does deff(Φ) appear in the bound, but it also dictates a
minimum number of samples needed to obtain a high
probability bound: when deff(Φ) is small, the bound
holds for fewer samples.

In the specific context of batch Monte Carlo policy
evaluation, Theorem 1 holds as-is with V = V π. Addi-
tionally, the noise variance σ2 can be bounded as

σ2 6
V 2

max

4
.

The term ‖PΦei‖22 that drives the effective dimension
of Φ differs (for non orthogonal representations Φ) from
the quantity maxi ‖φ(si)‖22 that appears in Rademacher
complexity bounds for regression in the case of a family
of linear predictors (Mohri et al., 2018) (see also Mail-
lard and Munos (2009)). Compared to such bounds,
Theorem 1 is also sharper for all representations as it
offers a O(1/n) dependency rather than O(1/

√
n). In

subsequent sections, we will provide empirical evidence
illustrating how the effective dimension plays a critical
role in determining the generalization capability of φ.

3.1 Illustrative Examples

To understand how the bound is instantiated in par-
ticular settings, consider first the scenario in which
Φ = IS is the tabular representation. This corresponds
to using the feature vector ei ∈ RS for the i-th state.



Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc Bellemare

In this case, the approximation error is 0 and the es-
timation error reduces to the classic σ2S/n rate for
least-squares regression:

R(Vφ,ŵ)−R(V ) .
σ2(S + log(1/δ))

n
.

With this choice of features, good generalization re-
quires a number of samples n linear in S.

At the other extreme, it is possible to improve the
sample complexity to avoid the dependency on S. In
the ideal case, deff(Φ) = k. In the next section we will
demonstrate that, in environments with a particular
transition structure, representations derived from the
successor representation achieve this bound.

To make this argument more concrete, suppose that we
have a family (φk)Sk=1 of representations (resp. matrices
(Φk)) whose effective dimension satisfies deff(Φk) ≈ k.
Furthermore, assume that the approximation error
‖P⊥ΦkV ‖

2
S,2 scales as ψ(k), where ψ(k) is a monotoni-

cally decreasing function of k. Fix ε > 0 and define
k̄ = k̄(ε) := min{k : ψ(k) 6 ε}, and let w̄ be the weight
vector found by least-squares regression applied with
φk̄. Observe that as long as n satisfies:

n & max

{
max

{σ2

ε
, 1
}
k̄(ε) log

k̄(ε)

δ
,
√
k̄(ε)S log

1

δ

}
,

then we have E(Vφk̄,w̄) 6 4ε. As a particular ex-
ample, let ψ(k) = ρk for some ρ ∈ (0, 1). Then
k̄(ε) 6 d 1

1−ρ log
(

1
ε

)
e, in which case the sample com-

plexity only depends sublinearly on S.

4 GENERALIZATION FOR THE
SUCCESSOR REPRESENTATION

An effective approach for constructing a family of rep-
resentations is to take the k singular vectors of the
successor representation (SR) whose singular values
are the greatest. For a given policy π, let Ψπ be the
successor representation for π. We write

Ψπ = FΣB>,

where F,B ∈ RS×S are matrices whose columns are
orthogonal and have unit norm. Additionally, Σ =
diag(σ1, ..., σS) where σi are the singular values of Ψ
sorted in decreasing order.

For a fixed integer k satisfying 1 6 k 6 S, let us
partition F into two matrices, Fk ∈ RS×k and F⊥k ,
which respectively contains the top k and bottom S−k
columns of F . Correspondingly, we partition Σ into
Σk ∈ Rk×k and Σ⊥k and B into Bk and B⊥k . With this
notation, we obtain the family of state representations
(expressed as feature matrices) Φk = Fk.

4.1 Approximation Error: ‖P⊥Φ V π‖2S,2

Given a reward vector rπ ∈ RS , the value function
V π ∈ RS is given by V π = Ψπrπ. As demonstrated
by Theorem 1, the first key quantity that appears in
the generalization bound is the approximation error
‖P⊥FkV

π‖2S,2. With the successor representation, we
can write:

‖P⊥FkV
π‖2S,2 = ‖P⊥FkΨπrπ‖2S,2 = ‖F⊥k Σ⊥k (B⊥k )Trπ‖2S,2.

Following the argument from Petrik (2007) for the
specific case of proto-value functions (Mahadevan and
Maggioni, 2007), the worst-case unit-norm reward vec-
tor rπ in this case approximately corresponds to the
(k + 1)-th vector bk+1. This is because

F⊥k Σ⊥k (B⊥k )Tbk+1 = fk+1σk+1,

and the fact that σk+1 > σk+i, for all i > 1. To make
the bound comparable for different k and MDPs, let
us fix Rmax and write

rπ =
bk+1Rmax

‖bk+1‖∞
. (2)

In this case, since ‖fk+1‖22 = 1, we have that

‖P⊥FkV
π‖2S,2 6

σ2
k+1R

2
max

S‖bk+1‖2∞
6 σ2

k+1R
2
max.

The dependence on ‖bk+1‖∞ relates to the operator
norm of Ψ from L2 to L∞, and illustrates how bk+1 is
only approximately the worst-case reward vector.

A frequent scenario in reinforcement learning occurs
when the reward is nonzero in a single state. Suppose
that the reward vector rπ is rπ = Rmaxei for some
i ∈ {i, . . . , S}. Then we have that:

‖P⊥FkV
π‖2S,2 =

R2
maxtr((Σ⊥k )2)‖(B⊥k )>ei‖22

S

6
σ2
k+1R

2
maxdeff(B⊥k )

S
.

When the effective dimension of B⊥k is O(S−k), the ap-
proximation error may be a factor S−k

S smaller than the
error for the worst-case reward vector (Equation (2) ).

These arguments show that the generalization quality of
a given family of representations can be partially quan-
tified in terms of its spectrum (σi)

S
i=1. When the tran-

sition matrix is symmetric, we can bound the spectrum
(σi)

S
i=1 in terms of the effective horizon implied by the

discount factor. This is given by the following lemma.

Lemma 1. Let P ∈ R|S|×|S| be a symmetric row
stochastic matrix, and let γ ∈ (0, 1). Let σ(·) denote
the set of singular values of a matrix. We have that:

σ((I − γP )−1) ⊆
[

1
1+γ ,

1
1−γ

]
.



On the Generalization of Representations in Reinforcement Learning

Disconnected Fully connected 2d Torus Star Openroom

1 50 100 150 200 250 300 350 400
Number of features

10
−1

10
0

10
1

10
2

10
3

Si
ng

ul
ar

 v
al

ue
s

1 50 100 150 200 250 300 350 400
Number of features

0

100

200

300

400

Ef
fe

ct
iv

e 
di

m
en

si
on

1 20 40 60 80 100 120
Number of features

10
0

10
1

Em
pi

ric
al

 e
xc

es
s 

ris
k

1 20 40 60 80 100 120
Number of features

0

1

2

3

Th
eo

re
tic

al
 e

xc
es

s 
ris

k

Figure 2: Top left: Singular values of the successor representation Ψπ, in decreasing order and for different
graphical structures (the fully connected and star graphs’ spectra overlap). Top right: Effective dimension of
the representation Φk = Fk. Bottom left and right: Median empirical excess risk over 10 runs, with 95% CIs
as shaded regions, and theoretical excess risk, respectively, for the open room, torus, and fully connected graphs.

Because the value function is generally of magnitude
Vmax = Rmax

1−γ , an approximation error of order 1
1+γ

is quite small, suggesting that the corresponding
basis functions may be safely omitted from the
representation.

Intuitively (and as supported by the analysis above),
choosing a representation with a larger number of fea-
tures k reduces the approximation error. However, as
will see in the next section, a larger k necessarily in-
creases the effective dimension, often in a manner that
is superlinear in k.

4.2 Effect of Transition Structure

We next study characteristics of families of represen-
tations induced by the SVD of the successor represen-
tation for different environment transition structures.
To this end, we consider different types of graphs over
which we define a uniform random walk; the resulting
representations are specifically proto-value functions
(PVF, Mahadevan and Maggioni, 2007). We consider
the two key quantities identified above: the spectrum
of the representation, which informs us on the profile of
the approximation error ‖P>FkV

π‖2S,2 for different Fk,
and the effective dimension of Fk as a function of k.

We consider five graphical structures, each with S =
400 states (illustrations of these structures as well as
results for additional structures are given in the ap-
pendix): a fully-connected graph, Baird’s star graph
(Baird, 1995), a disconnected graph (on which each
node self-transitions), a 20 × 20 grid, and a 20 × 20
torus. The torus has the same “shape” as the grid but
allows transitions from one edge to its opposite, while
the fully-connected graph is similar to the star graph in
that both mix quickly. These graph were chosen to illus-
trate the diversity in generalization profiles arising from
different transition structures. In all cases, γ = 0.99.

Figure 2, top left illustrates three types of spectra. The
fully-connected and star structures have a flat spectrum,
both with an important first component but with a last
component that is much smaller in the case of the star
structure (see Appendix B for a closed-form description
of the spectrum of the star graph). By contrast, the
grid and torus exhibit a decaying spectrum, suggesting
that attaining a low approximation error may require
many features. As expected, the disconnected graph
produces a flat spectrum with values σi = (1− γ)−1.

