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Abstract

It is well-known that deep neural networks
(DNNs) are susceptible to adversarial attacks,
which presents the most severe fragility of
deep learning system. Despite achieving im-
pressive performance, most of the current
state-of-the-art classifiers remain highly vul-
nerable to crafted imperceptible, adversarial
perturbations. Recent research attempts to
understand neural network attack and defense
have become increasingly urgent and impor-
tant. While rapid progress has been made on
this front, there is still an important theoret-
ical gap in achieving guaranteed bounds on
attack/defense models, leaving uncertainty in
the certified guarantees of these models. To
this end, we systematically address this prob-
lem in this paper. More specifically, we for-
mulate attack and defense in a generic setting
where there exists a family of adversaries (i.e.,
attackers) for attacking a family of classifiers
(i.e., defenders). We develop a novel class of f-
divergences suitable for measuring divergence
among multiple distributions. This equips us
to study the interactions between attackers
and defenders in a countervailing game where
we formulate a joint risk on attack and defense
schemes. This is followed by our key results
on guaranteed upper and lower bounds on this
risk that can provide a better understanding
of the behaviors of those parties from the at-
tack and defense perspectives, thereby having
important implications to both attack and de-
fense sides. Finally, benefited from our theory,
we propose an empirical approach that bases
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on global view to defend against adversarial
attacks. The experimental results conducted
on benchmark datasets show that the global-
view if exploited appropriately can help to
improve adversarial robustness.

1 Introduction

Deep neural networks are powerful models that achieve
impressive performance across various domains such as
bioinformatics (Spencer et al., 2015), speech recogni-
tion (Hinton et al., 2012), computer vision (He et al.,
2016), and natural language processing (Vaswani et al.,
2017). Though achieving state-of-the-art performance,
these models are quite brittle in the sense that one
can easily craft small, imperceptible, adversarial per-
turbations of input data to fool them, hence resulting
in highly incorrect classification (Szegedy et al., 2013;
Goodfellow et al., 2014b). This finding of the surprising
vulnerability of classifiers to perturbations has led to a
large body of work to study the robustness of models
from both attack (Goodfellow et al., 2014b; Madry
et al., 2017; Carlini and Wagner, 2017; Kurakin et al.,
2016) and defense (Goodfellow et al., 2014b; Madry
et al., 2017; Carlini and Wagner, 2017; Kannan et al.,
2018; Qin et al., 2019; Zhang et al., 2019; Xie et al.,
2019) perspectives.

In a real-world scenario, attackers leverage various at-
tack techniques to exploit machine learning systems,
and a robust system is required to be resilient to those
divergent attacks. Motivated by this real-world sce-
nario, in this work, we study attack and defense from a
game theory perspective of two players: attackers and
defenders. More specifically, we assume that there is a
family of adversaries (i.e., attackers) that tries to at-
tack a family of classifiers (i.e., defenders). Under this
assumption, we develop attack- and defense-guaranteed
bounds that can be meaningfully and intuitively in-
terpreted from the perspective of both attacks and
defenses. Technically, the lower bound, which is useful
for the attack side, reveals that to attack more effi-
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ciently, adversaries need to globally push adversarial
examples to be more intermingled so as to increase dam-
age on classifiers. Meanwhile, the upper bound, which
is useful for the defensive side, shows that to defend
more efficiently, classifiers should be trained so as to
keep adversarial examples as close to the original data
as possible. Additionally, besides offering a better un-
derstanding of the attack and defense perspectives, our
proposed theory has appealing implications for both
the attack and defense sides, which potentially sheds
light on devising and developing new attack and de-
fense methods. We summarize our main contributions
in this work as follows:

• We study the problem of attack and defense from
a game theory perspective and develop upper and
lower guaranteed bounds that can be meaningfully
and intuitively interpreted. Our proposed theory
has appealing implications for both the attack
and defense sides, thereby potentially providing
support for devising and developing new attack
and defense methods.

• Inspired from the theoretical implications, we de-
velop two defense methods that take advantage
from global-view attack and defense to improve
the current state-of-the-art adversarial training
methods PGD (Madry et al., 2017) and TRADES
(Zhang et al., 2019). Comparing to PGD (Madry
et al., 2017) and TRADES (Zhang et al., 2019),
our Global-V iew based PGD and TRADES (GV-
PGD and GV-TRADES) exploit global view to
craft more dangerous adversarial examples and use
them to improve their models. Specifically, when
crafting adversarial examples, we aim to generate
those simultaneously far from benign data distri-
bution and more class intermingling to increase
damage on classifiers. Subsequently, we use those
adversarial examples to improve model robustness
by keeping them closer to benign data distribution
and more class separated.

• We establish experiments to demonstrate the use-
fulness of the theoretical global views for attack
and defense by comparing our GV-PGD and GV-
TRADES with their counterparts. Experimental
results show that GV-PGD and GV-TRADES sig-
nificantly outperform PGD (Madry et al., 2017)
and TRADES (Zhang et al., 2019), which validates
our theoretical findings.

Related works. Efficient attack and defense meth-
ods which are key ingredients to improve the robustness
of deep learning models were proposed in (Goodfellow
et al., 2014b; Madry et al., 2017; Carlini and Wagner,
2017; Kannan et al., 2018; Qin et al., 2019; Zhang

et al., 2019; Xie et al., 2019; Hoang et al., 2020; Bui
et al., 2021b, 2020, 2022; Nguyen-Duc et al., 2022).
Besides, the theoretical studies in adversarial machine
learning are crucial to provide a better understanding
from the theoretical perspective. To this end, existing
approaches have been proposed to study attack and
defense from various perspectives, notably (Schmidt
et al., 2018; Tsipras et al., 2019; Fawzi et al., 2018;
Zhang et al., 2019; Cranko et al., 2019; Cullina et al.,
2018; Bubeck et al., 2019; Wei and Ma, 2020).

The body of works (Schmidt et al., 2018; Tsipras et al.,
2019; Zhang et al., 2019) examined the inherent trade-
off between the natural and robust accuracies (i.e., with
and without using adversarial samples) and reached a
consensus: the generalization of adversarial robustness
requires more data and we need to sacrifice natural ac-
curacy to make models robust. In addition, Fawzi et al.
(2018) examined attacking scenario where data were
assumed to be generated from a generative model, but
without any ground-truth labeling function. Moreover,
Cullina et al. (2018) developed a PAC learnability in
the presence of an evasion attack. More recently, Wei
and Ma (2020) inspected the generalization capacity
of a deep net in relation to the all-layer margin.

Most closely related to ours is Cranko et al. (2019),
in which the authors devised a lower bound in the
context of using a family of transformations trying to
generate adversarial examples for attacking a family of
classifiers. Our work advances Cranko et al. (2019) in
the following ways: i) we consider the case of multi-class
classification, ii) we consider a family of adversaries
instead of a family of transformations, and iii) we
develop the lower and upper bounds w.r.t. the data
and latent spaces.

2 Preliminaries
Consider a general setting wherein we have a family
of adversaries A trying to attack a family of classifiers
H. Given a data example/label pair (x, y) ∼ D, which
is the joint distribution generating data and labels, an
adversary a ∈ A (e.g., a PGD (Madry et al., 2017),
BIM (Kurakin et al., 2016), FGSM (Goodfellow et al.,
2014b), Auto-Attack (Croce and Hein, 2020a), SpdAdv
(Zhao et al., 2019), or PVAdv (Zhao et al., 2021) attack)
undertakes an attack on h ∈ H by transforming x to
ah (x), causing the general loss:

E(x,y)∼D [` (y, h (ah (x)))] ,

where ` : ∆M × ∆M → R is a loss function
in which M is the number of classes, 4M :={
β ∈ RM : ‖β‖1 = 1 andβ ≥ 0

}
is theM -simplex, and

we are considering a multi-class setting where the
output lies in the M−simplex: h (x) ∈ 4M for any
h ∈ H. Here we note that given a categorical label
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y ∈ {1, ...,M}, we denote 1y as the corresponding one-
hot vector and with a slight abuse of notation, we write
the loss function as ` (y,α) = ` (1y,α) for α ∈ 4M .

The attack transformation ah (x) returns an adver-
sarial example corresponding to the clean example x
with the label y formed by using the adversary a to
attack the classifier h. For example, in the case of
a PGD attack with the distortion radius ε > 0 and
T -step update, ah can be expressed as: ah (x) = xT
where x0 = x + µ with µ ∼ N (0, εI) and xt+1 =
ΠBε(x) (xt + η∇xL (y, h (xt))) (0 ≤ t ≤ T − 1) for
which ΠBε(x) is the projection onto the ball Bε (x) :=
{x′ : ‖x′ − x‖ ≤ ε} and η > 0 is the learning rate.

