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Abstract

Linear contextual bandit is a popular online
learning problem. It has been mostly stud-
ied in centralized learning settings. With the
surging demand of large-scale decentralized
model learning, e.g., federated learning, how
to retain regret minimization while reducing
communication cost becomes an open chal-
lenge. In this paper, we study linear contex-
tual bandit in a federated learning setting.
We propose a general framework with asyn-
chronous model update and communication
for a collection of homogeneous clients and
heterogeneous clients, respectively. Rigorous
theoretical analysis is provided about the re-
gret and communication cost under this dis-
tributed learning framework; and extensive
empirical evaluations demonstrate the effec-
tiveness of our solution.

1 Introduction

As a popular online learning problem, linear contex-
tual bandit has been used for a variety of applications,
including recommender systems (Li et al., 2010a), dis-
play advertisement (Li et al., 2010b) and clinical trials
(Durand et al., 2018). While most existing solutions
are designed under a centralized setting (i.e., data is
readily available at a central server), in response to
the increasing application scale and public concerns of
privacy, there is a growing demand to keep data decen-
tralized and push the learning of bandit models to the
client side. Federated learning has recently emerged as
a promising setting for decentralized machine learn-
ing (Konecény et al., 2016). Since its debut in 2017,
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there have been many variations for different appli-
cations (Yang et al., 2019). However, most existing
works study offline supervised learning problems (Li
et al., 2019b; Zhao et al., 2018), which only concerns
optimization convergence over a fixed dataset. How
to perform federated bandit learning remains under-
explored, and is the main focus of this paper.

Analogous to its offline counterpart, the goal of fed-
erated bandit learning is to minimize the cumulative
regret incurred by N clients during their online in-
teractions with the environment over time horizon T',
while keeping each client’s raw data local. Take rec-
ommender systems as an example, where the clients
correspond to the edge devices that directly interact
with user by making recommendations and receiving
feedbacks. Unlike centralized setting where observa-
tions from all clients are immediately transmitted to
the server to learn a single model, in federated bandit
learning, each client makes recommendations based on
its local model, with occasional communication for col-
laborative model estimation.

Several new challenges arise in this problem setting.
The first is the conflict between the need of timely
data/model aggregation for regret minimization and
the need of communication efficiency, since communi-
cation is the main bottleneck for many distributed ap-
plication scenarios, e.g., communication in a network
of mobile devices can be slower than local computation
by several orders of magnitude (Huang et al., 2013).
A well-designed communication strategy becomes vi-
tal to strike the balance. In addition, the clients often
have various response time and even occasional un-
availability in reality, due to the differences in their
computational and communication capacities. This
hampers global synchronization employed in existing
federated bandit solutions (Wang et al., 2019; Dubey
and Pentland, 2020), which requires the server to first
send a synchronization signal to all clients, wait and
collect their returned local updates, and finally send
the aggregated update back to every client. Second,
it is restrictive to only assume homogeneous clients,
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i.e., they solve the same learning problem. Studying
heterogeneous clients with distinct learning problems
has a greater potential in practice. This is referred to
as “non-IIDness” of data in the context of federated
learning, e.g., the difference in P;(x, y) = P;(x)P;(y|x)
is caused by each client i € [N] serving a particular
user or group of users, a particular geographic region,
or a particular time period. It is also unreasonable to
assume every client has equal amount of new observa-
tions, which however is assumed in existing works.

To address the first challenge, we propose an asyn-
chronous event-triggered communication framework
for federated linear bandit. Communication with a
client happens only when the last communicated up-
date to the client becomes irrelevant to the latest one;
and we prove only by then effective regret reduction
can be expected in this client because of the com-
munication. Under this asynchronous communication,
each client sends local update to and receives aggre-
gated update from the server independently from other
clients, with no need for global synchronization. This
improves our method’s robustness against possible de-
lays and temporary unavailability of clients. As both
upload and download are asynchronous in our case, the
event-trigger and epoch-wise analysis in existing solu-
tions (Wang et al., 2019; Dubey and Pentland, 2020)
do not apply, i.e., their event-trigger is specially de-
signed to upper bound the cumulative regret of each
client since last global synchronization, which does not
exist in our case. Instead, we used a novel step-wise
analysis that separately bounds the delay between a
client and the server, and that between the server
and an imaginary centralized agent at each single time
step. We rigorously prove that the proposed commu-
nication framework brings in reduced communication
cost when the clients have distinct availability of new
observations, because global synchronization requires
every client in the learning system to send its local up-
date despite the fact that some clients can have very
few new observations since last synchronization.

To address the second challenge, we design algorithms
for federated linear bandit with both “IIDness” and
“non-IIDness” based on the proposed communication
framework. We consider two different assumptions on
the reward functions. First, all the clients share a com-
mon reward function i.e., a single model is learned for
all clients. Second, each client has a distinct reward
function with mutual dependence captured by globally
shared components in the unknown parameter, which
resembles federated multi-task learning (Smith et al.,
2017). We rigorously prove the upper bounds of accu-
mulative regret and communication cost for the pro-
posed algorithms in these two settings, and conduct
extensive empirical evaluations to demonstrate the ef-

fectiveness of our proposed framework.

2 Related Works

Classical linear bandit algorithms, like LinUCB (Li
et al., 2010a; Abbasi-Yadkori et al., 2011) and LinTS
(Agrawal and Goyal, 2013; Abeille and Lazaric, 2017)
only concern a single learning agent. Multi-agent ban-
dits mostly focus on customizing algorithms that lever-
age relationships among the agents for collaborative
learning (Cesa-Bianchi et al., 2013; Gentile et al., 2014;
Liet al., 2016; Wu et al., 2016; Wang et al., 2019; Yang
et al., 2020; Li et al., 2021a,b), but the data about all
agents is still on the central server.

Distributed bandit (Korda et al., 2016; Mahadik et al.,
2020; Wang et al., 2019; Dubey and Pentland, 2020;
Huang et al., 2021) is the most relevant to ours, where
designing an efficient communication strategy is the
main focus. Existing algorithms mainly differ in the
relations of learning problems solved by the agents
(i.e., identical vs., clustered) and the type of com-
munication network (i.e., peer-to-peer (P2P) vs., star-
shaped). Korda et al. (2016) studied two problem set-
tings with a P2P communication network: 1) all the
agents solve a common linear bandit problem, and 2)
the problems are clustered. Mahadik et al. (2020) later
proposed an improved algorithm on the second prob-
lem setting studied by Korda et al. (2016). However,
both works only tried to reduce per-round communi-
cation, and thus the communication cost is still lin-
ear over time. Two follow-up studies considered the
setting where all agents solve a common linear ban-
dit problem with time-varying arm set and interact
with the environment in a round-robin fashion (Wang
et al., 2019; Dubey and Pentland, 2020). Similar to
our work, they also used event-triggered communica-
tions to obtain a sub-linear communication cost over
time. In particular, Wang et al. (2019) considered a
star-shaped network and proposed a synchronous com-
munication protocol for all clients to exchange their
sufficient statistics via the central server. Dubey and
Pentland (2020) extended this synchronous protocol to
differentially private LinUCB algorithms under both
star-shaped and P2P network. A recent work by
Huang et al. (2021) considered a similar setting but
with a fixed arm set and thus proposed a phase-based
elimination algorithm.

There is also a rich literature in distributed machine
learning/federated learning (McMahan et al., 2017; Li
et al., 2019b). However, as mentioned earlier, due to
the fundamental difference in the learning objectives,
they are not suitable for our problem: their focus is to
collaboratively learn a good point estimate over a fixed
dataset, i.e., convergence to the minimizer with fewer
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communications, while federated bandit learning re-
quires collaborative confidence interval estimation for
efficient regret reduction, which requires exploration
of the unknown data. This is also reflected by the dif-
ference in the triggering event designs. For offline dis-
tributed optimization, triggering event measuring the
change in the learned parameters suffices (Kia et al.,
2015; Yi et al., 2018; George and Gurram, 2020), while
for federated bandit learning, triggering event needs
to measure change in the volume of the confidence re-
gion, i.e., uncertainty in the problem space. In addi-
tion, thanks to the existence of closed-form solution for
linear problem, gradient-based optimization methods
like FedAvg (McMahan et al., 2017) is unnecessary, be-
cause compared with transferring the sufficient statis-
tics, they incur much higher communication overhead
without bringing in any gain in regret minimization.

3 Methodology

In this section, we establish the asynchronous event-
triggered communication framework for federated lin-
ear bandit, and propose two UCB-type algorithms un-
der different assumptions about the clients’ reward
functions, followed by our theoretical analysis of their
regret and communication cost.

