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Abstract

Optimal transport (OT) is a popular measure
to compare probability distributions. How-
ever, OT suffers a few drawbacks such as (i)
a high complexity for computation, (ii) in-
definiteness which limits its applicability to
kernel machines. In this work, we consider
probability measures supported on a graph
metric space and propose a novel Sobolev
transport metric. We show that the Sobolev
transport metric yields a closed-form formula
for fast computation and it is negative defi-
nite. We show that the space of probability
measures endowed with this transport dis-
tance is isometric to a bounded convex set
in a Euclidean space with a weighted `p dis-
tance. We further exploit the negative def-
initeness of the Sobolev transport to design
positive-definite kernels, and evaluate their
performances against other baselines in doc-
ument classification with word embeddings
and in topological data analysis.

1 INTRODUCTION

Optimal transport (OT) is a powerful tool to compare
probability measures. OT is widely used in machine
learning (Courty et al., 2017; Bunne et al., 2019; Nad-
jahi et al., 2019; Peyré and Cuturi, 2019; Kuhn et al.,
2019; Titouan et al., 2019; Janati et al., 2020; Muzel-
lec et al., 2020; Paty et al., 2020; Altschuler et al.,
2021; Fatras et al., 2021; Klicpera et al., 2021; Le
et al., 2021b; Mukherjee et al., 2021; Nguyen et al.,
2021b; Scetbon et al., 2021; Si et al., 2021), statis-
tics (Mena and Niles-Weed, 2019; Weed and Berthet,
2019; Blanchet et al., 2021), computer graphics and vi-
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sion (Rabin et al., 2011; Solomon et al., 2015; Lavenant
et al., 2018; Nguyen et al., 2021a). However, evaluat-
ing the OT incurs a high computational complexity in
general (Peyré and Cuturi, 2019) which leads to several
proposals in the recent literature to address this draw-
back of OT, e.g., approximate using entropic regular-
ization (Cuturi, 2013), or exploit geometric structure
of supports (Rabin et al., 2011; Le et al., 2019; Le and
Nguyen, 2021). Among them, tree-Wasserstein (Evans
and Matsen, 2012; Le et al., 2019) (TW) leverages the
tree structure over supports to obtain a closed-form
for fast computation. However, the requirement about
tree structure for supports may be restricted in appli-
cations. In this work, we exploit the graph structure,
which appears in several applications, and propose a
scalable variant of OT to compare probability mea-
sures supported on a graph metric space.

Given any two distributions µ and ν supporting on
nodes of a tree with nonnegative weights, it is known
from Evans and Matsen (2012); Le et al. (2019) that
the 1-Wasserstein distance W1 w.r.t. the tree distance
(i.e., TW) admits a closed-form expression, which al-
lows a fast computation (i.e., its complexity is linear to
the number of edges in the tree). The key techniques
in deriving this formula are to leverage the dual formu-
lation ofW1 and exploit the fact that there is a unique
path between any two nodes on the tree. Due to a dif-
ferent nature of the dual formulation between p = 1
and p > 1, it is, unfortunately, unknown whether the
closed-form expression still holds for the p-Wasserstein
distance with ground tree metric when p > 1. It is
also not known if the closed-form for W1 with ground
tree metric can be extended to general graphs where
there are multiple paths connecting two nodes (i.e.,
graph metric ground cost). The approaches proposed
in Evans and Matsen (2012); Le et al. (2019); Le and
Nguyen (2021) do not resolve these questions, either.

Related Work. Our proposed Sobolev transport is
an instance of the integral probability metric (Müller,
1997) and closely related to W1 for probability mea-
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sures supported on a graph metric space. Similar to
TW, the Sobolev transport exploits the structure of
supports for a fast computation and has similar prop-
erties as the TW (e.g., both of them are negative def-
inite which is the key to build positive definite ker-
nels for applications with kernel machines). Moreover,
Sobolev transport has more flexibility and degrees of
freedom than TW since it requires a graph structure
rather than tree structure over supports.

We further note that the Sobolev transport leverages a
graph structure for probability measures supported on
a graph metric space, rather than a general graph over
supports. For example, the edge weight in the graph,
corresponding with a graph metric space, is a cost to
move from one node to the other node of that edge (i.e.,
the distance between two edge nodes), rather than an
affinity between these edge nodes of the graph used in
diffusion earth mover’s distance (Tong et al., 2021).

Contributions. We propose a novel distance,
named the Sobolev transport Sp of any order p ≥ 1,
to measure the distance between probability measures
supported on a graph metric space. Moreover,

• we show that Sp (i) admits a fast closed-form
computation and (ii) is negative definite. Con-
sequently, we can derive positive-definite kernels
using our proposed Sobolev transport distance Sp,
which can be applied for many kernel-dependent
frameworks in machine learning.

• when p = 1 and with a tree structure, we draw a
connection of our proposed Sobolev transport S1

to the 1-Wasserstein distance W1.

• we also prove that the space of probability mea-
sures with Sobolev transport metric Sp is isomet-
ric to a bounded convex set in a Euclidean space
with a weighted `p distance.

In Section 2, we provide the setup of our problem.
The Sobolev transport is formally introduced in Sec-
tion 3, and we discuss its nice properties in Section 4.
In Section 5, we illustrate empirically that the kernel
machines using our proposed Sobolev transport dis-
tance perform favorably compared to other baselines
in real-world applications. Proofs are placed in the
supplementary (Section A). Furthermore, we have re-
leased code for our proposals.1

2 PRELIMINARIES

Let G = (V,E) be an undirected and connected graph
with positive edge lengths {we}e∈E . We consider a

1https://github.com/lttam/SobolevTransport

physical graph in the sense that V is a subset of the
vector space Rn and each edge e ∈ E is the standard
line segment in Rn connecting the two end-points of e.
The most important case for our applications is when
we coincides with the Euclidean length of the edge e.

Henceforth, by mentioning the graph G, we mean the
set of all nodes V together with all points forming
the edges E.2 This general consideration allows us
to work with a continuous setting to derive a closed-
form formula for a newly proposed transport distance.
Notice that we can canonically measure the weighted
length for any path in G whose end-points might not
be nodes in V . Indeed, for any two points x and y
belonging to the same edge e = 〈u, v〉 connecting two
nodes u and v, we can express x = (1 − s)u + sv and
y = (1− t)u+ tv for some numbers t, s ∈ [0, 1]. Then,
the length of the path connecting x and y along edge e
(i.e., the line segment 〈x, y〉) is defined by |t−s|we. The
length for an arbitrary path in G is defined similarly
by breaking down into pieces and summing over their
corresponding lengths.

We impose on G the following graph metric d: for ev-
ery x, y ∈ G, d(x, y) equals to the length of the short-
est path on G between x and y. Because the edges
are undirected and the lengths {we}e∈E are positive,
it is easy to show that d satisfies the non-negativity,
the symmetry and the triangle inequality properties.
Thus, d, by construction, is a metric.

Further, we assume that G satisfies the following
uniqueness property of the shortest paths.

Assumption 2.1 (Unique-path root node). There ex-
ists a root node z0 ∈ V such that for every x ∈ G,
d(x, z0) is attained by a unique shortest path connect-
ing x and z0.

Recall that a graph is geodetic if for every pair of
nodes the shortest path between them is unique. Thus,
geodetic graphs are special examples satisfying As-
sumption 2.1. An example of geodetic graph is given
in Figure 1.

For 1 ≤ p ≤ ∞ and for a nonnegative Borel mea-
sure λ on G, let Lp(G, λ) denote the space of all
Borel measurable functions f : G → R satisfying∫
G |f(y)|pλ(dy) <∞. Two functions f1, f2 ∈ Lp(G, λ)

are considered to be the same if f1(x) = f2(x) for λ
almost every x in G. Then, Lp(G, λ) is a normed space
with the norm defined by

‖f‖Lp(G,λ) :=
(∫

G
|f(y)|pλ(dy)

) 1
p

.