Figure 2, top right shows the effective dimension as
a function of the number of features k, and paints a
relatively different picture. Here, both star and fully-



Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc Bellemare

0.00 0.02 0.04
Approximation error

10
−2

10
−1

10
0

Em
pi

ric
al

 e
xc

es
s 

ris
k

0.00 0.02 0.04
Approximation error

0

50

100

Ef
fe

ct
iv

e 
D

im
en

si
on

SR Random Features Krylov Basis Bisimulation

Figure 3: The four-room domain (Left). Median empirical excess risk (Middle) and effective dimension (Right)
as a function of approximation error for the top k left singular vectors of the SR, random features, the Krylov
basis and the bisimulation metric matrix in the four-room domain.

connected graphs exhibit a high effective dimension,
despite having relatively simple structure. This is be-
cause effective dimension reflects in some sense the
degree to which a single sample might give misleading
information about the value at other states. Because
the first singular vectors capture most of the symmetry
in these graphs, additional features must in some sense
be misleading. On the other hand, the open room and
torus, despite an almost-identical spectrum, exhibit
notedly different profiles: while the torus achieves the
lower bound deff(Fk) ≈ k, the grid results in generally
poor features for k large.

To understand the consequences of these characteristic
differences, we performed least-squares regression to
estimate value functions in three of these structures
(fully-connected, grid, and torus). In all cases, we
sampled a reward function by assigning rewards to
each state-action pair from a normal distribution (see
Appendix C). We then sampled n = 300 states with
replacement and performed a Monte Carlo rollout to
obtain the sample return (yi)

n
i=1. We measured the

excess risk of the linear approximation found by the
least-squares procedure. For each graph structure, we
repeated the experiment 10 times.

Figure 2, bottom depicts the outcome of this experi-
ment. Experimentally, the PVF of the torus generalizes
significantly better than the PVF of the grid (left panel).
This is reflected in a heuristic calculation of the the-
oretical bound (right panel), given more explicitly by
the formula

‖P⊥FkV
π‖2S,2 +

deff(Fk)

n
+
deff(F )

n2
‖P⊥FkV

π‖2∞.

The number of features k minimizing the empirical
and theoretical excess risk differ, but follow the same
qualitative pattern: for small k, the open room PVF
generalizes poorly, while the minimum is achieved in
the fully-connected graph by k = 1, highlighting again

its high degree of symmetry.

4.3 Analysis of the One-dimensional Torus

As evidenced by the experiments of the previous sec-
tion, the proto-value functions of the two-dimensional
torus have particularly appealing generalization char-
acteristics. Analytically, similarly good generalization
can be demonstrated on the one-dimensional torus, as
we now show.

The one-dimensional torus consists in S states arranged
on a chain, such that si connects to si−1, si+1 mod S.
As such, the random walk on this torus induces a
transition function Pπ described by a circulant matrix.
Since Pπ is symmetric, we may write2

(I − γPπ)−1 = USΣU∗S .

Following Gray (2006), the k-th singular value of (I −
γPπ)−1 is given by

σk =
1

1− γ cos( 2π
S d

k−1
2 e)

for k = 1, ..., S.3 Additionally, we have that US =
1√
S
F ∗S , with (FS)j,k = exp(−2πijk/S) the discrete

Fourier transform matrix in dimension S. From this
we deduce that each entry of US has modulus 1/

√
S,

and therefore any orthogonal matrix formed from any
k distinct columns of US will have coherence 1 and
effective dimension k. This shows that the proto-value
functions of the one-dimensional torus give in some
sense an ideal state representation.



On the Generalization of Representations in Reinforcement Learning

DQN(Adam) Rainbow DQN(Nature) IQN M-IQN

0 50 100 150 200
Number of Frames (in millions)

0.2

0.4

0.6

0.8

1.0
Ef

fe
ct

iv
e 

D
im

en
si

on
 / 

N
 

 (I
nt

er
qu

ar
til

e 
M

ea
n)

0 50 100 150 200
Number of Frames (in millions)

0.0

0.5

1.0

1.5

2.0

IQ
M

 H
um

an
 N

or
m

al
ize

d 
Sc

or
e

Figure 4: Left: Interquartile mean (IQM) (Agarwal et al., 2021b) for the effective dimension, normalized by
the batch size used N = 215. Right: for human-normalized scores over the course of training across 60 Atari
games. IQM measures the mean on the middle 50% of the data points combined across all runs and games.
These statistics are over 5 independent runs and shading gives 95% stratified bootstrap confidence intervals
based on Rliable (Agarwal et al., 2021b).

5 EXPERIMENTS

5.1 Comparing State Representations

We now compare the Successor Representation to other
theoretically-motivated representations: the bisimula-
tion metric matrix (Ferns et al., 2004), the Krylov basis
(Petrik, 2007) and some random features, in terms of
effective dimension and excess risk, in the setting of
Section 4.2. Figure 3 shows some of these results on
the four room domain (Sutton et al., 1999; Solway
et al., 2014). These give further weight to the idea
that effective dimension plays an important role in de-
termining the usefulness of a representation, as for a
given approximation error better effective dimension
corresponds to better excess risk.

The SR of the four-room domain is fairly well-studied
and have been shown to give rise to effective repre-
sentations (Machado et al., 2017; Bellemare et al.,
2019).It generalizes well but has worse approximation
error compared to the Krylov basis or the Bisimulation
metric which take into account the reward. For small
approximation errors, the krylov basis has smaller
effective dimension and is performing best. Finally,
random features which are agnostic to the structure of
the MDP have very high approximation error making
them unappealing.

2We ignore the issue of real diagonalizable versus com-
plex diagonalizable.

3The spectrum of the torus is briefly mentioned in Blier
et al. (2021).

5.2 Deep Reinforcement Learning

We conclude with an empirical evaluation demonstrat-
ing the usefulness of our results in characterizing gen-
eralization in a larger setting. Specifically, we measure
the effective dimensions of a representation φ implied
by a deep neural network. We consider the hidden
layer of 512 rectified linear units learnt by five deep
RL agents, namely DQN (Mnih et al., 2015), DQN
with Adam optimizer, Rainbow (Hessel et al., 2018),
IQN (Dabney et al., 2018), and Munchausen-IQN (M-
IQN) (Vieillard et al., 2020). We are interested in how
the notion of effective dimension explains the relative
performance of these deep RL agents aggregated across
60 Atari 2600 games (Bellemare et al., 2013) and at
different points in training until 200M environment
frames (Castro et al., 2018).

We compare estimates of the effective dimension of
these representations throughout training and reported
results in Figure 4 (Left) (see per game comparison in
Appendix C.2). When computing such estimates, we
use a large batch size (=215), sampled uniformly from
the offline Atari-replay datasets (Agarwal et al., 2020),
as a proxy for the ambient dimension S used in the
definition of the effective dimension.

We observe that higher performance on a game
typically correlates with lower effective dimension.
The relative ordering of effective dimension (Figure 4,
left) matches the performance ranking of different
agents(Figure 4, right). Furthermore, we can notice a
rise in the effective dimension from iteration 50 which
suggests an overfitting of the representation to the
current value function, in line with the evidence of



Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc Bellemare

IQN IQN + Feature Reg.

0 50 100 150 200
Gradient Updates (x 62.5k)

0.2

0.4

0.6

0.8

1.0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

 
 (I

nt
er

qu
ar

til
e 

M
ea

n)

0 50 100 150 200
Gradient Updates (x 62.5k)

0.0

0.2

0.4

0.6

N
or

m
al

iz
ed

 S
co

re
 

 (I
nt

er
qu

ar
til

e 
M

ea
n)

Figure 5: Effective dimension, normalized by the batch size N = 215 and performance of IQN and IQN with
feature regularization Lφ on 17 Atari games in the offline RL setting.

late-training overfitting found by Dabney et al. (2020).

To further corroborate that low effective dimension
corresponds to better generalization, we investigate
whether optimizing an auxiliary loss Lφ, motivated
by the idea of reducing the effective dimension of the
learned representation, improves performance. To do
so, we use Lφ = log

∑
i exp(‖φ(si)‖22) for states si in a

randomly sampled mini-batch of size 32. To avoid con-
founding effects from exploration, we study the offline
RL setting (Levine et al., 2020). Specifically, we use
the 5% Atari-replay dataset (Agarwal et al., 2020) on
17 games and evaluate IQN, one of the top performing
agents on the offline Atari dataset (Gulcehre et al.,
2020). As shown in Figure 5, right, combining IQN
with the loss Lφ results in significantly higher average
returns compared to IQN on all 17 games. We also
compare estimates of the effective dimension of the
representations induced by these two agents in Fig-
ure 5, left, and find the auxiliary loss Lφ results in
lower effective dimension during the first 80 iterations.
Surprisingly, we also notice that IQN with feature reg-
ularization prevents the substantial loss in rank of the
feature matrix observed previously by Kumar et al.
(2021, 2022) (see Figure 13 and Figure 12), making it
hard to disentangle between approximation and estima-
tion error effects. Further study of this phenomenon
would be an interesting direction for future work.