3.1 Problem Formulation

Consider a learning system with 1) N clients respon-
sible for taking actions and receiving reward feed-
back from the environment, e.g., each client being
an edge device directly interacting with a user, and
2) a central server responsible for coordinating the
communication between the clients for collaborative
model estimation. At each time t = 1,2,...,7T, a
client iy € [N] (assume P(i; = i) > 0,Vi € [N])
interacts with the environment by choosing one of
the K actions, and receives the corresponding reward.
When making the choice, client i; has access to a set
Ay ={x¢1,%12,- .., XK }, where x; o denotes the con-
text vector associated with the a-th action for client
i; at time ¢t. Denote the context vector of the cho-
sen action at time t as x;, and the corresponding re-
ward as ¢, which is assumed to be generated by an
unknown linear reward mapping y: = f;, (x¢) + .
As in standard linear bandit, 7; is zero mean o-sub-
Gaussian noise conditioning on the o-algebra gener-
ated by the previously pulled arms and the observed
rewards Fy_1 = o{X1,Y1,X2, Y2y -« Xe—1, Yt—1, Xt }-
Interaction between the learning system and the en-
vironment repeats itself, and the goal of the learning
system is to minimize the cumulative (pseudo) regret

Rr = EtT:l r+, where r = maxxe 4, fi, (X) — fi, (Xt).

Denote the set of time steps when client ¢ inter-

acts with the environment up to time ¢ as N;(t) =
{1 <7 <t:i; =i}. Note that we do not impose any
further assumption on the clients’ distribution or fre-
quency of its interactions. This makes our setting
more general than existing works (Wang et al., 2019;
Dubey and Pentland, 2020), where the clients interact
with the environment in a round-robin fashion, i.e.,
|N;(t)] = t/N. In addition, in the federated learning
setting, the clients cannot directly communicate with
each other, but can only communicate with the cen-
tral server, i.e., a star-shaped communication network.
Raw data collected by each client {(xr,yr)}ren; ) is
stored locally and will not be transferred. Instead,
the clients can only collaborate by communicating the
parameters of the learning algorithm, e.g., gradients,
models or sufficient statistics; and the communication
cost, denoted by C7p, is measured by the amount of
parameters transferred across the system over time T'.

We consider two different settings about the linear re-
ward mapping function f;(-) for i =1,..., N:

Homogeneous clients. Rewards received by all the
clients are generated by a common reward mapping
function:

fi(x)=0"x, Vic|N] (1)

where # € R? is the unknown parameter and we as-
sume [|f|| < 1 and ||x|| < 1. Despite its simplicity,
this setting is commonly adopted in existing works for
federated bandits.

Heterogeneous clients. The unknown parameter
for each client ¢ € [N] consists of a globally shared
component 89 € R% and a unique local component
6 ¢ R%:

roa=[o0] [0] wew o

where x(9) € R%, x() ¢ R% denote the global and
local features in x, and we assume |||, < 1,
6]z < 1,% € [N] and [[x@][|; < 1, [xO[]; < 1.
This setting is more general and fits a larger variety of
problems in practice. For example, x(9) could be com-
mon arm features relevant to all the clients and x()
are those unique to client . And our setting is flex-
ible enough to allow different clients to have varying
dimensions of their local features (i.e., d; # d;). Alter-
natively, when x(9) = x(® | this recovers the multi-task
learning setting in (Evgeniou and Pontil, 2004).

We adopt the context regularity assumption from Gen-
tile et al. (2014); Li et al. (2019a, 2021b), which im-
poses a variance condition on the stochastic process
generating x; , (for heterogeneous clients, it is imposed
on global features ngg ). This suggests the informative-
ness of each observation in expectation.
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Figure 1: Comparison between the synchronous and asynchronous event-triggered communications for federated
linear bandit. The former requires all clients to upload their latest data at once and then download the aggregated
data, while latter performs both upload and download on a per-client basis.

Assumption 1 (Context regularity) At each time
t, the context vector Xy, € Ay for each arm a € [K] is
independently generated from a random process, such
that Be_1[x¢.ax] ,] = E[x¢,ax/ ,[{is, As, s }sep—1)] =
Y. = AVt € [T] where the constant A\, > 0. Let
also, for any fived unit vector z € R?, the random
variable (2"x4,4)? be conditionally sub-Gaussian with
variance parameter v < \2/(8log4K).

3.2 Asynchronous Communication

To balance the two conflicting objectives, i.e., cumula-
tive regret Ry and communication cost Cr, we intro-
duce an asynchronous event-triggered communication
framework as illustrated in Figure 1(b). For simplic-
ity, all discussions in this section assume homogeneous
clients (Eq (1)), and we show in Section 3.4 that the
result extends to heterogeneous clients (Eq (2)) as well
with minor modifications. Also note that in this paper
we use LinUCB (Abbasi-Yadkori et al., 2011) with our
communication framework as a running example, but
our results readily hold for other popular algorithms
like LinTS (Abeille and Lazaric, 2017) and LinPHE
(Kveton et al., 2019) !

We begin our discussion with an important observa-
tion about the instantaneous regret of linear bandit
algorithms. Denote the sufficient statistics (for 6) col-
lected from all clients by time t as V; = Zt L Xex]
and b; = Z _1 X7Y-. In a centralized setting, at each
time step ¢ € [T, {Vi—1,bi—1} are readily available
to make an informed choice of arm x; € A;. It is
known that the instantaneous regret r; incurred by the

!Their results also depend on ZZ—‘=1||X1§HV—1 (Section 4
t—1

of Abeille and Lazaric (2017) and Theorem 1 of Kveton
et al. (2019)), so a similar procedure can be applied.

mentioned linear bandit algorithms is directly related
to the width of the confidence ellipsoid in the direc-
tion of x;. Specifically, from Theorem 3 in (Abbasi-
Yadkori et al., 2011), with probability at least 1 — 4,
the instantaneous regret r; incurred by LinUCB can

be upper bounded by r; < 20zt,11/xtTVt:11xt7 where
A1 = O (
ized in our problem, {V;_1,b;—1} are not readily avail-
able to client i;. Instead, the client only has a delayed
copy, denoted by {V;, s—1,b;, 1—1}, which contains its

own interactions with the environment on top of the
last communication with the server. Therefore, now

the instantaneous regret 7, < 2a;, +—14/X%; Vt 1Xe =

20, 1—11/ %}V, 1Xt\/1—‘t 1, where I';_; = Ltli:t
measures how much wider the confidence ellipsoid at
client i;’s estimation in the direction of x; is, compared
with that under a centralized setting. The value of
I';_1 depends on how frequent local updates are ag-
gregated and shared. Also note that Ity > 1, as
Vic1 = Vi, +—1,Vt, which suggests the regret in the de-
centralized setting is at best the same as that in the
centralized setting. Equality is attained when all the
clients are synchronized in every time step.

1/ dlog %) However, as data is decentral-

Based on this observation, we can balance regret and
communication cost by controlling the value of I';_;.
However, in the decentralized setting, neither the
server nor the clients has direct access to {V;_1,b:—1},
and the closest thing one can get is the aggregated suf-
ficient statistics managed by the server, which we de-
note as {V4 1—1,bq,t—1}. Hence, we take an indirect ap-
proach by first ensuring {Vj ;—1, by+—1} do not deviate
too much from {V;_1,b;—1}, and then {V;;—1,b; -1}
do not deviate too much from {V;_1,bg -1} for each
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client ¢ € [N]. The former leads to the ‘upload’ event,
i.e., each client decides whether to upload indepen-
dently, and the latter leads to the ‘download’ event,
i.e., the server decides whether to send its latest statis-
tics to each client independently as well.

In the proposed communication framework shown in
Figure 1(b), each client ¢ € [N] stores a local copy of its
sufficient statistics {V; ;—1, b;1—1}, and also an ‘upload’
buffer {AV; 1, Ab; 11}, i.e., local updates that have
not been sent to the server. At each time step ¢, client
iy € [N] interacts with the environment, and updates
Vit = Vijio1 +xex/) b0 = bi o1 + xey, AV p =
A‘/it,t—l —|—XtX;r, Abit,t = Abit,t—l +Xtyt with the new
observation (x¢,y:). Then it executes Algorithm 1, by
first checking the following condition (line 2):
‘Upload’ event: Client i, sends {AV;, ¢, Ab;, 1} to
the server if event:

o det(Vit,t)
Us (o) = { e > w} 3)

happens, and then sets AV;; = 0,Ab; ; = 0. Other-
wise, {AV; ¢, Ab; ;} remain unchanged.

