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Abstract

This paper studies the performative predic-
tion problem which optimizes a stochastic loss
function with data distribution that depends
on the decision variable. We consider a setting
where the agent(s) provides samples adapted
to both the learner’s and agent’s previous
states. The samples are then used by the
learner to update his/her state to optimize a
loss function. Such closed loop update dynam-
ics is studied as a state dependent stochas-
tic approximation (SA) algorithm, which is
shown to find a fixed point known as the
performative stable solution. Our setting cap-
tures the unforgetful nature and reliance on
past experiences of agents. Our contributions
are three-fold. First, we present a framework
for modeling state dependent performative
prediction with biased stochastic gradients
driven by a controlled Markov chain whose
transition probability depends on the learner’s
state. Second, we present a new finite-time
performance analysis of the SA algorithm.
We show that the expected squared distance
to the performative stable solution decreases
as O(1/k), where k is the iteration number.
Third, numerical experiments verify our find-
ings.

1 INTRODUCTION

Many supervised learning algorithms are built around
the assumption that learners can obtain samples from
a static distribution independent of the state of the
learner and/or the agent who provides the sample. This
assumption is reasonable for static tasks such as image
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classification. Oftentimes, it simplifies the design and
analysis of algorithms.

On the other hand, in certain applications agents can
be performative where the samples are drawn from a
decision-dependent distribution. This is relevant to the
framework of strategic classification [Hardt et al., 2016,
Cai et al., 2015, Kleinberg and Raghavan, 2020]. For
instance, when training a classifier for loan applications,
given the classifier published by the learner (bank), the
agent(s) (loan applicants) may manipulate their profile
prior to the submission, e.g., by spending more with
credit cards, making unnatural transactions, etc., in
order to increase their chance of successful application.
The latter may affect the convergence properties, or
even the stability of learning algorithms.

Earlier works [Bartlett, 1992, Quiñonero-Candela et al.,
2009] studied the effects of exogenous changes with
shifts in data distribution. To capture the effects of
data distribution shifts during learning, Perdomo et al.
[2020] studied a scenario where the learner is interested
in the following performative prediction problem:

min
✓2Rd

V (✓) = Ez⇠D(✓)

⇥
`(✓; z)

⇤
, (1)

where `(✓; z) is the loss function given the sample z 2

Z. The loss function is strongly-convex with respect
to (w.r.t.) the parameter ✓ 2 Rd, and the gradient
map r✓`(✓; z) is Lipschitz continuous w.r.t. z, ✓. In
addition, the distribution D(✓) on Z is parameterized by
the decision vector ✓, which captures the distribution
shift due to the learner’s state. Problem (1) finds a
parameter ✓ which minimizes the expected loss that
takes care of the decision-dependent distribution.

Despite the strong convexity of `(✓; z), problem (1) is
non-convex in general due to coupling with ✓ in the data
distribution D(✓). As a remedy, Perdomo et al. [2020]
studied population-based algorithms that converge to
a performative stable point, ✓PS , which is a fixed
point to the system ✓ = argmin

✓02Rd Ez⇠D(✓)

⇥
`(✓0; z)

⇤
.

Along the same line, Mendler-Dünner et al. [2020] ana-
lyzed stochastic algorithms which deploy minibatches
of i.i.d. samples from the shifted distribution at each
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iteration, Izzo et al. [2021], Miller et al. [2021] stud-
ied gradient estimation techniques and developed al-
gorithms that converge to an optimal solution of (1)
through introducing a gradient correction term (also see
[Munro, 2020] which has considered a related setting),
Drusvyatskiy and Xiao [2020] studied the stability of
proximal stochastic gradient algorithms (and their vari-
ants), Brown et al. [2020] studied population-based
algorithms where the state dependent distribution is
updated iteratively, Zrnic et al. [2021] studied the im-
pact of update frequencies of learners/agents on the
regret to equilibrium.

This paper studies the convergence of stochastic al-
gorithms for (1) where only one data sample (or a
minibatch of samples) is required at each iteration.
Specifically, we focus on a setting where agent(s) rely
on their past experiences while adapting to the data
distribution shifts due to the model deployed by the
learner. Meanwhile, the learner follows a greedy deploy-
ment scheme similar to Mendler-Dünner et al. [2020]
where s/he deploys the most recent model after each up-
date round. In other words, the learner’s and agent(s)’
states are co-evolving dynamically. The closed-loop al-
gorithm can be studied as a state dependent stochastic

approximation (SA) algorithm. In contrast to Mendler-
Dünner et al. [2020], Drusvyatskiy and Xiao [2020]
where only the learner’s state is incrementally updated
and the agent draws i.i.d. samples from the distribu-
tion shifted by the learner’s state, in our setting, the
agent’s state evolves according to a controlled Markov

chain (MC) whose stationary distribution is the shifted
distribution.

Our study is motivated by the stateful (or unforgetful)

nature of the agents who depend on past experiences
when adapting to a shifted target data distribution. For
example, a loan applicant may take months to build
up his/her credit history to adapt to changes in the
published classifier. Several questions naturally arise
from such dynamical performative prediction problems:
will the stochastic algorithm converge to a performative

stable point similar to Mendler-Dünner et al. [2020],

Drusvyatskiy and Xiao [2020]? what is the sample

complexity? This paper addresses these questions as
we make the following contributions:

• We develop a fully state dependent performative

prediction framework which extends the model and
analysis in [Mendler-Dünner et al., 2020, Drusvy-
atskiy and Xiao, 2020]. The proposed extension
relies on a state dependent stochastic approxima-
tion (SA) algorithm with noise originating from a
controlled Markov chain [cf. Algorithm 1].

• Our main result consists of a finite-time convergence
analysis of the state dependent SA algorithm under
a setting which does not assume the iterates to be

bounded a-priori. Previous works either assumed
the latter condition a-priori (e.g., Benveniste et al.
[2012]), or they require a compact constraint set
(e.g., Atchadé et al. [2017]). Using a novel analysis,
we show that the mean squared error between the SA
iterates and the unique performative stable solution
[cf. (2)] converges at a rate of O(1/k), where k is the
iteration number. We also discuss the convergence
to an approximate stationary point of (1) when the
loss function `(✓; z) is possibly non-convex.

• We demonstrate the efficacy of the SA algorithm
with numerical experiments. We show that it has
a comparable performance with Mendler-Dünner
et al. [2020] which assumes an ideal setting with
i.i.d. samples taken from the shifted distribution.

The rest of this paper is organized as follows. §2 for-
mally describes the performative prediction problem
and a state dependent SA algorithm for tackling the
problem, §3 presents the main theoretical results for the
convergence of the state dependent SA algorithm, §4
gives an overview of the proof strategy, and §5 presents
the numerical experiments.

Related Works Analysis for state dependent
stochastic approximation (SA) algorithms with con-
trolled MC, which extend over the classical SA [Robbins
and Monro, 1951], has been considered in a number of
works. Benveniste et al. [2012], Kushner and Yin [2003]
studied the asymptotic convergence of such algorithms,
also see [Tadić et al., 2017] which analyzed the case of
biased SA. Recent works have analyzed the finite-time
performance of state dependent SA algorithms that
are related to ours. Atchadé et al. [2017] considered
a proximal SA algorithm where the proximal function
has a compact domain; Karimi et al. [2019] analyzed
the plain SA algorithm without projection but assumed
that the updates are bounded; Sun et al. [2018], Doan
et al. [2020] studied SA algorithms with a static MC
not suitable for performative prediction. Our analysis
relaxes these restrictions and focuses on convergence
to a performative stable solution unique to (1).

Lastly, our analysis technique is related to the recent
endeavors on obtaining finite time bounds for reinforce-
ment learning (RL) algorithms. Notice that (1) can
be regarded as a special case of policy optimization
[Sutton and Barto, 2018]. To this end, recent works
[Wu et al., 2020, Xu et al., 2020, Zhang et al., 2020]
studied the sample complexity of actor critic algorithms
with controlled MCs in finding a stationary point of an
average reward function. In comparison, we study the
convergence to a unique performative stable solution.

Notations We denote Z as the state space of sam-
ples and Z is a �-algebra on Z. A Markov transition
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kernel is a map given by P : Z ⇥ Z ! R+. At the
state z 2 Z, the next state is drawn as z0 ⇠ P(z, ·).
It holds for any measurable function f : Z ! R that
E[f(z0)|z] =

R
Z f(z

0)P(z,d z0) =: Pf(z). Unless oth-
erwise specified, the operator r takes the gradient of
a function w.r.t. the first argument for a multivariate
function, e.g., r`(✓; z) denotes the gradient of `(✓; z)
taken w.r.t. ✓. For x, y 2 Rd, we denote the inner
product as hx | yi = x>y.

2 STATE DEPENDENT
PERFORMATIVE PREDICTION

Since Problem (1) is non-convex in general, we are in-
terested in algorithms that converge to the performative

stable (PS) solution:

✓PS = argmin
✓2Rd

Ez⇠D(✓PS)[`(✓; z)]. (2)

Note that the expectation is taken with respect to
z ⇠ D(✓PS). It is known that ✓PS is in general differ-
ent from an optimal or stationary solution to (1); see
[Perdomo et al., 2020, Example 2.2]. Instead, ✓PS is a
fixed point solution to the procedure when the learner
repeatedly update the parameter ✓ with the drifted
data distribution provided by the agent.

We consider a state dependent stochastic approxima-
tion (SA) algorithm motivated by the stateful na-
ture of agents. The latter is modeled using a con-
trolled Markov chain. For any ✓, we define a Markov
transition kernel P✓ which induces a Markov chain
with a unique stationary distribution ⇡✓(·) such that
Ez⇠⇡✓(·)[r`(✓; z)] = Ez0⇠D(✓)[r`(✓; z0)]. The learner

and agent interact through the rules depicted in Algo-
rithm 1 and the Sample-n-Adapt(·) subroutine.

We observe that (3) is a standard SA recursion based
on r`(✓k; zk+1), where the learner deploys the most
recent model ✓k and takes the sample zk+1 directly
from the agent. Specifically, we consider a state depen-

dent setting where the sampling of zk+1 can be affected
by both the learner ’s and agent ’s current states. For-
mally, the state dependency is captured by modeling
the samples sequence {zk}k�1 as a controlled MC in
(4). Notice that the stationary distribution ⇡✓(·) does
not need to be the same as D(✓) as long as the former
yields an unbiased gradient estimate. However, for
simplicity, we assume ⇡✓(·) ⌘ D(✓) for any ✓ 2 Rd.