We formulate our problem as follows: we first find an
adversary a ∈ A that most efficiently attacks a given
classifier h ∈ H, then find the best h that minimizes
its worst-case general loss as shown in the following
min-max problem

L (A,H,D) := inf
h∈H

sup
a∈A
J (a, h) , (1)

where J (a, h) := E(x,y)∼D [` (y, h (ah (x)))].

The min-max problem in Eq. (1) can be viewed from
a game theory perspective involving two parties: (1)
the classifier family H and (2) the adversary family A.
Particularly, given a classifier h ∈ H, the second party
(i.e., the adversary family A) attempts to select the best
adversary a∗h to attackH by performing supa∈A J (a, h)
causing the worst general loss, whereas the first party
(i.e., the classifier family H) attempts to select the
optimal classifier h∗ minimizing the worst general loss
caused by a∗h∗ .

We term L (A,H,D) in Eq. (1) as the attack/defense
risk which constitutes our central quantity of interest.
To facilitate our theory developed in the sequel, we as-
sume the following generative mechanism for generating
a data example x and its labels y:

k ∼ Cat (π) , x ∼ pk (x) = p (x | y = k) ,

where πk = p (y = k), π > 0, ‖π‖1 = 1, and Cat (·)
specifies the categorical distribution, hence the data
density is a mixture p (x) =

∑M
k=1 πkpk (x) with pk(x)

is the k-th conditional class density.

Central to our developed theory is the loss function
` : ∆M ×∆M → R, we focus on the following family
of loss functions:

` (β,α) := Df (β,α) =

M∑
i=1

f

(
βi
αi

)
αi, (2)

for any α,β ∈ 4M , where f is a lower semi-continuous
and convex function with f(1) = 0 with the convention

that 0×f
( ·

0

)
= 0. While this family of loss functions is

very large, we emphasize that by setting f(t) = t log t,
we obtain the cross-entropy loss widely used in deep
learning and machine learning.

We interest in the functions f such that the corre-
sponding loss function ` is a proper loss (Reid and
Williamson, 2010; Williamson et al., 2016) in the sense
that

argminα∈4M

M∑
y=1

` (y,α)βy = β,

for any β =
[
βy
]M
i=1
∈ 4M .

Reid and Williamson (2010); Williamson et al. (2016)
indicate the necessary and sufficient conditions for
which a loss ` is a proper loss. Building upon the results
of (Reid and Williamson, 2010; Williamson et al., 2016),
we find sufficient conditions imposed on the function f
so that the loss function ` is a proper loss.

Proposition 1. If the function f is strictly convex and
increasing, the loss function ` is a proper loss. In addi-
tion, the cross-entropy loss is a proper loss belonging
to the family of interest.

A proof can be found in Appendix A. We note that
comprehensive studies of proper loss can be found in
(Williamson et al., 2016) for interested readers. In
what follows, we develop the guaranteed bounds on
attack/defense w.r.t the loss function `.

3 Theoretical results on guaranteed
bounds

We first establish key results on the loss function and
divergence followed by our guaranteed bounds on at-
tack/defense. We then provide a more general form
of the bounds on an intermediate space in which we
assume that the hypotheses h decompose into the com-
position of two functions (i.e., a feature extractor and
a classifier). Finally, detailed implications of our the-
ory will be developed and presented together with the
experiments in the experimental section.

3.1 Results for the loss function and
divergence

We depart with a definition of multi-distributional
f−divergence to measure the divergence among M
distributions p1, ..., pM as follows:

Dπ` (p1, ..., pM ) = gπ` (1, ..., 1) (3)

−
∫
gπ`

(
p1 (x)

p (x)
, . . . ,

pM (x)

p (x)

)
p (x) dx,

where p(x) :=
∑M
k=1 πkpk (x) with π > 0 and gπ` :

RM → R is defined as
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gπ` (τ ) := min
α∈4M

M∑
k=1

πk` (y = k,α) τk, (4)

for any τ ∈ RM .

Theoretically, Dπ` defined as above is a proper diver-
gence in the sense thatDπ` (p1:M ) ≥ 0 andDπ` (p1:M ) =
0 if only if p1 = p2 = ... = pM , given appropriate con-
ditions on ` as shown in Lemma 2.

Lemma 2. Assume the loss function ` is as in Eq.
(2) in which the function f (t) and −t−1f (t) (t > 0)
are convex, lower semi-continuous, and f (1) = f (0) =
0, then for any p1:M , we have Dπ` (p1:M ) ≥ 0 and
Dπ` (p1:M ) = 0 if only if p1 = p2 = ... = pM . Moreover,
Dπ` (p1:M ) can be explicitly represented as

Dπ` (p1:M ) =

M∑
k=1

πkDuk (p, pk) ,

where Duk is the standard f-divergence w.r.t. uk and
the function uk is defined as

uk (t) := −πkt−1f
(
tπ−1
k

)
+ f

(
π−1
k

)
πk (5)

= −
(
tπ−1
k

)−1
f
(
tπ−1
k

)
+ f

(
π−1
k

)
πk.

Remark 3. uk defined in Eq. (5) is a convex function
since z(t) = −t−1f (t) is convex, vk (t) = tπ−1

k is a
linear function, and uk = z ◦ vk + const (◦ specifies the
function composition operator). We note that due to
π > 0 the definitions of u1:M are valid.
Remark 4. It is worth noting that our multi-
distributional f−divergence uses the standard f -
divergence as its building block. Especially, when
M = 2, the multi-distributional f−divergence be-
tween two distributions reduces to a sum of two stan-
dard f -divergences as Dπ` (p1, p2) = π1Du1

(p, p1) +
π2Du2

(p, p2) where p := π1p1 + π2p2.

For the cross-entropy loss `, the corresponding function
f (t) = t log t satisfies the conditions stated in Lemma
2; hence the concrete form for Dπ` (p1, ..., pM ) can be
derived in the next lemma.

Lemma 5. For the cross-entropy loss `, the multi-f
divergence has the following form

Dπ` (p1, ..., pM ) = JSπ (p1, ..., pM ) ,

where JSπ (p1, ..., pM ) :=
∑M
k=1 πkDKL (pk, p) with

p =
∑M
k=1 πkpk is the Jensen-Shannon divergence.

Note that our developed f-divergences has the same
characteristic with that developed in Duchi et al. (2018)
by being aware of the divergence between some dis-
tributions using a family of classifiers. However, the
technical detail and specification of our f-divergences

is totally different. In addition, our divergence is more
specific and intuitive by linking with our specific loss
` (β, α) and the standard f -divergence as shown in
Lemma 2.

3.2 Attack/defense guaranteed bounds w.r.t.
a data space

Recap that given a classifier h ∈ H, an adversary a ∈ A
when performing its attack on h transforms a clean
example x to an adversarial example xa = ah (x). As-
sume that this clean example has ground-truth label
y = k (i.e., x ∼ pk (·)), the attack transformation ah
transforms x ∼ pk (·) to xa = ah (x) sampled from an-
other distribution with a density function pa,hk , named
as the k-th adversarial conditional class distribution.
In other words, pa,hk is the density function of the distri-
bution formed by pushing forward the k-th conditional
class distribution pk (·) via ah.