The server stores the aggregated sufficient statistics
{Vg,t—1,bgt—1} over the local updates received from
the clients, and also maintains ‘download’ buffers
{AV_j+—1,Ab_j;, 1} for each client j € [N], i.e., the
aggregated updates that have not been sent to client
Jj. Specifically, after the server receives {AV;, 4, Ab;, 1}
via the ‘upload’ from client 4., it updates Vy; =
Vg,t—l + A‘/it,tabg,t = bg,t—l + Abit,ta and Av—j,t =
Av—j,t—l + A‘/it,taAb—j,t = Ab—j,t—l + Abit,t for all
clients j # ;. Then it checks the following condition
for each client j # ¢; (line 7):

‘Download’ event: The server sends {AV;,, Ab;.}
to client j if event:

Dyj(vp) = { det({?’g{j(—vggz/fj,t) ~ PYD} W

happens, and then sets AV_;, = 0,Ab_;,; = 0. Oth-
erwise, {AV_;,, Ab_;,;} remain unchanged.

After client j receives {AV_;;, Ab_;,} via the ‘down-
load” communication, it updates V;; = V;,_1 +
AV_j,bj0 =bja—1 + Ab_jy.

The following lemma specifies an upper bound of
I';—1 by executing Algorithm 1, which depends on the
thresholds {vy,yp} and the number of clients N.

Lemma 3.1 Denote the total number of observations
that have been used to update {V;4,b;} as 7. With
Assumption 1, the ‘upload’ and ‘download’ events de-
fined in Eq (3) and Eq (4), when 7;, > Tmin =
’—%4@ log (24T with probability at least 1 —0, Ty_y <
BL[1+ (N - 1)(yw — 1)), Vt.

Algorithm 1 Asynchronous Communication Protocol

1: Input: thresholds vy,vyp > 1

2: if Event U;(yy) in Eq (3) happens then

3:  Upload AV}, 4, Ab;, 4 (client i, — server)

4:  Update server: Vg, += AV}, 1,bg: += Ab;, 4,
AV_ ;s += AVi, 1, Ab_jy += Dby, 4, Vj # iy

5:  Client i; sets AV;, ; =0, Ab;, ; =0

6: forj=1,...,N do

7: if Event D, ;(yp) in Eq (4) happens then

8: Download AV_;,,Ab_;; (server  —
client j)

9: Update client j: Vj; += AV_;;,b;; +=
Abfjj

10: Server sets AV_;; =0,Ab_;; =0

Proof of Lemma 3.1 is given in Appendix B. The main
idea is to use det(Vj,—1) as an intermediate between
det(V;, t—1) and det(V;_1), which are separately con-
trolled by the ‘download’ and ‘upload’ events. When
setting yp = vy = 1, Tt—1 = 1, V¢t € [T], which means
global synchronization happens at each time step, it
recovers the regret incurred in the centralized setting.

Synchronous vs. asynchronous communication:
As shown in Figure 1(a), in the synchronous pro-
tocol (Appendix G in (Wang et al., 2019)), when a
synchronization round is triggered by a client i, the
server asks all the clients to upload their local up-
dates (illustrated as solid lines), aggregates them, and
then sends the aggregated update back (illustrated as
dashed lines). This ‘two-way’ communication is vul-
nerable to delays or unavailability of clients, which
are common in a distributed setting. In comparison,
our asynchronous communication, as shown in Figure
1(b), is more robust because the server only concerns
the clients whose ‘download’ condition has been met,
which does not need other clients’ acknowledgement.
In addition, when the clients have distinct availability
of new observations, which is usually the case for most
applications, synchronizing all N clients leads to inef-
ficient communication as some clients may have very
few new observations since last synchronization. We
will show later that this unfortunately leads to an in-
creased rate in N in the upper bound of C'r, compared
with our asynchronous communication.

Multiple clients per time: Note that essentially
both Algorithm 1 and the synchronous protocol as-
sumed only one active client per time, i.e., the com-
munication protocol is executed after the current client
receives a new observation and completed before the
next client shows up. This setup simplifies the descrip-
tion and makes the theoretical results compatible with
standard linear bandit. Otherwise, additional assump-
tions to quantify the extent of delay in communication
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are needed for regret analysis. In reality, each client
is an independent process interacting with its environ-
ment, e.g., serving its user population, so that there
could be many active clients at the same time. In the
proposed asynchronous protocol, when a client triggers
the upload event, it will immediately send the data in
its buffer to the server; the server, upon receiving the
uploaded data from any client, will immediately aggre-
gate this data and check the download events to see
which client needs a download. Thus, different from
the synchronous protocol where the server ensures all
clients have the same model after each download, we
allow both server and clients to update their model at
any time with no need of any global synchronization.

3.3 Learning with Homogeneous Clients

Based on the asynchronous event-triggered commu-
nication, we design the Asynchronous LinUCB Algo-
rithm (Async-LinUCB) for homogeneous clients. De-
tailed steps are explained in Algorithm 2.

Arm selection: To balance between exploration and
exploitation during interactions with the environment,
at each time step t = 1,...,T, client 7; selects an arm
x4 € Ay using the the UCB strategy based on its local
copy of sufficient statistics {V;, +—1,bi, t—1}. Specifi-
cally, client i; pulls arm x; that maximizes the UCB
score computed as follows (line 8),

X; = arg maxxTéi“t_l(/\) + CB;, 1—1(x) (5)
xEA,L

where 0;, , 1(\) = Vi,s_1(A\)"'b;, 1 is the ridge
regression estimator with regularization parameter
Ay Viei—1(A) = V-1 + A; and the confi-
dence bound of reward estimation for arm x is
CBi, t-1(x) = aij,1—1([x|

Vit,t—l(A)’l’ Where ait’t_1 =
0\/Iog % +2log 1/5++/\. After client i; ob-

serves reward y; and updates locally (line 9), it pro-
ceeds with the asynchronous event-triggered commu-
nication (line 10), and sends updates accordingly.

The upper bounds of cumulative regret Ry and com-
munication cost Cp incurred by Async-LinUCB are
given in Theorem 3.2 (complete proof is provided in
Appendix C). Note that as discussed in Section 3.2,
clients collaborate by transferring updates of the suffi-
cient statistics, i.e., {AV € R¥? Ap € R?}. Since our
target is not to reduce the size of these parameters, we
define the communication cost Cr as the number of
times {AV, Ab} being transferred between agents.

Theorem 3.2 (Regret and Communication)
With Assumption 1, and the communication thresholds

Algorithm 2 Async-LinUCB
1: Input: thresholds yy,yp > 1, o, A >0, 6 € (0,1)
2: Initialize server: Vy o = 044, bg,0 = Og
3: for t=1,2,...,T do
4:  Observe arm set A; for client i; € [NV]

5. if client i; is new then

6: Initialize client 74 Vj, +—1 = 04,4, bs;,,t—1 = O4q,
AVi, 4—1 = 0g,4, Ab;, —1 = 0q

7: Initialize server’s download buffer for client 7;:

AV_i, 1—1 = Vgi—1, Ab_j, 1—1 = bg -1
8  Pull arm x; € A; by Eq (5) and observe y,
9:  Update client i;: Vi, ; += x4X7, bi, 1 += X¢Us,
AV, 4 += XiX7 Ab;, 1+ = Xpy:
10:  Event-triggered Communications (Algorithm 1)

YU.YD, then the accumulative regret

Rr =0 (dﬁlog % min(vV'N, \/vp[1 + (N = 1) (v — 1)]))

with probability at least 1 — &, and the communication
cost

Cr = O(leog T /log min (v, 'yD)).

The thresholds ~y,yp can be flexibly adjusted to
trade-off between Ry and C7p, e.g., interpolate be-
tween the two extreme cases: clients never commu-
nicate (Ry = O(N'/2d/TlogT)); and clients are syn-
chronized in every time step (R = O(dvTlogT)).
In practice, depending on whether the application
at hand is performance-critical or communication-
critical, one can first specify the scaling factor for
the regret bound or the communication bound and
solve for valid values of vy, vp. Details about thresh-
old selection and the corresponding theoretical re-
sults are provided in Appendix E. For simplicity,
we fix vy = 7p = 7 in the following discussions,
but one can choose different values to have a finer
control especially for applications where the cost of
upload and download communication differs. Based
on Theorem 3.2, to attain Ry = O(NY4dy/TlogT),
Async-LinUCB needs Cp = O(N3/2dlogT) (by set-
ting v = exp(N~2)). To attain the same Ry, the
corresponding Cr of Sync-LinUCB 3 is smaller than
ours by a factor of O(N'/*) only under uniform client
distribution (P(i; = i) = +,Vi,t), while under non-
uniform client distribution, which is almost always the
case in practice, it is higher than ours by a factor of
O(N'/%). The description and theoretical analysis of
Sync-LinUCB under uniform and non-uniform client
distribution are given in Appendix D.