Unlike Algorithm 1, the greedy deployment scheme
studied by Mendler-Dünner et al. [2020] assumed that
the agent(s) draws zk+1 as independent samples directly
from D(✓k). The latter implies that r`(✓k; zk+1) is
an unbiased estimator of Ez0⇠D(✓k)[r`(✓k; z0)]. As a
significant departure from Mendler-Dünner et al. [2020],
in (3), the stochastic gradient r`(✓k; zk+1) is a biased

Algorithm 1: State Dependent SA
Input: initialization ✓0, step sizes {�k}k�0.
For k = 0, 1, 2, . . .

Agent draws zk+1 = Sample-n-Adapt(✓k, zk).
Learner updates

✓k+1 = ✓k � �k+1r`(✓k; zk+1), (3)
and deploys ✓k+1.

Sample-n-Adapt(✓, z):
Draw the next sample as

z0 ⇠ P✓(z, ·), (4)

where P✓ : Z ⇥ Z ! R+ is a Markov transition
kernel that depends on the input ✓.
Output: z0 2 Z.

estimator. We observe
E[r`(✓; zk+1) | zk] = P✓kr`(✓; zk)

=
R
Z r`(✓; z)P✓k(zk, d z),

(5)

for any ✓ 2 Rd. Since P✓k(zk, ·) 6= ⇡✓k(·), we have

E[r`(✓; zk+1) | zk] 6= Ez0⇠D(✓k)[r`(✓k; z
0)].

To provide some insights, under (4) with restricted
access to the shifted data distribution D(✓k), one pos-
sibility to obtain an unbiased gradient estimate is via
holding ✓k as fixed and repeat the sampling process
z0 = Sample-n-Adapt(✓k, z) indefinitely. In this case,
we have the unbiased estimate limn!1 Pn

✓k
r`(✓; z) =

Ez0⇠D(✓k)[r`(✓; z0)] for any initial state z 2 Z. The lat-
ter can be regarded as the case where the learner waits

a long time for the agent(s) to adapt to the distribution
D(✓k) prior to updating the model and deploying it.

In this paper, we are interested in a case where the
learner does not wait for the agent(s) to adapt to the
distribution D(✓k), as s/he takes the instantaneous
sample zk+1 from agent(s). The state dependent SA
algorithm uses samples that are co-evolving with the
learner’s iterate in (3). The model (4) captures the
stateful and stochastic nature of the agent as the sample
zk+1 depends on the previous one zk. Below we provide
a motivating application example for (3), (4):

Example 1 (Strategic Classification with Adapted
Best Response). We consider the problem of strategic
classification [Hardt et al., 2016] involving some agents

and a learner. In an ideal scenario, the agent pro-
vides the best-response (i.e., optimized) samples upon
knowing the current learner’s state ✓k. The sample
zk+1 ⇠ D(✓k) is drawn as

zk+1 2 argmax
z02Z

U(z0; z̃k+1, ✓k), z̃k+1 ⇠ D0, (6)
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where D0 is the base distribution and U(z0; z, ✓) is
strongly concave in z0 for any (z, ✓). Observe that
the best response maxz02Z U(z0; z, ✓) perturbs the base
sample z in favor of the agent.

In practice, the exact maximization in (6) can not be
obtained unless the agent(s) are given sufficient time to
respond to the learner’s state, e.g., due to the difficulty
in solving (6). Instead, we consider a setting where the
agent(s) improve their responses via a gradient ascent
dynamics evolving simultaneously with the learner.

Concretely, consider a setting where the learning prob-
lem (1) utilizes data provided by m agents. Let D0 be
the empirical distribution of m data points {d̄1, ..., d̄m},
where d̄i 2 Z is the initial data held by agent i. At
iteration k, a subset of agents Ik ⇢ {1, ...,m} (selected
uniformly with |Ik| = pm, p 2 (0, 1]) becomes aware of
the learner’s state and they search for the best response
through a gradient descent update. Then, the learner
selects uniformly an agent ik 2 {1, ...,m} and requests
the data sample zk+1 from him/her. In summary, the
inexact best response dynamics follows:

Step 1: dk+1
i

=

(
dk
i
+ ↵rU(dk

i
; d̄i, ✓k), i 2 Ik,

dk
i
, i /2 Ik,

Step 2: zk+1 = dk+1
ik

, (7)

where the gradient is taken w.r.t. the first argument of
U(·), ↵ > 0 is the agents’ response rate. For the initial-
ization, we set d0

i
= d̄i for all i = 1, ...,m. The above

highlights the stateful nature of agents as they seek to
improve their responses based on past experiences.

The best response dynamics executed by the agent(s)
in (7) leads naturally to a controlled MC (4). Specif-
ically, the MC’s state is given by the tuple ẑk =
{dk1 , ..., d

k

m
, zk} and the application of the Markov

kernel P✓k to ẑk yields the inexact best response
dynamics (7). Furthermore, the latter admits a
stationary distribution where limn!1 Pn

✓k
r`(✓; ẑ) =

Ez⇠D(✓k)[r`(✓; z)]. We provide detailed properties
about the controlled MC in Appendix A.2; also see
Algorithm 2 in Appendix D. ⇤

We remark that from a stochastic algorithm design
perspective, (3), (4) can also be motivated from the
use of an MCMC sampler [Robert and Casella, 2013]
when it is difficult to sample from D(✓).

3 MAIN RESULTS

This section deals with the analysis of (3), (4) which
entails unique challenges. First, the agent’s states
{zk}k�1 form a controlled MC whose transition proba-
bilities change according to the learner’s states {✓k}k�0.
Second, a plain SA update is used in (3) which does

not require the projection to a compact constraint set
in [Atchadé et al., 2017]. In fact, ✓k can be unbounded
when the step size is not carefully selected.

To begin, let us define the following notations:

f(✓1; ✓2) = Ez⇠D(✓2)[`(✓1; z)],

rf(✓1; ✓2) = Ez⇠D(✓2)[r`(✓1; z)],
(11)

where the first argument ✓1 controls the loss function
value and the second argument ✓2 controls the distri-
bution shift. Notice that rf(✓PS ; ✓PS) = 0.

We consider the following assumptions. First, the
learner’s loss is strongly convex in ✓, and its gradi-
ent map is Lipschitz continuous in (✓, z), i.e.,

Assumption 1. For each z 2 Z, there exists µ > 0
such that 8 ✓, ✓0 2 Rd

,

`(✓; z) � `(✓0; z)+hr`(✓0; z) | ✓�✓0i+
µ

2
k✓0�✓k2. (12)

Assumption 2. There exists L � 0 such that 8 ✓, ✓0 2
Rd, z, z0 2 Z,

kr`(✓; z)�r`(✓0; z0)k  L
�
k✓�✓0k+kz�z0k

 
. (13)

Notice that as a consequence, the expected objec-
tive function f(✓1, ✓2) and gradient rf(✓1; ✓2) are µ-
strongly convex in ✓1, and L-Lipschitz in ✓1, respec-
tively. These are standard assumptions in the opti-
mization literature. As indicated in [Drusvyatskiy and
Xiao, 2020], these conditions are closely related to the
existence of a performative stable solution in (2).

Second, we have the following assumption on the oscil-
lation of the stochastic gradient r`(✓; z):

Assumption 3. There exists ��0 such that 8 ✓ 2 Rd
,

sup
z2Z

kr`(✓; z)�rf(✓; ✓PS)k  �
�
1+k✓�✓PSk). (14)

The above is slightly stronger than the assumptions on
second order moments typically found in the stochastic
gradient literature, e.g., Bottou et al. [2018], as we
require a uniform bound on the gradient noise. This
condition is common for the algorithms using Marko-
vian samples [Sun et al., 2018, Srikant and Ying, 2019,
Karimi et al., 2019], which requires that the oscillation
of stochastic gradient is controlled. Moreover, similar
to [Doan et al., 2020], this bound is adapted to the
growth of k✓�✓PSk which is compatible with the strong
convexity of the loss function `(✓; z). Lastly, for the
Example 1 with strategic classification, this assumption
is satisfied for the finite dataset setting in (7).

Our next set of assumptions pertain to the Markov
kernels P✓ that generate {zk}k�1:

Assumption 4. There exists a solution cr` : Rd
⇥Z !

Rd
to the Poisson equation: 8 ✓, ✓0 2 Rd, z 2 Z,

r`(✓0; z)�rf(✓0; ✓) = cr`(✓0; z)� P✓
cr`(✓0; z). (15)
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Theorem 1. Under Assumptions 1–6. Suppose that the MCs induced by P✓ are uniformly geometric ergodic for

any ✓ 2 Rd
, the problem parameters satisfy ✏ < µ

L
, the step sizes {�k}k�1 are non-increasing and for any k � 1,

�k�1

�k
 1 +

�k(µ� L✏)

4
, �k  min

nµ� L✏

2L2
,
µ� L✏

2C2
,
min{(µ� L✏)/3, 3bL}
C3 + 3bL(µ� L✏)

,
1

6bL

o
. (8)

Then for any k � 1, the expected distance between ✓k and the performative stable solution ✓PS satisfies

E[k✓k � ✓PSk
2] 

kY

i=1

⇣
1� �i

µ� L✏

2

⌘
k✓0 � ✓PSk

2 + C �k, (9)

where E[·] is the expectation taken over all the randomness in (3), (4), and we have defined:

C := 3bL�+
4&

µ� L✏

⇣
2(2�2 + C1) + (µ� L✏)bL+

⇣
C3 + 3(µ� L✏)bL

⌘
�
⌘
, (10)

with & := 1 + �1(µ� L✏)/4, and C1, C2, C3, � are constants defined in (23), (26), respectively.

Assumption 5. Consider the solution to Poisson

equation, cr`(·; ·), defined in (15). There exists LPH �

0 such that 8 ✓, ✓0 2 Rd
,

sup
z2Z

kP✓
cr`(✓; z)�P✓0cr`(✓0; z)k  LPHk✓� ✓0k. (16)

For Assumption 4, the Poisson equation’s solution cr`
in (15) exists under mild assumptions on the MCs. For
instance, it holds when the MC is irreducible and ape-
riodic, and satisfying a Lyapunov drift condition, or in
the simpler case, when the MC is uniform geometrically
ergodic, see [Douc et al., 2018, Ch. 21.2]. For simplic-
ity, we will focus on the case when the MC is uniform
geometrically ergodic. For instance with Example 1
for the strategic classification problem, Assumption 4
holds when repeated applications of the iterative map
(7) converges linearly to the best response.