6 CONCLUSION

In this paper we provided a theoretical characterisation
of how a given representation affects generalization in
reinforcement learning. While we focused here on the
batch Monte Carlo setting for simplicity, a similar but
more involved analysis can in theory also be performed
to analyze algorithms such as LSTD.

Providing fresh evidence regarding the benefits of suc-

cessor representations in shaping an agent’s represen-
tation, both our analysis and experiments on synthetic
environments demonstrate that indeed, the left-singular
vectors of SRs generally provide good generalization.
While natural given the successor representation’s close
relationship with the value function, one surprising
result is that the effective dimension of such a represen-
tation is relatively sensitive to the particular transition
structure, as illustrated by the differences between the
torus and open room representations. In addition, the
effective dimension of this representation does not im-
mediately correlate with mixing time, as one might
have expected. These findings suggests that it should
be possible to devise algorithms inspired by the same
principles, but that work well across a variety of tran-
sition structures, for example by leveraging contrastive
graph representations (Madjiheurem and Toni, 2019).

Our analysis of Atari 2600-playing agents gives further
evidence of the important role played by the repre-
sentation in deep reinforcement learning. While not
a surprise in itself, we find a strong correlation be-
tween effective dimension and performance, this sug-
gests that generalization is key to explaining many
performance improvements. In particular, it is by now
well-understood that auxiliary tasks (Jaderberg et al.,
2017; Bellemare et al., 2017) shape the learned rep-
resentation of the agent, and under ideal conditions
cause it to match the SVD of an auxiliary task matrix
(Bellemare et al., 2019; Lyle et al., 2021). Controlling
the bound of Theorem 1 by means of such tasks or
deep learning mechanisms such as hindsight experience
replay (Andrychowicz et al., 2017) may provide further
performance improvements. Our results also suggest
that it may be possible to derive theoretical guarantees
regarding transfer between policies or MDPs (Taylor
and Stone, 2009), in particular with a learned repre-
sentation (Agarwal et al., 2021a).



On the Generalization of Representations in Reinforcement Learning

Acknowledgements

The authors would like to thank Matthieu Geist, Mark
Rowland, Pablo Samuel Castro, Ahmed Touati, Marlos
Machado, Dale Schuurmans, Robert Dadashi, Tomas
Vaskevicius, Olivier Pietquin, Martha White, Hanie
Sedghi, Damien Vincent, Dominic Richards, Nino Vieil-
lard, Leonard Hussenot, Amartya Sanyal, Sephora Mad-
jiheurem, Laura Toni and the anonymous reviewers for
useful discussions and feedback on this paper.

We would also like to thank the Python community
(Van Rossum and Drake Jr, 1995; Oliphant, 2007)
for developing tools that enabled this work, including
NumPy (Oliphant, 2006; Walt et al., 2011; Harris et al.,
2020), SciPy (Jones et al., 2001), Matplotlib (Hunter,
2007) and JAX (Bradbury et al., 2018).

References

Rishabh Agarwal, Dale Schuurmans, and Mohammad
Norouzi. An optimistic perspective on offline rein-
forcement learning. In International Conference on
Machine Learning, pages 104–114. PMLR, 2020.

Rishabh Agarwal, Marlos C. Machado, Pablo Samuel
Castro, and Marc G Bellemare. Contrastive be-
havioral similarity embeddings for generalization in
reinforcement learning. In International Conference
on Learning Representations, 2021a.

Rishabh Agarwal, Max Schwarzer, Pablo Samuel Cas-
tro, Aaron Courville, and Marc G Bellemare. Deep
reinforcement learning at the edge of the statistical
precipice. Advances in Neural Information Process-
ing Systems, 2021b.

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas
Schneider, Rachel Fong, Peter Welinder, Bob Mc-
Grew, Josh Tobin, Pieter Abbeel, and Wojciech
Zaremba. Hindsight experience replay. arXiv preprint
arXiv:1707.01495, 2017.

Leemon Baird. Residual algorithms: Reinforcement
learning with function approximation. In Machine
Learning Proceedings 1995, pages 30–37. Elsevier,
1995.

Bahram Behzadian and Marek Petrik. Low-rank feature
selection for reinforcement learning. In ISAIM, 2018.

Marc Bellemare, Will Dabney, Robert Dadashi, Adrien
Ali Taiga, Pablo Samuel Castro, Nicolas Le Roux,
Dale Schuurmans, Tor Lattimore, and Clare Lyle. A
geometric perspective on optimal representations for
reinforcement learning. Advances in neural informa-
tion processing systems, 32:4358–4369, 2019.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and
Michael Bowling. The arcade learning environment:
An evaluation platform for general agents. Journal
of Artificial Intelligence Research, 47:253–279, 2013.

Marc G. Bellemare, Will Dabney, and Rémi Munos. A
distributional perspective on reinforcement learning.
In Proceedings of the International Conference on
Machine Learning, 2017.

Léonard Blier, Corentin Tallec, and Yann Ollivier.
Learning successor states and goal-dependent val-
ues: A mathematical viewpoint. arXiv preprint
arXiv:2101.07123, 2021.

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal
Maclaurin, and Skye Wanderman-Milne. Jax: com-
posable transformations of python+ numpy pro-
grams. URL http://github. com/google/jax, 2018.

Pierre Brémaud. Markov chains: Gibbs fields, Monte
Carlo simulation, and queues, volume 31. Springer
Science & Business Media, 2013.

Emmanuel J Candès and Benjamin Recht. Exact ma-
trix completion via convex optimization. Foundations
of Computational mathematics, 9(6):717–772, 2009.

Pablo S. Castro, Subhodeep Moitra, Carles Gelada,
Saurabh Kumar, and Marc G. Bellemare. Dopamine:
A research framework for deep reinforcement learning.
arXiv, 2018.

Wesley Chung, Somjit Nath, Ajin Joseph, and Martha
White. Two-timescale networks for nonlinear value
function approximation. In International conference
on learning representations, 2018.

Will Dabney, Georg Ostrovski, David Silver, and Rémi
Munos. Implicit quantile networks for distributional
reinforcement learning. In International conference
on machine learning, pages 1096–1105. PMLR, 2018.

Will Dabney, André Barreto, Mark Rowland, Robert
Dadashi, John Quan, Marc G Bellemare, and David
Silver. The value-improvement path: Towards better
representations for reinforcement learning. arXiv
preprint arXiv:2006.02243, 2020.

Peter Dayan. Improving generalization for temporal
difference learning: The successor representation.
Neural Computation, 5(4):613–624, 1993.

Dibya Ghosh and Marc G Bellemare. Representations
for stable off-policy reinforcement learning. In In-
ternational Conference on Machine Learning, pages
3556–3565. PMLR, 2020.

Robert M. Gray. Toeplitz and circulant matrices: A
review. 2006.

Charles Miller Grinstead and James Laurie Snell. In-
troduction to probability. American Mathematical
Soc., 2012.

Caglar Gulcehre, Ziyu Wang, Alexander Novikov,
Thomas Paine, Sergio Gómez, Konrad Zolna,
Rishabh Agarwal, Josh S Merel, Daniel J Mankowitz,



Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc Bellemare

Cosmin Paduraru, et al. Rl unplugged: A collection
of benchmarks for offline reinforcement learning. Ad-
vances in Neural Information Processing Systems,
33, 2020.

Charles R Harris, K Jarrod Millman, Stéfan J van der
Walt, Ralf Gommers, Pauli Virtanen, David Cour-
napeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J Smith, et al. Array programming with
numpy. Nature, 585(7825):357–362, 2020.

Matteo Hessel, Joseph Modayil, Hado van Hasselt,
Tom Schaul, Georg Ostrovski, Will Dabney, Dan
Horgan, Bilal Piot, Mohammad Azar, and David
Silver. Rainbow: Combining improvements in deep
reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, 2018.

Daniel Hsu, Sham Kakade, and Tong Zhang. A tail
inequality for quadratic forms of subgaussian random
vectors. Electronic Communications in Probability,
17:1–6, 2012a.

Daniel Hsu, Sham M Kakade, and Tong Zhang. Ran-
dom design analysis of ridge regression. In Confer-
ence on learning theory, pages 9–1. JMLR Workshop
and Conference Proceedings, 2012b.

John D Hunter. Matplotlib: A 2d graphics environ-
ment. Computing in science & engineering, 9(3):
90–95, 2007.

Max Jaderberg, Volodymyr Mnih, Wojciech M. Czar-
necki, Tom Schaul, Joel Z Leibo, David Silver, and
Koray Kavukcuoglu. Reinforcement learning with
unsupervised auxiliary tasks. In Proceedings of the
International Conference on Learning Representa-
tions, 2017.

Eric Jones, Travis Oliphant, Pearu Peterson, et al.
Scipy: Open source scientific tools for python. 2001.

John G Kemeny and J Laurie Snell. Finite continuous
time markov chains. Theory of Probability & Its
Applications, 6(1):101–105, 1961.