2O~() omits the logarithmic regret term incurred during
the initial 7yin time steps on each client

3Sync-LinUCB refers to DisLinUCB algorithm in Ap-
pendix G of (Wang et al., 2019) adapted to our setting.
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3.4 Learning with Heterogeneous Clients

In this section, we study the setting of heterogeneous
clients as defined in Eq (2). As the clients only share
09 we need to learn the global component 9 col-
laboratively by all clients, while learning the unique
local component #) individually for each client i. We
adopt an Alternating Minimization (AM) method to
separately update the two components, and use the
asynchronous communication in Algorithm 1 to ensure
communication-efficient learning of (9). The resulting
algorithm is named Asynchronous LinUCB with Al-
ternating Minimization (Async-LinUCB-AM), and its
detailed steps are given in Algorithm 3 *.

Algorithm 3 Async-LinUCB-AM

1: Input: thresholds yy,vp > 1, 0,A >0, 6 € (0,1)

2: Initialize server: V; o = 04,xd,, bg,0 = O,

3: for t=1,2,...,T do

4:  Observe arm set A; for client i; € [V]

5 if Client 4; is new then

6: Initialize client i;: Vj, 11 = 04, xd,, bi,,t—1 =
04,, AViyt-1 = 0q,xd,, Qb1 = 0g,,

l ! l
V( ) 1= Odztvd’it7 bgt?t—l = Odit

7 In;flallze server’s download buffer for client 4;:
AV_j 11 = Vg1, Ab_j, 1—1 = bg 1
8  Pull arm x; € A; by Eq (8) and observe y;

9:  Run AM by Eq (7) to estimate partial rewards:

. l .
9 = =" 80, 50 = —ng) 0i7)
10:  Update client i;: V;, ; += x(g)x( , bigg +=

X(Q)yt@, AV, += X_lég) (.) , Ab, 4 =
(g) (g) V(l) XEl)x(l) b(l) - x(l)gjt(l)

Ztt t )

11: Event trlggered Cornrnunicatlonb (Algorithm 1)

Alternating Minimization: In a centralized learn-
ing setting, applying AM to iteratively update the es-
timation of the local component and global component
is straightforward:

tb)

1 . Hy—.(1 .
12 = projmgtﬂ)((‘/z(,t)) b§,2)7VZ € [N]

(
T ) ©
01} p’l"O]]B;lg(l)((V;t) bt)

where ()~ denotes generalized matrix inverse, and
projga(1y(+) denotes the Euclidean projection onto unit

£y ball. In addition, V\§) = 3 c\-, MONONS b =
T A
(g) egg))’ V, = Zt 1X(Tg) 59)
T4
x40 ).

O}
Doreni X (Ur —
and by = 0! _ x99y,

However, iteratively executing Eq (6) is impractical
under federated setting: first, {V;,b;} are distributed

4To simplify the description, an unbiased estimate of
09 to initialize AM steps is assumed. A slightly modified
version dropping this assumption is given in Appendix F.

across the clients; second, iteratively updating b, and
bglz requires storage of raw history data. This incurs
space and communication complexities that are linear
in time T Instead, we modify Eq (6) to get the follow-
ing update rule. At time ¢, after client i; obtains a new
data point (xq,y;) from the environment, it alternates
between the following two steps (line 9):

. l RO I 1) A1
95,)75 pm]Bdi,(l ((V“t 1 X () <) )~ (b( )t 1+Xx ()yzg)))

éit >t proj d-"(l) ((Vu 1+ x(g)x(!J) ) (biyio1 + x(g)y(g)))
(M)
-
where gt(l) =y — ng) G(Q)t and gjt( 9 =y, (l) OEE)t
denote the estimated ‘partial’ rewards for (%) and 9
and {V;;—1,b;—1} denote client i’s local copy of the

sufficient statistics for 69). Then y(g) and g A(l)

used to locally update the sufficient statistics of chent
iz (line 10 in Algorithm 3). Compared with Eq (6)
that iteratively updates the estimated ‘partial’ rewards
on all historic data from different clients, Eq (7) only
updates that on (x¢,y;) while keeping the rest fixed.
This incurs constant space complexity and no commu-
nication cost. Though this comes at a price of slower
convergence on the estimators, we later prove that this
will not sacrifice the cumulative regret too much.

Since the local component is unique to each client, only
{Vit—1,bit—1} for estimating the global component
need to be shared among clients. Our asynchronous
communication protocol can be directly applied here
(line 11) to ensure communication efficiency.

Arm selection: Client i; selects arm x; € A; via
the UCB strategy (line 8 in Algorithm 3). Confidence
ellipsoids for the estimations obtained by Eq (7) are
given in Lemma 3.3. Now the UCB score consists of
two terms corresponding to the global and local com-
ponent estimations, respectively:

Xy fargmaxUCBEg)t 1(x (9))+UCB§f)t  (xD) (8)

x€A;
where UCB(Q)fl(x(g)) = x(g)Tégf’)tfl()\) +
afgt, x|y, . oy, UCBY,_ (x®) =
D740, () +af,_y x My oy s ) =

V;ht_l(/\)_lbi“t_l is the rldge regression estimator
for the global component with the regularization
parameter A. 92 (A = Y/iS{)t_l(A)_lei?t_l is the
ridge regression estimator for the local component

with the regularization parameter . a(g)

(1)
QG -

_, and

1 are given in Lemma 3.3.

Lemma 3.3 (Confidence ellipsoids) With proba-
bility at least 1—4, ||é(9)( N =09y, ) < aggt), where

o) = (o +2)y/log LY L 910g1/5 + VA, With
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probability at least 1 — 6, Héz(lg()\) - H(i)”‘/i(lt)()\) < a(lt),

i

det V1) (1)

o +2log1/6 + VA

where agfz = (o + 2)\/10g
Proof sketch of Lemma 3.3 The complete proof is
given in Appendix F. Here we only discuss the
proof idea of the confidence ellipsoid for 69), as
that of ) can be readily obtained following the
same procedure. First, denote the set of time steps
corresponding to the observations used to compute

{Vit,bis} as M(g)(t). By substituting y, = X(Tg)TH(g)+
xS-l)TH(“) + 7, into ég’gt)()\) = Vit(AN)7tbis, we get
090N = Vi) (Va9 + 87 + £7), where
8 = 2reN ) (1) x ., &9 = 2reN ) xWelh),
and e = X(TZ)T(G(“) — él(?t) Therefore, we

have: (09 (A) — 0@y, < (IS

Viey—t +
1E v, 91 + VAII0@)||2. Based on Theorem 1

of Abbasi-Yadkori et al. (2011), [|S{?|
det (V; ¢ +A1)1/2
det (A\)1/26
6. Note that compared with the confidence ellip-
soid in standard LinUCB, we have an additional term
||5t(g)| v,.(n-1 that depends on the estimation er-
ror of ‘partial’ rewards, due to the AM steps in Eq
(7). However, with the projection step in Eq (7)
and careful initialization, we can show that eg) is
zero mean 2-sub-Gaussian conditioning on F,_y, for

TE M(g) (t). Then using the self-normalized bound in

Abbasi-Yadkori et al. (2011), we have ||5§g)|\wt(,\)71 <

det (Vi A 1/2
2y/2In =57 (Atl)l/?é
steps in Eq (7) only contribute a constant factor com-
pared with the standard result. Combining everything

together finishes the proof.

Vie()-1 S

0\/ 21In , with probability at least 1 —

. Hence, the errors caused by AM

With Lemma 3.3, we can prove Theorem 3.4 below
using similar arguments as Theorem 3.2 (proof is given
in Appendix G).

Theorem 3.4 (Regret and Communication)
With Assumption 1, and the communication thresholds
YU,VD, then the accumulative regret

Rr = 0(dyVT log % min(VN, Vo[l + (N = )(v0 = 1]
+ Z di/|N:(T)| log 7|M§T)| )

with probability at least 1 — (N + 1), and the commu-
nication cost

Cr = O(dgN log T/ log min(yu,vp)).

Note that this regret upper bound consists of two
terms: the first term corresponds to the global compo-

nents 69, which enjoys the benefit from communica-
tion; and the second term corresponds to the unique
local components #() of each client, which matches the
regret for running N LinUCB independently for each
6 for i € [N]. Intuitively, when the problems solved
by different clients become more similar, the first term
dominates as dg becomes larger compared with d;.