2I.e., the collection of all points in Rn belongs to one of
the edges.
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Figure 1: An illustration for a geodetic graph with
10 nodes {xi}10

i=1 and 15 edges {ej}15
j=1 where each

edge weight equals to one, i.e., wej = 1,∀j. For
any xi, xj , there is a unique shortest path between
them, with a length 2. Let x1 be the unique-path root
node (i.e., z0 = x1) and G̃ be a subgraph contain-
ing 3 nodes {x6, x8, x9} and 2 edges {e12, e15}, then

Λ(x6) = γ(e6) = G̃.

Throughout the paper, we use 〈x1, x2〉 to denote the
line segment in Rn connecting two points x1, x2, while
(x1, x2) means the same line segment but without its
two end-points. The symbol [z0, y] denotes the short-
est path in G connecting z0 and y ∈ G. Under As-
sumption 2.1, [z0, y] is a unique path. Also, P(G) rep-
resents the set of all Borel probability measures on G.
The conjugate of a number 1 ≤ p ≤ ∞ is denoted by
p′. This is the number in [1,∞] satisfying 1

p + 1
p′ = 1.

In case p = 1, we have p′ =∞. Given x ∈ G, define

Λ(x) := {y ∈ G : x ∈ [z0, y]}. (2.1)

Notice that Λ(x) is always non-empty, and x ∈ Λ(x).
On the other hand, let γe denote the collection of all
points y ∈ G such that the unique shortest path con-
necting y and z0 contains the edge e. That is,

γe := {y ∈ G : e ⊂ [z0, y]}. (2.2)

In Figure 1, we show a computation for Λ(x) and γe.
Furthermore, we write |E| and |V | for the cardinality
of sets E and V respectively. For a measure µ, let
supp(µ) denote the set of supports of µ.

3 SOBOLEV TRANSPORT
DISTANCE

In this section, we define an instance of integral proba-
bility metrics between probability distributions on the
graph. Our definition is inspired by the dual form of
the 1-Wasserstein distance W1, and by Mroueh et al.
(2018); Xu et al. (2021). Instead of using the Lip-
schitz constraint for the critic as in W1, we relax it
by considering the constraint in a Sobolev space. We
first propose a generalized version of the fundamental
theorem of calculus, which defines the derivative of a
function at any point x ∈ G dependent on the shortest
path from the root node z0 to x.

Definition 3.1 (Graph-based Sobolev space). Let λ
be a nonnegative Borel measure on G, and let 1 ≤
p ≤ ∞. A continuous function f : G → R is said to
belong to the Sobolev space W 1,p(G, λ) if there exists a
function h ∈ Lp(G, λ) satisfying

f(x)− f(z0) =

∫
[z0,x]

h(y)λ(dy) ∀x ∈ G. (3.1)

Such function h is unique in Lp(G, λ) and is called the
graph derivative of f w.r.t. the measure λ. Hereafter,
this graph derivative of f is denoted f ′.

The integral in Definition 3.1 is a line integral. We now
formally define the Sobolev transport distance between
two distributions supported on G.

Definition 3.2 (Sobolev transport distance on
graphs). Let λ be a nonnegative Borel measure on
G. Let 1 ≤ p ≤ ∞ and let p′ be its conjugate, i.e.,
the number p′ ∈ [1,∞] satisfying 1

p + 1
p′ = 1. For

µ, ν ∈ P(G), we define

Sp(µ, ν) :=

{
sup

[ ∫
G f(x)µ(dx)−

∫
G f(x)ν(dx)

]
s.t. f ∈W 1,p′(G, λ), ‖f ′‖Lp′ (G,λ) ≤ 1.

By definition, the quantity Sp(µ, ν) depends on the
measure λ and on the choice of the unique-path root
node z0 via the graph derivative f ′; however, we omit
these dependencies when no confusion may arise. The
role of λ will be displayed in Section 4 when we
make a connection between our transport distance and
the Wasserstein distance. Specifically, if p = 1 and
λ([z0, x]) = d(z0, x), then the constrain for f in Defi-
nition 3.2 is the same as |f(x) − f(z0)| ≤ d(z0, x) for
every x ∈ G. Thus, the Sobolev transport distance S1

coincides with the 1-Wasserstein distance in this par-
ticular case. The next result asserts that Sp(µ, ν) is
an integral probability metric on the graph G.

Lemma 3.3 (Metrization). For any 1 ≤ p ≤ ∞, the
Sobolev transport Sp is a metric on the space P(G).

The next result gives a comparison between Sobolev
transport distances with different exponent p.

Proposition 3.4 (Upper bound). Assume that λ is a
finite and nonnegative Borel measure on G. Then, for
any 1 ≤ p < q ≤ ∞ with conjugates 1 ≤ q′ < p′ ≤ ∞,
we have

Sp(µ, ν) ≤ λ(G)
1
q′−

1
p′ Sq(µ, ν).

Our proposed Sobolev transport distance Sp admits a
closed-form formula as follows.

Proposition 3.5 (Closed-form formula). Let λ be any
nonnegative Borel measure on G, and let 1 ≤ p ≤ ∞.
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Then, we have

Sp(µ, ν)p =

∫
G
|µ(Λ(x))− ν(Λ(x))|p λ(dx),

where Λ(x) is the subset of G defined by (2.1).

Sketch of Proof of Proposition 3.5. By using rep-
resentation (3.1) and employing Fubini’s theorem to
interchange the order of integration, we have for any
function f ∈ W 1,p′(G, λ) and any measure σ ∈ P(G)
that∫

G
f(x)σ(dx) = f(z0)σ(G) +

∫
G
f ′(y)σ(Λ(y))λ(dy).

This together with the definition of distance Sp and
by taking g = f ′, we deduce that Sp(µ, ν) is the same
as

sup
‖g‖

Lp
′
(G,λ)≤1

∫
G
g(x)

[
µ(Λ(x))− ν(Λ(x))

]
λ(dx).

This last optimization problem admits a maximizer

g∗(x) = |r(x)|p−2r(x)

‖r‖p−1
Lp(G,λ)

with r(x) := µ(Λ(x)) − ν(Λ(x)),

and the conclusion of the proposition follows.

In the particular case where the probability distribu-
tions µ and ν are supported only on nodes V , the
expression in Proposition 3.5 can be rewritten more
explicitly using the definition of γe in (2.2).

Corollary 3.6 (Discrete case). Assume that the mea-
sure λ has no atom, i.e., λ({x}) = 0 for every x ∈ G.
Then, if both measures µ and ν in P(G) are supported
on V , we have

Sp(µ, ν)p =
∑
e∈E

λ(e)
∣∣µ(γe)− ν(γe)

∣∣p. (3.2)

Remark 3.7 (Two-step computational procedure).
Our calculation of the Sobolev transport distance be-
tween µ and ν can be split into two separate steps. The
first step is the preprocessing process involving only the
graph structure and nothing about the probability dis-
tributions, and is done only once regardless how many
pairs (µ, ν) that we have to measure. In this step by
identifying shortest paths (e.g., Dijkstra algorithm), we
calculate the set γe for each edge e ∈ E. In fact, any
edge e with γe = ∅ does not contribute to the com-
putation of the Sobolev transport. Therefore, we can
remove such edge e for the summation over edges in E
(in Equation (3.2)). In the second step, we just simply
use the result in Step 1 and Corollary 3.6 to compute
the Sobolev transport distance.

Complexity. For preprocessing, the complexity of
Dijkstra for shortest paths from the root node z0 to
all other supports (or vertices) is O(|E|+ |V | log |V |).