Meanwhile, Assumption 5 is a smoothness condition
on the kernel P✓, which holds when perturbation to
the Markov kernel is stable w.r.t. ✓. In particular, a
sufficient condition that implies the assumption when
the controlled Markov chain is smooth with respect
to changes in ✓, i.e., sup

z2Z kP✓(z, ·)� P✓0(z, ·)kTV =
O(k✓ � ✓0k); see [Karimi et al., 2019, Appendix D].
In Appendix D, we also verify the condition under a
special case of Example 1.

Moreover, Assumption 5 is linked to our next assump-
tion which is central to the study of performative pre-
diction. We require the distribution map D(✓) to be
✏-sensitive w.r.t. ✓:

Assumption 6. There exists ✏ � 0 such that

W1(D(✓),D(✓0))  ✏k✓ � ✓0k, 8 ✓, ✓0 2 Rd, (17)
where W1(·, ·) = infJ2J (·,·) E(z,z0)⇠J [kz � z0k1]. No-

tice that W1(·) denotes the Wasserstein-1 distance and

J (D(✓),D(✓0)) is the set of all joint distributions on

Z⇥ Z with D(✓),D(✓0) as its marginal distribution.

The above is commonly assumed in performative pre-
diction, e.g., [Perdomo et al., 2020]. Intuitively, it
allows performative prediction algorithm to behave sta-
bly as the perturbation to D(✓) is under control. In
the subsequent analysis, we demonstrate that carefully
controlling the step size in relation to µ, ✏, L is crucial
to the convergence of Algorithm 1.

Before presenting our main result, we notice that to-
gether with a uniform geometric ergodic assumption
on the MCs induced by P✓, Assumptions 2, 3, 4 imply
that there exists constants L, bL > 0 such that

max
n
kcr`(✓; z)k,

��P✓
cr`(✓; z)

��
o
 bL(1 + k✓ � ✓PSk),

kr`(✓; z)k  L(1 + k✓ � ✓PSk), (18)

for any z 2 Z, ✓ 2 Rd. In other words, r`(✓; z),
cr`(✓; z), P✓

cr`(✓; z) are all locally bounded functions.
Notice that L is proportional to � in Assumption 3,
while bL is proportional to the maximum mixing time
of the Markov chain induced by the kernel P✓ over all
✓ 2 Rd; see Appendix C.1 for their precise expressions.

Our main result for the state dependent SA algorithm is
summarized in Theorem 1, which establishes the finite-
time convergence of the state dependent SA algorithm
(3), (4). To understand this result, we observe that the
step size conditions in (8) can be satisfied by a variety
of step size schedules. For instance, it can be satisfied
by the constant step size �k ⌘ �; and the diminishing
step size �k = a0/(a1 + k) = O(1/k) with appropriate
a0, a1 > 0. Moreover, we require the SA algorithm to
work in the regime when ✏ < µ/L. Similar condition
is enforced in Perdomo et al. [2020] to ensure that the
solution ✓PS is a stable fixed point to (2).

The main result of Theorem 1 is stated on the ex-
pected squared distance between ✓k, ✓PS in (9). The
bound consists of a transient term and a fluctuation



State Dependent Performative Prediction with Stochastic Approximation

term. The transient term decays sub-exponentially
as O(exp(�µ�L✏

2

P
k

i=1 �i)) and is scaled by the initial
error k✓0 � ✓PSk

2. The fluctuation term is in the order
of O(�k) and is scaled by C which depends on the os-
cillation of stochastic gradient (via �) and the mixing
time of the controlled Markov chain (via bL). With a
diminishing step size schedule such as �k = c0/(c1+ k),
Theorem 1 shows that the state dependent SA algo-
rithm finds the performative stable solution ✓PS at the
rate of O(1/k) in expectation.

Non-strongly-convex Loss Function An obvious
drawback with Theorem 1 is the requirement of strongly
convex loss functions in Assumption 1. Below, we com-
ment on the convergence of the state dependent SA
algorithm (3), (4) when the loss function is possibly
non-convex. In the absence of Assumption 1, the per-
formative stable solution ✓PS may not be well defined.
We resort to finding a stationary point to (1).

Our idea is to view (3), (4) as a biased SA algorithm
with mean field h(✓) = Ez⇠D(✓)[r`(✓; z)] = rf(✓; ✓).
This mean field is correlated with the gradient for the
performative loss in (1). Under additional assumptions
on `(✓; z), D(✓), in Appendix B we show

hh(✓) |rEz⇠D(✓)[`(✓; z)]i �
1
2kh(✓)k

2
� c0, (19)

holds for all ✓ 2 Rd, where c0 is a bias term defined as:

c0 := sup
✓2Rd

1

2
Ez⇠D(✓)

⇥
|`(✓; z)|2kr✓ log(pD(✓)(z))k

2
⇤
,

where pD(✓) : Z ! R+ is the probability distribution
function representing D(✓). Observe that c0 < 1

for compact Z and the constant is dependent on the
sensitivity of D(✓) to shifts in ✓ (cf. Assumption 6).

It should be pointed out that, naturally, the algorithm
(3), (4) may not provide a ‘good’ solution to the per-
formative learning problem (1) as the learner generally
ignores the performativity of agents. However, if the
state dependent distribution is not sensitive to the
change of state, the following corollary shows that (3)
would still converge to a O(c0)-neighborhood of a sta-
tionary solution. Before we discuss the main statement,
we need two additional assumptions:

Assumption 2’. The function V (✓)=Ez⇠D(✓)[`(✓; z)]
is continuously differentiable and there exists LV � 0
such that krV (✓)�rV (✓0)kLV k✓�✓0k, 8 ✓, ✓0 2 Rd

.

Assumption 3’. There exists � � 0 such that

kr`(✓; z)�rf(✓; ✓)k  �, 8 ✓ 2 Rd, z 2 Z.

The above are stronger conditions than Assump-
tions 2, 3, yet are reasonable settings for certain
non-convex loss functions. For instance, Assumption
2’ holds if `(✓; z),r✓ log

�
pD(✓)(z)

�
are bounded, and

r✓ log
�
pD(✓)(z)

�
to be Lipschitz w.r.t. ✓, e.g., when

Corollary 1. Under Assumptions 2’, 3’, 4, 5, and

let (19) holds. With a step size sequence that decays

as �k = O(1/
p
k), it holds for any K � 1 that

E[krV (✓K)k
2] = O(logK/

p

K + c0),

P(K = k) = �k/
P

K

j=1 �j , 8 k 2 {1, ...,K},
(20)

where K 2 {1, ...,K} is a discrete r.v. independent

of the randomness in the SA algorithm (defined in

Appendix B) and E[·] denotes the total expectation.

D(✓) is ‘smooth’ such as a Gaussian or softmax distri-
bution. Assumption 3’ holds under similar condition as
Assumption 3, e.g., Z is compact. We obtain Corollary 1
from [Karimi et al., 2019, Theorem 2].

Corollary 1 shows that even without strong convexity
on `(·; z), the state dependent SA algorithm finds an
O(logK/

p
K+c0)-stationary solution to (1) in at most

K iterations. The proof can be found in Appendix B.

4 PROOF OUTLINE

We outline the main steps in proving Theorem 1. Our
proof strategy consists in tracking the mean squared
error �k := E[k✓k � ✓PSk

2]. To simplify notations,
we define µ̃ := µ � L✏, the scalar product Gm:n =Q

n

i=m
(1� �iµ̃), for n > m � 1, Gm:n = 1 if n  m.

The following lemma describes the one-step progress
of the SA algorithm.

Lemma 1. Under Assumptions 1, 2, 3, 6. For any

k � 0, it holds

k✓k+1 � ✓PSk
2

�
1� 2�k+1µ̃+ 2L2�2

k+1

�
k✓k � ✓PSk

2

+2�2�2
k+1�2�k+1h✓k�✓PS |r`(✓k; zk+1)�rf(✓k; ✓k)i.

(21)

The proof can be found in Appendix C.2, which involves
a simple expansion of the squared error. The above
lemma suggests that the sensitivity parameter shall
satisfy ✏ < µ/L to ensure µ̃ > 0. Furthermore, the
step size condition sup

k�1 �k  µ̃/(2L2) in (8) leads to
1� 2�k+1µ̃+ 2L2�2

k+1  1� �k+1µ̃ such that the first
term in the r.h.s. of (21) is a contraction.

Under the above premises and suppose zk+1
i.i.d.
⇠ D(✓k)

as in [Mendler-Dünner et al., 2020, Drusvyatskiy and
Xiao, 2020], the stochastic gradient in (21) is condi-
tionally unbiased. Lemma 1 leads to �k+1  (1 �

�k+1µ̃)�k + 2�2�2
k+1, implying �k = O(�k).

However, for the state dependent SA algorithm (3), (4),
the stochastic gradient r`(✓k; zk+1) is conditionally
biased and is driven by a controlled MC. Under the
stepsize condition sup

k�1 �k  µ̃/(2L2), taking the
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total expectation and solving (21) yield

�k  G1:k�0 + 2�2
k�1X

s=0

Gs+2:k�
2
s+1 + 2

k�1X

s=0

Gs+2:k

⇥�s+1E
⇥
h✓PS�✓s |r`(✓s; zs+1)�rf(✓s; ✓s)i

⇤
. (22)

It can be shown that the first two terms are bounded
by O(�k). We are interested in the last term when the
samples {zk}k�1 are drawn according to (4). Observe:
Lemma 2. Under Assumptions 2–6 and the stepsize

conditions in (8). For any k � 1, it holds

2
k�1X

s=0

Gs+2:k�s+1E
⇥
h✓PS � ✓s |r`(✓s; zs+1)�rf(✓s; ✓s)i

⇤


kX

s=2

�2
sGs+1:k

�
C1 + C2�s�1 + C3�s�2

�

+ �1G2:k

�bL(1 + 3�0) + �1C1

 
+ �kbL

�
1 + 3�k�1

 
,

where we have defined the constants:

C1 := &LPHL+ 4&LbL+ (1 + µ̃)& bL,

C2 := 2&LPHL, C3 := C1 + 2(1 + µ̃)& bL.
(23)

The analysis is inspired by [Benveniste et al., 2012] and
has been adopted in [Atchadé et al., 2017, Karimi et al.,
2019]; see Appendix C.3. To handle the controlled MC,
our technique involves applying Assumption 4 and de-
composing the gradient error r`(✓s; zs+1)�rf(✓s; ✓s)
into Martingale and finite difference terms.

A key difference between Lemma 2 and analysis in the
previous works such as [Benveniste et al., 2012] is that
the latter assumed that the iterates or the stochastic
gradients are bounded a-priori which can greatly sim-
plify the proof. Even if such assumption holds, it may
lead to unrealistic constants in the resultant bound.
Our assumptions are significantly weaker as the stochas-
tic gradients are allowed to grow as O(1 + k✓k � ✓PSk)
[cf. Assumption 3], compatible with the setting that
the cost function `(·; z) is strongly convex. It demands
a new proof technique as we present next.