4 Experiments

We performed extensive empirical evaluations of
Async-LinUCB and Async-LinUCB-AM (we set vy =
~vp = 7 in all experiments for simplicity) on both syn-
thetic and real-world datasets, i.e., LastFM, Delicious
and MovieLens (Cantador et al., 2011; Harper and
Konstan, 2015), and included Sync-LinUCB (Wang
et al., 2019) as baseline. Due to the space limit, here
we only discuss the experiment setup and results on
synthetic dataset. More discussions about the ex-
periment results and analysis obtained on real-world
datasets are presented in Appendix H.

Synthetic dataset. We simulated the setting in Sec-
tion 3.1, with 7" = 30000, N = 1000, and A; (K = 25)
uniformly sampled from a ¢5 ball. (1) Homogeneous
clients: To compare how the algorithms balance Rp
and Cr under uniform and non-uniform client dis-
tributions, we fixed d = 25, and run Async-LinUCB
and Sync-LinUCB with various threshold values (log-
arithmically spaced between 102 and 10%). The re-
sults (averaged over 10 runs) are shown in Figure 2.
Note that each dot illustrates the Cr (x-axis) and Ry
(y-axis) that an algorithm (Async-LinUCB or Sync-
LinUCB) with certain threshold value (labeled next
to the dot) has accumulated over time horizon T. We
can see both algorithms shows a smooth trade-off in
Ry and Cr as projected by our analysis, and they
significantly reduce Cp while attaining low Rp. In
Figure 2(a), where the client at each time step is uni-
formly sampled from [N], Sync-LinUCB has lower Cr
than Async-LinUCB under the same Ry, and in Fig-
ure 2(b), where the client at each time step is sampled
from an arbitrary non-uniform distribution, Async-
LinUCB has lower Cp than Sync-LinUCB under the
same Ry, which conforms with our theoretical com-
parison in Section 3.3.

(2) Heterogeneous clients: To test how the portion
of global components affects Async-LinUCB-AM, we
set d; = d;,Vi € [N], fixed dy + d; = 25, Vi € [N],
and then ran Async-LinUCB-AM (with v = 5) under
varying d, € {4,8,12,16,20,24}. The result (aver-
aged over 10 runs) is shown in Figure 3. By increasing
dg/(dg + d;), we observe a clear trend that Rp keeps
decreasing while Cr keeps increasing, which validates
our analysis in Section 3.4: Ry decreases because the
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(b) Non-uniform client distribution

Figure 2: Synthetic dataset (homogeneous clients)

first term in the bound dominates and thus the benefit
from communication among N clients becomes obvi-
ous, and Cp = O(dyN logT') increases due to its de-
pendence on d,.

5 Conclusion

In this paper, we propose an asynchronous event-
triggered communication framework for federated lin-
ear bandit problem, which offers a flexible way to bal-
ance regret and communication cost. Based on this
communication framework, two UCB-type algorithms
are proposed for homogeneous clients and the more
challenging heterogeneous clients, respectively. From
a theoretical aspect, we prove rigorously that our al-
gorithm strikes a better tradeoff between regret and
communication cost than existing works in the general
case when the distribution over clients is non-uniform.

8000

® Async-LinUCB-AM y =5

o =

& 6000 - dg=4

o d;=8 *-

> *

£ 4000 4 * =12 *

=] —w— dy=16 //,

€ "

3 2000 - #— dg=20 * *

g —— dy=24 e

04 »
' ' teration ‘ '

* +r * +
* * * *

Communication Cost

10000 15000 20000 25000 30000
Iteration

Figure 3: Synthetic dataset (heterogeneous clients).

From a practical aspect, ours is the first asynchronous
method for federated linear bandit. It is more robust
against lagging communications, which are often in-
evitable in reality, and handles heterogeneity in dif-
ferent clients’ learning tasks. Hence, it has greater
potential in large-scale decentralized applications.

Compared with the synchronous method, we make an
additional context regularity assumption. This is be-
cause we allow each client to decide on its own whether
to upload, based on how much its local data, i.e.,
Vjt—1, has deviated from its last communicated data
with the server, i.e., V;j+—1 — AVj;_1, while being un-
aware of other clients’ new data. In the worst case,
this information gap leads to an regret bound that has
exponential dependence on N. Assumption 1 is a suf-
ficient condition to circumvent this, but may not be
a necessary condition. Finding a sufficient and neces-
sary condition to relax Assumption 1 will be an impor-
tant future direction of this work. Moreover, the opti-
mal trade-off between regret and communication cost
is still unknown for this problem, e.g., lower bound on
communication cost for a certain rate of regret, analo-
gous to the communication lower bound for offline dis-
tributed optimization by Arjevani and Shamir (2015).
Another interesting direction is a differential-private
version of the proposed asynchronous algorithms, e.g.,
trading off regret and communication cost under given
privacy budget.
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Supplementary Material:
Asynchronous Upper Confidence Bound Algorithms
for Federated Linear Bandits

A Notations and Technical Lemmas

Let V € R%* be a positive semi-definite matrix. We denote the norm of vector x € R? induced by V as
x||lyv = vxTVx. And we denote the operator norm of V' as op = MaXx£0 , where | - enotes the
VxTVx. And we denote th t £V as [|V]]op o Ille » denotes th
p
£, norm.

Given y € R?, the Euclidean projection of y onto a (non-empty and compact) set © C R? is denoted as

proje(y) = argmin [[x — y||2
x€O0

In particular, when © = {x : |[x[[2 < S}, i.e, an {5 ball with radius S, projixix1,<5}(Y) = maxma750-

Lemma A.1 (Lemma 12 of Abbasi-Yadkori et al. (2011)) Let A, B and C be positive semi-definite ma-
trices such that A = B+ C. Then, we have that:

x T Ax < det(A)
,S(i% xTBx ~ det(B)

Lemma A.2 Let A be symmetric positive-definite matriz, and B, C be symmetric positive semi-definite matrices,

we have
det(A+B+C) < det(A + B)

det(A+C) —  det(4)

Lemma A.3 (Theorem 1 of Abbasi-Yadkori et al. (2011)) Let {F;}52, be a filtration. Let {m:}$2, be a
real-valued stochastic process such that n; is Fy-measurable, and ny is conditionally zero mean R-sub-Gaussian
for some R > 0. Let {X;}%2, be a R%-valued stochastic process such that Xy is Fi_1-measurable. Assume that
V is a d x d positive definite matriz. For any t > 0, define

t t
Vi=V4> XX 8= nX,
T=1

T=1

Then for any 6 > 0, with probability at least 1 — 4,

det(V;)1/2

||$t||vt—1 < Ry[2log W7

vt >0

Lemma A.4 (Bounded random variable) Let X be a real random variable such that X € [a,b] almost surely.

Then
52(b — a)?

Elexp(sX)] < exp( )

b—a

5+ -sub-Gaussian.

for any s € R, or equivalently, X is

Lemma A.5 For a symmetric positive definite matriz A € R¥? and any vector x € R?, we have the following
inequality
(4)

x'x<x"Ax-x"A7'x < [1xl[3Amaz (A)
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Lemma A.6 (Matrix Freedman’s inequality (Tropp et al., 2011)) Consider a matric  martingale
{Ys}s=12,.. whose values are matrices with dimension dq X do, and let {Zs}s=12,. be the corresponding

martingale difference sequence. Assume that the difference sequence is almost surely uniformly bounded, i.e.,
1Zllop < R, for s =1,2,....

Define two predictable quadratic variation processes of the martingale:

t
Weort =Y _Es1[Z.Z]] and
s=1
t

Wiowt = Y Es1[Z]Z] fort=1,2,...

s=1

Then for all uw > 0 and w? > 0, we have

u?/2
P20+ [[Yillop >, and max{[[Weot ellop, [Wrowil lop} < w?) < (di +dz) exp (—ﬁfwj)

B Proof of Lemma 3.1

To show that T';_1 < 8:\7—?[1 + (N = 1)(y — 1)], we first need the following lemma.

Lemma B.1 Denote the number of observations that have been used to update {Vj;,bi} as 7;, i.e, Viy =
M+ x,x] . Then under Assumption 1, with probability at least 1 — &, we have:

Ac i
Amin(v;,t) 2 /\ + ?T
V7 € {Tmins Tmin + 1, ..., T}, i € [N], where Tyn = (% log(2Ld)T,

Proof of Lemma B.1. This proof is based on standard matrix martingale arguments, and is included here for the
sake of completeness.