In what follows, we present our main body of theory
regarding the attack/defense guaranteed bounds. Since
the adversaries in A always attempt to increase the
attack/defense risk L (A,H,D) (cf. Eq. (1)), from the
attack perspective, it is more interesting to investigate a
tight lower bound of this quantity given in the following
theorem.
Theorem 6. For any adversary family A, classifier
family H, and a loss function ` w.r.t. an increasing
function f satisfying the conditions in Lemma 2, we
have

L (A,H,D) ≥
M∑
k=1

` (y = k,π)πk (6)

− inf
a∈A

sup
h∈H

Dπ`

(
pa,h1 , ..., pa,hM

)
,

where for any 1 ≤ k ≤M and pa,hk is the corresponding
adversarial distribution.
Remark 7. We can obtain more explicit expressions for
the lower bound in Eq. (6) as follows:

i) Referring to Lemma 2, the lower bound can be rewrit-
ten in a more explicit form

M∑
k=1

` (y = k,π)πk − inf
a∈A

sup
h∈H

M∑
k=1

πkDuk

(
pa,h, pa,hk

)
,

where we recall the definition of the convex function
uk as uk (t) = −πkt−1f

(
tπ−1
k

)
+ f

(
π−1
k

)
πk.

ii) In particular, for the case of the cross-entropy loss
(i.e., the Df in the loss definition is the KL divergence),
in light of Lemma 5, we can come with a more specific
form for the lower bound

H (π)− inf
a∈A

sup
h∈H

JSπ
(
pa,h1 , ..., pa,hM

)
,
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where H (·) represents the Shannon entropy (Shannon,
1948).
Remark 8. Our lower bound is very appealing and intu-
itive to interpret from a game theory perspective. Given
an adversary a ∈ A, the classifier family H tries to
defend by selecting the optimal classifier h∗a for simulta-
neously maximizing Dπ`

(
pa,h1 , ..., pa,hM

)
and decreasing

the lower bound. By maximizing Dπ`
(
pa,h1 , ..., pa,hM

)
,

we aim to choose the classifier h∗a so that when a per-
forms its attack to this classifier, the corresponding
adversarial distributions w.r.t. the classes become more
distant (i.e., the classes of adversarial examples become
more separate for better robust accuracy). Meanwhile,
from an attack perspective, the adversaries desire to in-
crease the attack/defense risk L (A,H,D) by decreasing
Dπ`

(
pa,h1 , ..., pa,hM

)
, thereby making pa,h1 , ..., pa,hM more

intermingling. More specifically, for a given specific ad-
versary a ∈ A, we choose the best classifier h∗a ∈ H to
approximate suph∈HD

π
`

(
pa,h1 , ..., pa,hM

)
that can best

defend its attack and then choose the adversary a∗ to
approximate infa∈AD

π
`

(
p
a,h∗a
1 , ..., p

a,h∗a
M

)
(cf. Figure

1).

From the defense perspective, it is appealing to develop
an upper bound for the attack/defense risk L (A,H,D),
which is provided in the following theorem.
Theorem 9. We can upper-bound the attack/defense
risk:

L (A,H,D) ≤ inf
h∈H

(
E(x,y)∼D

[
` (y, h (x))2

]1/2
+E(x,y)∼D

[
` (y, h (x))2

]1/2
sup
a∈A

[
M∑
k=1

πkDv
(
pa,hk , pk

)]1/2)
,

where Dv is the standard f-divergence w.r.t. v with
v (t) = (t− 1)

2.
Remark 10. The obtained upper bound is also intuitive
and might help us to devise robust defense models. As
indicated by Theorem 9, to minimize the attack/defense
risk L (A,H,D), we need to find the optimal classifier h
to minimize E(x,y)∼D

[
` (y, h (x))

2
]
, while minimizing

supa∈A

[∑M
k=1 πkDv

(
pa,hk , pk

)]1/2
. This implies find-

ing the classifier h that can predict well the clean ex-
amples, while keeping the conditional class adversarial
distributions (i.e., pa,h1:K) as close to their corresponding
conditional class distributions (p1:K) as possible (cf.
Figure 1).

3.3 Attack/defense guaranteed bounds w.r.t.
a latent space

We impose a structure on the classifiers in the family H.
More specifically, we consider and investigate the com-

posite classifiers h = h2 ◦ h1 (i.e., h (x) = h2 (h1 (x))),
where h1 : X → Z and h2 : Z → ∆M in which X is the
data space and Z is an intermediate space. Given a
composite classifier h, h1 is known as a feature extractor
that maps input data to intermediate representations
(i.e., on an intermediate layer of h) whose space is
Z, while h2 acting on Z is known as a classifier. In
the sequel, we develop our bounds w.r.t. the latent
space Z, which allows us to develop attack and defense
methods on the latent space. We note that the bounds
w.r.t. the latent space are really useful and necessary
because defense on the latent space corresponding to
an intermediate layer of a deep net shows advantages
(see (Xie et al., 2019; Bui et al., 2020, 2021a) for the
comprehensive discussions).

We endow some new notions w.r.t. the latent space.
Given an clean example x and a classifier h, when
performing an attack, an adversary a moves x to
xa = ah (x) on the data space X , which is analogi-
cal to move z = h1 (x) to za = h1 (xa) = h1 (ah (x)) on
the latent space. Recap that for a class k, pa,hk is the
density of the distribution induced by push-forwarding
the conditional class distribution pk via ah, the feature
extractor h1 push-forwards pa,hk to another distribu-
tion on the latent space with the density function qa,hk .
Similarly, h1 also push-forwards the conditional class
distribution pk to a distribution on the latent space
with the density function qk. We are now ready to
restate our upper and lower bounds w.r.t. the latent
space.
Theorem 11. For any adversary family A, classifier
family H, and a loss function ` w.r.t. an increasing
function f satisfying the conditions in Lemma 2, we
have

L (A,H,D) ≥
M∑
k=1

` (y = k,π)πk (7)

− inf
a∈A

sup
h∈H

Dπ`

(
qa,h1 , ..., qa,hM

)
.

Remark 12. Theorem 11 generalizes the lower bound
w.r.t. a latent space. It turns out that the lower bound
w.r.t. the latent space totally depends on the divergence
among the adversarial conditional class distributions
(i.e., qa,h1:M ) on the latent space (cf. Figure 1).

The following theorem restates the upper bound w.r.t.
the latent space.
Theorem 13. We can upper-bound the attack/defense
risk:

L (A,H,D) ≤ inf
h∈H

(
E(x,y)∼D

[
` (y, h (x))2

]1/2
+E(x,y)∼D

[
` (y, h (x))2

]1/2
sup
a∈A

[
M∑
k=1

πkDv
(
qa,hk , qk

)]1/2)
,
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Figure 1: An illustration of our proposed theory on attack/defense risk bound. On the input space, to attack a
classifier h, an adversary a tries to mix up adversarial examples by minimizing a divergence among the conditional
class adversarial distributions pa,h1:3 , while the classifier h tries to keep pa,hk as closest to pk possible (1 ≤ k ≤ 3) to
defend. Similar phenomenons happen on the latent space but w.r.t. the induced distributions q1:3 and qa,h1:3 via
the feature extractor h1.

where Dv is the standard f-divergence w.r.t. v with
v (t) = (t− 1)

2.

Remark 14. Theorem 13 generalizes the upper bound
w.r.t. a latent space. It keeps the spirit of Theorem 9
in which we need to learn a classifier h that can predict
well the clean examples, while keeping the conditional
class adversarial distributions (i.e., qa,h1:K) as close to
their corresponding conditional class distributions q1:K

as possible on latent space (cf. Figure 1).

The implications of our theory. To promote de-
fense methods inspired from our theoretical findings
in the next section, we consider the case of a single
adversarial a trying to attack a family of classifiers H.
We recap how a can benefit from the global view for
attack to craft dangerous adversarial examples and how
the classifiers can advantage from this global view to
improve adversarial robustness.

• Implications for adversary. Adversary a
should generate adversarial examples globally
far away benign data distribution to maximize∑M
k=1Dv(qa,hk , qk) and globally class intermingling

to minimize Dπ`
(
qa,h1 , ..., qa,hM

)
.

• Implications for classifiers. In contrast, for
composite defense classifiers h = h2 ◦ h1, the fea-
ture extractor should produce latent representa-
tions to minimize

∑M
k=1Dv(qa,hk , qk) and maximize

Dπ`

(
qa,h1 , ..., qa,hM

)
, while the classifier h2 on top

is trained to predict accurately adversarial and
benign examples.

4 Global-view based defense
In this section, we try to exploit the implications of our
theory to propose a global-view based defense method.
We emphasize that we do not seek the state-of-the-art
results. In fact, our aim here is to demonstrate that
it is beneficial to exploit the global-view attack and
defense to further improve the current state-of-the-art
adversarial training methods, .e.g., PGD (Madry et al.,
2017) and TRADES (Zhang et al., 2019). As suggested
by Theorems 11 and 13, a dangerous adversary a tries
to produce dangerous and harmful adversarial examples
by maximizing

M∑
k=1

Dv(q
a,h
k , qk)− λDπ`

(
qa,h1 , ..., qa,hM

)
(8)

on a latent space, while the objective of defense is to
learn the feature extractor h1 and the classifier h2 so
that h = h2 ◦ h1 can mitigate the danger and defend
well those adversarial examples.