George D. Konidaris, Sarah Osentoski, and Philip S.
Thomas. Value function approximation in reinforce-
ment learning using the fourier basis. In Proceed-
ings of the 25th Conference on Artificial Intelligence,
2011.

Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and
Sergey Levine. Implicit under-parameterization in-
hibits data-efficient deep reinforcement learning. In
International Conference on Learning Representa-
tions, 2021.

Aviral Kumar, Rishabh Agarwal, Tengyu Ma, Aaron
Courville, George Tucker, and Sergey Levine. Dr3:
Value-based deep reinforcement learning requires ex-
plicit regularization. 2022.

Nir Levine, Tom Zahavy, Daniel Mankowitz, Aviv
Tamar, and Shie Mannor. Shallow updates for deep
reinforcement learning. In Advances in Neural Infor-
mation Processing Systems, 2017.

Sergey Levine, Aviral Kumar, George Tucker, and
Justin Fu. Offline reinforcement learning: Tutorial,
review, and perspectives on open problems. arXiv
preprint arXiv:2005.01643, 2020.

Clare Lyle, Mark Rowland, Georg Ostrovski, and Will
Dabney. On the effect of auxiliary tasks on rep-
resentation dynamics. In International Conference
on Artificial Intelligence and Statistics, pages 1–9.
PMLR, 2021.

M.C. Machado, M.G. Bellemare, and M. Bowling. A
Laplacian framework for option discovery in reinforce-
ment learning. In Proceedings of the International
Conference on Machine Learning, 2017.

Sephora Madjiheurem and Laura Toni. Representation
learning on graphs: A reinforcement learning applica-
tion. In Proceedings of the International Conference
on Machine Learning, 2019.

Sridhar Mahadevan and Mauro Maggioni. Proto-value
functions: A laplacian framework for learning repre-
sentation and control in markov decision processes.
Journal of Machine Learning Research, 8(10), 2007.

Odalric-Ambrym Maillard and Rémi Munos. Com-
pressed least-squares regression. In NIPS 2009, 2009.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Andrei A Rusu, Joel Veness, Marc G Bellemare,
Alex Graves, Martin Riedmiller, Andreas K Fidje-
land, Georg Ostrovski, Stig Petersen, Charles Beattie,
Amir Sadik, Ioannis Antonoglou, Helen King, Dhar-
shan Kumaran, Daan Wierstra, Shane Legg, and
Demis Hassabis. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533,
2015.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Tal-
walkar. Foundations of machine learning. MIT press,
2018.

Travis E Oliphant. A guide to NumPy, volume 1.
Trelgol Publishing USA, 2006.

Travis E Oliphant. Python for scientific computing.
Computing in Science & Engineering, 9(3):10–20,
2007.

Ronald Parr, Lihong Li, Gavin Taylor, Christopher
Painter-Wakefield, and Michael L Littman. An anal-
ysis of linear models, linear value-function approxima-
tion, and feature selection for reinforcement learning.
In Proceedings of the 25th international conference
on Machine learning, pages 752–759, 2008.



On the Generalization of Representations in Reinforcement Learning

Marek Petrik. An analysis of laplacian methods for
value function approximation in mdps. In IJCAI,
pages 2574–2579, 2007.

Martin L Puterman. Markov decision processes: Dis-
crete stochastic dynamic programming. 1994.

Bohdana Ratitch and Doina Precup. Sparse distributed
memories for on-line value-based reinforcement learn-
ing. In Proceedings of the 15th European Conference
on Machine Learning, 2004.

Alec Solway, Carlos Diuk, Natalia Córdova, Debbie
Yee, Andrew G Barto, Yael Niv, and Matthew M
Botvinick. Optimal behavioral hierarchy. PLoS Com-
putational Biology, 10(8):e1003779, aug 2014.

Kimberly L. Stachenfeld, Matthew Botvinick, and
Samuel J. Gershman. Design principles of the hip-
pocampal cognitive map. In Advances in Neural
Information Processing Systems, 2014.

Richard S Sutton. Generalization in reinforcement
learning: Successful examples using sparse coarse
coding. Advances in neural information processing
systems, pages 1038–1044, 1996.

Richard S. Sutton and Andrew G. Barto. Reinforcement
learning: An introduction. MIT Press, 2nd edition,
2018.

R.S. Sutton, D. Precup, and S. Singh. Between MDPs
and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial Intelligence,
112:181–211, 1999.

Matthew E. Taylor and Peter Stone. Transfer learning
for reinforcement learning domains: A survey. Jour-
nal of Machine Learning Research, 10(1):1633–1685,
2009.

Joel A. Tropp. An introduction to matrix concentration
inequalities. Foundations and Trends in Machine
Learning, 8, 2015.

Guido Van Rossum and Fred L Drake Jr. Python refer-
ence manual. Centrum voor Wiskunde en Informatica
Amsterdam, 1995.

Vladimir N Vapnik. The nature of statistical learning.
Theory, 1995.

Roman Vershynin. Introduction to the non-asymptotic
analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

Nino Vieillard, Olivier Pietquin, and Matthieu Geist.
Munchausen reinforcement learning. arXiv preprint
arXiv:2007.14430, 2020.

Stéfan van der Walt, S Chris Colbert, and Gael Varo-
quaux. The numpy array: a structure for efficient
numerical computation. Computing in science &
engineering, 13(2):22–30, 2011.



Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc Bellemare

On the Generalization of Representations in Reinforcement Learning:
Appendices

A PROOFS FOR SECTION 3

This section is dedicated to proving the main theorem on the paper, Theorem 1. Before that, we introduce and
prove a more general result from which Theorem 1 can be deduced as a corollary.

Let s1, ..., sn denote iid draws from an arbitrary distribution ν ∈ P(S) and (ei)
S
i=1 ⊂ RS the standard basis.

Assumption 1. We assume that ν(s) > 0 for all state state s ∈ {1, ..., S}.

Let N := Ei∼ν [eie
T
i ], and let ‖x‖ν,2 := ‖N1/2x‖2 for x ∈ RS . Put ν := mini=1,...,S νi > 0. Let w∗ :=

(ΦTNΦ)−1ΦTNV , and also define Ξ := ΦTNΦ. Ξ is the steady-state feature covariance matrix. w∗ represents
the best k-dimensional model. Since we assume that ν > 0, we have that Ξ is positive definite.

The excess risk E(Vφ,w) of a hypothesis Vφ,w : S → R is defined as:

E(Vφ,w) := Esi∼ν(Vφ,w(si)− V (si))
2.

For any ŵ ∈ Rk, we have the decomposition:

E(Vφ,ŵ) = ‖Φŵ − V ‖2ν,2 = ‖Φ(ŵ − w∗)‖2ν,2 + ‖Φw∗ − V ‖2ν,2.

Note we have the identity:

‖Φw∗ − V ‖2ν,2 = ‖P⊥N1/2ΦN
1/2V ‖22.

Theorem 2. Fix any δ ∈ (0, 1). Suppose that n > 8deff(Φ) log(6k/δ). Under Assumption 1, with probability at
least 1− δ, the empirical risk minimizer Vφ,ŵ satisfies:

E(Vφ,ŵ) = ‖P⊥N1/2ΦN
1/2V ‖22 + 384

deff(Φ)

νnS
‖P⊥N1/2ΦN

1/2V ‖22 log(3/δ)

+ 48
σ2

n
[2k + 3 log(3/δ)] +

64

3

deff(Φ)

νn2S
‖N−1/2P⊥N1/2ΦN

1/2V ‖2∞ log2(3/δ).

where ‖·‖∞ denotes the usual supremum norm.

Proof. The empirical risk minimizer ŵ ∈ Rk is defined as the random vector ŵ = (EnΦ)†Y . Next, we write:

N1/2Φ(ŵ − w∗) = N1/2Φ(EnΦ)†(EnV + η)−N1/2Φw∗

Therefore, assuming EnΦ has full column rank (which will be the case by Lemma 2),

N1/2Φ(EnΦ)†EnV −N1/2Φw∗

= N1/2Φ(EnΦ)†EnV − PN1/2ΦN
1/2V

= N1/2Φ(ΦTET
nEnΦ)−1ΦTET

nEnV − PN1/2ΦN
1/2V

= N1/2Φ(ΦTET
nEnΦ)−1ΦTET

nEnN
−1/2(PN1/2Φ + P⊥N1/2Φ)N1/2V − PN1/2ΦN

1/2V

= N1/2Φ(ΦTET
nEnΦ)−1ΦTET

nEnN
−1/2P⊥N1/2ΦN

1/2V

+N1/2Φ(ΦTET
nEnΦ)−1ΦTET

nEnN
−1/2PN1/2ΦN

1/2V − PN1/2ΦN
1/2V

= N1/2Φ(ΦTET
nEnΦ)−1ΦTET

nEnN
−1/2P⊥N1/2ΦN

1/2V

= N1/2ΦΞ−1/2(Ξ−1/2ΦTET
nEnΦΞ−1/2)−1Ξ−1/2ΦTET

nEnN
−1/2P⊥N1/2ΦN

1/2V.