Consider the random variable (szsﬂ)Q, where z € R is an arbitrary vector such that ||z]|s < 1 and Xsa €
As ={Xs1,Xs2,...,Xs,kx}. Then by Assumption 1, (ZTXs,a)2 is sub-Gaussian with variance parameter v2. Now
we follow the same argument as Claim 1 of Gentile et al. (2014) to derive a lower bound for Apin(Xs). First we

construct Z, = (2 x5,4)% — Es_1[(2 " x5.4)?], for a € [K]. Due to (conditional) sub-Gaussianity, we have

Rn2
2v

Ps—l(Za < —h) < Ps_1(|Za| > h) < 2e” 202

Then by union bound, and the fact that Es_1[(z"x5,4)?] = 27 Sc2 > A, we have:

2
Po_y(min (2TXeq) > Ap — h) > (1 — 2~ 5:2)K
& ) 2 2o =) 2 (122678

Therefore,

Eoo1((27%0)%) 2 Eooa(min (=7 x00)%) 2 (A = R)(1 - 2”27 )K
ac

2
Then by seting h = /202 log (4K), we have (1 — 267;7)1( = (1— 5%)% > 1 because K > 1, and (A\. — h) > 3¢
because of the assumption on v2. Now we have z' ¥,z = E,_1((2 " z4)2) > 16> V2, 80 Amin(2s) > %)\c.
Then we are ready to lower bound Amin(V;:) as shown below. Specifically, consider the sequence Y, :=
S xex) — X4, for ;= 1,2,.... And {Y;,};—12,. is a matrix martingale, because E[||Yz,|.p] < +oo
and E,, 1[Y;,] = Z;:_ll [xexs — 8] + Er,_1[xr,x] — X.] = Y, _1. Then with the Matrix Freedman inequality
(Lemma A.6), we have

—u?/2

P(||SZ;(9%I;r = X5)lop 2 u) < 2dexp(m) 9)
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where |[|-||op, denotes the operator norm. This can be rewritten as P(—||>1, 5y — Y12 252 |lop > —u) >

1-2d exp(#;/fm). Then, we have

2
—u“/2
1—2clexp(2+2/u/3 —HZE —Zx 2] |lop > —u) < P(— mmZE —Zxx
S P(_/\min(z 29) + )\min(z xsx;r) > _U) S P(_ Z Amin(zs) + Amin(z Iq«r;r) > —U)
s=1 s=1 s=1 s=1
i T Ti)\c
< P(Amin(z Ty ) > -~ u)
s=1

where the third and forth inequalities are due to Weyl’s inequality, i.e., Apin(A + B) > Amin(A4) + Amin(B) for
symmetric matrices A and B, and the fifth inequality is due to Amin(Xs) > 3 Ac.

By setting u = 2<% and w? = 7, we have P(Amin(3 0o, zs7)) > 247) > 1 — 2dexp( 647?). Then when
T > 36f 1og(2Td) ‘= Tmin, We have P(Amin(>i, zs2] ) > %) > 11— %. By taking a union bound over all

Ti € {Tmins Tmin + 1,..., T}, we have P(Apin(Vie) > A + ’\“TT) > 1 — 4. Then we take union bound over all
i € [N], which finishes the proof.

Proof of Lemma 3.1.

Under Lemma A.5, we have

Vtt 1Xt < )\maw(‘/it,t—l) X:‘/t—lxt

Iy =
Xy ‘/t—lXt Am,in(‘/vit,t—l) X;r‘/it,t—lxt

Then when 7;, > Ty, with Lemma B.1 and the fact that A0 (Vi, 1—1) < A+ 7, we have

T
x; Vio1xy

A+ T, x, Vi_1% 8
— =
Ae X Vi, p—1Xe

+ 75, /8 ' x; Vi, 1—1%¢

IN

I, < \

where the second inequality is because, for bounded context vector (|[x¢qllz < 1), Ae < 5 < 8,50 3¢ < 1. In

-

8 xy Vicaixe
s SRAR S

Ae x; Vi t—1%¢

constant 2L.S, and in total this added regret is 0(64N log(2¥L4)), which is negligible compared with the O(v/T)
term in the upper bound of Rr.

this case, s < 20, t—1 x;'_VtillXt . Note that when 7;, < Tpin, we can simply bound r; by the

Now we need to show that
x V,_1x
L= < qpll+ (N = (= 1)]

i L
x; Vi, t—1%t

In order to do this, we need the following two facts:

o Vi,i—1—AVi, 11 = Vge—1 — AV_;, 11, because they both equal to the copy of sufficient statistics in the

most recent communication between the client i; and the server.
e Due to Lemma A.1, and our design of the ‘upload’ and ‘download’ triggering events in Eq (3) and Eq (4),
at the beginning of time ¢ € [T, the inequalities

sup —— x " (Vj—1)x < det(Vj,t-1)
x X" (Vi1 = AVj—1)x = det(Vji—1 — AV

j < (10)

and

x T (Vgt—1)x det(Vg,i—1)
su : < 9> < 11
xp XT(Vg,tfl — AV,j’tfl)X - det(Vg,tq - Avfj,tfl) =P ( )

hold Vj € [N], V¥t € [T).
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.
x, Vic1xy

XV We have:

Then by decomposing

N
x; (Vio1)x: _ x; (Vgi—1+ Zj:1 AV _1)xy
X;F(Vvitﬂf—l)xt 'r;r(‘/it,t—l - A‘/it,t—l + A‘/it,t—l)xt
x{ (Vg1 + 2250 AVim)xe x) (Vgem1)xe + 3050 X¢ (AVj 1)

- XtT(Vit,t—1 — AVi, 1-1)%e B XtT(Vg,t—l — AV, 1-1)%e

And the term x; (AV;4—1)x; can be further upper bounded by:

x/ (AV:,_1)x
ZXI(AVj,t—l)Xt =X Vyr1%; - Z Xy (AVji—1)xe

-
i iz X VerXe
T T
X (AV t—l)xt T X (AV t—l)xt
<x/ V1% £ L =x, Vo4t 1% - t i
et ;X:(Vg,t—lfAV—j,t—l)Xt et #z;:xf(x/j7t_1—AK/j7t_1)xt
T
T x; (Vi—1)xe T
=X, Vy1_1X¢ - -1 <x, Vy4_1x¢ - (N —1 -1
t Vg t—1Xt ;[XI(V]'JI_AVJ_JI)& ]7 t Vg t—1Xt ( ) (v )
t

where the last inequality is due to Eq (10). Then by substituting this back, and using Eq (11), we have

x; (Vic1)x: < X (Vge—1)xe[1+ (N = 1)(w — 1)]
x; (Vi 1—1)Xt — X;r(vg,t—l — AV, 1-1)Xy

<1+ (N -1)(w —1)]
which finishes the proof.

Discussion Compared with the synchronous method, our asynchronous method needs an additional context
regularity assumption in the proof of Lemma 3.1. This is because we allow each client to decide on its own
whether to upload, based on how much its local data, i.e., V1, has deviated from its last communicated data
with the server, i.e., Vj ;1 — AV ;_1, and they are unaware of other clients’ new data. More specifically, as we
mentioned in Section 3.2, to guarantee each individual client’s sufficient statistics {V; ;—1,b; -1} do not deviate
too much from {V;_1,b,_1}, we need to first ensue {V; ;_1,b,,,—1} do not deviate too much from {V;_1,b,_1} via
asynchronous upload, and then {V;;_1,b;;—1} do not deviate too much from {Vj;_1,b4:—1} via asynchronous
download. To better understand this, we can look at the following upper bound of I';_1:

I . — x| it_,%—lxt

T XV

det(‘/i:,tl—1) _det(V;_1)

det(V;~1)  det(V;, 0-1)
det(Vo—1 + Y0 AVju1)

T det(Vio1 — AVi o1 + AV 1)
det(Vg7t_1 + AVit’t_ﬁ det(vg,t—l + Zjvzl Avj}t—l)
det(V;, -1 — AV;, 101 + AVj, 121) det(Vy -1 + AV, 1-1)

det(V,+1) det(Vyi—1 + 3701 AVjio1)
= det(Vj, 11 — AV, 4-1) det(Vg,i—1)

where the first inequality is due to Lemma A.1, and the second inequality is due to Lemma A.2. Note that

according to our ‘download’ event, the first term det(vfie:(‘:ﬁx‘l/? oy < 7vp. The difficulty mainly lies in the
1t — st —

det(Vg,e— N AV . . . . o
second term otVa.e d;:(_\%: = 11) 1) , which essentially measures the difference in the volume of confidence ellipsoid
g,t—

between the data under the ideal centralized setting and the data actually available to the server. In the