It is transparent that by maximizing
∑M
k=1Dv(qa,hk , qk),

we globally keep adversarial examples further to benign
examples, hence making them harder to be recognized.
Moreover, by minimizing Dπ`

(
qa,h1 , ..., qa,hM

)
, we glob-

ally push adversarial examples with different classes
more intermingling, hence making the task of the clas-
sifier h2 more challenging. We reckon this viewpoint
as a global-view attack, which is useful for us to craft
more dangerous and harmful adversarial examples.

Furthermore, to tackle Dπ`
(
qa,h1 , ..., qa,hM

)
, we use the

cross-entropy loss, hence Dπ
`

(
qa,h1 , ..., qa,hM

)
reduces ex-
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actly to JSπ
(
qa,h1 , ..., qa,hM

)
. We employ a multi-class

discriminator hd (i.e., a multi-class classifier) that can
distinguish class labels of adversarial examples. It is
well-known that the following inequality in (9) holds
(Hoang et al., 2018)

JSπ
(
qa,h1 , ..., qa,hM

)
≥−min

hd

{
M∑
k=1

πkEza∼qa,hk
[CE(hd(za), k)]

}
+H (π)

=−min
hd

{
M∑
k=1

πkExa∼pa,hk
[CE(hd(h1 (xa)), k)]

}
+H (π) ,

(9)

where CE represents the cross-entropy divergence.

In addition, the inequality (see proof in Appendix A) in
(9) is tight if the family to search for hd has members to

approach h∗d with h
∗
d (z, k) =

qa,hk (z)∑M
j=1 q

a,h
j (z)

,∀k = 1, ...,M

up to any level of precision or contains h∗d. Note that
we use h∗d (z, k) to represent the k-th component of
h∗d (z). Similar to the derivation in GAN (Goodfellow
et al., 2014a), we use the right hand side of the in-
equality in (9) to approximate the quantity of interest
JSπ

(
qa,h1 , ..., qa,hM

)
.

To tackle
∑M
k=1Dv(q

a,h
k , qk), to take advantage from

the well-known efficiency of GAN (Goodfellow et al.,
2014a) in estimating the JS divergence, we re-
place it with

∑M
k=1 JS

0.5,0.5(qa,hk , qk) and derive∑M
k=1 JS

0.5,0.5(qa,hk , qk) as

M∑
k=1

JS0.5,0.5(qa,hk , qk)

≥ 0.5

M∑
k=1

max
Tk

{
Ez∼qk [log Tk (z)]

+ E
za∼qa,hk

[log (1− Tk (za))] + 2 log 2

}
=0.5

M∑
k=1

max
Tk

{
Ex∼pk [log Tk (h1 (x))]

+E
xa∼pa,hk

[log (1− Tk (h1 (xa)))] + 2 log 2

}
, (10)

where Tk, k = 1, ...,M is the discriminator that distin-
guishes the samples from qk and qa,hk .

In addition, the inequality (see proof in Appendix
A) in (10) is tight if the family to search each
Tk, k = 1, ...,M has members to approach T ∗k with
T ∗k (z) = qk(z)

qk(z)+qa,hk (z)
up to any level of precision or

contains T ∗k . Similar to the derivation in GAN (Good-
fellow et al., 2014a), we use the right hand side of
the inequality in (10) to approximate the quantity of
interest

∑M
k=1 JS

0.5,0.5(qa,hk , qk).

Using the above approximations, assume that we
use sufficiently strong families for T1:M and hd, and
can train them to reach closely their optimums, we
then find the adversarial examples by maximizing∑M
k=1 JS

0.5,0.5(qa,hk , qk)− λJSπ
(
qa,h1 , ..., qa,hM

)
as

max
x′∈B(x,ε)

{
F (x,x′;hd, T1:M )

}
,

where B(x, ε) is a ball with center x and radius ε w.r.t.
a norm ‖·‖ and we have defined

F (x,x′;hd, T1:M ) := λ

M∑
k=1

CE(hd(h1 (x′)), k)

+

M∑
k=1

[log Tk (h1 (x)) + log (1− Tk (h1 (x′)))] .

We summarize the key steps of our proposed methods
as follows.

Crafting adversarial examples. Given a benign
example with label (x, y), we generate the correspond-
ing adversarial example in two ways: (1) GV-TRADES
in Eq. (11) and (2) GV-PGD in Eq. (12) as follows:

xa = argmaxx′∈B(x,ε)

{
KL (h2 (h1(x′)) , h2 (h1(x)))

+ αF (x,x′;hd, T1:M )

}
,

(11)

xa=argmaxx′∈B(x,ε)

{
CE (h2 (h1(x′)) , y)

+ αF (x,x′;hd, T1:M )

}
,

(12)

where KL represents Kullback-Leibler (KL) divergence,
B(x, ε) is a ball with center x and radius ε w.r.t. a
norm ‖·‖, and α > 0 is a trade-off parameter.

Updating the discriminator hd, the generator
h1, and T1:M . We update hd, h1, and T1:M for the
current mini–batch of the benign examples and the cor-
responding mini-batch of adversarial examples crafted
in the previous step. In addition, the purpose of hd is
to classify the labels of adversarial examples, while the
purpose of each Tk, k = 1, ...,M is to distinguish the
samples from qk and qa,hk .

min
h1,hd,T1:M

{
λ
M∑
k=1

E
p
a,h
k

[CE(hd(h1 (xa)), k)]+

M∑
k=1

[
−Epk [log Tk (h1 (x))]− E

p
a,h
k

[log (1− Tk (h1 (xa)))]
]}
,
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Update the classifier h2. Finally, we update the
classifier h2 to classify class labels of adversarial and
benign examples for the current min–batch of the be-
nign examples and the corresponding mini-batch of
adversarial examples crafted in the previous step as
follows

min
h2

{ M∑
k=1

Epa,hk
[CE(hd(h1 (xa)), k)]

+

M∑
k=1

Epk [CE(hd(h1 (x)), k)]

}
.

In our implementation, we build up hd and T1:M on
top of the output of h1. In addition, T1:M are shared
up to the penultimate layer and only different in the
last layers.

5 Experiments
5.1 Experimental Setting

In this section, we briefly summarize the experimental
setting whose details can be found in Appendix B.

General Setting. We demonstrate performances on
MNIST (Lecun et al., 1998) and CIFAR10 (Krizhevsky
et al., 2009). The inputs were normalized to [0, 1]. We
apply padding 4 pixels at all borders before randomly
cropping and doing horizontal flips. We use a stan-
dard CNN (Carlini and Wagner, 2017) and ResNet(He
et al., 2016) architecture for the MNIST and CIFAR10
dataset, respectively.

Baseline Setting. We contrast our method with the
standard AT methods, i.e., PGD-AT (Madry et al.,
2017), TRADES (Zhang et al., 2019). For TRADES,
we use the original trade-off ratio between natural loss
and robust loss as reported in (Zhang et al., 2019) (i.e.,
β = 6 for CIFAR10 and β = 1 for MNIST). The AT
setting are {k = 40, ε = 0.3, η = 0.01} for the MNIST
dataset, {k = 10, ε = 8/255, η = 2/255} for CIFAR10
dataset, where k is the iteration steps, ε is the distortion
bound and η is the step size.

Attack Setting. We use different SOTA attacks to
evaluate the defense methods including: (i) PGD at-
tack (Madry et al., 2017) which is gradient based
attack. The parameters {k, ε, η} will be described in
each individual experiment. (ii) B&B attack (Bren-
del et al., 2019) which is a decision based attack. We
initialized with the PGD attack with k = 20 and corre-
sponding {ε, η} then apply B&B attack with 200 steps.
(iii) Auto-Attack (AA) (Croce and Hein, 2020b)
which is an ensemble based attack. We use ε = 0.3 for
the MNIST dataset and ε = 8/255 for the CIFAR10

Table 1: Robustness evaluation on MNIST and CI-
FAR10. PGD attack with {k = 200, ε = 0.3, η = 0.01}
for MNIST and {k = 200, ε = 8/255, η = 2/255} for
CIFAR10.

MNIST CIFAR10
Nat PGD AA B&B Nat PGD AA B&B

PGD-AT 99.4 94.0 88.9 91.3 86.4 46.0 42.5 44.2
GV-PGD 99.5 96.5 90.5 93.9 86.4 46.4 45.7 46.9
TRADES 99.4 95.1 90.9 92.2 80.8 51.9 49.1 50.2

GV-TRADES 99.3 96.0 92.3 94.3 83.3 53.3 49.9 50.2

dataset, all with standard version which is an ensemble
of four different attacks. The distortion metric we use
in our experiments is l∞ for all measures. We use the
full test set for the PGD attack and 1,000 test samples
for other attacks.