A key observation is that for any support point z of µ,
i.e., z ∈ supp(µ), its mass contributes to µ(γe) if and
only if the edge e is a subset of the shortest path from
the root node z0 to z, i.e., e ⊂ [z0, z]. Let Eµ,ν be a
subset of E, defined as:

Eµ,ν :={e∈E | ∃z∈(supp(µ) ∪ supp(ν)), e ⊂ [z0, z]},

then we can rewrite Sp(µ, ν)p in (3.2) as

Sp(µ, ν)p =
∑

e∈Eµ,ν

λ(e)
∣∣µ(γe)− ν(γe)

∣∣p. (3.3)

Therefore, the computation of Sobolev transport
Sp(µ, ν) is linear to the number of edges in Eµ,ν .

4 PROPERTIES OF SOBOLEV
TRANSPORT

This section shows a connection between our Sobolev
transport distance and the Wasserstein distance when
the measure λ is chosen as the length measure of
the graph. We also demonstrate that the space of
distributions P(V ) is isometric to a bounded convex
set in a Euclidean space. We then prove that for
1 ≤ p ≤ 2, both Sp and its p-power Spp are negative
definite which allows us to build positive definite ker-
nels upon Sobolev transport. We also propose a slice
variant for Sobolev transport.

4.1 A Connection to Wasserstein Distance

We will specifically construct a measure λ∗ under
which the distance S1 is the same as the 1-Wasserstein
distance W1 w.r.t. the graph metric d.

Definition 4.1 (Length measure). Let λ∗ be the
unique Borel measure on G such that the restriction
of λ∗ on any edge is the length measure of that edge.
That is, λ∗ satisfies:

i) For any edge e connecting two nodes u and v, we
have λ∗(〈x, y〉) = (t − s)we whenever x = (1 −
s)u + sv and y = (1 − t)u + tv for s, t ∈ [0, 1)
with s ≤ t. Here, 〈x, y〉 is the line segment in e
connecting x and y.

ii) For any Borel set F ⊂ G, we have

λ∗(F ) =
∑
e∈E

λ∗(F ∩ e).

The next lemma asserts that λ∗ is closely connected to
the graph metric d, and thus justifies the terminology
of a length measure.
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Lemma 4.2 (λ∗ is the length measure on graph). Sup-
pose that G has no short cuts, namely, any edge e is a
shortest path connecting its two end-points. Then, λ∗

is a length measure in the sense that

λ∗([x, y]) = d(x, y)

for any shortest path [x, y] connecting x and y. In
particular, λ∗ has no atom.

The measure λ∗ is special as it is linked to the metric
distance. For trees, S1 defined w.r.t. λ∗ is the same
as the Wasserstein distance with cost d(x, y).

Corollary 4.3 (Tree topology). Suppose that the
graph G is a tree and the distance S1 is defined
w.r.t. the measure λ∗. Then, we have

S1 ≡ W1,

where W1 is the Wasserstein distance3 with cost d.

We do not know the exact relationship between Sp
and the p-Wasserstein distance Wp when p > 1. How-
ever, the following result shows that Sp is always lower
bounded by W1.

Lemma 4.4 (Bounds). Suppose the graph G is a tree
and the distance Sp is defined w.r.t. the measure λ∗.
Then, for any 1 ≤ p ≤ ∞, we have

W1(µ, ν) ≤ λ∗(G)
1
p′ Sp(µ, ν).

4.2 Isometry Between P(V ) and a Bounded
Convex Set in a Euclidean Space

Assume that V = {z0 ≡ x1, x2, ..., xn}. For a node xi,
let N(xi) denote the collection of all neighbor nodes
of xi, and let

N ′(xi) :=
{
v ∈ N(xi) : d(v, z0) = d(xi, z0) +w〈xi,v〉

}
.

Also, for 2 ≤ i ≤ n, let x̂i denote the unique node
x ∈ N(xi) such that the shortest path [z0, xi] passes
through x, i.e., x ∈ [z0, xi].

Let us now take a closer look at the feature map

ρ ∈ P(V ) 7−→ α := (ρ(γe ∩ V ))e∈E ∈ Rm.

Observe that the representation vector α = (αe)e∈E
satisfies αe ≥ 0, αe = 0 if γe = ∅ and∑

e=〈x1,v〉:v∈N(x1)

αe ≤ 1,

∑
e=〈xi,v〉:v∈N ′(xi)

αe ≤ α〈x̂i,xi〉 ∀i = 2, ..., n.

3The definition of W1 is recalled in the supplementary.

Hereafter we use the convention that if N ′(xi) = ∅,
then the corresponding summation is interpreted as
zero. We note that N ′(xi) = ∅ happens precisely
when there is no shortest path from other nodes to z0

that passes through xi (this, in particular, occurs for
nodes in the “last level”).

Let K denote the set of all vectors α ∈ Rm having the
above specified properties. Clearly, this is a bounded
and convex set which is closed w.r.t. the Euclidean
metric in Rm. In the next proposition, we assume
that the distance Sp is defined w.r.t. the measure λ∗

defined in Section 4.1. This result shows that there
is a one-to-one correspondence between P(V ) and the
set K.

Proposition 4.5 (P(V ) isometric to K). The map

ρ ∈ P(V ) 7−→ α := (ρ(γe ∩ V ))e∈E ∈ K (4.1)

is one-to-one and onto. In addition, for any α =
(αe)e∈E ∈ K, if we let

a1 := 1−
∑
e=〈x1,v〉:v∈N(x1) αe,

ai := α〈x̂i,xi〉 −
∑
e=〈xi,v〉:v∈N ′(xi) αe

(4.2)

for i = 2, ..., n, then ρ :=
∑n
i=1 a

iδxi ∈ P(V ). Finally,
the distance Sp on P(V ) is the same as the weighted
`p distance on K, that is,

Sp(ρ1, ρ2) =
(∑
e∈E

we
∣∣α1
e − α2

e

∣∣p) 1
p

,

with αi := α(ρi) for i = 1, 2.

The isometry is an useful properties of the Sobolev
transport since any problem on the space of proba-
bility measures with Sobolev transport metric Sp can
be recasted as a corresponding problem on a bounded
convex set of vectors in a Euclidean space with `p met-
ric.

4.3 Kernels for Sobolev Transport

Our next result about negative definiteness4 is the key
to build positive definite kernels upon Sobolev trans-
port for kernel machines.

Proposition 4.6 (Negative definiteness). Suppose
that the Sobolev transport distance Sp is defined w.r.t.
the length measure λ∗ on graph G for probability mea-
sures in P(V ), then for 1 ≤ p ≤ 2, Sp and Spp are
negative definite.

From Proposition 4.6 and following (Berg et al., 1984,
Theorem 3.2.2, pp.74), given t > 0, 1 ≤ p ≤ 2 and

4We follow the definition of negative-definiteness in
(Berg et al., 1984, pp. 66–67). A review about kernels
is placed in the supplementary (Section B).
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µ, ν ∈ P(V ), the kernels

kSp(µ, ν) := exp(−tSp(µ, ν)),

kSpp (µ, ν) := exp(−tSpp (µ, ν))

are positive definite.

4.4 Sliced Sobolev Transport Distance

As remark after Definition 3.2, our Sobolev transport
distance depends on the choice of the root node z0

satisfying Assumption 2.1. When there are multiple
possible root nodes, each choice of z0 imposes its own
geometry on the graph, which characterizes differently
the graph derivative f ′ of the function f . To alleviate
the dependence in this case, and inspired by the slic-
ing approach in optimal transport (Rabin et al., 2011;
Le et al., 2019; Le and Nguyen, 2021) for practical
applications, we propose the sliced Sobolev transport
distance that fuses the Sobolev transport distance in
Section 3. Towards this end, let Z0 ⊂ V be a (sub)set
of unique-path root nodes:

Z0 := {z0 ∈ V : z0 satisfies Assumption 2.1}.

The sliced Sobolev transport averages over a sampling
distribution η on Z0, and is formally defined as follows.