Observe that substituting Lemma 2 into (22) yields:

�k  G1:k�0 + �kbL
�
1 + 3�k�1

 
(24)

+ �1G2:k

�bL(1 + 3�0) + �1(2�
2 + C1)

 

+
k�1X

s=1

�2
s+1Gs+2:k

�
2�2 + C1 + C2�s + C3�s�1

�
.

With the first step size condition in (8), we can apply
the auxiliary result in Lemma 4 from the appendix,
which simplifies the upper bound as

�k  G1:k�0 +
⇣

2
µ̃
(2�2 + C1) + bL

⌘
�k + 3�kbL�k�1

+ �1G2:k

�bL(1 + 3�0) + �1(2�
2 + C1)

 

+
P

k�1
s=1 �

2
s+1Gs+2:k

�
C2�s + C3�s�1

�
. (25)

Observe that the first row in (25) is already in a similar
form to the bound presented in the theorem. The key
issue lies with the last term 3�kbL�k�1 which may be
unbounded. We show that our choice of step sizes in
(8) ensures the convergence of �k to O(�k):

Lemma 3. Suppose that {�k}k�0 satisfy (25) and the

step sizes {�k}k�1 satisfy (8). It holds (i)

sup
k�0 �k� :=3�0+

&

9bL2

⇣
2(2�2+C1)+(µ�L✏)bL

⌘
,

(26)
and (ii) the following inequality holds for any k � 1:

�k 

kY

i=1

(1� �i
µ̃

2
)�0 +

n
3bL�+

4&

µ̃

⇣
2(2�2 + C1)

+ µ̃bL+
⇣
C3 + 3bLµ̃

⌘
�
⌘o

�k. (27)

Proving the above lemma requires one to establish
the stability of the system (25), which demands a
sufficiently small �k to control the remainder term
3bL�k�k�1. Our analysis leverages the special struc-
ture of this inequality system; see the proof details
in Appendix C.4. The convergence bound (27) fol-
lows from the boundedness of �k. Finally, we obtain
Theorem 1 through applying Lemma 3.

5 NUMERICAL EXPERIMENTS
This section considers two performative prediction prob-
lems to validate our theories. All the experiments are
performed with Python on a server using a single thread
of an Intel Xeon 6138 CPU. Further details about the
experiments below can be found in Appendix D.

Gaussian Mean Estimation The first problem

is concerned with Gaussian mean estimation using
synthetic data. Our aim is to validate Theorem 1
and illustrate how the controlled MC can lead to a
variance reduced solution in this application. Here,
(1) is specified as min✓2R Ez⇠D(✓)[(z � ✓)2/2] with
D(✓) ⌘ N (z̄ + ✏✓;�2). For 0 < ✏ < 1, the perfor-
mative stable solution has a closed form ✓PS = z̄

1�✏
.

For the state dependent SA, the agent follows an au-
toregressive (AR) model zk+1 = (1 � ⇢)zk + ⇢z̃k+1

with independent z̃k+1 ⇠ N (z̄ + ✏✓k;�2) and parame-
ter ⇢ 2 (0, 1). This AR recursion is a controlled MC
with a stationary distribution that yields the unbiased
gradient of (1) of reduced variance ⇢

2�⇢
�2. which im-

plies that D(✓) 6= ⇡✓(·) but it does not impact our final
task of estimating the mean of Gaussian distribution.
More details are in Appendix A.1.

We consider a setting with z̄ = 10, � = 50, ✏ = 0.1. The
step size is �k = c0

c1+k
, c0 = 500

µ̃
, c1 = 800

µ̃2 . In Fig. 1
(left), we compare |✓k � ✓PS |

2 against the iteration
number k for the Gaussian estimation problem using
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Figure 1: Gaussian mean estimation – (Left) Under different regression parameter ⇢; Strategic Classifica-
tion – (Middle) Under Linear BR Uq(·) and different agent response rate ↵ [cf. (7)]; (Right) Under Logistics BR
Ulg(·). The shaded region shows the 90% confidence interval over 20 trials.

state dependent SA and greedy deploy in [Mendler-
Dünner et al., 2020]. As observed, both settings achieve
an asymptotic convergence rate of O(1/k) towards
✓PS as predicted by Theorem 1. As ⇢ # 0, the state
dependent SA delivers a smaller error as the AR model
has a stationary distribution with lower variance.

Strategic Classification The second problem is a
strategic classification (SC) problem similar to Per-
domo et al. [2020] for a credit scoring classifier with
GiveMeSomeCredit dataset1. Our aim is to demon-
strate the effects on convergence rate when stateful
agents adapt slowly to the shifted distribution. Recall
that our theory implies while the algorithm will still
converge to ✓PS , a slower convergence will be observed
under the state dependent setting. To specify (1), let
z ⌘ (x, y) where x 2 Rd is feature vector, y 2 {0, 1}
is label. The learner finds ✓ 2 Rd that minimizes
Ez⇠D(✓)[`(✓; z)], where:

`(✓; z) = �

2 k✓k
2 + log(1 + exp(h✓ |xi))� yh✓ |xi (28)

is the logistic loss. With � > 0, `(✓; z) is a �-strongly
convex function w.r.t. ✓ satisfying Assumption 1. For
any ✓ 2 Rd, the shifted data distribution D(✓) is ob-
tained through evaluating the best response (BR) in
(6) of Example 1. We consider two types of strongly
concave utility functions adopted by the agents:

Uq(z0; z, ✓) = h✓ |x0
i �

kx0�xk2

2✏ ,

Ulg(z0; z, ✓) = yh✓ |x0
i � log (1 + exp(h✓ |x0

i))� kx0�xk2

2✏ ,

where z ⌘ (x, y) is the original (unshifted) data. The
label y 2 {0, 1} is unchanged in the BR. Notice that
Uq(·), Ulg(·) have respectively linear and logistics costs.
Both utility functions include a quadratic regularizer
where ✏ > 0 controls the sensitivity of distribution shift.

1Available: https://kaggle.com/c/GiveMeSomeCredit.

With a published ✓k, the agents maximize the utility
function prior to giving data to the learner for the next
round. For both Uq(·) and Ulg(·), the BR obtained
steers the classifier in favor of the agent(s). Further-
more, Ulg(·) is motivated by logistic regression which
favors towards samples with label ‘1’.

In the experiments, we set � = 1000/m in (28), ✏ = 0.01
in the utility functions, and in (7), we set number of
selected agents as |Ik| = 5, agents’ response rate as
↵ = 0.5✏ unless otherwise specified. The step size for
(3) is �k = c0/(c1 + k), c0 = 100/µ̃, c1 = 8L2/µ̃2.

We first consider when ✓PS is computed with D(✓)
defined by the linear BR function Uq(·) and compare
state dependent SA (3), (4) with the greedy deploy
scheme in [Mendler-Dünner et al., 2020] and repeated
risk minimization [Perdomo et al., 2020]. As shown
in Fig. 1 (middle), all algorithms converge to ✓PS . As
↵ # 0, the state dependent SA converges at slightly
slower rates as the agents adapt to the distribution
shift with increased mixing time of the MC2 The result
corroborates with Theorem 1 which established the
O(1/k) convergence rate with state dependent SA.

We next consider the same SC problem as before, but
under a different setting where ✓PS is computed with
D(✓) defined by the logistics BR function Ulg(·). The
agents follow a more complicated dynamics since the
BR does not admit a closed form solution. Again, we
aim to validate Theorem 1 on the convergence of Algo-
rithm 1 under the stateful agent setting. We compare
the distance k✓k � ✓PSk

2 as the algorithm proceeds.
In addition to showing the convergence to ✓PS as pre-

2Due to the ill conditioning of GiveMeSomeCredit dataset,
the effect of mixing time are not obvious in the middle
figure. An additional simulation on synthetic data with
logistic loss can be found in Appendix D which shows a
more significant effect of the slower mixing time on the
convergence of SA.
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dicted in Theorem 1, we demonstrate the effects when
the learner adopts a lazy deployment scheme by varying
the number of ✓-update by the learner per the agents’
update (cf. Mendler-Dünner et al. [2020]).

Fig. 1 (right) shows the error k✓k � ✓PSk
2 against the

number of adaptation steps performed at the agents
via (7) as we illustrate the convergence rate from the
perspectives of the agents. We observe that the error
decreases at a faster rate when the number of learner’s
iteration increases. Further details about our experi-
ments and additional results are in Appendix D.

Conclusion We consider a state dependent SA al-
gorithm for performative prediction. We showed a
convergence rate of O(1/k) in mean-squared error to-
wards the performative stable solution when the agents
provide data drawn from a controlled MC. Our study
paved the first step towards understanding and apply-
ing performative prediction in a dynamical setting.
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Supplementary Material:
State Dependent Performative Prediction with Stochastic

Approximation

A SUPPLEMENTARY INFORMATION FOR SECTION 2

A.1 Example on Gaussian Estimation (A Case where ⇡✓(·) 6= D(✓))

Consider the following instance of (1) with:

min
✓2R

Ez⇠D(✓)[(z � ✓)2/2] where D(✓) ⌘ N (z̄ + ✏✓;�2). (29)

Following (3), the state dependent SA algorithm reads

✓k+1 = ✓k � �k+1r`(✓k; zk+1) = ✓k � �k+1(✓k � zk+1). (30)

where the sequence {zk}k�1 is generated by an autoregressive (AR) model, with ⇢ 2 (0, 1],

zk+1 = (1� ⇢)zk + ⇢z̃k+1 where z̃k+1 ⇠ D(✓k) = N (z̄ + ✏✓k;�
2), (31)

such that the draw of z̃k+1 are independent. We show that the algorithm (30), (31) can be analyzed as a state
dependent SA (3), (4) considered in our framework. Precisely, we show that the controlled MC in (31) admits a
stationary distribution ⇡✓k(·) such that Ez⇠⇡✓k

(·)[r`(✓; z)] = Ez0⇠D(✓k)[r`(✓; z0)].