5.2 Robustness Evaluation

We report robust accuracies of our GV-PGD against
PGD-AT and GV-TRADES against TRADES. Com-
paring with their counterparts, GV-PGD and GV-
TRADES further exploit a global view for improving
robustness. We wish to show that a global view if ex-
ploited properly can improve both natural and robust
accuracies. This claim is convincingly demonstrated in
Table 1 in which our methods outperform their coun-
terparts in terms of both natural and robust accuracies
in all datasets.

6 Conclusion

We propose attack and defense guaranteed bounds from
a game theory perspective. More specifically, we have
put attackers (i.e., adversaries) and defenders (i.e., clas-
sifiers) in a game theory context and further developed
guaranteed bounds for the attack and defense risk. Our
guaranteed bounds have implications to both attack
and defense sides, thereby being potentially useful in
developing new attack and defense methods. Inspired
by the theoretical findings, we propose GV-PGD and
GV-TRADES which are the counterparts of PGD and
TRADES in which the global-view attack/defense is
employed to further improve those SOTA adversarial
training techniques. Finally, we conduct experiments
to demonstrate the usefulness of the global view where
our GV-PGD and GV-TRADES quite significantly out-
perform its counterparts.

Acknowledgments. This work was partially sup-
ported by the Australian Defence Science and Technol-
ogy (DST) Group under the Next Generation Technol-
ogy Fund (NGTF) scheme.
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Broader impact

The fact that deep learning methods are vulnerable and
error-prone to small, imperceptible, adversarial pertur-
bations, which presents one of most urgent fragility of
machine learning systems on which our modern society
is increasingly depending from face recognition in on-
line digital identity verification, automatic car number
plate extraction for toll charges to credit scoring in
fintech sector. While we do not solve any of these prob-
lems directly in this work, its theoretical and practical
results can have a significant implication in all of them.
Our present work is solving a theoretical research prob-
lem in strengthening deep learning models, we believe
that it does not put anyone at disadvantages.
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Appendix for On Global-view Based Defense via Adversarial Attack
and Defense Risk Guaranteed Bounds

Since our paper relies heavily on the technical rigor to establish its main results and due to page limit on the main
text, this appendix aims to provide additional details for all proofs presented in the main paper and additional
experiments. Particularly, this appendix is organized as

• In Appendix A, we present all proofs regarding our theoretical development. At some places, to bring a
coherent context, we briefly summarize key contexts from the main paper as well for readability.

• In Appendix B, we provide additional experiments, training specification, and ablation studies.

A Theoretical Development

A.1 Preliminaries

Reid and Williamson (2010); Williamson et al. (2016) indicate the necessary and sufficient conditions for which a
loss ` is a proper loss. Building upon the results of (Reid and Williamson, 2010; Williamson et al., 2016), we find
sufficient conditions imposed on the function f so that the loss function ` is a proper loss. We now introduce the
notions and theory in Williamson et al. (2016) that are necessary for our sufficient conditions.

Given c ∈ ∆̄M (i.e., the interior of the M -simplex), we define

Ji (c) = {p ∈ ∆M : picj ≥ pjci, ∀j 6= i} for1 ≤ i ≤M.

Definition. We say a loss function ` to be c- calibrated at p ∈ ∆M if for i ∈ {1, ...,M} such that p /∈ Ji (c) then
∀q ∈ Ji (c)

` (p) = inf
r∈∆M

` (r,p) < ` (q,p) .

In addition, a loss function ` is said to be c- calibrated if it is c-calibrated at p for all p ∈ ∆M .

The following proposition indicates the link of calibration and properness (i.e., Proposition 3.3 in Williamson
et al. (2016)).

Proposition. A continuous function loss ` is strictly proper if only if it is c-calibrated for all c ∈ ∆̄M .

Proof of Proposition 1
Given c ∈ ∆̄M , we prove that the loss function ` is c-calibrated. Take p ∈ ∆M , denote 1 ≤ i ≤M as largest

index such that p /∈ Ji (c), and let q ∈ Ji (c) We need to prove that

` (p) = inf
r∈∆M

` (r,p) < ` (q,p) .

Assume by contradiction that
` (p) = inf

r∈∆M

` (r,p) = ` (q,p) . (13)

Without the loss of generalization, we assume that 0 ≤ p1 ≤ p2 ≤ .... ≤ pM−1 ≤ pM . Given 1 ≤ u < v ≤M , we
then have pu < pv or pu = pv. We examine these cases.

* Case 1 (pu < pv): we further assume that qu > qv. 11
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Since f is strictly increasing, we have

(pu − pv)
[
f

(
1

qu

)
− f

(
1

qv

)]
> 0

puf

(
1

qu

)
+ pvf

(
1

qv

)
> puf

(
1

qv

)
+ pvf

(
1

qu

)
.

Therefore, by choosing q′ such that q′1 = q1, ..., q
′
u−1 = qu−1, q

′
u = qv, q

′
u+1 = qu+1, ..., q

′
v−1 = qv−1, q

′
v =

qu, ..., q
′
M = qM , we then have

` (q,p) > ` (q′,p) ,

which is contradict to (13). Therefore, qu ≤ qv.

* Case 2 (pu = pv): we assume that qu 6= qv.

Since f is strictly convex and increasing, we have

puf

(
1

qu

)
+ pvf

(
1

qv

)
= 2pu

[
1

2
f

(
1

qu

)
+

1

2
f

(
1

qv

)]
>2pu

[
f

(
1

2

(
1

qu
+

1

qv

))]
(1)
>2pu

[
f

(
2

qu + qv

)]
=puf

(
1

(qu + qv) /2

)
+ pvf

(
1

(qu + qv) /2

)
.

Note that we have the inequality (1) due to

1

2

(
1

qu
+

1

qv

)
>

2

qu + qv
.

Therefore, by choosing q′ such that q′1 = q1, ..., q
′
u−1 = qu−1, q

′
u = qu+qv

2 , q′u+1 = qu+1, ..., q
′
v−1 = qv−1, q

′
v =

qu+qv
2 , ..., q′M = qM , we then have

` (q,p) > ` (q′,p) ,

which is contradict to (13). Therefore, qu = qv.

We reach the property if u < v then qu ≤ qv. This means that q1 ≤ q2 ≤ .... ≤ qM .

We further prove that pu
qu
≤ pv

qv
. Indeed, it is obvious if qu = qv due to pu ≤ pv. We consider the case qu < qv.

We further assume that pu
qu
> pv

qv
and derive as follows:

puf

(
1

qu

)
+ pvf

(
1

qv

)
= (pu + pv)

[
pu

pu + pv
f

(
1

qu

)
+

pv
pu + pv

f

(
1

qv

)]
≥ (pu + pv)

[
f

(
pu

pu + pv

1

qu
+

pv
pu + pv

1

qv

)]
= (pu + pv)

[
f

(
qu + qv
pu + pv

(
pu
qu

+
pv
qv

)
1

qu + qv

)]
(2)
> (pu + pv)

[
f

(
2

(qu + qv)

)]
=puf

(
1

(qu + qv) /2

)
+ pvf

(
1

(qu + qv) /2

)
.

Note that we have the inequality (2) due to

pu
qu
qv +

pv
qv
qu >

pu
qu
qu +

pv
qv
qv = pu + pv.
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pu
qu

+
pv
qv

)
(qu + qv) > 2 (pu + pv) .

Therefore, by choosing q′ such that q′1 = q1, ..., q
′
u−1 = qu−1, q

′
u = qu+qv

2 , q′u+1 = qu+1, ..., q
′
v−1 = qv−1, q

′
v =

qu+qv
2 , ..., q′M = qM , we then have

` (q,p) > ` (q′,p) ,

which is contradict to (13). Therefore, puqu ≤
pv
qv
. This follows that

p1

q1
≤ p2

q2
≤ .... ≤ pM

qM
.

Recall that i is the largest index such that p /∈ ∆i (c) and q ∈ ∆i (c). Therefore, p ∈ ∆k (c) ,∀k = 1, ..., i − 1.
Note that p ∈ ∆k (c) ,∀k = 1, ..., i− 1 leads to pk

ck
= max1≤j≤M

pj
cj

and q ∈ ∆i (c) leads to qi
ci

= max1≤j≤M
qj
cj
.

We further derive as
p1

c1
=
p1

q1
× q1

c1
≤ pi
qi
× qi
ci

=
pi
ci
.