. det(Vy,— NiAVie1) . S
synchronous method, the ratio ot (Vo.e d;tt‘% ’:1) G2) is simply pushed to 1 at every global synchronization

step, since IV clients will simultaneously upload their local updates {AVj; 1};e[n to the server. However, in
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our case, this ratio is jointly controlled by the asynchronous uploads from each individual client who decides on

its own whether to upload, based on the locally available data. Ideally, to make sure the upload is effective in
det(Vy,i 1430 AV; 1)
det(Vg,tfl)
upper bound, and decide whether this ratio has grown too large, i.e., the server’s data has become out-of-date,
such that sending local updates to the server is necessary. Unfortunately, with data being decentralized, this
det(Vy,e—1+AV; 1) .
det(Vg,t—1) '

terms of regret reduction, each client j € [N] should directly compute the value of or its

information is unavailable to any client. Instead, each client j only knows the upper bound of

det(Vg7t_1 + A‘/j,t—l) < det(ngt_l — Av_jﬂt—l + AV‘7t_1) _ det(%7t_1)
det(ngt_l) - det(ngt_l — AV—j,t—l) det(ijt_l — A‘/j,t—l

<.
)

The information gap due to each client’s unawareness about what other clients have in their upload buffers makes
det(Vg‘t—l""Z;'\le AVJ'J/—I)
det(Vg,t—1)
data of the clients are very different from each other, this leads to a trivial upper bound that is exponential in
N, i.e., updating Vj ;—; with the new data AV}, ; of each client j € [N] can scale up the determinant of Vg ;_;
by «u. Assumption 1 is a sufficient condition to circumvent this, but may not be a necessary condition. Finding

a sufficient and necessary condition to relax Assumption 1 will be an important future direction of this work.

it difficult to obtain a non-trivial upper bound of . In the worst case scenario where new

C Proof of Theorem 3.2 (Regret and Communication Upper Bound for
Async-LinUCB)

Regret: Based on the discussion in Section 3.2 that the instantaneous regret r; directly depends on I';_;, we
can upper bound the accumulative regret of Async-LinUCB by

t=1 t=1
T T T
<o (wdlog 5) ;xTV;iw oI
T det(VT_l)
< log = | 41
© ( dlog 6) det( M)

where the second inequality is by the Cauchy—-Schwarz inequality, and the third is based on Lemma
11 in Abbasi-Yadkori et al. (2011).  Then using the upper bound of T;_; given in Lemma 3.1,

the accumulative regret Ry = O (d\/Tlog (T/8) min(v'N, \/yp[1 + (N = 1)(yw — 1)]) + % log(%g =

0 (d\/T log (T/8) min(v'N, \/vp[l + (N — 1)(70 — 1)})), with probability at least 1 — &, where O(-) omits the
logarithmic term.

Communication cost: As discussed in Section 3.2, clients collaborate by transferring updates of the sufficient
statistics, i.e., {AV € R4 Ab € R?}. Since our target is not to reduce the size of these parameters, for all
following discussions, we define the communication cost Cp as the number of times {AV, Ab} being transferred
between agents. To analyze C'r, we denote the sequence of time steps when either ‘upload’ or ‘download’ is
triggered up to time T" as {t1,%2,...,tc,, }, where Cr; is the total number of communications between client i
and the server. Then the corresponding sequence of local covariance matrices is {\I,V; ¢, Vi,, .. ., Viter., }. We
can decompose 1

det Vi o det V; , det V; det Viie,. . det Vp_;
log —— T ) LR | i<
%8 T qet A %8 qetnl B detV,, T derv =08 Tqet AT

tor ;-1

Since the matrices in the sequence trigger either Eq (3) or Eq (4), each term in this summation is lower bounded
by log min(yy,vp). When min(yy,vyp) > 1, by the pigeonhole principle, Cr; < logﬁ)egt%iag;ﬁ;g)‘

. . ) N log det(Vip—1)—dlog A
the communication cost for N clients is Cp =>_,"; Cp; < N Ogloeg r(mﬁ (j,,)j WD())g .

; as a result,
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D Synchronous Communication Method

The synchronous method DisLinUCB (Appendix G in Wang et al. (2019)) imposes a stronger assumption about
the appearance of clients: i.e., they assume all N clients interact with the environment in a round-robin fashion
(so NG(T) = % ®). For the sake of completeness, we present the formal description of this algorithm adapted to
our problem setting in Algorithm 4 (which is referred to as Synchronous LinUCB algorithm, or Sync-LinUCB for
short), and provide the corresponding theoretical analysis about its regret Ry and communication cost Cp under
both uniform and non-uniform client distribution. In particular, in this setting we no longer assume uniform
appearance of clients.

Algorithm 4 Synchronous LinUCB Algorithm
Input: threshold D, o,A >0, 6 € (0,1)
Initialize server: Vg o = O04xa € Réxd bg0 =0g € R4
for t=1,2,....,T do
4:  Observe arm set A; for client i; € [N]
if client 7; is new then
Initialize client ’it: V;'t’t,1 = ded, bitytfl = Od7 A‘/it,tfl = ded, Abit,tfl = Od, Atit,tfl =0
Select arm x; € A; by Eq (5) and observe reward y;
8: Update client iti ‘/it,t += thg, bit,t += XtYt, A‘/it,t += XtXtT7 Abit7t+ = XtYt, Atit,t +=1
# Check whether global synchronization is triggered
if Atit,t IOg dCt(?/?f(fv—;Zf\—/t:\,Il)‘l) > D then
fori=1,...,N do
Upload AV; 4, Ab;+ (i — server)
12: Client ¢ reset AV;; =0, Ab;; =0, At;, =0
Update server: Vg += AV, 1, b+ += Ab;
fori=1,...,N do
Download V¢, by (server — ¢)
16: Update client i: Vi = Vg 4,051 = by ¢

In our problem setting (Section 3.1), other than assuming each client has a nonzero probability to appear
in each time step, we do not impose any further assumption on the clients’ distribution or its frequency of
interactions with the environment. This is more general than the setting considered in Wang et al. (2019),
since the clients now may have distinct availability of new observations. We will see below that this will cause
additional communication cost for Sync-LinUCB, compared with the case where all the clients interact with the
environment in a round-robin fashion, i.e., all N clients have equal number of observations. Intuitively, when one
single client accounts for the majority of the interactions with the environment and always triggers the global
synchronization, all the other N — 1 clients are forced to upload their local data despite the fact that they have
very few new observations since the last synchronization. This directly leads to a waste of communication. Below
we give the analysis of Ry and C'r of sync-LinUCB considering both uniform and non-uniform client distribution.

Regret of Sync-LinUCB: Most part of the proof for Theorem 4 in Wang et al. (2019) extends to the prob-
lem setting considered in this paper (with slight modifications due to the difference in the meaning of T as
mentioned in the footnote). Since now only one client interacts with the environment in each time step, the
accumulative regret for the ‘good epochs’ is REG o0a = O(dv/T log(T)). Denote the first time step of a certain
‘bad epoch’ as t; and the last as t.. The accumulative regret for this ‘bad epoch’ can be upper bounded by:

OWAI8T) Y21y e ey ieny min(L ey 1) < O(Vdlog T) Yo7 \/Atm log gt <
O(\/dlogTN\/E). And using the same argument as in the original proof, there can be at most R =
O(dlogT) ‘bad epochs’, so that accumulative regret for the ‘bad epochs’ is upper bounded by REGp.q =
O(d'®log"® (T)Nv/D). Therefore, with the threshold D, the accumulative regret is Ry = O(dv/T log(T)) +
O(d*"log"® (T)NV/D).

For the analysis of communication cost C, we consider the settings of uniform and non-uniform client distribu-

5Tt is worth noting the difference in the meaning of T' between our paper and Wang et al. (2019). In our paper, T is
the total number of interactions for all N clients, while for Wang et al. (2019), T is the total number of interactions for
each client.
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tions separately in the following two paragraphs.

Communication cost of Sync-LinUCB under uniform client distribution: Denote the length of an
epoch as «, so that there can be at most [%] epochs with length longer than «. For an epoch with less than
« time steps, similarly, we denote the first time step of this epoch as t5 and the last as t., i.e., te —ts < a.
Then since the users appear in a uniform manner, the number of interactions for any user i € [N] satisfies

At; s, < 4+ Therefore, log det(Vie) %

. Following the same argument as in the original proof, the number of

det (Vi)
epochs with less than o time steps is at most [2%]. Then Cp = N - ([L] + [Z%]), because at the end of each
epoch, the synchronization round incurs 2N communication cost. We minimize C7 by choosing o = /2 EN , SO

that Cr = O(N - /4%). Note that this result is the same as Wang et al. (2019) (we can see this by simply

substituting 7" in our result with T'N), because T in our paper denotes the total number of iterations for all N
clients.