On the Generalization of Representations in Reinforcement Learning

Similarly,

N1/2Φ(EnΦ)†η = N1/2Φ(ΦTET
nEnΦ)−1ΦTET

nη

= N1/2ΦΞ−1/2(Ξ−1/2ΦTET
nEnΦΞ−1/2)−1Ξ−1/2ΦTET

nη.

We first claim that ‖N1/2ΦΞ−1/2‖op 6 1. To see this, observe that:

‖N1/2ΦΞ−1/2‖2op = λmax(N1/2Φ(ΦTNΦ)−1ΦTN1/2) = λmax(PN1/2Φ) 6 1.

Hence:

‖N1/2Φ(EnΦ)†EnV −N1/2Φw∗‖2 6
‖Ξ−1/2ΦTET

nEnN
−1/2P⊥

N1/2Φ
N1/2V ‖2

λmin(Ξ−1/2ΦTET
nEnΦΞ−1/2)

,

and similarly

‖N1/2Φ(EnΦ)†η‖2 6
‖Ξ−1/2ΦTET

nη‖2
λmin(Ξ−1/2ΦTET

nEnΦΞ−1/2)
.

Therefore,

‖N1/2Φ(ŵ − w∗)‖2 6
1

λmin(Ξ−1/2ΦTET
nEnΦΞ−1/2)

[‖Ξ−1/2ΦTET
nEnN

−1/2P⊥N1/2ΦN
1/2V ‖2 + ‖Ξ−1/2ΦTET

nη‖2]

By Lemma 2, as long as n > 8deff (Φ)
νS log(6k/δ), then with probability at least 1− δ/3,

n

2
Ik 4 Ξ−1/2ΦTET

nEnΦΞ−1/2 4 4nIk.

Furthermore, by Lemma 3, with probability at least 1− δ/3,

‖Ξ−1/2ΦTET
nEnN

−1/2P⊥N1/2ΦN
1/2V ‖2

6 2

√
8ndeff(Φ)

νS
‖P⊥

N1/2Φ
N1/2V ‖22 log

(
3

δ

)
+

4

3

√
deff(Φ)

νS
‖N−1/2P⊥N1/2ΦN

1/2V ‖∞ log

(
3

δ

)
.

Finally, by Lemma 4, with probability at least 1− δ/3,

1
{

Ξ−1/2ΦTET
nEnΦΞ−1/2 4 4nIk

}
· ‖Ξ−1/2ΦTET

nη‖2 6
√
σ2n[8k + 12 log(3/δ)].

Therefore, by a union bound, with probability at least 1− δ,

‖N1/2Φ(ŵ − w∗)‖2 6
2

n

[
2

√
8ndeff(Φ)

νS
‖P⊥

N1/2Φ
N1/2V ‖22 log

(
3

δ

)]

+
2

n

[
4

3

√
deff(Φ)

νS
‖N−1/2P⊥N1/2ΦN

1/2V ‖∞ log

(
3

δ

)]
+

2

n

[√
σ2n[8k + 12 log(3/δ)]

]
= 4
√

8

√
deff(Φ)

νnS
log(3/δ)‖P⊥N1/2ΦN

1/2V ‖2 + 4

√
σ2

n
[2k + 3 log(3/δ)]

+
8

3

√
deff (Φ)
νS

n
‖N−1/2P⊥N1/2ΦN

1/2V ‖∞ log

(
3

δ

)
.

Now, from the inequality (a+ b+ c)2 6 3
(
a2 + b2 + c2

)
for any a, b, c ∈ R, it follows that

E(Vφ,ŵ) = ‖P⊥N1/2ΦN
1/2V ‖22 + 384

deff(Φ)

νnS
‖P⊥N1/2ΦN

1/2V ‖22 log(3/δ)

+ 48
σ2

n
[2k + 3 log(3/δ)] +

64

3

deff(Φ)

νn2S
‖N−1/2P⊥N1/2ΦN

1/2V ‖2∞ log2(3/δ).



Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc Bellemare

Lemma 2. Let Φ ∈ RS×k. Let ν denote a distribution over {1, ..., S} satisfying Assumption 1 and (ei)
S
i=1 ⊂ RS

the standard basis. Let s1, ..., sn denote iid draws from ν. Define Yn ∈ Rk×k as:

Yn =

n∑
i=1

Ξ−1/2ΦTesie
T
siΦΞ−1/2.

Fix any δ ∈ (0, 1). As long as n > 8deff (Φ)
νS log(2k/δ), with probability at least 1− δ,

n

2
Ik 4 Yn 4 4nIk.

where for two symmetric matrices, A 4 B means that the matrice B −A is positive semi-definite.

Proof. This is an application of the Matrix Chernoff inequality. First, we see that E[Yn] = nIk. Next, we have:

max
i=1,...,S

λmax(Ξ−1/2ΦTeie
T
i ΦΞ−1/2) = max

i=1,...,S
‖Ξ−1/2ΦTei‖22

= max
i=1,...,S

‖(ΦTNΦ)−1/2ΦTei‖22

6
1

ν
max

i=1,...,S
‖PΦei‖22

6
deff(Φ)

νS
.

We now make two applications of the Matrix Chernoff inequality (see Theorem 5.1.1 in Tropp (2015)). Denoting
e as Euler’s number, for the upper tail, we have that for any t > e,

P(λmax(Yn) > tn) 6 k(e/t)tnνS/deff (Φ).

Setting t = 4, we conclude that as long as n > 1
4 log(4/e)

deff (Φ)
νS log(2k/δ), then we have that with probability at

least 1− δ/2, λmax(Yn) 6 4n. For the lower tail, we have that for any t ∈ (0, 1),

P(λmin(Yn) 6 tn) 6 k exp

(
−(1− t)2n

2

νS

deff(Φ)

)
.

Setting t = 0.5, we see that as long as n > 8deff (Φ)
νS log(2k/δ), then λmin(Yn) > n/2 with probability at least

1− δ/2. Taking a union bound yields the claim.

Lemma 3. Put zn := Ξ−1/2ΦTET
nEnN

−1/2P⊥
N1/2Φ

N1/2V . Fix any δ ∈ (0, e−1/8). With probability at least 1− δ,

‖zn‖2 6 2

√
8ndeff(Φ)

νS
‖P⊥N1/2ΦN

1/2V ‖2
√

log(1/δ) +
4

3

√
deff(Φ)

νS
‖N−1/2P⊥N1/2ΦN

1/2V ‖∞ log(1/δ).

Proof. Define qi := Ξ−1/2ΦTesie
T
siN

−1/2P⊥
N1/2Φ

N1/2V . We have that E[qi] = 0. Next,

E[‖qi‖22] = E[‖Ξ−1/2ΦTesi‖22〈esi , N−1/2P⊥N1/2ΦN
1/2V 〉2]

6
deff(Φ)

νS
E[〈esi , N−1/2P⊥N1/2ΦN

1/2V 〉2]

=
deff(Φ)

νS
‖P⊥N1/2ΦN

1/2V ‖22.

Finally, we have the following almost sure bound:

‖qi‖2 6

√
deff(Φ)

νS
‖N−1/2P⊥N1/2ΦN

1/2V ‖∞.



On the Generalization of Representations in Reinforcement Learning

Put zn :=
∑n
i=1 qi. By the vector Bernstein inequality, for all t > 0,

P

(
‖zn‖2 >

√
ndeff(Φ)

νS
‖P⊥

N1/2Φ
N1/2V ‖22(1 +

√
8t) +

4

3

√
deff(Φ)

νS
‖N−1/2P⊥N1/2ΦN

1/2V ‖∞t

)
6 e−t.

The claim now follows by setting t = log(1/δ).

Lemma 4. Let G be the event:

G :=
{

Ξ−1/2ΦTET
nEnΦΞ−1/2 4 4nIk

}
With probability at least 1− δ, we have:

1{G} · ‖Ξ−1/2ΦTET
nη‖22 6 σ2n[8k + 12 log(1/δ)].

Proof. Put M := 1{G} · EnΦΞ−1ΦTET
n . Because η is assumed to be independent of En, we can condition on En

and apply the Hanson-Wright inequality (Hsu et al., 2012a) to conclude that for any t > 0,

P(ηTMη > σ2(tr(M) + 2
√

tr(M2)t+ 2‖M‖opt)) | En) 6 e−t.

We now compute upper bounds on tr(M), tr(M2), and ‖M‖op. First, we have:

tr(M) = 1{G} tr(EnΦΞ−1ΦTET
n ) = 1{G} tr(Ξ−1/2ΦTET

nEnΦΞ−1/2) 6 4nk.

Next,

tr(M2) = 1{G} tr(EnΦΞ−1ΦTET
nEnΦΞ−1ΦTET

n )

= 1{G} tr(Ξ−1/2ΦTET
nEnΦΞ−1/2 · Ξ−1/2ΦTET

nEnΦΞ−1/2)

(a)

6 1{G} tr(Ξ−1/2ΦTET
nEnΞ−1/2Φ)‖Ξ−1/2ΦTET

nEnΦΞ−1/2‖op

6 4nk · 4n = 16n2k.