Definition 4.7 (Sliced Sobolev transport). Let η be
a probability measure on Z0. The sliced Sobolev trans-
port is defined as

Sηp (µ, ν):=

∫
Z0

Sz0p (µ, ν)η(dz0) =
∑
z0∈Z0

η({z0})Sz0p (µ, ν),

where Sz0p is the Sobolev transport distance in Defini-
tion 3.2 that is specific to the choice of the unique-path
root node z0.

Because Sηp is a convex combination of Sz0p , we can
readily verify that Sηp is also a distance. The proof is
relegated to the supplementary.

Proposition 4.8 (Metric). The sliced Sobolev trans-
port Sηp is a distance on P(G).

5 NUMERICAL EXPERIMENTS

We evaluate the performance of our proposed Sobolev
transport on two applications: (i) document classifi-
cation with word embedding and (ii) topological data
analysis (TDA).

Probability Measures Representation. We first
describe probability measure representation for docu-
ments with word embedding in document classification
and persistent diagrams for geometric structured data
in TDA.

• Documents with Word Embedding. We con-
sider each document as a probability measure
where each word and its frequency in the doc-
ument are regarded as a support and a corre-
sponding weight in the probability measure re-
spectively. We then follow the approach in
Kusner et al. (2015); Le et al. (2019) to use
word2vec word embedding (Mikolov et al., 2013)
pretrained on Google News5 for documents. The
pretrained word2vec contains about 3 millions
words/phrases. Consequently, each word in a doc-
ument is mapped into a vector in R300. We also
remove SMART stop words (Salton and Buckley,
1988) or words in documents which are not avail-
able in the pretrained word2vec.

• Persistence Diagrams. TDA provides a power-
ful toolkit to analyze complicated geometric struc-
tured data, e.g., object shape, material data, or
linked twist maps (Adams et al., 2017; Le et al.,
2019). TDA leverages algebraic topology meth-
ods (e.g., persistence homology) to extract robust
topological features (e.g., connected components,
rings, cavities) and yield a multiset of points in
R2 which is also known as persistence diagram
(PD). The two coordinates of a point in PD are
corresponding to the birth and death time of a
topological feature respectively. Therefore, each
point in PD summarizes a life span of a particu-
lar topological feature. We regard each PD as an
empirical measure where each 2-dimensional point
in PD is considered as a support with a uniform
weight in the empirical measure.

Note that supports in document classification are in a
high-dimensional space (i.e., R300) while supports in
TDA are in a low-dimensional space (i.e., R2). There-
fore, these applications allow us to observe how the
dimension of supports affects performances. We next
describe various graphs with different sizes (i.e., given
graph metrics which we assume in applications) con-
sidered in our experiments.

Graph Metric Construction. For simplicity, we
use a random graph metric for supports of probability
measures as follow:

We first apply a clustering method, e.g., the farthest-
point clustering, to partition supports of probability
measures into at most M clusters.6 We assign V to
be the set of centroids of these clusters. For edges, we
consider two options: randomly choose (i) M log(M)

5https://code.google.com/p/word2vec
6We set M for the number of clusters when running the

clustering method. Depending on input data, we obtain at
most M clusters.
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Figure 2: SVM results and time consumption for kernel matrices in document classification with graph GLog.
For each dataset, the numbers in the parenthesis are the number of classes; the number of documents; and the
maximum number of unique words for each document respectively.
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Figure 3: SVM results and time consumption for kernel matrices in document classification with graph GSqrt.

edges or (ii) M3/2 edges. For an edge e, its corre-
sponding weight we is computed by the Euclidean dis-
tance between the two nodes of that edge e. Let Ẽ
be the set of those randomly sampled edges and nc
be the number of connected components in the graph
G̃(V, Ẽ), we then randomly add (nc − 1) more edges
between these nc connected components to construct
a connected graph G from G̃. Denote Ec as the set
of these (nc − 1) added edges and E = Ẽ ∪ Ec, then
G(V,E) is the considered graph.

We next describe baseline methods and detailed setup
for our experiments.

Baselines and Setup. We consider two typical
baseline distances based on OT theory for probabil-
ity measures supported on a graph metric space: (i)

the optimal transport (OT) dOT with a graph met-
ric cost (i.e., an instance of min-cost flow problem via
Beckman formulation (Peyré and Cuturi, 2019, Sec-
tion 6.3)) and (ii) the tree-Wasserstein (Le et al., 2019)
(TW) dTW where the tree structure is randomly sam-
pled from the graph G. In all experiments, we con-
sider the kernels kS1 and kS2

2
for the proposed Sobolev

transport distances and baseline kernels kOT(·, ·) :=
exp(−tdOT(·, ·)) and kTW(·, ·) := exp(−tdTW(·, ·)) for
the corresponding OT distance dOT and TW distance
dTW respectively.

Following Le et al. (2019), we evaluate those kernels
with support vector machine (SVM) for document
classification with word embedding and some tasks in
TDA, e.g., the orbit recognition and object shape clas-
sification. Note that kS1 , kS2

2
and kTW are positive
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definite, but kOT is empirically indefinite.7 Similar as
the approach in Le et al. (2019), we regularize for the
Gram matrix of kOT by adding a sufficiently large di-
agonal term. For multi-class classification, we employ
1-vs-1 strategy with Libsvm.8

For each dataset, we randomly split it into 70%/30%
for training and test with 10 repeats. We typically
choose hyper-parameters via cross validation. For ker-
nel hyperparameter, we choose 1/t from {qs, 2qs, 5qs}
with s = 10, 20, . . . , 90 where qs is the s% quantile of a
subset of corresponding distances observed on a train-
ing set. For SVM regularization hyperparameter, we
choose it from {0.01, 0.1, 1, 10, 100}. We also consider
a various number of nodes M = 102, 103, 104, 4 × 104

for G. Reported time consumption for all methods
includes their corresponding preprocessing, e.g., com-
pute shortest paths for Sobolev transport and OT, or
sample random tree structure from graph for TW.

5.1 Document Classification

We consider 4 document datasets: TWITTER, RECIPE,
CLASSIC and AMAZON. The statistical characteristics of
these datasets are summarized in Figure 2.

5.2 Topological Data Analysis (TDA)

For TDA, we consider the orbit recognition and the
object shape classification.

5.2.1 Orbit Recognition

We consider the synthesized dataset as in Adams et al.
(2017) for link twist map which are discrete dynamical
systems to model flows in DNA microarrays (Hertzsch
et al., 2007). There are 5 classes of orbits in the
dataset. Following Le and Yamada (2018), for each
class, we generated 1000 orbits where each orbit con-
tains 1000 points. We consider the 1-dimensional topo-
logical features (i.e., connected components) for PD
which are extracted with Vietoris-Rips complex filtra-
tion (Edelsbrunner and Harer, 2008). The statistical
characteristics are summarized in Figure 4.

5.2.2 Object Shape Classification

We consider a subset of MPEG7 dataset (Latecki et al.,
2000) having 10 classes and each class has 20 sam-
ples as in Le and Yamada (2018). For simplicity,
we follow the approach in Le and Yamada (2018) to

7Generally, OT spaces are not Hilbertian (Peyré and
Cuturi, 2019, Section 8.3). Additionally, we also empiri-
cally observe that the Gram matrix for kOT has negative
eigenvalues.

8https://www.csie.ntu.edu.tw/∼cjlin/libsvm/

extract 1-dimensional topological features (i.e., con-
nected components) for PD with Vietoris-Rips com-
plex filtration (Edelsbrunner and Harer, 2008).
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Figure 4: SVM results and time consumption for ker-
nel matrices in TDA with graph GLog. For each
dataset, the numbers in the parenthesis are respec-
tively the number of PD; and the maximum number
of points in PD.
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Figure 5: SVM results and time consumption for ker-
nel matrices in TDA with graph GSqrt

5.3 SVM Results, Time Consumption and
Discussions

We report results for graphs with M = 104 for all
datasets except MPEG7 where M = 103 due to its small
size, and for both cases: (i) with M log(M) edges and
(ii) with M3/2 edges, and we denote those graphs as
GLog and GSqrt respectively.