Note that we have used p1
q1
≤ pi

qi
and qi

ci
= max1≤j≤M

qj
cj
. By referring to the fact

pk
ck

= max
1≤j≤M

pj
cj
,∀k = 1, ..., i− 1

, we achieve
pi
ci

= max
1≤j≤M

pj
cj

, which further implies that
picj ≥ pjci,∀1 ≤ j ≤M

, hence we reach p ∈ ∆i (c) which is a contradiction. Therefore, we achieve

` (p) = inf
r∈∆n

` (r,p) < ` (q,p) .

In addition, the function f (t) = t log (t) , t > 0 is strictly convex and increasing. Therefore, the cross-entropy loss
is a proper loss. In the following lemma, we independently prove that the cross-entropy loss is a proper loss.

Proof of Lemma 5
For the cross-entropy loss, we have f(t) = t log t and obtain

M∑
y=1

` (y,α)βy = −
M∑
i=1

βi logαi =

M∑
i=1

βi log
βi
αi

+ H (β)

=DKL (β,α) + H (β) ≥ H (β) =

M∑
y=1

` (y,β)βy,

for which the equality happens when β=α. Note that H (β) = −
∑M
i=1 βi log βi denotes the Shannon entropy

and DKL (β,α) represents the Kullback-Leibler (KL) divergence.

A.2 Theoretical results on guaranteed bounds

We first establish key results on the loss function and divergence followed by our guaranteed bounds on at-
tack/defense. We then provide a more general form of the bounds on an intermediate space in which we assume
that the hypotheses h decompose into the composition of two functions (i.e., a feature extractor and a classifier).
Finally, detailed implications of our theory will be developed and presented together with the experiments in the
experimental section.
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A.2.1 Results for the loss function and divergence

Proof of Lemma 2
We first observe that

g`,π
(
p1 (x)

p (x)
, . . . ,

pM (x)

p (x)

)
= min

α

M∑
k=1

πk` (y = k,α)
pk (x)

p (x)
= min

α

M∑
k=1

` (y = k,α)
p (x, y = k)

p (x)

= min
α

M∑
k=1

` (y = k,α) p (y = k | x) =

M∑
k=1

` (y = k, p (· | x)) p (y = k | x) ,

where we denote p (· | x) = [p (y = k | x)]
M
k=1. Note that we use the property ` is a proper loss for deriving the

last step.

g`,π (1, ..., 1) = min
α

M∑
k=1

` (y = k,α)πk =

M∑
k=1

` (y = k,π)πk.

We now consider

` (y = k,π)− ` (y = k, p (· | x)) = f
(
π−1
k

)
πk − f

(
p (y = k | x)

−1
)
p (y = k | x)

= −f
(

p (x)

pk (x)πk

)
pk (x)πk
p (x)

+ f
(
π−1
k

)
πk = uk

(
p (x)

pk (x)

)
,

where we define

uk (t) = −πkt−1f
(
tπ−1
k

)
+ f

(
π−1
k

)
πk = −

(
tπ−1
k

)−1
f
(
tπ−1
k

)
+ f

(
π−1
k

)
πk, (14)

which is a convex function since z (t) = −t−1f (t) is convex, vk (t) = tπ−1
k is linear, and uk = z ◦ vk + const (◦

specifies the function composition).

It appears that

Dπ` (p1, ..., pM ) =

M∑
k=1

∫
` (y = k,π)πkpk (x) dx

−
∫ M∑

k=1

` (y = k, p (· | x)) p (y = k | x) p (x) dx

=

M∑
k=1

∫
[` (y = k,π)− ` (y = k, p (· | x))] p (x, y = k) dx

=

M∑
k=1

πk

∫
[` (y = k,π)− ` (y = k, p (· | x))] pk (x) dx

=

M∑
k=1

πk

∫
uk

(
p (x)

pk (x)

)
pk (x) dx =

M∑
k=1

πkDuk (p, pk) ≥ 0,

since uk (1) = 0,∀k.

The equality occurs if only if pk = p, ∀k.

Proof of Lemma 5
This result is trivial from Lemma 2 with noting that

uk (t) = log
(
πkt
−1
)
− log π−1

k = − log t,

here we refer to Eq. (5) for evaluating uk.
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A.2.2 Attack/defense guaranteed bounds w.r.t. a data space

Proof of Theorem 6
We first turn the min-max problem to the max-min one as

inf
h∈H

sup
a∈A
J (a, h) ≥ sup

a∈A
inf
h∈H
J (a, h) .

Let H′ be the family of all measurable functions, we then inspect

I (a, h) := inf
h′∈H′

E(x,y)∼D [` (y, h′ (ah (x)))]

= inf
h′∈H′

M∑
k=1

πkEpk(x) [` (y = k, h′ (ah (x)))]

= inf
h′∈H′

M∑
k=1

πkEpa,hk (x) [` (y = k, h′ (x))] ,

here we note that we use the push-forward measure property of the expectation in the last derivation.

To continue, we further derive

I (a, h) = inf
h′∈H′

M∑
k=1

πkEpa,hk (x) [` (y = k, h′ (x))]

= inf
h′∈H′

∫ M∑
k=1

πk` (y = k, h′ (x)) pa,hk (x) dx

= inf
h′∈H′

∫ ( M∑
k=1

πk` (y = k, h′ (x))
pa,hk (x)

pa,h (x)

)
pa,h (x) dx

=

∫ (
min
α∈∆M

M∑
k=1

πk` (y = k,α)
pa,hk (x)

pa,h (x)

)
pa,h (x) dx,

here we note that the last derivation is due to the infinite capacity of H′ and pa,h (x) =
∑M
k=1 πkp

a,h
k (x), which

is the data distribution induced from the adversary transformation ah (x).

Using the results in Eqs. (4,3), we have

I (a, h) =

∫
g`,π

(
pa,h1 (x)

pa,h (x)
, ...,

pa,hM (x)

pa,h (x)

)
pa,h (x) dx

=g`,π (1, ..., 1)−Dπ`
(
pa,h1 , ..., pa,hM

)
=

M∑
k=1

` (y = k,π)πk −Dπ`
(
pa,h1 , ..., pa,hM

)
.

We finally reach the conclusion by

J (a, h) ≥ I (a, h) ,

inf
h∈H
J (a, h) ≥ inf

h∈H
I (a, h) =

M∑
k=1

` (y = k,π)πk − sup
h∈H

Dπ`

(
pa,h1 , ..., pa,hM

)
,

sup
a∈A

inf
h∈H
J (a, h) ≥

M∑
k=1

` (y = k,π)πk − inf
a∈A

sup
h∈H

Dπ`

(
pa,h1 , ..., pa,hM

)
.

That concludes our proof.
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Proof of Theorem 9
For any a ∈ A, we have

E(x,y)∼D [` (y, h (ah (x)))] =

M∑
k=1

πkEpk(x) [` (y = k, h (ah (x)))]

=

M∑
k=1

πkEpa,hk (x) [` (y = k, h (x))] =

∫ M∑
k=1

πk` (y = k, h (x)) pa,hk (x) dx

=

∫ M∑
k=1

πk` (y = k, h (x)) pk (x) dx +

∫ M∑
k=1

πk` (y = k, h (x))
[
pa,hk (x)− pk (x)

]
dx.

Using the Cauchy–Schwarz inequality, we obtain∫ M∑
k=1

πk` (y = k, h (x))
[
pa,hk (x)− pk (x)

]
dx =

M∑
k=1

πk

∫
` (y = k, h (x))

[
pa,hk (x)− pk (x)

]
dx

=

M∑
k=1

πk

∫
` (y = k, h (x)) pk (x)

1/2 p
a,h
k (x)− pk (x)

pk (x)
pk (x)

1/2
dx

(1)

≤
M∑
k=1

πk

[∫
` (y = k, h (x))

2
pk (x) dx

]1/2
∫ (pa,hk (x)− pk (x)

pk (x)

)2

pk (x) dx

1/2

=

M∑
k=1

[
πk

∫
` (y = k, h (x))

2
pk (x) dx

]1/2
πk ∫ (pa,hk (x)− pk (x)

pk (x)

)2

pk (x) dx

1/2

(2)

≤

[
M∑
k=1

πk

∫
` (y = k, h (x))

2
pk (x) dx

]1/2
 M∑
k=1

πk

∫ (
pa,hk (x)− pk (x)

pk (x)

)2

pk (x) dx

1/2

=

[
M∑
k=1

πk

∫
` (y = k, h (x))

2
pk (x) dx

]1/2
 M∑
k=1

πk

∫ (
pa,hk (x)− pk (x)

pk (x)

)2

pk (x) dx

1/2

=

[
M∑
k=1

∫
` (y = k, h (x))

2
p (x, y = k) dx

]1/2
 M∑
k=1

πk

∫ (
pa,hk (x)

pk (x)
− 1

)2

pk (x) dx

1/2

= E(x,y)∼D

[
` (y, h (x))

2
]1/2 [ M∑

k=1

πkDv

(
pa,hk , pk

)]1/2

.

note that we use the inequality
∫
u (x) v (x) dx ≤

[∫
u (x)

2
dx
]1/2 [∫

v (x) dx
]1/2 in (1) and the Cauchy–Schwarz

inequality in (2).