Above, (a) follows from Hölder’s inequality. Finally,

‖M‖op = 1{G}‖EnΦΞ−1ΦTET
n‖op = 1{G}‖Ξ−1/2ΦTET

nEnΦΞ−1/2‖op 6 4n.

We now plug these bounds in along with the choice of t = log(1/δ), which tells us that conditioned on En, with
probability at least 1− δ,

ηTMη 6 σ2
[
4nk + 8n

√
k log(1/δ) + 8n log(1/δ)

]
6 σ2 [8nk + 12n log(1/δ)]

= σ2n [8k + 12 log(1/δ)] .

We now remove the conditioning on En. Let t̄ := σ2n [8k + 12 log(1/δ)]. By the tower property,

P(ηTMη > t̄) = E[1{ηTMη > t̄}] = E[E[1{ηTMη > t̄} | En]] = E[P(ηTMη > t̄ | En)] 6 E[δ] = δ.

Theorem 1 is a corollary of Theorem 2 in the case where the distribution ν is uniform.

Theorem 1 (Excess risk). Fix any δ ∈ (0, 1). Suppose that n > 8deff(Φ) log(6k/δ). With probability at least
1− δ, the empirical risk minimizer Vφ,ŵ satisfies:

E(Vφ,ŵ) 6 ‖P⊥Φ V ‖2S,2 + 384c
deff(Φ)

n
‖P⊥Φ V ‖2S,2

+ 48σ2 2k + 3c

n
+

64

3

deff(Φ)

n2
‖P⊥Φ V ‖2∞c2,

where c = log(3/δ) and ‖·‖∞ denotes the usual supremum norm.

Proof. ν being uniform, we have ν = S. The result follows by plugging ν in Theorem 2.



Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc Bellemare

B PROOFS FOR SECTION 4

Lemma 1. Let P ∈ R|S|×|S| be a symmetric row stochastic matrix, and let γ ∈ (0, 1). Let σ(·) denote the set of
singular values of a matrix. We have that:

σ((I − γP )−1) ⊆
[

1
1+γ ,

1
1−γ

]
.

Proof. Let λ(·) denote the eigenvalues of a matrix. Because P is symmetric, we have that:

σ((I − γP )−1) =

{
1

1− γλ
: λ ∈ λ(P )

}
.

Because P is a row stochastic matrix, we have that the spectral radius of P satisfies ρ(P ) = 1, and therefore
λ(P ) ⊆ [−1, 1]. Hence:

1

1− γλ
∈ [1/(1 + γ), 1/(1− γ)].

Eigenstructure of the Star Graph (Subsection 4.2)

A random walk on the Star graph induces a rank-two transition matrix Pπ ∈ RS . We may write Pπ = v1e
T
S + eSv

T

S−1
where v is an all-ones vector except on its last coordinate where it takes value 0 and eS a one-hot vector taking
value 1 on its last coordinate. It is easy to prove by induction that

• for any k > 1, P 2k
π = vvT

S−1 + eSe
T
S

• for any k > 0, P 2k+1
π = Pπ

From this, it follows that

(I − γPπ)−1 = I +

∞∑
t=1

(γPπ)t

= I +
∑
2k>2

γ2kP 2k
π +

∑
2k+1>1

γ2k+1(Pπ)2k+1

= I +
∑
2k>2

γ2k(
vvT

S − 1
+ eSe

T
S) +

∑
2k+1>1

γ2k+1Pπ

= I +
γ2

1− γ2
(
vvT

S − 1
+ eSe

T
S) +

γ

1− γ2
Pπ.

Define η := γ
1−γ2 . The non-zero singular values of (I − γPπ)−1 are the square roots of the eigenvalues of

A = (I − γPπ)−1
(
(I − γPπ)−1

)T
. We have

A = (I − γPπ)−1
(
(I − γPπ)−1

)T
=
(
I + γηP 2

π + ηPπ
) (
I + γη(P 2

π )T + ηPT
π

)
= I +B,

where B := avvT + beSe
T
S + c(eSv

T + veTS) with a = 2ηγ+η2γ2

S−1 + η2, b = 2ηγ + η2γ2 + η2

S−1 and c = (η + η2γ) S
S−1 .

Moreover, if {λ1, ..., λk} are the eigenvalues of B then the eigenvalues of A are {1 + λ1, ..., 1 + λk}.

Consider the basis {eS , v}. For any a1, a2,

B(a1eS + a2v) = avvT(a1eS + a2v) + beSe
T
S(a1eS + a2v) + c(eSv

T + veTS)(a1eS + a2v)

= a1a〈v, eS〉v + a2a‖v‖22v + a1beS + a2b〈v, eS〉eS + c(a1〈v, eS〉eS + a1v + a2‖v‖22eS + a2〈v, eS〉v)

= (a1b+ ca1〈v, eS〉+ a2b〈v, eS〉+ a2c‖v‖22)eS + (a1a〈v, eS〉+ ca1 + a2〈v, eS〉+ a2a‖v‖22)v.



On the Generalization of Representations in Reinforcement Learning

Since ‖v‖22 = S − 1 and 〈v, eS〉 = 0, B has the representation in {eS , v} as:[
b c(S − 1)
c a(S − 1)

]
=

[
2ηγ + η2γ2 + η2

S−1 (η + η2γ)S

(η + η2γ) S
S−1 2ηγ + η2γ2 + η2(S − 1)

]
=

[
η2

S−1 (η + η2γ)S

(η + η2γ) S
S−1 η2(S − 1)

]
+ (2ηγ + η2γ2)I

= C + (2ηγ + η2γ2)I

Hence, the eigenvalues of C are given by 1
2

(
η2
(

(S − 1) + 1
S−1

)
±
√
η4
(

(S − 1) + 1
S−1

)2

+ 4(η + η2γ)2 S2

S−1 − 4η4

)
.

The non-zero singular values of (I − γPπ)−1 are thus 1 with multiplicity S − 2 and√√√√√1

2

η2

(
(S − 1) +

1

S − 1

)
±

√
η4

(
(S − 1) +

1

S − 1

)2

+ 4(η + η2γ)2
S2

S − 1
− 4η4

+ 2ηγ + η2γ2 + 1

For γ = 0.99 and S = 400, we can check numerically that the two extreme singular values are equal to 996 and
0.05 respectively which matches the spectrum obtained for the Star graph in Figure 2.

C EMPIRICAL EVALUATION: ADDITIONAL DETAILS

C.1 Graphical Structures

In this section, we study the generalization characteristics of the representations induced by the SVD of the
successor representation for several environment transition structures. We illustrate the different graphs over
which we define a random walk, studied in Subsection 4.2 as well as some new ones, in Figure 6.

Our experiment consists in evaluating the value function on these different transition structures when S = 400
states. We consider three different reward vectors rπ ∈ RS : the all ones vector, the one-hot feature vector eS ,
and a vector whose entries are drawn from zero-mean Gaussian distribution and normalized such that ‖rπ‖∞ = 1.
We then sampled a dataset D of n = 300 pairs (si, yi) where we performed a Monte Carlo rollout to obtain the
returns (yi)

n
i=1. The targets are the value functions induced by the random walk.

We are interested in comparing our generalization bound to the empirical excess risk on these domains. Our
bound looks at the regime n > deff(Fk). We choose k 6 n

2 as an heuristic way of achieving this. We report in
Figure 7 the approximation error (Figure 7 Left), the empirical excess risk (Figure 7 Middle) and the theoretical
excess risk (Figure 7 Right) obtained when using the representation φ = Fk on these different graph structures.

Star: Baird’s star graph (Baird, 1995) consists in S − 1 states which are the star corners and a state S which
is the star center. A random walk on this star graph induces a transition function such that all star corners

Figure 6: Top: Different graphical structures with S = 5 states from left to right, Star, Chain, Torus1d,
Disconnected, Fullyconnected. Bottom: Two-dimensional graphical structures with S = 9 states: from left to
right, Openroom and Torus2d.



Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc Bellemare

1 50 100 150 200 250 300 350
Number of features

0.00

0.02

0.04

0.06

0.08

Ap
pr

ox
im

at
io

n 
er

ro
r

S=400, MDP=StarMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

10−3

10−2

10−1

100

101

102

Em
pi

ric
al

 e
xc

es
s r

isk

n=300, S=400, MDP=StarMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

St
yl

ize
d 

ex
ce

ss
 ri

sk
 e

rro
r

n=300, S=400, MDP=StarMDP, gamma=0.99

all_ones
one_hot
gaussian

1 50 100 150 200 250 300 350
Number of features

0

10

20

30

40

50

Ap
pr

ox
im

at
io

n 
er

ro
r

S=400, MDP=Torus1dMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

10−3

10−1

101

103

105

107

Em
pi

ric
al

 e
xc

es
s r

isk

n=300, S=400, MDP=Torus1dMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

0

10

20

30

40

50

St
yl

ize
d 

ex
ce

ss
 ri

sk
 e

rro
r

n=300, S=400, MDP=Torus1dMDP, gamma=0.99
all_ones
one_hot
gaussian

1 50 100 150 200 250 300 350
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ap
pr

ox
im

at
io

n 
er

ro
r

S=400, MDP=Torus2dMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

10−4

10−3

10−2

10−1

100

101

Em
pi

ric
al

 e
xc

es
s r

isk
n=300, S=400, MDP=Torus2dMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

1.2

St
yl

ize
d 

ex
ce

ss
 ri

sk
 e

rro
r

n=300, S=400, MDP=Torus2dMDP, gamma=0.99
all_ones
one_hot
gaussian

1 50 100 150 200 250 300 350
Number of features

0

10

20

30

40

Ap
pr

ox
im

at
io

n 
er

ro
r

S=400, MDP=ChainMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

10−3

10−1

101

103

105

107

109

1011

Em
pi

ric
al

 e
xc

es
s r

isk

n=300, S=400, MDP=ChainMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

0

10

20

30

40

St
yl

ize
d 

ex
ce

ss
 ri

sk
 e

rro
r

n=300, S=400, MDP=ChainMDP, gamma=0.99
all_ones
one_hot
gaussian

1 50 100 150 200 250 300 350
Number of features

0

500

1000

1500

2000

2500

3000

3500

Ap
pr

ox
im

at
io

n 
er

ro
r

S=400, MDP=openroom, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

10−1

100

101

102

103

104

Em
pi

ric
al

 e
xc

es
s r

isk

n=300, S=400, MDP=openroom, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

0

500

1000

1500

2000

2500

3000

3500

St
yl

ize
d 

ex
ce

ss
 ri

sk
 e

rro
r

n=300, S=400, MDP=openroom, gamma=0.99
all_ones
one_hot
gaussian

1 50 100 150 200 250 300 350
Number of features

0

2000

4000

6000

8000

10000

Ap
pr

ox
im

at
io

n 
er

ro
r

S=400, MDP=DisconnectedMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

104

108

1012

1016

1020

1024

1028

1032

Em
pi

ric
al

 e
xc

es
s r

isk

n=300, S=400, MDP=DisconnectedMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

0

2000

4000

6000

8000

10000

St
yl

ize
d 

ex
ce

ss
 ri

sk
 e

rro
r

n=300, S=400, MDP=DisconnectedMDP, gamma=0.99

all_ones
one_hot
gaussian

1 50 100 150 200 250 300 350
Number of features

0.00

0.02

0.04

0.06

0.08

Ap
pr

ox
im

at
io

n 
er

ro
r

S=400, MDP=FullyConnectedMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

10−2

10−1

100

Em
pi

ric
al

 e
xc

es
s r

isk

n=300, S=400, MDP=FullyConnectedMDP, gamma=0.99

1 20 40 60 80 100 120 140
Number of features

0.0

0.2

0.4

0.6

0.8

1.0

1.2

St
yl

ize
d 

ex
ce

ss
 ri

sk
 e

rro
r

n=300, S=400, MDP=FullyConnectedMDP, gamma=0.99

all_ones
one_hot
gaussian

Figure 7: Left: Approximation error ‖PFkV π‖ given a one-hot, all-ones and Gaussian reward vector and for
MDPs with different graphical structures. Middle: Median empirical excess risk E(VFk,ŵ) given a one-hot,
all-ones and Gaussian reward vector. Right Theoretical excess risk for a representation Φk = Fk and a one-hot,
all-ones and Gaussian reward vector. The median is over 5 random seeds and shading gives 95% confidence
intervals.



On the Generalization of Representations in Reinforcement Learning

transition to the star center and the star center goes to the star corners. There are two extreme cases in terms of
rewards: either the reward is the same for all si, i 6= S, (e.g. the all ones reward vector or the one-hot vector eS)
or not. If the reward is the same for all si, i 6= S, then this is effectively a 2 state structure, so we only really
need 1 feature to distinguish between the value of the star corners and the value of the star center. However, if
the reward is different for all si(i 6= S) then we effectively have (S − 1) tuples (si, sS) which can be thought of as
independent graphical structures and we thus expect to need all the features to distinguish between their values.
We can see this in Figure 7 that for the all ones reward vector and the one-hot reward vector eS , the error with
k = 1 is very good but for the Gaussian reward, the error with k = 1 is high.

Chain: This is a S-state connected graph with 2 pendant states and (n− 2) states of degree two. The shapes of
the curves are similar to the Torus1d but we can notice that the errors are larger for each feature dimension k.
This is intuitive as for instance in the case of an all ones reward vector, the values are not the same for each state
due to the two end states of the chain, implying that more than one feature is needed to generalize the value
function.

Openroom: This is a two-dimensional grid with S states. States strictly inside the grid have four neighbours.
States belonging to one (reps. two) edges are of degree three (resp. two). As we observed in Figure 2, the
Openroom domain does not generalizes as well as the Torus2d which can be explained by their difference in
effective dimension.

Torus1d: This is a wrap-around version of the Chain. State i transitions to state (i+ 1) mod S and state (i− 1)
mod S. We can see that the curve showing the empirical excess risk (Middle) corresponding to the Gaussian
reward vector has a sweet spot which is also predicted by our theory. Moreover, when all states have the same
reward, their values are identical. Hence, in that case, only one feature is enough to have very low error which is
shown both empirically and by our theoretical bound on Figure 7.

Torus2d: It is a wrap-around version of the Openroom domain such that each state has four different neighbors.
We can see in Figure 2 that the Torus1d and Torus2d have similar effective dimension but the decay of the
singular values is faster in the case of Torus2d translating into smaller approximation errors in Figure 7 (Middle).
This results in overall lower excess risk for the Torus2d indicating it generalizes in general better than its
one-dimensional counterpart. Just like for the Torus1d, in the case of the Gaussian reward vector, there is a
non trivial optimal number of features k minimizing the excess risk, which we can notice is smaller than for the
Torus1d.

Disconnected: This graph consists of S states that self-transition. We do not expect the successor representation
to generalize well within this MDP as we cannot leverage knowledge from one feature state to another. This idea
was already captured by the effective dimension shown in Figure 2. The plots in Figure 7 corroborates this both
empirically and theoretically showing that its excess risk is indeed the highest across all transition structures
considered.

Fullyconnected: This is a connected graph of S states where each state can transition to (S − 1) states. The
first singular vector, which is the constant vector, is very good in terms of effective dimension but the second
vector has high effective dimension. When the rewards are the same in each state, their values are identical. In
that case, one feature is enough to distinguish between the S states leading to good generalization in that case.
Additional features must be misleading as the excess risks rises significantly from a number of features k = 2.

C.2 Full Atari Results

For all experiments, we used the hyperparameters provided by Dopamine (Castro et al., 2018).

Compute. For our experiments on Atari, we used Tesla V100 GPUs and P100 for all runs. To obtain the
pretrained deep representations for each deep RL agent, we ran a total of 5 runs / game × 60 games / algorithm ×
5 algorithms = 1500 runs. Each of these runs takes around 5 days. Additionally, for the auxiliary loss experiment,
we ran a total of 5 runs / game × 5 games / algorithm × 2 algorithms = 50 runs. In this setting, each run takes
around 1 day. Overall, the amount of compute is of 7050 days of GPU training.

We provide a per-game comparison of the effective dimension of the representations induced by DQN, DQN
(Adam), Rainbow, IQN and M-IQN throughout training in Figure 9 for all 60 Atari games in the online setting
to complement the results presented in Figure 4 in the main part of the paper.



Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc Bellemare

For the offline experiment presented in Figure 5, we use the same mini-batch sampled for the temporal-difference
loss LTD for computing the auxiliary loss Lφ. Our combined loss is then Lα = (1 − α)LTD + αLφ. We ran a
hyperparameter sweep over α on the five games displayed in Figure 8 and found that a value of α = 0.1 worked
well. We provide per-game training curves for IQN agents for 17 Atari games in Figure 10 as well as the effective
dimension (see Figure 11) of their induced representations computed with a batch size of 215. We also complement
these results with the rank of these representations as a function of training in Figure 12 and Figure 13 as a
proxy for the approximation error.

α= 0.01 α= 0.1 α= 0.0 α= 0.03

0 20 40 60 80 100
Gradient Updates (x 62.5k)

1000

2000

3000

Av
er

ag
e 

Sc
or

e

Asterix

0 20 40 60 80 100
Gradient Updates (x 62.5k)

0

20

40

60

Breakout

0 20 40 60 80 100
Gradient Updates (x 62.5k)

−20

−10

0

10

20
Pong

0 20 40 60 80 100
Gradient Updates (x 62.5k)

0

2500

5000

7500

10000

12500

Q*Bert

0 20 40 60 80 100
Gradient Updates (x 62.5k)

0

1000

2000

3000

4000

5000
Seaquest

Figure 8: Sweeping over various values of α when adding the auxiliary loss Lφ to IQN.