In Figures 2 and 3, we illustrate the SVM results
for document classification with word embedding with
GLog and GSqrt, respectively. For TDA, we illustrate
the results in Figures 4 and 5 for GLog,GSqrt respec-
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Figure 6: SVM results and time consumption for kernel matrices of slice variants for Sobolev transport and
tree-Wasserstein in document classification with graph GLog.

tively. The performances of kS1 , kS2
2

compare favor-
ably with those of kOT and kTW. Moreover, the time
consumption of the Gram matrices for kS1 , kS2

2
is com-

parative with that of kTW and is several-order faster
than that of kOT. Especially, in Orbit dataset, it took
about more than 39 hours to compute the Gram ma-
trix for kOT, but only about 25 minutes for either kS1
or kS2

2
. Recall that kOT is indefinite, this infiniteness

may affect the performances of kOT in applications (in
most of the experiments except the ones in RECIPE

dataset with GLog and in Orbit dataset with GSqrt).

In Figure 6, we illustrate performances of slice vari-
ants for kS1 , kS2

2
and kTW for document classification

with word embedding with GLog. When we use more
slices, the performances are improved. However, its
computation is also linearly increased.

Further results are placed in the supplementary (Sec-
tion B).

6 CONCLUSION

In this paper, we have presented a scalable variant
of optimal transport, namely the Sobolev transport,
for probability measures supported on a graph (i.e.,
graph metric ground cost). By exploiting the graph-
based Sobolev space structure, the proposed Sobolev
transport distance admits a closed form solution for a
fast computation. Moreover, the Sobolev transport is
negative definite which allows to build positive definite
kernels required in many kernel machine frameworks.
We believe that exploiting local structures on supports
such as tree or graph can improve the scalability for
several optimal transport problems.
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Rabin, J., Peyré, G., Delon, J., and Bernot, M. (2011).
Wasserstein barycenter and its application to tex-
ture mixing. In International Conference on Scale
Space and Variational Methods in Computer Vision,
pages 435–446.

Salton, G. and Buckley, C. (1988). Term-weighting
approaches in automatic text retrieval. Information
Processing & Management, 24(5):513–523.

Scetbon, M., Cuturi, M., and Peyré, G. (2021). Low-
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Supplementary Material:
Sobolev Transport: A Scalable Metric for Probability Measures with

Graph Metrics

The supplementary is organized into two parts.

• In Section A, we provide the proofs for the theoretical results in the main manuscript.

• In Section B, we briefly review important aspects in our work, provide further experimental results and
discussions about our proposed Sobolev transport.

We note that we have released code for our proposals at

https://github.com/lttam/SobolevTransport.

A PROOFS

A.1 Proofs and Results for Section 3

For Lemma 3.3.

Proof of Lemma 3.3. By taking f = 0 in Definition 3.2, we see that Sp(µ, ν) ≥ 0 for any (µ, ν), thus Sp is
non-negative. Assume that Sp(µ, ν) = 0. Then we must have∫

G
f(x)µ(dx)−

∫
G
f(x)ν(dx) = 0 (A.1)

for all f ∈ W 1,p′(G, λ) satisfying ‖f ′‖Lp′ (G,λ) ≤ 1. Indeed, since otherwise there exists f̃ ∈ W 1,p′(G, λ) with

‖f̃ ′‖Lp′ (G,λ) ≤ 1, and ∫
G
f̃(x)µ(dx)−

∫
G
f̃(x)ν(dx) < 0.

Then by taking f = −f̃ in Definition 3.2, we see that Sp(µ, ν) > 0 which contradicts the assumption Sp(µ, ν) = 0.
Thus (A.1) holds. It now follows from (A.1) that∫

G
f(x)µ(dx) =

∫
G
f(x)ν(dx) for every f ∈W 1,p′(G, λ),

giving µ = ν as desired. To prove the symmetry of Sp(µ, ν), observe that if f ∈W 1,p′(G, λ) with ‖f ′‖Lp′ (G,λ) ≤ 1,

then we also have−f ∈W 1,p′(G, λ) with ‖−f ′‖Lp′ (G,λ) = ‖f ′‖Lp′ (G,λ) ≤ 1. As a consequence, Sp(µ, ν) = Sp(ν, µ).

It remains to show that Sp satisfies the triangle inequality. For this, let µ, ν, σ ∈ P(G). Then for any function

f ∈W 1,p′(G, λ) satisfying ‖f ′‖Lp′ (G,λ) ≤ 1, we have∫
G
f(x)µ(dx)−

∫
G
f(x)ν(dx) =

[ ∫
G
f(x)µ(dx)−

∫
G
f(x)σ(dx)

]
+
[ ∫

G
f(x)σ(dx)−

∫
G
f(x)ν(dx)

]
≤ Sp(µ, σ) + Sp(σ, ν).

This implies that Sp(µ, ν) ≤ Sp(µ, σ)+Sp(σ, ν). We therefore conclude that Sp is a metric on the space P(G).

https://github.com/lttam/SobolevTransport
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For Proposition 3.4.

Proof of Proposition 3.4. Let f ∈ W 1,p′(G, λ) be such that ‖f ′‖Lp′ (G,λ) ≤ 1. Since q′ < p′ and λ(G) < +∞, it

follows from Jensen’s inequality that f ′ ∈ Lq′(G, λ). Now define

g(x) := af(x) with a := λ(G)
1
p′−

1
q′ .

Then according to Definition 3.2 we have g ∈W 1,q′(G, λ) with g′(x) = af ′(x). Hence by using Jensen’s inequality
we obtain ( 1

λ(G)

∫
G
|f ′(x)|q

′
λ(dx)

) p′
q′ ≤ 1

λ(G)

∫
G
|f ′(x)|p

′
λ(dx),

which yields

‖g′‖Lq′ (G,λ) = a‖f ′‖Lq′ (G,λ) ≤ a λ(G)
1
q′−

1
p′ ‖f ′‖Lp′ (G,λ)

= ‖f ′‖Lp′ (G,λ) ≤ 1.

Therefore,

a
[ ∫

G
f(x)µ(dx)−

∫
G
f(x)ν(dx)

]
=

∫
G
g(x)µ(dx)−

∫
G
g(x)ν(dx) ≤ Sq(µ, ν).

Since this holds for any f ∈W 1,p′(G, λ) satisfying‖f ′‖Lp′ (G,λ) ≤ 1, we conclude that

Sp(µ, ν) ≤ a−1 Sq(µ, ν).

This completes the proof.

For Proposition 3.5.

Proof of Proposition 3.5. For f ∈W 1,p′(G, λ), we have by representation (3.1) that

f(x) = f(z0) +

∫
[z0,x]

f ′(y)λ(dy).

Let 1[z0,x](y) denote the indicator function of the shortest path [z0, x]. That is, 1[z0,x](y) equals to 1 if y ∈ [z0, x]
and equals to 0 otherwise. Then we obtain∫

G
f(x)µ(dx) = f(z0)µ(G) +

∫
G

∫
[z0,x]

f ′(y)λ(dy)µ(dx)

= f(z0)µ(G) +

∫
G

∫
G

1[z0,x](y) f ′(y)λ(dy)µ(dx).

By using Fubini’s theorem to interchange the order of integration in the last expression, we further get∫
G
f(x)µ(dx) = f(z0)µ(G) +

∫
G

∫
G

1[z0,x](y) f ′(y)µ(dx)λ(dy)

= f(z0)µ(G) +

∫
G

[ ∫
G

1[z0,x](y)µ(dx)
]
f ′(y)λ(dy)

= f(z0)µ(G) +

∫
G
f ′(y)µ(Λ(y))λ(dy),

where we have used the definition of Λ(y) in (2.1) to obtain the last identity.