Using the Cauchy–Schwarz inequality again, we obtain∫ M∑
k=1

πk` (y = k, h (x)) pk (x) dx =

M∑
k=1

πk

∫
` (y = k, h (x)) pk (x)

1/2
pk (x)

1/2
dx

(1)

≤
M∑
k=1

πk

[∫
` (y = k, h (x))

2
pk (x) dx

]1/2 [∫
pk (x) dx

]1/2

=

M∑
k=1

[
πk

∫
` (y = k, h (x))

2
pk (x) dx

]1/2 [
πk

∫
pk (x) dx

]1/2
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∫ M∑
k=1

πk` (y = k, h (x)) pk (x) dx =

(2)

≤

[
M∑
k=1

πk

∫
` (y = k, h (x))

2
pk (x) dx

]1/2 [ M∑
k=1

πk

∫
pk (x) dx

]

=

[
M∑
k=1

πk

∫
` (y = k, h (x))

2
pk (x) dx

]1/2 [∫
p (x) dx

]

=

[
M∑
k=1

πk

∫
` (y = k, h (x))

2
pk (x) dx

]1/2

= E(x,y)∼D

[
` (y, h (x))

2
]1/2

.

Finally, we arrive at

L (A,H,D) = inf
h∈H

sup
a∈A
J (a, h) = inf

h∈H
sup
a∈A

E(x,y)∼D [` (y, h (ah (x)))]

≤ inf
h∈H

(
E(x,y)∼D

[
` (y, h (x))

2
]1/2

+ E(x,y)∼D

[
` (y, h (x))

2
]1/2

sup
a∈A

[
M∑
k=1

πkDv

(
pa,hk , pk

)]1/2)
.

That concludes our proof.

A.2.3 Attack/defense guaranteed bounds w.r.t. a latent space

Proof of Theorem 11
We first turn the min-max problem to the max-min one as

inf
h∈H

sup
a∈A
J (a, h) ≥ sup

a∈A
inf
h∈H
J (a, h) .

We consider the classifier family H as

H := {h = h1 ◦ h2 : h1 ∈ H1 andh2 ∈ H2} .

Let H′2 be the family all measurable functions on the latent space. Given h = h1 ◦ h2 ∈ H, we denote

H
′

h :=
{
h′ = h1 ◦ h

′

2 : h
′

2 ∈ H
′

2

}
.

We then inspect

I (a, h) := inf
h′∈H′h

E(x,y)∼D [` (y, h′ (ah (x)))]

= inf
h′∈H′h

M∑
k=1

πkEpk(x)

[
`
(
y = k, h

′

2 (h1 (ah (x)))
)]

= inf
h′∈H′h

M∑
k=1

πkEqa,hk (z) [` (y = k, h′2 (z))] ,

here we note that we use the push-forward measure property of the expectation in the last derivation.
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To continue, we further derive

I (a, h) = inf
h′∈H′

M∑
k=1

πkEqa,hk (z) [` (y = k, h′2 (z))]

= inf
h′∈H′

∫ M∑
k=1

πk` (y = k, h′2 (z)) qa,hk (z) dz

= inf
h′∈H′

∫ ( M∑
k=1

πk` (y = k, h′2 (z))
qa,hk (z)

qa,h (z)

)
qa,h (z) dz

=

∫ (
min
α∈∆M

M∑
k=1

πk` (y = k,α)
qa,hk (z)

qa,h (z)

)
qa,h (z) dz,

here we note that the last derivation is due to the infinite capacity of H′2.

Using the results in Eqs. (4,3), we have

I (a, h) =

∫
g`,π

(
qa,h1 (z)

qa,h (z)
, ...,

qa,hM (z)

qa,h (z)

)
qa,h (z) dz

=g`,π (1, ..., 1)−Dπ`
(
qa,h1 , ..., qa,hM

)
=

M∑
k=1

` (y = k,π)πk −Dπ`
(
qa,h1 , ..., qa,hM

)
.

We finally reach the conclusion by

J (a, h) ≥ I (a, h) ,

inf
h∈H
J (a, h) ≥ inf

h∈H
I (a, h) =

M∑
k=1

` (y = k,π)πk − sup
h∈H

Dπ`

(
qa,h1 , ..., qa,hM

)
,

sup
a∈A

inf
h∈H
J (a, h) ≥

M∑
k=1

` (y = k,π)πk − inf
a∈A

sup
h∈H

Dπ`

(
qa,h1 , ..., qa,hM

)
.

That concludes our proof.

Proof of Theorem 13 .

For any a ∈ A, we have

E(x,y)∼D [` (y, h (ah (x)))] =

M∑
k=1

πkEpk(x) [` (y = k, h (ah (x)))]

=

M∑
k=1

πkEpa,hk (x) [` (y = k, h (x))] =

∫ M∑
k=1

πk` (y = k, h (x)) pa,hk (x) dx

=

∫ M∑
k=1

πk` (y = k, h (x)) pk (x) dx +

∫ M∑
k=1

πk` (y = k, h (x))
[
pa,hk (x)− pk (x)

]
dx

=

∫ M∑
k=1

πk` (y = k, h (x)) pk (x) dx +

∫ M∑
k=1

πk` (y = k, h2 (h1 (x)))
[
pa,hk (x)− pk (x)

]
dx

=

∫ M∑
k=1

πk` (y = k, h (x)) pk (x) dx +

∫ M∑
k=1

πk` (y = k, h2 (z))
[
qa,hk (z)− qk (z)

]
dz. (15)
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With respect to the latent space via a feature extractor h1, we define Pz := h1#P as the push-forward distribution
via h1, where P is the data distribution with the density p (x) =

∑M
k=1 πkpk(x). It appears that Pz is the data

distribution on the latent space. We now equip the latent space a labeling mechanism pz (y | z) =

∫
h
−1
1 (z)

p(y|x)p(x)dx∫
h
−1
1 (z)

p(x)dx

induced by p (y | x) via h1. Denote Dz as the joint distribution of data-label (z, y) on the latent space, where
z ∼ Pz and y ∼ pz (y | z). Using the same derivation as in the proof of Theorem 9, we obtain:∫ M∑

k=1

πk` (y = k, h2 (z))
[
qa,hk (z)− qk (z)

]
dz ≤ E(z,y)∼Dz

[
` (y, h2 (z))

2
]1/2 [ M∑

k=1

πkDv

(
qa,hk , qk

)]1/2

. (16)

Next, to move from the latent space to the input space, we prove that

E(z,y)∼Dz

[
` (y, h2 (z))

2
]

= E(x,y)∼D

[
` (y, h (x))

2
]
. (17)

First, let denote pz (z) as the density of Pz, then we have

pz (z) =

∫
h−1
1 (z)

p (x) dx.

Therefore, denote X as the data space and Z as the latent space, it follows that

E(z,y)∼Dz

[
` (y, h2 (z))

2
]

=

M∑
k=1

∫
Z
` (y = k, h2 (z))

2
pz (y = k | z) pz (z) dz

=

M∑
k=1

∫
Z
` (y = k, h2 (z))

2

∫
h−1
1 (z)

p (y | x) p (x) dx∫
h−1
1 (z)

p (x) dx

∫
h−1
1 (z)

p (x) dxdz

=

M∑
k=1

∫
Z
` (y = k, h2 (z))

2
∫
h−1
1 (z)

p (y | x) p (x) dxdz

=

M∑
k=1

∫
Z

∫
h−1
1 (z)

` (y = k, h2 (z))
2
p (y | x) p (x) dxdz

=

M∑
k=1

∫
Z

∫
X
Ix∈h−1

1 (z)` (y = k, h2 (z))
2
p (y | x) p (x) dxdz

E(z,y)∼Dz

[
` (y, h2 (z))

2
]

=

M∑
k=1

∫
Z

∫
X
Ix∈h−1

1 (z)` (y = k, h2 (z))
2
p (y | x) p (x) dxdz

(1)
=

M∑
k=1

∫
X

∫
Z
Ix∈h−1

1 (z)` (y = k, h2 (z))
2
p (y | x) p (x) dzdx

=

M∑
k=1

∫
X

∫
Z
Iz=h1(x)` (y = k, h2 (z))

2
p (y | x) p (x) dzdx

=

M∑
k=1

∫
X
` (y = k, h2 (h1 (x)))

2
p (y | x) p (x) dx

=

M∑
k=1

∫
X
` (y = k, h (x))

2
p (y | x) p (x) dx = E(x,y)∼D

[
` (y, h (x))

2
]
.