Observe that (31) defines a controlled MC with a transition kernel denoted by P✓k : R ⇥ R ! R+ at the kth
iteration, as in (4). For every ✓ 2 R, z 2 R, the kernel P✓ has a unique stationary distribution given by

lim
n!1

Pn

✓
(z, ·) = ⇡✓(·) ⌘ N

�
z̄ + ✏✓ ;

⇢

2� ⇢
�2
�
. (32)

Notice that the above is different from the distribution D(✓) desired in (29) unless ⇢ = 1. In the latter case, the
AR model (31) reduces to drawing i.i.d. samples from D(✓). For general ⇢ < 1, it still satisfies the asymptotically
unbiasedness of the stochastic gradient estimate. In particular,

Ez⇠⇡✓(·)[r`(✓; z)] = Ez⇠⇡✓(·)[✓ � z] = Ez⇠D(✓)[r`(✓; z)]. (33)

The key observation is that for this particular performative prediction problem (29), the gradient of the loss
function is linear in the sample z. As such, with (32) yielding a stationary distribution that has the same mean
as D(✓), the asymptotic unbiasedness property is unaffected. In fact, the stationary distribution in (32) has a
reduced variance compared to D(✓). Therefore, we expect the estimation error of ✓PS to be more stable using
(30), (31) than [Mendler-Dünner et al., 2020].

A.2 Details on Example 1 for Adapted Best Response

We continue the discussions in the paper with the procedure (7). When ✓ 2 Rd is fixed, the procedure in (7) is
modelled as a Markov Chain (MC) with unique stationary distribution that corresponds to the best response
distribution D(✓) described in (6).

To this end, we model the state of the MC by the tuple ẑ ⌘ (d1, ..., dm, z). Consider the state space given by
Zm+1 and denote P✓ : Zm+1

⇥ Z
m+1

! R+ as the Markov transition kernel. We remark that there is a slight
abuse of notation here as the stochastic gradient r`(✓; ẑ) used by the learner depends only on the last term, z, in
the agents’ state variable ẑ. We have decided to use the current notation in the main paper to avoid introducing
complicated notation for the implementation focused readers. Nevertheless, the SC example fits our proposed
model.
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Turning back on the MC. Observe when the current state is ẑ, under the action of kernel P✓, by following the
description in (7), we obtain the next state ẑ0 = (d01, ..., d

0
m
, z0) as

d0
j
= dj + ↵1j2IrU(dj ; d̄j , ✓), j = 1, ...,m, z0 = d0

i
, (34)

with probability
P(Ik = I, ik = i) =

1�
m

pm

� ⇥ 1

m
,

for any I ✓ {1, ...,m}, |I| = pm and i 2 {1, ...,m}.

At each transition, the data points {d1, ..., dm} are updated by the first equation in (34). The latter can be treated
as one iteration of the random block coordinate gradient descent (RBCD) algorithm to the separable problem:

max
di,i=1,...,m

mX

i=1

U(di; d̄i, ✓). (35)

Note that the optimal solution to the above, {d?1, ..., d
?

m
}, is a set of data points that forms the empirical

distribution D(✓). Furthermore, it is known that the RBCD algorithm converges linearly with high probability
and almost surely to the optimal solution for strongly concave maximization; see Richtárik and Takáč [2014],
Patrascu and Necoara [2015].

With the above observations, the MC induced by P✓ has a stationary distribution ⇡✓(·) where for any measurable
function f : Zm+1

! Rn, it holds

lim
k!1

Pk

✓
f(d1, ..., dm, z) =

1

m

mX

i=1

f(d?1, ..., d
?

m
, d?

i
) = Ez0⇠D(✓)[f(d

?

1, ..., d
?

m
, z0)], (36)

for any initial state ẑ = (d1, ..., dm, z). The above identity can be derived from the fact that the RBCD algorithm
converges almost surely to the optimal solution to (35) and the random variable zk is uniformly drawn from
{dk1 , ..., d

k

m
}. Furthermore, for any L-Lipschitz continuous f , it holds

���Pk

✓
f(d1, ..., dm, z)� Ez0⇠D(✓)[f(d

?

1, ..., d
?

m
, z0)]

���

(a)


1

m

mX

i=1

kE[f(dk1 , ..., dkm, dk
i
)]� f(d?1, ..., d

?

m
, d?

i
)k

(b)
 L

�
1 +

1

m

� mX

i=1

E[kdk
i
� d?

i
k]  C⇢k,

(37)

where (a) uses Pk

✓
f(d1, ..., dm, z) =

P
m

i=1 E[f(dk1 , ..., dkm, dk
i
)]/m and the expectation is taken with respect to the

random subset selection of Ik in (7). In the expression that follows (b), the constants C, ⇢ 2 [0, 1) depend on the
initial value ẑ and the strong concavity property of U(·). The above property is important for establishing the
existence of the solution to Poisson equation in Assumption 4.

B CONVERGENCE ANALYSIS WITH NON-CONVEX LOSS FUNCTION

We first verify the inequality (19) by observing the following expression for the gradient of performative loss:

rV (✓) = r

Z

Z
`(✓; z)pD(✓)(z)d z = Ez⇠D(✓)[r`(✓; z)] + Ez⇠D(✓)

⇥
`(✓; z)r✓ log(pD(✓)(z))

⇤
, (38)

where we have denoted pD(✓)(z) as the probability distribution function for D(✓). The above identity is derived
using chain rule and the property r✓ log pD(✓)(z) =

r✓pD(✓)(z)
pD(✓)(z)

similar to the policy gradient theorem; see [Sutton
and Barto, 2018, Ch. 13].

Observe that
hrV (✓) |h(✓)i = kh(✓)k2 + hEz⇠D(✓)

⇥
`(✓; z)r✓ log(pD(✓)(z))

⇤
|h(✓)i (39)
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We note

|hEz⇠D(✓)

⇥
`(✓; z)r✓ log(pD(✓)(z))

⇤
|h(✓)i| 

1

2
kh(✓)k2 +

1

2
kEz⇠D(✓)

⇥
`(✓; z)r✓ log(pD(✓)(z))

⇤
k
2


1

2
kh(✓)k2 +

1

2
Ez⇠D(✓)

⇥
|`(✓; z)|2kr✓ log(pD(✓)(z))k

2
⇤


1

2
kh(✓)k2 + c0

where we have used the Jensen’s inequality and set

c0 := sup
✓2Rd

1

2
Ez⇠D(✓)

⇥
|`(✓; z)|2kr✓ log(pD(✓)(z))k

2
⇤
. (40)

The above can be shown to be bounded when the loss function is bounded (e.g., a sigmoid loss), and the state
dependent distribution has bounded gradient w.r.t. ✓ (e.g., a soft-max distribution). Together, we obtain the
desired inequality:

hrV (✓) |h(✓)i �
1

2
kh(✓)k2 � c0, 8 ✓ 2 Rd. (41)

Notice that (38) also implies

krV (✓)k  kh(✓)k+ kEz⇠D(✓)

⇥
`(✓; z)r✓ log(pD(✓)(z))

⇤
k

 kh(✓)k+ Ez⇠D(✓)

⇥
|`(✓; z)|kr✓ log(pD(✓)(z))k

⇤
 kh(✓)k+

p
2c0.

(42)

Proof of Corollary 1 Notice that (41), (42) imply A1, A2 of [Karimi et al., 2019], respectively. Moreover, the
stated assumptions in the corollary imply A3, A5-A7 of [Karimi et al., 2019]. Applying Theorem 2 from [Karimi
et al., 2019] shows that

E[krV (✓K)k
2] . E[kh(✓K)k2] + c0 . 1 +

P
K

k=1 �
2
kP

K

k=1 �k
+ c0, (43)

where we have omitted the constants from [Karimi et al., 2019]. Note that K 2 {1, ...,K} is a discrete r.v. selected
independently with the probability P(K = k) = �k/

P
K

j=1 �j . Setting the step sizes as �k = O(1/
p
k) shows the

desired bound in the corollary.

C MISSING PROOFS IN SECTION 3 & 4

Below, we present the detailed proof for the lemmas presented in §4.

C.1 Constants bL,L in (18)

Below we derive the expressions for the two constants in (18) under Assumptions 2, 3, 4. Furthermore, we assume
that the MC induced by P✓ are uniform geometric ergodic such that there exists ⇢ 2 [0, 1), K � 0, such that for
any n 2 N,

sup
✓2Rd,z2Z

kPn

✓
(z, ·)� ⇡✓(·)kTV  ⇢nK, (44)

where k · kTV is total variation norm.

Firstly, we observe that under Assumption 4 and by [Douc et al., 2018, Proposition 21.2.3], the solution to the
Poisson equation (15) is given as:

br`(✓; z) =
1X

n=0

Pn

✓

�
r`(✓; z)�rf(✓; ✓)

�
=

1X

n=0

�
Pn

✓
� ⇡✓

 �
r`(✓; z)�rf(✓; ✓)

�
. (45)

for any ✓ 2 Rd, z 2 Z, since we noted that ⇡✓(r`(✓; z)) = ⇡✓(rf(✓; ✓)) = rf(✓; ✓). As such, for any ✓ 2 Rd,
z 2 Z,

kbr`(✓; z)k 

1X

n=0

kPn

✓
(z, ·)� ⇡✓(·)kTV sup

z2Z
kr`(✓; z)�rf(✓; ✓)k



1X

n=0

⇢nK�(1 + k✓ � ✓PSk) =
K�

1� ⇢
(1 + k✓ � ✓PSk),

(46)
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where the last inequality is due to Assumption 3 and (44). Similarly, it can be shown that kP✓
br`(✓; z)k 

⇢K�

1�⇢
(1 + k✓ � ✓PSk). Secondly, we observe for any ✓ 2 Rd, z 2 Z, it holds

kr`(✓; z)k  kr`(✓PS ; z)�r`(✓; z)k+ kr`(✓PS ; z)k

(a)
 Lk✓ � ✓PSk+ kr`(✓PS ; z)�rf(✓PS ; ✓PS)k

(b)
 Lk✓ � ✓PSk+ �,

(47)

where (a) is due to Assumption 2 and the fact rf(✓PS ; ✓PS) = 0 and (b) is due to Assumption 3. From the above
observations, we yield the following constants for (18):

bL =
K�

1� ⇢
, L = max{L,�}. (48)