By exactly the same reason, we also have∫
G
f(x)ν(dx) = f(z0)ν(G) +

∫
G
f ′(y)ν(Λ(y))λ(dy).
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Therefore, as µ(G) = ν(G) we infer from Definition 3.2 that

Sp(µ, ν) = sup
f∈B

∫
G
f ′(x)

[
µ(Λ(x))− ν(Λ(x))

]
λ(dx),

where B :=
{
f ∈W 1,p′(G, λ) : ‖f ′‖Lp′ (G,λ) ≤ 1

}
.

Clearly, {f ′ : f ∈ B} ⊂ {g ∈ Lp′(G, λ) : ‖g‖Lp′ (G,λ) ≤ 1}. On the other hand, for any g ∈ Lp′(G, λ) we have g =

f ′ with f(x) :=
∫

[z0,x]
g(y)λ(dy) ∈ W 1,p′(G, λ). It follows that {f ′ : f ∈ B} = {g ∈ Lp′(G, λ) : ‖g‖Lp′ (G,λ) ≤ 1},

and hence we can rewrite Sp(µ, ν) as

Sp(µ, ν) = sup
‖g‖

Lp
′
(G,λ)≤1

∫
G
g(x)

[
µ(Λ(x))− ν(Λ(x))

]
λ(dx) =

[ ∫
G
|µ(Λ(x))− ν(Λ(x))|p λ(dx)

] 1
p

, (A.2)

which is the desired conclusion. Let us explain in details how to obtain the last identity in (A.2). Firstly, by
Hölder’s inequality we have∫

G
g(x)

[
µ(Λ(x))− ν(Λ(x))

]
λ(dx) ≤

[ ∫
G
|g(x)|p

′
λ(dx)

] 1
p′
[ ∫

G
|µ(Λ(x))− ν(Λ(x))|p λ(dx)

] 1
p

,

and so

sup
‖g‖

Lp
′
(G,λ)≤1

∫
G
g(x)

[
µ(Λ(x))− ν(Λ(x))

]
λ(dx) ≤

[ ∫
G
|µ(Λ(x))− ν(Λ(x))|p λ(dx)

] 1
p

.

Secondly, by choosing

g∗(x) =
|r(x)|p−2r(x)

‖r‖p−1
Lp(G,λ)

with r(x) := µ(Λ(x))− ν(Λ(x))

we see that ‖g∗‖Lp′ (G,λ) = 1 and
∫
G g
∗(x)

[
µ(Λ(x))− ν(Λ(x))

]
λ(dx) =

[ ∫
G |µ(Λ(x))− ν(Λ(x))|p λ(dx)

] 1
p

. Thus

we infer that last identity in (A.2) holds true, and the function g∗ is a maximizer for the optimization problem
in (A.2).

For Corollary 3.6.

Proof of Corollary 3.6. We first recall that 〈u, v〉 denotes the line segment in Rn connecting two points u, v,
while (u, v) means the same line segment but without its two end-points. Then from Proposition 3.5 and as λ
has no atom, we get

Sp(µ, ν)p =
∑

e=〈u,v〉∈E

∫
(u,v)

|µ(Λ(x))− ν(Λ(x))|p λ(dx).

Since µ and ν are supported on nodes, we can rewrite the above identity as

Sp(µ, ν)p =
∑

e=〈u,v〉∈E

∫
(u,v)

|µ(Λ(x) \ (u, v))− ν(Λ(x) \ (u, v))|p λ(dx).

For e = 〈u, v〉 and x ∈ (u, v), we observe that y ∈ G \ (u, v) belongs to Λ(x) if and only if y ∈ γe. It follows that
Λ(x) \ (u, v) = γe, and thus

Sp(µ, ν)p =
∑

e=〈u,v〉∈E

∫
(u,v)

|µ(γe)− ν(γe)|p λ(dx) =
∑
e∈E

∣∣µ(γe)− ν(γe)
∣∣pλ(e),

which leads to the postulated result.
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A.2 Proofs and Results for Section 4

For Lemma 4.2.

Proof of Lemma 4.2. Let [x, y] be a shortest path connecting x and y. Assume that this path goes through
nodes v1, ..., vk, then obviously 〈x, v1〉, 〈v1, v2〉, ...,〈vk, y〉 are corresponding shortest paths w.r.t. its end-points.
Therefore, it follows from Definition 4.1 for λ∗ that

λ∗([x, y]) = λ∗(〈x, v1〉) + λ∗(〈v1, v2〉) + · · ·+ λ∗(〈vk, y〉)
= d(x, v1) + d(v1, v2) + · · ·+ d(vk, y)

= d(x, y),

where the last identity is due to the assumption that G has no short cuts.

For Corollary 4.3.

Proof of Corollary 4.3. This is a consequence of our Proposition 3.5 for p = 1 and the results obtained in (Evans
and Matsen, 2012; Le et al., 2019). Indeed, when G is a tree with root z0, it is shown in (Evans and Matsen,
2012, Equation (5)) and in the proof of Proposition 1 in (Le et al., 2019) that the 1-Wasserstein distance (see
(B.1) for its definition) is given by

W1(µ, ν) =

∫
G
|µ(Λ(x))− ν(Λ(x))|λ(dx)

for any µ, ν ∈ P(G). By comparing this with our Proposition 3.5, we conclude that S1(µ, ν) =W1(µ, ν).

For Lemma 4.4.

Proof of Lemma 4.4. This is a direct consequence of Proposition 3.4 and Corollary 4.3. Indeed, we obtain from

Proposition 3.4 that S1(µ, ν) ≤ λ∗(G)
1
p′ Sp(µ, ν) for any 1 ≤ p ≤ ∞ (notice that the case p = 1 is trivial since

1
p′ = 0). Therefore, the conclusion follows as S1(µ, ν) =W1(µ, ν) by Corollary 4.3.

For Proposition 4.5.

Proof of Proposition 4.5. The last statement is just a consequence of Corollary 3.6. For the second statement,
observe that the condition α ∈ K ensures that ai ≥ 0 for all i. Also

∑n
i=1 a

i = 1 since by inspection it is easy to
see that

∑
e=〈x1,v〉:v∈N(x1)

αe +

n∑
i=2

∑
e=〈xi,v〉:v∈N ′(xi)

αe =

n∑
i=2

α〈x̂i,xi〉.

Therefore, ρ :=
∑n
i=1 a

iδxi is a probability distribution on V . That is, ρ ∈ P(V ).

The second statement also implies that the map (4.1) is onto. Indeed, for any given α = (αe)e∈E ∈ K, let
ρ =

∑n
i=1 a

iδxi ∈ P(V ) be the corresponding measure given by the second statement in Proposition 4.5. Let
e ∈ E be arbitrary. Then either γe = ∅ or γe 6= ∅. In the first case, we obviously have ρ(γe) = 0 = αe. On
the other hand, for the second case if we let xi be the node on the edge e with the smaller distance to z0, then

γe = {xi} ∪
(
∪e′=〈xi,v〉:v∈N ′(xi) γe′

)
and this is the disjoint union. Thus,

ρ(γe) = ρ({xi}) +
∑

e′=〈xi,v〉:v∈N ′(xi)

ρ(γe′) = ai +
∑

e=〈xi,v〉:v∈N ′(xi)

αe′ = αe,

where the second equality is due to the induction process by repeating and tracing back to the base case
N ′(xi) = ∅ to show that ρ(γe′) = αe′ , and the last equality is by (4.2). Thus the map (4.1) is onto.
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To show that the map (4.1) is one-to-one, assume that there exist ρ1, ρ2 ∈ P(V ) such that ρ1(γe∩V ) = ρ2(γe∩V )
for every e ∈ E. Let α := (ρ1(γe ∩ V ))e∈E = (ρ2(γe ∩ V ))e∈E , and define ρ :=

∑n
i=1 a

iδxi ∈ P(V ) with ai being
given by (4.2). Since

ρ1({x1}) = 1−
∑

e=〈x1,v〉:v∈N(x1)

ρ1(γe ∩ V ),

ρ1({xi}) := ρ1(γ〈x̂i,xi〉)−
∑

e=〈xi,v〉:v∈N ′(xi)

ρ1(γe ∩ V ) for i = 2, ..., n,

we infer that ρ1({xi}) = ai for all i. Due to the above choice of the distribution ρ, we therefore conclude that
ρ1 = ρ. By exactly the same reasoning, we also have ρ2 = ρ. Thus ρ1 = ρ2, and hence the map (4.1) is
one-to-one. So the first statement in Proposition 4.5 holds true, and the proof is complete.