Here we note that IA is the indicator function which returns 1 if A is true and 0 otherwise and in
(1)
= , we use

Fubini theorem to interchange two integrals.

Finally, combining (15), (16), and (17), we reach the conclusion.
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A.3 Proof of Inequalities in Section 4 of the Main Paper

We have missed the factor πk on the first inequality. Although it does not affect our result, we apologize for this
inconvenience.

Proof of the first inequality

JSπ
(
qa,h1 , ..., qa,hM

)
≥ −min

hd

{
M∑
k=1

πkEza∼qa,hk
[CE(hd(za), k)]

}
+ H (π)

=−min
hd

{
M∑
k=1

πkExa∼pa,hk
[CE(hd(h1 (xa)), k)]

}
+ H (π) . (18)

Proof. We consider the optimization problem

min
hd∈A

{
M∑
k=1

πkEza∼qa,hk
[CE(hd(za), k)]

}
, (19)

where hd is searched in the family of all functions A.

We have

M∑
k=1

πkEza∼qa,hk
[CE(hd(za), k)] = −

∫ M∑
k=1

πk log hd (za, k) qa,hk (za) dza.

For each za, we point-wisely solve the following optimization problem

max
h

M∑
k=1

πkq
a,h
k (za) log hk

s.t. :

M∑
k=1

hk = 1,

hk ≥ 0,∀k = 1, ...,M.

It is obvious that the above optimization problem has the solution

h∗k =
πkq

a,h
k (za)∑M

j=1 πjq
a,h
j (za)

,∀k = 1, ...,M.

Therefore, the optimization problem in Eq. (19) has the solution:

h∗d (za, k) =
πkq

a,h
k (za)∑M

j=1 πjq
a,h
j (za)

,∀k = 1, ...,M.



Le, Bui, Le, Zhao, Montague, Tran, Phung

Finally, we have

min
hd

{
M∑
k=1

πkEza∼qa,hk
[CE(hd(za), k)]

}
≥ min
hd∈A

{
M∑
k=1

πkEza∼qa,hk
[CE(hd(za), k)]

}

=

M∑
k=1

πkEza∼qa,hk
[CE(h∗d(za), k)]

= −
M∑
k=1

πk

∫
log h∗d(za, k)qa,hk (za) dza

= −
M∑
k=1

πk

∫
log

πkq
a,h
k (za)∑M

j=1 πjq
a,h
j (za)

qa,hk (za) dza

= −JSπ
(
qa,h1 , ..., qa,hM

)
+ H (π) .

The inequality becomes tight if the family to search for hd has members to approach h∗d with h∗d (z, k) =
πkq

a,h
k (z)∑M

j=1 πjq
a,h
j (z)

,∀k = 1, ...,M up to any level of precision or contains h∗d. Note that we use h∗d (z, k) to represent

the k-th component of h∗d (z).

Proof of the second inequality

M∑
k=1

JS0.5,0.5(qa,hk , qk) ≥ 0.5

M∑
k=1

max
Tk

{
Ez∼qk [log Tk (z)] + Eza∼qa,hk

[log (1− Tk (za))] + 2 log 2

}

= 0.5

M∑
k=1

max
Tk

{
Ex∼pk [log Tk (h1 (x))] + Exa∼pa,hk

[log (1− Tk (h1 (xa)))] + 2 log 2

}
,

Proof. The proof of this inequality depends the result of the previous proof. We have:

JS0.5,0.5(qa,hk , qk) ≥ −min
Tk

{
−0.5Ez∼qk [log Tk (z)]− 0.5Eza∼qa,hk

[log (1− Tk (za))]
}

+ log 2

= 0.5

M∑
k=1

max
Tk

{
Ez∼qk [log Tk (z)] + Eza∼qa,hk

[log (1− Tk (za))] + 2 log 2

}
.

We now take sum over k to reach the final conclusion.

B Additional Experimental Results

B.1 Experiment Setting

For toy2D dataset. The toy2D dataset consists of three clusters A, B1, B2 where A, B are two classes. The data
points are sampled from normal distributions, i.e., A ∼ N ((−2, 0),Σ) , B1 ∼ N ((2, 0),Σ) and B2 ∼ N ((6, 0),Σ)
where Σ = 0.5 ∗ I with I is the identity matrix. There are total 10k training samples and 2k testing samples with
densities of three clusters are 10%, 50% and 40%, respectively.

For MNIST dataset. We use a standard CNN architecture for the MNIST dataset which is identical with
that in (Carlini and Wagner, 2017). We use SGD optimizer with momentum 0.9, starting learning rate 1e-2 and
reduce the learning rate (×0.1) at epoch {55, 75, 90}. We train with 100 epochs.

For CIFAR10 dataset. We use the ResNet18 for the CIFAR10 dataset. We use SGD optimizer with momentum
0.9, weight decay 3.5e-3. The starting learning rate 1e-2 and reduce the learning rate (×0.1) at epoch {75, 90}.
We train with 100 epochs.
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Setting for the framework. The architecture for the binary discriminator hbd as follow: Input –> ReLU(FC(2k))
–> ReLU(FC(k)) –> Sigmoid(FC(1)), while that for the multi-class discriminator hmd : Input –> ReLU(FC(2k))
–> ReLU(FC(k)) –> FC(M), with FC(k) represents for a Fully-Connected layer with k hidden units, M is number
of classes, Input represents for the discriminator’s input (i.e., latent vector). Two first layers have been shared
between two discriminators hbd, h

m
d . We use k = 256 in default while provide an analytical experiment with

different value of k in Section B3. The optimizer and learning rate for the discriminator are similar to the
classifier.

B.2 Analytical Experiments

Sensitivity to the tradeoff parameter. Here we would like to provide a study on the sensitivity on the
tradeoff parameter λ1, while fixing λ2 = 0. The experiment has been conducted on the CIFAR10 dataset, with
our GV-PGD variant. We compare two options of the latent space, when choosing the second last (z = l−2

y ) or
the last hidden layer (z = l−1

y ) before the softmax layer. The result has been shown in Figure 2a. It can be seen
that: (i) the robust accuracy increases then decreases when increasing the tradeoff parameter from 0.0 to 1.0. In
contrast, the natural accuracy decreases then increases in the same range of the tradeoff parameter. The highest
robust accuracy is 46.8% at λ1 = 0.1 (ii) using the last hidden layer achieves a better robustness than using the
second last hidden layer. In other experiments, we use the last hidden layer as the input of discriminator, with
the tradeoff parameter λ1 = 0.3 as default.

(a) (b)

Figure 2: (a) Natural/Robust performance in correlation with the trade-off parameter λ1. l−1
y , l−2

y represent for
the last hidden layer and second last hidden layer before the softmax. (b) The Natural/Robustness performance
in correlation with the discriminator capacity k. The x-axis is in log scale.

Sensitivity to the discriminator’s capacity. We would like to provide a study on the impact of discriminator’s
capacity to the performance by varying number of hidden units k as described in Section B1. The result has been
shown in Figure 2b. It can be seen that the robustness increases when increasing the discriminator’s capacity.
Specifically, the performance is not good with overly small discriminator (i.e., robust accuracy is less than 43%
with k < 6 or less than 287 parameters). In contrast, increasing discriminator’s capacity slightly improves the
robustness of the model. In addition, we provide the training progress with the binary discriminator score with two
values of discriminator’s capacity k as shown in Figure 3. It can be seen that, the higher discriminator’s capacity
(i.e., k = 8) the higher distinguishable between natural input and adversarial examples. As a consequence, the
model achieves better both natural and robustness by leveraging better knowledge from the bigger discriminator.
In other experiments, we use k = 256 as the default setting.
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(a) Binary discriminator score. (b) Training natural/robust accuracy.

Figure 3: Training progress.