C.2 Proof of Lemma 1

We begin our analysis by observing that as rf(✓PS ; ✓PS) = 0, we have:

k✓k+1 � ✓PSk
2 = k✓k � �k+1r`(✓k; zk+1)� ✓PSk

2

= k✓k � ✓PSk
2

| {z }
=:B1

� 2�k+1 h✓k � ✓PS |r`(✓k; zk+1)�rf(✓PS ; ✓PS)i| {z }
=:B2

+ �2
k+1 krf(✓PS ; ✓PS)�r`(✓k; zk+1)k

2

| {z }
=:B3

The inner product can be lower bounded as

B2 = h✓k � ✓PS |r`(✓k; zk+1)�rf(✓PS ; ✓PS)i

= h✓k � ✓PS |r`(✓k; zk+1)�rf(✓k; ✓k)i+ h✓k � ✓PS |rf(✓k; ✓k)�rf(✓k; ✓PS)i

+ h✓k � ✓PS |rf(✓k; ✓PS)�rf(✓PS ; ✓PS)i

(a)
� h✓k � ✓PS |r`(✓k; zk+1)�rf(✓k; ✓k)i

� k✓k � ✓PSk krf(✓k; ✓k)�rf(✓k; ✓PS)k+ µ k✓k � ✓PSk
2

(b)
� h✓k � ✓PS |r`(✓k; zk+1)�rf(✓k; ✓k)i+ (µ� L") k✓k � ✓PSk

2

(49)

where (a) is due to the Cauchy-schwarz inequality and the µ-strong convexity of rf(·; ·); (b) is due to the
L-smoothness of f and the ✏-sensitivity of the distribution [c.f Assumption 6]; also see Perdomo et al. [2020].
Furthermore,

B3 = kr`(✓k; zk+1)�rf(✓PS ; ✓PS) +r`(✓PS ; zk+1)�r`(✓PS ; zk+1)k
2

 2
⇣
kr`(✓PS ; zk+1)�r`(✓k; zk+1)k

2 + krf(✓PS ; ✓PS)�r`(✓PS ; zk+1)k
2
⌘

 2L2
k✓k � ✓PSk

2 + 2�2

(50)

where the third inequality is due to Assumptions 2, 3. Combing the bounds for B1, B2 and B3, we can get the
desired inequality.

k✓k+1 � ✓PSk
2

 k✓k � ✓PSk
2 + 2�2

k+1 ·

⇣
�2 + L2

k✓k � ✓PSk
2
⌘

� 2�k+1

⇣
h✓k � ✓PS |r`(✓k; zk+1)�rf(✓k; ✓k)i+ (µ� L") k✓k � ✓PSk

2
⌘

=
�
1� 2�k+1(µ� L✏) + 2�2

k+1L
2
�
k✓k � ✓PSk

2

+ 2�2
k+1�

2
� 2�k+1h✓k � ✓PS |r`(✓k; zk+1)�rf(✓k; ✓k)i.

(51)

It is noted that if we consider a case when the SA scheme (4) is non-state-dependent, e.g., zk+1 is drawn from
D(✓k) independently, then proving Lemma 1 suffices to show our desired Theorem 1 since the last term in equation
(21) is zero mean when conditioned on the previous iterates [cf. (22)].
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C.3 Proof of Lemma 2

Applying Assumption 4 shows that the sum of inner product can be evaluated as

kX

s=1

�sGs+1:kEh✓PS � ✓s�1 |r`(✓s�1; zs)�rf(✓s�1; ✓s�1)i

=
kX

s=1

�sGs+1:kEh✓PS � ✓s�1 |
cr`(✓s�1; zs)� P✓s�1

cr`(✓s�1; zs)i ⌘ E (A1 +A2 +A3 +A4 +A5) ,

where we decomposed the sum of inner product into five sub-terms A1, A2, A3, A4, A5 such that

A1 := �

kX

s=2

�sGs+1:kh✓s�1 � ✓PS |cr`(✓s�1; zs)� P✓s�1
cr`(✓s�1; zs�1)i

A2 := �

kX

s=2

�sGs+1:kh✓s�1 � ✓PS |P✓s�1
cr`(✓s�1; zs�1)� P✓s�2

cr`(✓s�2; zs�1)i

A3 := �

kX

s=2

�sGs+1:kh✓s�1 � ✓s�2 |P✓s�2
cr`(✓s�2; zs�1)i

A4 := �

kX

s=2

(�sGs+1:k � �s�1Gs:k)h✓s�2 � ✓PS |P✓s�2
cr`(✓s�2; zs�1)i

A5 := ��1G2:kh✓0 � ✓PS |cr`(✓0; z1)i+ �kh✓k�1 � ✓PS |P✓k�1
cr`(✓k�1; zk)i.

We remark that a similar decomposition can be found in [Benveniste et al., 2012]. However, Benveniste et al.
[2012] proceeded with the analysis by assuming that ✓k stays in the compact set for all k � 0. We do not make
such assumption in this work.

For A1, we note that cr`(✓s�1; zs) � P✓s�1
cr`(✓s�1; zs�1) is a martingale difference sequence and therefore we

have E [A1] = 0 by taking the total expectation.

For A2, as ✓k+1 = ✓k � �k+1r` (✓k; zk+1), we get ✓s�1 � ✓s�2 = ��s�1r`(✓s�2; zs�1). Applying the smoothness
condition Assumption 5 shows that

A2 = �

kX

s=2

�sGs+1:kh✓s�1 � ✓PS |P✓s�1
cr`(✓s�1; zs�1)� P✓s�2

cr`(✓s�2; zs�1)i

 LPH

kX

s=2

�sGs+1:k k✓s�1 � ✓PSk k✓s�1 � ✓s�2k

 LPH

kX

s=2

�s�1�sGs+1:k k✓s�1 � ✓PSk kr`(✓s�2; zs�1)k .

(52)

Combining with the implied bound (18) from the assumptions as well as (8) yield

A2  &LPHL
kX

s=2

�2
s
Gs+1:kk✓s�1 � ✓PSk (1 + k✓s�2 � ✓PSk)

 &LPHL
kX

s=2

�2
s
Gs+1:k

⇢
1

2
+

1

2
k✓s�2 � ✓PSk

2 + k✓s�1 � ✓PSk
2

�

 &LPHL
n1
2

kX

s=2

�2
s
Gs+1:k +

1

2

kX

s=2

�2
s
Gs+1:kk✓s�2 � ✓PSk

2 +
kX

s=2

�2
s
Gs+1:kk✓s�1 � ✓PSk

2
o
,

where the second inequality applies a(1 + c)  1
2 + 1

2c
2 + a2 for any a, c 2 R.
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For A3, again using (18), we observe that

A3 = �

kX

s=2

�sGs+1:kh✓s�1 � ✓s�2 |P✓s�2
cr`(✓s�2; zs�1)i



kX

s=2

�sGs+1:k k✓s�1 � ✓s�2k ·

���P✓s�2
cr`(✓s�2; zs�1)

���



kX

s=2

�s�s�1Gs+1:k kr`(✓s�2; zs�1)k · bL (1 + k✓s�2 � ✓PSk)

 &LbL
kX

s=2

�2
s
Gs+1:k(1 + k✓s�2 � ✓PSk)

2

 2&LbL
kX

s=2

�2
s
Gs+1:k{1 + k✓s�2 � ✓PSk

2
}.

(53)

For A4, we notice that

A4 = �

kX

s=2

(�sGs+1:k � �s�1Gs:k)h✓s�2 � ✓PS |P✓s�2
cr`(✓s�2; zs�1)i



kX

s=2

|�sGs+1:k � �s�1Gs:k| k✓s�2 � ✓PSk ·

���P✓s�2
cr`(✓s�2; zs�1)

��� .

(54)

It can be shown that |�sGs+1:k � �s�1Gs:k|  (1 + µ̃)&�2
s
Gs+1:k, therefore

A4  (1 + µ̃)& bL
kX

s=2

�2
s
Gs+1:k k✓s�2 � ✓PSk (1 + k✓s�2 � ✓PSk)

 (1 + µ̃)& bL
kX

s=2

�2
s
Gs+1:k

n1
2
+

3

2
k✓s�2 � ✓PSk

2
o

 (1 + µ̃)& bL
n1
2

kX

s=2

�2
s
Gs+1:k +

3

2

kX

s=2

�2
s
Gs+1:kk✓s�2 � ✓PSk

2
o
.

(55)

Finally, for A5, we have

A5 = ��1G2:kh✓0 � ✓PS |cr`(✓0; z1)i+ �kh✓k�1 � ✓PS |P✓k�1
cr`(✓k�1; zk)i

 �1G2:k k✓0 � ✓PSk

���cr`(✓0; z1)
���+ �k k✓k�1 � ✓PSk

���P✓k�1
cr`(✓k�1; zk)

���

 �1bLG2:kk✓0 � ✓PSk
�
1 + k✓0 � ✓PSk

�
+ �kbL k✓k�1 � ✓PSk

�
1 + k✓k�1 � ✓PSk

�


�1bLG2:k

2
+

�kbL
2

+
3�1bL
2

G2:kk✓0 � ✓PSk
2 +

3�kbL
2

k✓k�1 � ✓PSk
2

Summing up A1 to A5 and taking the full expectation yield:

2
��E [A1 +A2 +A3 +A4 +A5]

��

 &LPHL
n kX

s=2

�2
s
Gs+1:k +

kX

s=2

�2
s
Gs+1:k�s�2 + 2

kX

s=2

�2
s
Gs+1:k�s�1

o

+ 4&LbL
kX

s=2

�2
s
Gs+1:k

�
1 +�s�2

 
+ (1 + µ̃)& bL

n kX

s=2

�2
s
Gs+1:k + 3

kX

s=2

�2
s
Gs+1:k�s�2

o

+ �1bLG2:k + �kbL+ 3�1bLG2:k�0 + 3�kbL�k�1.
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Recall the following constants:

C1 := &LPHL+ 4&LbL+ (1 + µ̃)& bL, C2 := 2&LPHL, C3 := &LPHL+ 4&LbL+ 3(1 + µ̃)& bL. (56)

We obtain the desirable bound for the lemma:

2
��E [A1 +A2 +A3 +A4 +A5]

��



kX

s=2

�2
s
Gs+1:k

�
C1 + C2�s�1 + C3�s�2

�
+ bL�k

�
1 + 3�k�1

 
+ �1G2:k

�bL(1 + 3�0) + �1C1
�
.

This concludes the proof.

C.4 Proof of Lemma 3

Consider the inequality in (25). We consider a non-negative upper bound sequence {Uk}k�0 defined by the
recursion:

Uk = G1:kU0 +
⇣ 2
µ̃
(2�2 + C1) + bL

⌘
�k +

k�1X

s=1

�2
s+1Gs+2:k

�
C2Us + C3Us�1

�

+ �1G2:k

�bL(1 + 3U0) + �1(2�
2 + C1)

 
+ 3�kbLUk�1,

(57)

for any k � 1, and we have defined U0 = �0. Notice that by construction, we have �k  Uk for any k � 0.