For Proposition 4.6

Proof of Proposition 4.6. Let `p be the distance on Rm defined by: for x, z ∈ Rm, `p(x, z) = ‖x− z‖p =(∑m
i=1

∣∣x(i) − z(i)

∣∣p)1/p where x(i) is the ith coordinate of x. We will first prove that for 1 ≤ p ≤ 2, the `p
distance and `pp are negative definite.

For a, b ∈ R, it is obvious that the function (a, b) 7→ (a− b)2 is negative definite. Consider 1 ≤ p ≤ 2 and follow
(Berg et al., 1984, Corollary 2.10, pp.78), the function (a, b) 7→ |a− b|p is negative definite. It follows that `pp is
negative definite since it is a sum of negative definite functions. Using this and by applying (Berg et al., 1984,
Corollary 2.10, pp.78) for the function `pp, we also have that the function `p is negative definite.

We are now ready to prove the negative definiteness for Sp and Spp . Let m be the number of edges in the

graph G. Due to Corollary 3.6, λ∗(e)
1
pµ(γe) = w

1
p
e µ(γe) with e ∈ E can be regarded as a feature map for

probability measure µ onto Rm+ . Therefore, Sp is equivalent to the `p distance between these feature maps (see
also Proposition 4.5). Hence, Sp and Spp are negative definite for 1 ≤ p ≤ 2.

For Proposition 4.8.

Proof of Proposition 4.8. By Lemma 3.3 we know that Sz0p is a metric on P(G) for a given unique-root node
z0. On the other hand, according to Definition 4.7, Sηp is a convex combination of the metric Sz0p with z0 ∈
Z0

9. Therefore, it follows immediately that Sηp is also a metric. Indeed, the nonnegativity and symmetry are
obvious. Also, if Sηp (µ, ν) = 0 then we have Sz0p (µ, ν) = 0 for every point z0 ∈ Z0 satisfying η({z0}) > 0. As∑
z0∈Z0

η({z0}) = 1, there must exists a point z̃0 ∈ Z0 such that η({z̃0}) > 0. Thus we obtain S z̃0p (µ, ν) = 0,
and hence µ = ν by Lemma 3.3. To check the triangle inequality, let µ, ν, σ ∈ P(G) be arbitrary. We then use
Definition 4.7 and Lemma 3.3 to get

Sηp (µ, ν) =
∑
z0∈Z0

η({z0})Sz0p (µ, ν) ≤
∑
z0∈Z0

η({z0})
[
Sz0p (µ, σ) + Sz0p (σ, ν)

]
= Sηp (µ, σ) + Sηp (σ, ν).

We thus conclude that Sηp is a metric on P(G).

B FUTHER RESULTS AND DISCUSSIONS

In this section, we give brief reviews about important aspects in our works, provide further experimental results
and further discussions for our proposed Sobolev transport distance.

B.1 Brief Reviews

In this section, we briefly review about important aspects in our work and provide further experimental results.

9We assume that Z0 6= ∅. This assumption is easily satisfied for general graph metric built from data points. See
further discussion about the set Z0 (or the Assumption 2.1 in the main text) in §B.
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For Kernels. We review some important definitions (e.g., positive/negative definite kernels (Berg et al., 1984))
and theorems (e.g., Theorem 3.2.2 in Berg et al. (1984)) about kernels used in our work.

• Positive Definite Kernels (Berg et al., 1984, pp. 66–67). A kernel function k : Ω×Ω→ R is positive
definite if ∀m ∈ N∗,∀x1, x2, ..., xm ∈ Ω, we have∑

i,j

cicjk(xi, xj) ≥ 0, ∀ci ∈ R.

• Negative Definite Kernels (Berg et al., 1984, pp. 66–67). A kernel function k : Ω × Ω → R is
negative definite if ∀m ≥ 2,∀x1, x2, ..., xm ∈ Ω, we have∑

i,j

cicjk(xi, xj) ≤ 0, ∀ci ∈ R s.t.
∑
i

ci = 0.

• Theorem 3.2.2 in (Berg et al., 1984, pp. 74) for Kernels. If κ is a negative definite kernel, then
∀t > 0, kernel

kt(x, z) := exp (−tκ(x, z))

is positive definite.

For Persistence Diagrams and Definitions in Topological Data Analysis. We refer the reader to
Kusano et al. (2017, §2) for a review about mathematical framework for persistence diagrams (e.g., persistence
diagrams, filtrations, persistent homology).

For the Integral Probability Metric. Let F be a class of real-valued bounded measurable functions on Ω;
µ, ν be two Borel probability distributions on Ω, then the integral probability metric I associated with F (Müller,
1997) is defined as follow:

IF := sup
f∈F

∣∣∣∣∫
Ω

f(x)µ(dx)−
∫

Ω

f(z)ν(dz)

∣∣∣∣ .
Some popular instances of the integral probability metrics are: (i) Dudley metric, (ii) Wasserstein metric, (iii)
total variation metric, (iv) Kolmogorov metric, (v) maximum mean discrepancies, to name a few (Sriperumbudur
et al., 2009; Müller, 1997).

For the 1-Wasserstein Distance. Let µ, ν be two Borel probability distributions on Ω, R(µ, ν) be the set
of probability distributions π on Ω × Ω such that π(A × Ω) = µ(A) and π(Ω × B) = ν(B) for all Borel sets A,
B. The 1-Wasserstein distance W1 with a cost function c is defined as follow:

W1(µ, ν) = inf

{∫
Ω×Ω

c(x, z)π(dx, dz) | π ∈ R(µ, ν)

}
. (B.1)

Let Fc be the set of Lipschitz functions w.r.t. the cost function c, i.e. functions f : Ω → R such that
|f(x)− f(z)| ≤ c(x, z),∀x, z ∈ Ω. Then, the dual of (B.1) is:

W1(µ, ν) = sup
f∈Fc

{∫
Ω

f(x)µ(dx)−
∫

Ω

f(z)ν(dz)

}
. (B.2)

B.2 Further Discussions

About the Assumption 2.1. In our setting, the nodes in the graph are points in Rn, edge weights are
the distance (e.g., `2 distance) between two corresponding nodes (i.e., points in Rn). Therefore, consider any
two nodes in the graph, there may be several paths connecting one node to the other node, and with a high
probability, lengths of those paths are different. Hence, it is almost surely that every node in the graph can be
regarded as unique-path root node.

In case, we have some special graph, e.g., a grid of nodes. There is no unique-path root node for such graph.
However, we can easily adjust/approximate such graph into a graph with unique-path root nodes by randomly
perturbing each node of such graph in a ball (e.g., `2 ball) with a small radius.



Sobolev Transport: A Scalable Metric for Probability Measures with Graph Metrics

About the Proposed Sobolev Transport Distance. In our setting, we assume that we know the graph
metric space (i.e., the graph structure) which supports of probability measures are living. Giving such graph,
we define our Sobolev transport for probability measures supported on that graph metric space.

In our experiments (in Section 5), we evaluate our proposed Sobolev transport on (i) various graph structures (e.g.,
GLog and GSqrt) (ii) with different graph sizes (e.g., the number of nodes in the graphs M = 102, 103, 104, 4×104.
Performances of the Sobolev transport consistently compare favorably with those of the baseline approaches.

The question about learning the optimal graph metric structure from data for the Sobolev transport is left for
future work.