On the Generalization of Representations in Reinforcement Learning

DQN(Adam) Rainbow DQN(Nature) IQN M-IQN

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

AirRaid

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Alien

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Amidar

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Assault

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Asterix

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Asteroids

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Atlantis

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

BankHeist

0 50 100 150 200
Iterations

10
0

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

BattleZone

0 50 100 150 200
Iterations

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

BeamRider

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Berzerk

0 50 100 150 200
Iterations

10
0

5 × 10
−1

6 × 10
−1

7 × 10
−1

8 × 10
−1

9 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Bowling

0 50 100 150 200
Iterations

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Boxing

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Breakout

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Carnival

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Centipede

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

ChopperCommand

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

CrazyClimber

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

DemonAttack

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

DoubleDunk

0 50 100 150 200
Iterations

10
0

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

ElevatorAction

0 50 100 150 200
Iterations

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Enduro

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

FishingDerby

0 50 100 150 200
Iterations

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Freeway

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Frostbite

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Gopher

0 50 100 150 200
Iterations

10
0

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Gravitar

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Hero

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

IceHockey

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Jamesbond

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

JourneyEscape

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Kangaroo

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Krull

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

KungFuMaster

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

MontezumaRevenge

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

MsPacman

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

NameThisGame

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Phoenix

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Pitfall

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Pong

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Pooyan

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

PrivateEye

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Qbert

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Riverraid

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

RoadRunner

0 50 100 150 200
Iterations

10
0

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Robotank

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Seaquest

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Skiing

0 50 100 150 200
Iterations

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Solaris

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

SpaceInvaders

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

StarGunner

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Tennis

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

TimePilot

0 50 100 150 200
Iterations

10
0

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Tutankham

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

UpNDown

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Venture

0 50 100 150 200
Iterations

10
0

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

VideoPinball

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

WizardOfWor

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

YarsRevenge

0 50 100 150 200
Iterations

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Zaxxon

Figure 9: Average estimate (darker color) of the effective dimension normalized by the batch size used N = 215

on DQN(Nature), DQN(Adam), Rainbow, IQN and M-IQN on all 60 Atari games computed using 5 independent
runs. Individual runs are shown with a lighter color.



Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc Bellemare

0 50 100 150 200
Gradient Updates (x 62.5k)

1000

2000

3000

4000
Av

er
ag

e 
Sc

or
e

Asterix

0 50 100 150 200
Gradient Updates (x 62.5k)

500

750

1000

1250

1500

Beam Rider

0 50 100 150 200
Gradient Updates (x 62.5k)

0

20

40

60
Breakout

0 50 100 150 200
Gradient Updates (x 62.5k)

0

1000

2000

3000

4000

Av
er

ag
e 

Sc
or

e

Demon Attack

0 50 100 150 200
Gradient Updates (x 62.5k)

−25

−20

−15

−10
Double Dunk

0 50 100 150 200
Gradient Updates (x 62.5k)

0

250

500

750

1000

Enduro

0 50 100 150 200
Gradient Updates (x 62.5k)

−20

−15

−10

−5

Av
er

ag
e 

Sc
or

e

Ice Hockey

0 50 100 150 200
Gradient Updates (x 62.5k)

0

100

200

300

400

James Bond

0 50 100 150 200
Gradient Updates (x 62.5k)

0

500

1000

1500

2000

2500

Ms. Pac-Man

0 50 100 150 200
Gradient Updates (x 62.5k)

−20

−10

0

10

20

Av
er

ag
e 

Sc
or

e

Pong

0 50 100 150 200
Gradient Updates (x 62.5k)

0

5000

10000

15000
Q*Bert

0 50 100 150 200
Gradient Updates (x 62.5k)

0

10000

20000

30000

40000

Road Runner

0 50 100 150 200
Gradient Updates (x 62.5k)

0

1000

2000

3000

4000

5000

Av
er

ag
e 

Sc
or

e

Seaquest

0 50 100 150 200
Gradient Updates (x 62.5k)

200

400

600

800

1000
Space Invaders

0 50 100 150 200
Gradient Updates (x 62.5k)

0

200

400

600

800
Wizard Of Wor

0 50 100 150 200
Gradient Updates (x 62.5k)

5000

10000

15000

20000

25000

Av
er

ag
e 

Sc
or

e

Yars's Revenge

0 50 100 150 200
Gradient Updates (x 62.5k)

0

2000

4000

6000

8000
Zaxxon

IQN IQN + Feature Reg.

Figure 10: Per-game learning curves of IQN and IQN with feature regularization Lφ on 17 Atari games in the
offline RL setting.



On the Generalization of Representations in Reinforcement Learning

0 50 100 150 200
Iterations

10
−3

10
−2

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Asterix

0 50 100 150 200
Iterations

10
−4

10
−3

10
−2

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

BeamRider

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Breakout

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

DemonAttack

0 50 100 150 200
Iterations

10
−2

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

DoubleDunk

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Enduro

0 50 100 150 200
Iterations

10
−3

10
−2

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

IceHockey

0 50 100 150 200
Iterations

10
−2

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Jamesbond

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

MsPacman

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Pong

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Qbert

0 50 100 150 200
Iterations

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

RoadRunner

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Seaquest

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

SpaceInvaders

0 50 100 150 200
Iterations

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

WizardOfWor

0 50 100 150 200
Iterations

10
0

2 × 10
−1

3 × 10
−1

4 × 10
−1

6 × 10
−1

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

YarsRevenge

0 50 100 150 200
Iterations

10
−2

10
−1

10
0

Ef
fe

ct
iv

e 
D

im
en

si
on

 / 
N

Zaxxon

IQN IQN+Feature Reg.

Figure 11: Per-game effective dimension normalized by the batch size N = 215 of IQN and IQN with feature
regularization Lφ on 17 Atari games in the offline RL setting, using 5 independent runs. Individual runs are
shown with a lighter color.



Charline Le Lan, Stephen Tu, Adam Oberman, Rishabh Agarwal, Marc Bellemare

0 50 100 150 200
Iterations

10
1

10
2

10
3

R
an

k
Asterix

0 50 100 150 200
Iterations

10
2R

an
k

Breakout

0 50 100 150 200
Iterations

10
2

R
an

k

Pong

0 50 100 150 200
Iterations

10
2R

an
k

Seaquest

0 50 100 150 200
Iterations

10
2

2 × 10
2

3 × 10
2

4 × 10
2

6 × 10
2

R
an

k

Qbert

0 50 100 150 200
Iterations

10
1

10
2

R
an

k

SpaceInvaders

0 50 100 150 200
Iterations

10
1

10
2

R
an

k

Zaxxon

0 50 100 150 200
Iterations

10
2

2 × 10
2

3 × 10
2

4 × 10
2

6 × 10
2

R
an

k

YarsRevenge

0 50 100 150 200
Iterations

10
2

2 × 10
2

3 × 10
2

4 × 10
2

6 × 10
2

R
an

k

RoadRunner

0 50 100 150 200
Iterations

10
1

10
2

R
an

k

MsPacman

0 50 100 150 200
Iterations

10
−2

10
0

10
2

R
an

k

BeamRider

0 50 100 150 200
Iterations

10
1

10
2

10
3

R
an

k

Jamesbond

0 50 100 150 200
Iterations

10
2

R
an

k

Enduro

0 50 100 150 200
Iterations

10
1

10
2

R
an

k

WizardOfWor

0 50 100 150 200
Iterations

10
1

10
2

10
3

R
an

k

IceHockey

0 50 100 150 200
Iterations

10
1

10
2

10
3

R
an

k

DoubleDunk

0 50 100 150 200
Iterations

10
1

10
2

R
an

k

DemonAttack

IQN IQN + Feature Reg.

Figure 12: Per-game rank of IQN and IQN with feature regularization Lφ computed with a batch size N = 215 on
17 Atari games in the offline RL setting, using 5 independent runs. Individual runs are shown with a lighter color.



On the Generalization of Representations in Reinforcement Learning

IQN IQN + Feature Reg.

0 50 100 150 200
Number of Frames (in millions)

100

200

300

400

500

R
an

k 
 (I

nt
er

qu
ar

til
e 

M
ea

n)

Figure 13: Interquartile mean (IQM) (Agarwal et al., 2021b) for the rank of representations induced by IQN and
IQN with feature regularization Lφ computed with a batch size N = 215 on 17 Atari games in the offline setting.

D SOCIETAL IMPACT

This paper contributes to the fundamental understanding of state representations, characterizing their generaliza-
tion capacity. Our work suggests that algorithms making use of representations minimized by the excess risk
bound from Theorem 1 can improve their performance. However, when making the choice of such a representation,
we did not focus on other important factors like the computational cost of learning these representations, their
scalability or the biases these representations can propagate resulting into possible discriminatory outcomes or
dangerous behaviours. We suggest that practitioners should not only consider our generalization characterization
of representations but also ethical deliberations.


	INTRODUCTION
	BACKGROUND
	Statistical Learning Theory
	The Successor Representation

	CHARACTERIZING EXCESS RISK
	Illustrative Examples

	GENERALIZATION FOR THE SUCCESSOR REPRESENTATION
	Approximation Error: "426B30D PV "526B30D S, 22
	Effect of Transition Structure
	Analysis of the One-dimensional Torus

	EXPERIMENTS
	Comparing State Representations
	Deep Reinforcement Learning

	CONCLUSION
	PROOFS FOR SECTION 3
	PROOFS FOR SECTION 4
	EMPIRICAL EVALUATION: ADDITIONAL DETAILS
	Graphical Structures
	Full Atari Results

	SOCIETAL IMPACT