Using the convention that U�1 = 0, we observe that for any k � 1,

Uk = (1� �kµ̃)Uk�1 +
⇣ 2
µ̃
(2�2 + C1) + bL

⌘⇣
�k � (1� �kµ̃)�k�1

⌘

+ �2
k
(C2Uk�1 + C3Uk�2) + 3bL

⇣
�kUk�1 � (1� �kµ̃)�k�1Uk�2

⌘


�
1� �kµ̃+ �2

k
C2

�
Uk�1 +

⇣ 2
µ̃
(2�2 + C1) + bL

⌘
µ̃&�2

k
+
⇣
C3 + 3bLµ̃

⌘
�k�k�1Uk�2

+ 3bL
�
�kUk�1 � �k�1Uk�2

�


�
1� �kµ̃/2

�
Uk�1 +

⇣ 2
µ̃
(2�2 + C1) + bL

⌘
µ̃&�2

k
+
⇣
C3 + 3bLµ̃

⌘
�k�k�1Uk�2

+ 3bL
�
�kUk�1 � �k�1Uk�2

�
,

(58)

where the last inequality is due to �k  µ̃/2C2.

We prove part (i) of the lemma. From (58), we consider an upper bound sequence {Uk}k��1 defined by the
recursion:

Uk =
�
1� �kµ̃/2

�
Uk�1 +

⇣ 2
µ̃
(2�2 + C1) + bL

⌘
µ̃&�2

k
+
⇣
C3 + 3bLµ̃

⌘
�k�k�1Uk�2

+ 3bL
�
�kUk�1 � �k�1Uk�2

�
, 8k � 1.

(59)

We have also defined U0 = U0, U�1 = 0. For any t � 1, summing up the equation (59) from k = 1 to k = t yields

tX

k=1

Uk =
tX

k=1

n�
1� �kµ̃/2

�
Uk�1 +

⇣ 2
µ̃
(2�2 + C1) + bL

⌘
µ̃&�2

k
+
⇣
C3 + 3bLµ̃

⌘
�k�k�1Uk�2

o

+ 3bL
tX

k=1

�
�kUk�1 � �k�1Uk�2

�
,

Rearranging terms leads to

Ut = U0 +
tX

k=1

n⇣
C3 + 3bLµ̃

⌘
�k�k�1Uk�2 +

⇣ 2
µ̃
(2�2 + C1) + bL

⌘
µ̃&�2

k
�

µ̃

2
�kUk�1

o
+ 3bL�tUt�1
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Using the step size conditions �k  �k�1, �k 
�
C3 + 3bLµ̃

��1
min{µ̃/2, 3bL}, �k  (6bL)�1,

Ut  U0 + 3bL�tUt�1

+
tX

k=1

nh⇣
C3 + 3bLµ̃

⌘
�2
k
�

µ̃

2
�k
i
Uk�1 +

⇣ 2
µ̃
(2�2 + C1) + bL

⌘
µ̃&�2

k

o

 3bL�tUt�1 +U0 +
⇣ 2
µ̃
(2�2 + C1) + bL

⌘
µ̃&

tX

k=1

�2
k


1

2
Ut�1 +

n
U0 +

⇣ 2
µ̃
(2�2 + C1) + bL

⌘
µ̃&

tX

k=1

�2
k

o
,

(60)

where we obtain the first inequality after shifting the summation’s index and it is noted that U�1 = 0. Rearranging
terms and solving the recursion lead to

Ut 
�1
2

�t
U0 +

tX

s=1

�1
2

�t�s
n
U0 +

⇣ 2
µ̃
(2�2 + C1) + bL

⌘
µ̃&

sX

k=1

�2
k

o

 3U0 + 2µ̃&
⇣ 2
µ̃
(2�2 + C1) + bL

⌘ tX

`=1

�2
`

�1
2

�t�`

 3U0 +
µ̃&

9bL2

⇣ 2
µ̃
(2�2 + C1) + bL

⌘

(61)

Recall that � := 3U0 + &

9bL2

⇣
2(2�2 + C1) + µ̃bL

⌘
, the above shows �t  Ut  Ut  � for any t � 1, thus

establishing part (i).

We now proceed to proving part (ii) of the lemma. We define Gm:n =
Q

n

`=m
(1� �`µ̃/2) and observe from (59)

that

Uk  G1:kU0 +
kX

s=1

Gs+1:k

n⇣ 2
µ̃
(2�2 + C1) + bL

⌘
µ̃&�2

s
+
⇣
C3 + 3bLµ̃

⌘
�s�s�1Us�2

o

+ 3bL
kX

s=1
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�sUs�1 � �s�1Us�2

�o
.

(62)

Notice that
kX

s=1

Gs+1:k

�
�sUs�1 � �s�1Us�2

�

=
kX

s=1

Gs+1:k

�
�sUs�1 + (1� �sµ̃/2)(�s�1Us�2 � �s�1Us�2)� �s�1Us�2

�

=
kX

s=1

n⇣
Gs+1:k�sUs�1 �Gs:k�s�1Us�2

⌘
� �s�s�1µ̃Us�2/2

o
 �kUk�1  �k�.

(63)

By Lemma 4, we have
P

k

s=1 Gs+1:k�2
s
 4�k/µ̃ and the following is obtained

Uk  G1:kU0 +
n4&
µ̃

⇣
2(2�2 + C1) + µ̃bL

⌘
+ 3bL�+

4&

µ̃

⇣
C3 + 3bLµ̃

⌘
�
o
�k. (64)

The proof is completed.

C.5 Auxiliary Lemmas

Lemma 4. Let a > 0 and (�k)k�1 be a non-increasing sequence such that �1 < 2/a. If �k�1/�k  1 + (a/2)�k
for any k � 1, then for any k � 2,

kX

j=1

�2
j

kY

`=j+1

(1� �`a) 
2

a
�k. (65)
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Proof. The proof is elementary. Observe that:
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�2
j

kY

`=j+1

(1� �`a) = �k

kX
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�j
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kY

`0=1

(1� �`0a/2)

!


2�k
a

.

(66)

The proof is concluded.

D DETAILS OF THE NUMERICAL EXPERIMENTS
This section provides details about the numerical experiments on the second problem of strategic classification
(SC) in §5. Moreover, we provide additional experiment results to better illustrate the performance of the state
dependent SA algorithm for this problem.

The experiments conducted in this section are based on the Credit simulator provided at https://github.com/
zykls/performative-prediction. Our experiments are conducted on a server with Intel Xeon Gold 6138 CPU.
The Python codes are executed in a single-thread environment.

There are two roles in the SC problem – learner and agents. The learner utilizes agents’ information to obtain a
classifier f✓. Meanwhile, individual agents hope to be assigned to a favorable class. To do so, they modify their
features and thereby shifting the data distribution towards the target D(✓). Specifically, our experiments are done
on the GiveMeSomeCredit dataset with m = 18357 samples as we select d = 3 features to build the classifier.
Each (original) data sample is given by z̄i = (x̄i, ȳi) with the label ȳi 2 {0, 1} and selected feature x̄i 2 R3. We
associate each data sample to an agent. The task for the learner (bank) is to design a classifier that distinguishes
whether the application of an individual (agent) who want to default a loan should be granted or not.

We simulate the adapted best response presented in Example 1 of the main paper. In this setting, the agents rely
on their past experience to present data to the learner that is favorable to to agents. The latter is achieved by a
gradient descent step that depends on the current learner’s state (✓k), past agent’s state (zk) and the original
data (D0). As the dynamics is coupled between the agents’ and learner’s update, we present the overall algorithm
based on (3), (4) as follows:

Algorithm 2: State Dependent SA with Adapted Best Response.

Input: initial iterate ✓0 2 Rd, agents’ state x0
i
= x̄i, i 2 {1, ...,m} such that x̄i is the ith original feature

vector, step sizes {�k}k�0, agents’ response rate ↵ > 0, update parameter b.

For k = 0, 1, 2, . . .

1. A subset of agents, Ik with |Ik| = b, is selected uniformly from {1, ...,m}. They adapt their feature
vectors based on past experience and ✓k as:

xk+1
i

= xk

i
+ ↵rU(xk

i
; z̄i, ✓k), 8 i 2 Ik, xk+1

i
= xk

i
, 8 i /2 Ik. (67)

2. An agent ik 2 {1, ...,m} is drawn uniformly to present data. Set zk+1 = (xk+1
ik

, yik).

3. The learner computes the k + 1th iterate by:
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✓k+1 = ✓k � �k+1r`(✓k; zk+1).

The most recent iterate ✓k+1 is deployed and made available to the agent(s).

Steps 1 & 2 in Algorithm 2 resemble the adaptive best response update in (7). We emphasize that these two
steps are agnostic to the learner as the latter only sees zk+1 at iteration k, similarly, the last step is not known to
the agents as the latter only sees the classifier given as ✓k+1.

Furthermore, we recall that the following two types of utility functions are considered as U(·):

Uq(x
0; z, ✓) = h✓ |x0

i �
kx0

� xk2

2✏
,

Ulg(x
0; z, ✓) = yh✓ |x0

i � log (1 + exp(h✓ |x0
i))�

kx0
� xk2

2✏
.

(68)

In step 1, the agents’ response rate ↵ and parameter b control the speed of adaptation among the group of m
agents. These parameters will affect the mixing time of the MC which determines the bounds in Theorem 1.
Overall, we observe that the agents’ states and learner’s iterates are evolving simultaneously, highlighting the
coupled nature in the analysis of the state dependent SA algorithm.

In cases such as Ulg(·) where the ideal best response argmax
x0 U(x0; z, ✓) must be obtained via an iterative

algorithm. From an algorithmic standpoint, the stateful nature for the agent is necessary for the performative
prediction algorithm to converge to ✓PS .

Verification of Assumption 5 We demonstrate that Assumption 5 holds for a special case of our numerical
experiments on strategic classification. Here, we consider for simplicity that b = m such that all the m agents
adapt their feature vectors at iteration k with a gradient ascent step3. Furthermore, we concentrate on the case
with quadratic best response function Uq(·).