A Further Note on Implementation for the Sobolev Transport. Following the closed-form solution
of Sobolev transport for discrete probability measures supported on a graph metric space in Corollary 3.6 and
Equation (3.3), we need to compute the mass of µ, ν on γe for each edge e ∈ Eµ,ν .

Recall that for any support z of a probability measure, it only contributes to the γe when e belongs to the
shortest path in G from the unique-path root node z0 to the considered support z. Therefore, we only need to
run the Dijkstra algorithm for shortest paths one time for the source z0 and the destination (V \ {z0}).10 Then,
we can index for each support z in G for its contribution to each γe.

11

Therefore, for a given probability measure µ, we only need to consider each support of µ one time to compute
µ(γe) for all edge e in the graph G instead of a naive implementation where we need to consider all supports of
µ for each γe in G.

B.3 Further Experimental Results

In this section, we provide further experimental results.

Further Results for Document Classification with Word Embedding for Different Values of M (i.e.,
the Number of Nodes in the Graph).

• For Graph GLog. Similar to Figure 2 in the main text, we illustrate the SVM results and time consumption
of kernel matrices for document classification with word-embedding for graph GLog when M = 103 and
M = 102 in Figures 7 and 8 respectively.

• For Graph GSqrt. Similar to Figure 3 in the main text, we illustrate the SVM results and time consumption
of kernel matrices for document classification with word-embedding for graph GSqrt when M = 103 and
M = 102 in Figures 9 and 10 respectively.

Further Results for TDA for Different Values of M (i.e., the Number of Nodes in the Graph).

• For Graph GLog. Similar to Figure 4 in the main text, we illustrate the SVM results and time consumption
for TDA for graph GLog when M = 103 and M = 102 in Figure 11.

• For Graph GSqrt. Similar to Figure 5 in the main text, we illustrate the SVM results and time consumption
for TDA for graph GSqrt when M = 103 and M = 102 in Figure 12.

Further Results with Large Graph (M = 40000). We illustrate the SVM results and time consumption of
kernel matrices for large graph with M = 40000 for both GLog and GSqrt in Figure 13.

10One can consider a set of all considered supports (exclude z0) as the destination set for Dijkstra for a faster compu-
tation.

11We only need to compute this step one time (i.e., it can be considered as the preprocessing process involving only the
graph structure and nothing about the probability distributions, and is done only once regardless how many pairs (µ, ν)
that we have to measure. In this step by identifying shortest paths we calculate the set γe for each edge e ∈ E.), see our
Remark 3.7.
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Further Results for Slice Variants of Sobolev Transport and Tree-Wasserstein. Similar as Figure 6
in the main text, we illustrate further results for both document classification with word embedding and TDA
for slice variants of Sobolev trransport and tree-Wasserstein: (i) for both GLog and GSqrt, (ii) for different values
of M (e.g., 102, 103, 104).

• For Document Classification with Word Embedding.

– For Graph GLog. We illustrate SVM results and time consumption of kernel matrices for sliced
variants of Sobolev transport and tree-Wasserstein for document classification with word-embedding
for graph GLog when M = 103 and M = 102 in Figures 14 and 15 respectively.

– For Graph GSqrt. We illustrate SVM results and time consumption of kernel matrices for sliced
variants of Sobolev transport and tree-Wasserstein for document classification with word-embedding
for graph GLog when M = 104, M = 103 and M = 102 in Figures 16, 17, and 18 respectively.

• For TDA.

– For Graph GLog. We illustrate SVM results and time consumption of kernel matrices for sliced
variants of Sobolev transport and tree-Wasserstein for TDA for graph GLog when M = 104 for Orbit

and M = 103 for MPEG7 in Figure 19 (due to a small size of the dataset MPEG7); and with M = 103 and
M = 102 for both datasets in Figure 20.

– For Graph GSqrt. We illustrate SVM results and time consumption of kernel matrices for sliced
variants of Sobolev transport and tree-Wasserstein for TDA for graph GSqrt when M = 104 for Orbit

and M = 103 for MPEG7 in Figure 21 (due to a small size of the dataset MPEG7); and with M = 103 and
M = 102 for both datasets in Figure 22.

Further Results with Large Graph (M = 40000) for sliced variants. We illustrate the SVM results
and time consumption of kernel matrices for sliced variants of Sobolev transport and tree-Wasserstein for large
graphs where the number of nodes is M = 40000 for both GLog and GSqrt in Figure 23.

Further Results for Tree-Wasserstein Kernel. We illustrate the SVM results for tree-Wasserstein kernel
with the minimum spanning tree of the given graph, denote as kTWMST for both graphs GLog and GSqrt where the
number of nodes is M = 10000 on document classification in Figure 24. The performances of kTWMST improves
those of kTW (with random trees from a given graph).

Discussions. Through various tasks (e.g., document classification with work embedding and TDA), with
various graph structure (e.g., GLog and GSqrt) with different graph sizes (e.g., the number of nodes in the
graphs M = 102, 103, 104, 4 × 104), the performances of the proposed Sobolev transport consistently compare
favorably with those of other baselines. The Sobolev transport is several-order faster than the optimal transport
with graph metric. Additionally, the Sobolev transport can leverage information from the graph which is more
flexible and has more degree of freedom in applications than tree-Wasserstein (for tree structure). The question
about learning the optimal graph structure from data is left for future work. We also think that local structures
on supports such as graph structure in our work or tree structure in Le et al. (2019); Le and Nguyen (2021);
Le et al. (2021a) play an important role to scale up problems in optimal transport, especially for large-scale
applications.
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Figure 7: SVM results and time consumption for kernel matrices with GLog where M = 103.
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Figure 8: SVM results and time consumption for kernel matrices with GLog where M = 102.
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Figure 9: SVM results and time consumption for kernel matrices with GSqrt where M = 103.
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Figure 10: SVM results and time consumption for kernel matrices with GSqrt where M = 102.
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Figure 11: SVM results and time consumption for kernel matrices with GLog.
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Figure 12: SVM results and time consumption for kernel matrices with GSqrt.
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Figure 13: SVM results and time consumption for kernel matrices with large graphs where M = 40000.
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Figure 14: SVM results and time consumption for kernel matrices of slice variants with GLog (M = 103).
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Figure 15: SVM results and time consumption for kernel matrices of slice variants with GLog (M = 102).
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Figure 16: SVM results and time consumption for kernel matrices of slice variants with GSqrt (M = 104).
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Figure 17: SVM results and time consumption for kernel matrices of slice variants with GSqrt (M = 103).
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Figure 18: SVM results and time consumption for kernel matrices of slice variants with GSqrt (M = 102).
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Figure 19: SVM results and time consumption for kernel matrices of slice variants with GLog where M = 104

for Orbit, and M = 103 for MPEG7.
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Figure 20: SVM results and time consumption for kernel matrices of slice variants with GLog for TDA.
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Figure 21: SVM results and time consumption for kernel matrices of slice variants with GSqrt where M = 104

for Orbit, and M = 103 for MPEG7.
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Figure 22: SVM results and time consumption for kernel matrices of slice variants with GSqrt for TDA.

0 5 10 15 20
0.9

0.92

0.94

0.96

0.98

A
ve

ra
ge

 A
cc

ur
ac

y

TWITTER

0 5 10 15 20
103

104

105

Ti
m

e 
C

on
su

m
pt

io
n 

(s
)

0 5 10 15 20
0.82

0.84

0.86

0.88

0.9

0.92

0.94
AMAZON

0 5 10 15 20
Number of slices

103

104

105

kS
1
1

kS
2
2

kTW

(a) For graph GLog.
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(b) For graph GPow.

Figure 23: SVM results and time consumption for kernel matrices of slice variants with GSqrt for TDA with a
large graph where the number of nodes is 40000.
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(b) For graph GPow.

Figure 24: SVM results for document classification with M = 10000 graph nodes.
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