Recall that `(✓; z) = �

2 k✓k2+log(1+exp(h✓ |xi))� yh✓ |xi and our objective function is Ez⇠D(✓)`(z; ✓). By [Douc
et al., 2018, Proposition 21.2.3], the Possion equation (15) admits the following solution:

cr`(✓; z) =
1X

k=0

�
Pk

✓
� ⇡✓

�
{r`(✓; z)�rf(✓; ✓)} =

1X

k=0

�
Pk

✓
� ⇡✓

� ✓ exp(h✓ |xi)

1 + exp(h✓ |xi)
� y

◆
x

�

Notice that er`(✓; z) :=
⇣

exp(h✓ | xi)
1+exp(h✓ | xi) � y

⌘
x is an L-Lipschitz continuous map with respect to ✓ for any z 2 Z

and it is bounded by sup
z2Z 2 kxk. For any ✓, ✓0 2 Rd, we obtain

���P✓
cr`(✓, z)� P✓0cr`(✓0, z)

��� 

�����

1X

k=0

�
Pk

✓
� ⇡✓ � (Pk

✓0 � ⇡✓0)
 er`(✓; z)

����� (69)

+

�����

1X

k=0

�
Pk

✓0 � ⇡✓0
� her`(✓; z)� er`(✓0; z)

i�����

Note that
���
P1

k=0

�
Pk

✓0 � ⇡✓0
� her`(✓; z)� er`(✓0; z)

i��� 
CL

1�⇢
k✓ � ✓0k as a consequence of the uniform geometric

ergodicity of P✓ and the L-Lipschitz continuity of er`.

To handle the first term of (69), we define

xk

i
(✓) = ⇢kx0

i
+ (x̄i + ✏✓)

�
1� ⇢k+1

 
and x̄i(✓) = x̄i + ✏✓

where ⇢ = 1� ↵/✏. For any k � 0, we note that

�
Pk

✓0 � ⇡✓0
 er`(✓; z) =

1

m

mX

i=1

⇢✓
exp(h✓ |xk

i
(✓0)i)

1 + exp(h✓ |xk

i
(✓0)i)

� yi

◆
xk

i
(✓0)�

✓
exp(h✓ | x̄i(✓0)i)

1 + exp(h✓ | x̄i(✓0)i)
� yi

◆
x̄i(✓

0)

�

3The general case with random BCD involve tedious calculations and is skipped for brevity, yet the general proof idea can
be applied.
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Taking the Jacobian of the above expression with respect to ✓0 yields

D✓0

⇣�
Pk

✓0 � ⇡✓0
 er`(✓; z)

⌘
=

✏

m

mX

i=1

n
yi⇢
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i
(✓0)i)

�
1

1 + exp(�h✓ | x̄i(✓0)i)

o
Id

+
✏

m

mX

i=1

⇢
1� ⇢k+1

(1 + exp(�h✓ |xk

i
(✓0)i))(1 + exp(h✓ |xk

i
(✓0)i))

xk

i
(✓0)

�
1

(1 + exp(�h✓ | x̄i(✓0)i))(1 + exp(h✓ | x̄i(✓0)i))
x̄i(✓

0)

�
✓>

Using the fact that
��xk

i
(✓0)� x̄i(✓0)

��  ⇢k(
��x0

i

��+kx̄i + ✏✓0k) and the 1-Lipschitz continuity of 1
1+ex

, x

(1+ex)(1+e�x) ,
it can be shown that the above Jacobian matrix can be bounded for any k, ✓0, ✓ as

kD✓0

⇣�
Pk

✓0 � ⇡✓0
 er`(✓; z)

⌘
kmax  D ⇢k, (70)

where D < 1 under some regularity conditions4. Collecting terms implies that
���
�
Pk

✓
� ⇡✓ � (Pk

✓0 � ⇡✓0)
 er`(✓; z)

���  D ⇢k k✓ � ✓0k ,

and thus ���P✓
cr`(✓, z)� P✓0cr`(✓0, z)

��� 
CL+D

1� ⇢
k✓ � ✓0k .

We note that LPH := CL+D
1�⇢

in the last inequality where it depends on the mixing time. This verifies Assumption 5
for this example.

Lastly, we remark that [Karimi et al., 2019, Lemma 7] may be used for verifying Assumption 5. Notice that
the assumption A13 therein is implied by our Assumption 2, and the assumption A14 therein is implied by the
geometric convergence established in (37). It remains to verify the assumption A12 in [Karimi et al., 2019] to
establish Assumption 5. In addition, if the following smoothness condition on the Markov kernel

sup
z2Z

kP✓(z, ·)� P✓0(z, ·)kTV  LP k✓ � ✓0k , 8 ✓, ✓0 2 Rd (71)

holds, then [Karimi et al., 2019, Lemma 7] can be applied. The condition (71) may be applicable when the agents’
updates follow a softmax like policy.

Additional Experiments Next, we provide additional experiments to illustrate the performance of the state
dependent SA algorithm from a few perspectives that are skipped in the interest of space for the main paper.
Unless otherwise specified, we adopt the same parameters set in the experiments presented in the main paper. In
particular, we set � = 1000/m in (28), ✏ = 0.01 in the utility functions, and in (7), we set number of selected
agents |Ik| = 5, agents’ response rate ↵ = 0.5✏. The step size for (3) is �k = c0/(c1 + k), c0 = 100/µ̃, c1 = 8L2/µ̃2,
where L, µ̃ are estimated as

p
2�m+ kXk2

F
/2, (1� ✏)� � ✏kXk

2
F
/4m, respectively. By default, the SA algorithm

is executed as presented in Algorithm 2 with a batch size of batch = 1 and the agents perform only BR = 1 best
response update per SA update in step 3 of Algorithm 2.

Besides, we compare the convergence rates of the algorithms from the perspective of the agents – measured by
the number of BR updates performed by the agents. This is the setting used in the plot of Fig. 1 (right) and is
denoted with the x-axis label of ‘no. of agent update’. We also compare the convergence from the perspective
of the learner – measured by the number of samples requested from the agents by the learner. This setting is
denoted with the x-axis label of ‘no. of samples drawn by learner’.

Effects of Stateful Updates at Agents Notice that the comparison has been made in Fig. 1 (right). Here,
in Fig. 2 we again plot the convergence of the SA algorithm to illustrate the convergence rates from the learner’s
perspective as well. We observe that the SA algorithms with stateful update converges as k increases. We vary
the ‘learner’s iteration’ parameter to observe the effects on convergence when the learner is adapting at faster rate
4We note that (70) can be implied by either k✓k < 1 or a milder condition such as x̄i(✓) 6= 0 for any ✓, i.
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Figure 2: Convergence of SA algorithm with varying number of learner’s updates per iteration.

than the agents. This is achieved by repeating steps 2 and 3 in Algorithm 2 for multiple times. Notice that this
setting is similar to the lazy deploy scheme in [Mendler-Dünner et al., 2020]. From the figure, we observe that
doing so improves the convergence from the agents’ perspective, while the sample efficiency (from the learner’s
perspective) is unaffected.

Figure 3: Convergence of SA algorithm with varying number of minibatch size.

Effects of Minibatch Size In this experiment, we consider the setting of Ulg(·) and we draw different batch
size of samples (b̂ 2 {1, 5, 10}) per iteration. To implement this, at step 2 of Algorithm 2, the learner draws b̂
agents uniformly as Îk, and at step 3, we update the iterate through:

✓k+1 = ✓k � �k+1
1

b̂

X

j2Îk

r`(✓k; zk+1,j).

In Fig. 3, we compare the error k✓k � ✓PSk
2 in terms of the number of agents’ best response update5 and the

number of samples drawn by the learner. We find that increasing the minibatch reduces the variance of the
gradient estimate, yet it can be less sample efficient from the learner’s perspective.

Effects of Number of Adaptive Best Responses In this experiment, we consider the setting of Ulg(·) and
at each iteration, the agents execute multiple rounds of adapted best response (BR 2 {1, 2, 4}) to simulate the
scenario when the agents are allowed with more time to respond to the published classifier ✓k. To implement this,
we repeat the update in (67) of step 1 in Algorithm 2 for BR times. Notice that this is reverse of Fig. 1 (right)
where the learner performs multiple iterations per agents’ best response update.

In Fig. 4, we compare the error k✓k � ✓PSk
2 in terms of the number of agent update and the number of samples

drawn by the learner. We observe that increasing the number of best responses improves the performance slightly.
However, as a drawback, it requires more computations/updates at the agents to reach the same performance.
5Since the agents only perform one best response update per iteration, the x-axis is equivalent to the iteration number k.
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Figure 4: Convergence of SA algorithm with varying number of best responses.

Figure 5: Convergence of SA algorithm with different values of agents’ response rate ↵. (Left) In Setting (A)
with large ✏ on the GiveMeSomeCredit dataset. (Right) In Setting (B) with synthetic data.

Large ✏ and Synthetic Data Lastly, we consider two additional settings with Uq(·) on the SC problem as we
further investigate the effects of agent response rate ↵ on the convergence of state dependent SA:

(A) The first setting has sensitivity parameter ✏ that exceeds the theoretical bound µ/L. Specifically, we set
✏ = 100 and evaluate the effect of the agents’ response rate (↵) on the convergence rate of ✓k to ✓PS . This is
similar to the experiment considered in Mendler-Dünner et al. [2020]. Notice that as ✏ � µ/L, the SA algorithm
and the greedy deployment scheme in Mendler-Dünner et al. [2020] are not guaranteed to converge, yet a larger ✏
shall amplify the effects of the data distribution shift. Note we have considered a different set of step sizes for (3)
as �k = c0/(c1 + k) with c0 = L, c1 = L2/µ, and the inexact best response dynamics (7) takes |Ik| = 100.

(B) The second setting considers the same logistic regression problem (28), but with synthetic data. Here,
we first generate a ground truth classifier ✓true 2 U [�1, 1]11, and generate m = 5000 samples of {di}mi=1 with
di = (xi, yi), xi ⇠ U [�1, 1]11, and yi = sign(hxi | ✓truei). We also set � = 1000

m
in (28) and ✏ = 0.05 in (68), where

the latter satisfies ✏ < µ

L
for the problem instance considered. Furthermore, we consider the step sizes for (3) as

�k = c0/(c1 + k) with c0 = 3
µ�L✏

, c1 = 80L2

(µ�L✏)2 , and the inexact best response dynamics (7) takes |Ik| = 1.

In Fig. 5, we compare the error k✓k � ✓PSk
2 against the number of samples drawn by the learner as we examine

different agents’ response rate: with ↵ 2 {0.1✏, 0.5✏, ✏} in setting (A), or with ↵ 2 {0.05✏, 0.1✏, 0.5✏} in setting (B).
Note that Fig. 5 (Left) is similar to the comparison made in Fig. 1 (Middle), yet the increased ✏ leads to more
significant data distribution shift. In both settings (A) and (B), we find that when the agents’ response rate ↵
decreases, the state dependent SA algorithm slows down. Moreover, as ↵ increases towards ✏, the convergence
rate of state dependent SA algorithm approaches that of the greedy deployment scheme in [Mendler-Dünner
et al., 2020]. This corroborates with the conclusion from Theorem 1 as decreasing ↵ leads to a slower Markov
chain, therefore increasing the constants such as bL in the theorem.