Communication cost of Sync-LinUCB under non-uniform client distribution: However, for most
applications in reality, the client distribution can hardly be uniform, i.e., the clients have distinct availability
of new observations. Then the global synchronization of Sync-LinUCB leads to a waste of communication in
this more common situation. Specifically, when considering epochs with less than « time steps, the number of
interactions for any client ¢ € [N] can be equal to t. — ¢s in the worst case, i.e., all the interactions with the

environment in this epoch are done by this single client. In this case, At;;, < a, which is different from the
det(V4, )
det(st)

case of uniform client distribution. Therefore, log > g. The number of epochs with less than « time

steps is at most [£2]. Then Cr = N - ([L] 4 [£2]). Similarly, we choose a = /5L to minimize Cr, so

that Cp = O(N - ,/%). We can see that this is larger than the communication cost under a uniform client
distribution by a factor of v N.

E Comparison between Async-LinUCB and Sync-LinUCB

In this section, we provide more details about the theoretical results of Async-LinUCB, and add the corresponding
results of Sync-LinUCB for comparison (see Table 1). Depending on the application, the thresholds vy and vp
of Async-LinUCB can be flexibly adjusted to get various trade-off between Ry and Cp. For all the discussions
below, we constrain vy = vp = < for simplicity. However, when necessary, different values can be chosen for
vy and p for different clients. This gives our algorithm much more flexibility in practice, i.e., allows for a fine-
grained control of every single edge in the communication network, compared with Sync-LinUCB. For example,
for users who are less willing to participate in frequent uploads and downloads, a higher threshold can be chosen
for their corresponding clients to reduce communication, and vice versa.

Table 1: Upper bounds for Ry and Cr under different thresholds.

Algorithm Threshold Ry Cr (uniform) Crp (non-uniform)
y=1 dvVTlogT NT NT
AsyneLinUCB = exp(N_i) dl\/T logT de log T Nid log T
v=exp(N™2) NidyTlogT NzdlogT NzdlogT
vy = 400 N%d\/flog T 0 0
D =T/(N2%dlogT)  dvVTlogT NidlogT N2dlog T

Sync-LinUCB ’
yRehn D=T/(N3dlogT) NidyTlogT  NidlogT NidlogT

When setting v = +00, all communications in the learning system are blocked; and in this case, Cr = 0 and
Ry = O(N 2dy/T log T'), which recovers the regret of running an instance of LinUCB for each client independently.
When setting v = 1, the upload and download events are always triggered, i.e., synchronize all N clients in each
time step. And in this case Cr = NT and Ry = O(d\/Tlog T'), which recovers the regret in the centralized
setting.

What we prefer is to strike a balance between these two extreme cases, i.e., reduce the communication cost
without sacrificing too much on regret. Specifically, we should note that 7" is the dominating variable for almost
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all applications instead of N or d. For example, in the three real-world datasets used in our experiments (Section
4), d has an order of 10, N has an order of 10! —10%, but T has an order of 10°. Since even without communication

Ry = O(N2d/TlogT) already matches the minimax lower bound Q(dv/T) in T (up to a logarithmic factor)
and d, we are most interested in the case where Cr’s rate in T is improved from O(T) to O(logT).

For example, we can set Async-LinUCB’s upper bound of the communication cost Cr < N d% tobe N2d log T,
and thus v = exp(N~2). Then by substituting + into the upper bound of Ry, we have

Rr=0 (\/(N— 1)y2 + (2—N)7d\/TlogT) =0 (\/(N— 1)62N_% + (2—N)eN_%d\/TlogT>

-

|

1
—1)e2N 2 —N)eN _1 _1
Jov-y N1+(2 N) — 1, we know \/ N —1)e2N"% 4 (2 - N)eN™? = O(N#). Therefore,
4

Ry = Q(N%d\/flog T). And similarly, by setting v = exp(N~!), Async-LinUCB has C7 = N2dlogT and
Rr = O(dv/TlogT). For both choices of 7, at the cost of an increased rate in N, we have improved Cr’s rate
in the dominating variable T from O(T') to O(logT).

Since limpy_ o0

For comparison, we choose the threshold D for Sync-LinUCB such that its upper bound of Ry matches that of
Async-LinUCB; and we include the corresponding results in Table 1 as well. We can see that Async-LinUCB’s
upper bound of C7 is not influenced by whether the client distribution is uniform or not, while Sync-LinUCB
is, as we have shown in Section D. Specifically, under the same regret Ry = O(N %d\/Tlog T), in terms of Cr’s
rate in N, Sync-LinUCB is slightly better than Async-LinUCB (by a factor of O(N %)) under the ideal case of
uniform client distribution, and slightly worse than Async-LinUCB (by a factor of O(N 1)) under non-uniform
client distribution.

F Proof of Lemma 3.3

Recall that the set of time steps corresponding to the observations used to compute {V;,b;+} is denoted as
T T .

N(g)(t). By substituting y» = x\¥ 09 +x 96 + p_ into 95_%)()\) = Vit(N)tbiy, for 7 € ./\/-(g)( t), we

get 019 (\) = Via(\) " (Vi@ + 52 + £, where S = 2o s, €7 = 5oy e, and

D — x&” (607) — él(i)t) Therefore, we have:

1059 (M)

) < Vi) 7 (V389 + 819+ £) —
< IS vien- + IE v y-2 + VA

where the third term v/A||#9)|| < v/A. To further bound the first two terms, we rely on the self-normalized bound
in Theorem 1 of Abbasi-Yadkori et al. (2011), which we included in Lemma A.3 for the sake of completeness.

Since 7, in 8(9) is zero mean o-sub-Gaussian conditioning on F,_;, by Lemma A.3, HSt(g)H%J()\)—l <

\/21 degéyz/\‘j)?/jz)ép, with probability at least 1 — §. Now it remains to bound the term ||€t(g)”V,1,t()\)*1 that

depends on e( ) = x(l) (607 — égi),t), the estimation error of ‘partial’ reward for @', due to the AM steps in Eq
(7).
O]

In the following lemma, we show that ey’ for 7 € [t] is also zero mean conditionally sub-Gaussian, if the AM
steps in Eq (7) is properly initialized, i.e., when executing Eq (7) for the first time, the initial value of él(;q)t is an
unbiased estimator of §(9)

Lemma F.1 When the AM steps in Eq (7) is properly initialized, eg is zero mean 2-sub-Gaussian, e(g) 1S zero

mean 2-sub-Gaussian, conditioning on Fi_1, Vt.

Then, similarly, by Lemma A.3, ||8t(g )||Vm( a1 < 2\/ 21n %, which shows that the errors caused by

AM steps in Eq (7) only contribute a constant factor compared with the standard result. Putting everything
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together, we have ||0Az(gt)( A) — 09|y, oy <(o+2 \/21 % + v/\. Following the same procedure, we

det (VY (A))1/2

1 t(M)l/% + v\, with probability at least 1 — 4.

A ;
can show that, ||6}") (\) — 6 My < (0 + 2)\/21
Proof of Lemma F.1

Recall that e = () — ég?t)Txgl) and e,g = (09 — é»t)t)Tx,(gg). And the two estimators él(tlt and 9 t are
obtained from running the AM steps in Eq (7) on new data point (x:,v:). When conditioning on ]-"t 1=
{X1,Y1,..., X1, Y21, X4}, egl) and e(g) are random variables. In addition, they are bounded in [—2,2] and
[—2, 2] respectively, because |e\”)| < ||x2(5l)||2-\|0(“) 9(”,5”2 < 2and |el?| < Hng)HQ ||6(9) H(g)t||2 < 2. Therefore,

by Lemma A .4, egl) is 2-sub-Gaussian, and egg) is 2-sub-Gaussian.

T . ~ N
Now we look at the mean Ele{"’] = x{" " (8¢9 —~E[6\",]) and E[e{”)] = X" (9t) _ E[§%)]). Note that E[e{"] and

E[egg )] have an recursive dependence on each other as we iteratively update them using Eq (7). For example,
R T
B = (5 ren, x50 ), x0T 060 4, + B[], In order to make Ele”] = 0, E[e?] =

B¢,

0,Vt, we need to initialize AM steps with an unbiased estimate of 6(9), such that E[eél)] = 0, and then all

subsequent eg ), e§9 ) will have zero mean.

Remark 1 In order to simplify the description in Algorithm 3, we assumed such an unbiased estimate is readily

available to initialize the AM steps. Note that an unbiased estimate of 09 can be obtained by taking the global
El0yirel | _ [e< )

IV N U

to a rank-sufficient dataset on any of the client before running Algorithm 3, then it can construct such a MLE

estimator for initialization.

component of an MLE estimator of 6, because E[éMLE] = } If the learning system has access

However, for situations where this does not hold, i.e., the learning system does not have any history data before
running Algorithm 3. We can slightly modify Algorithm 3 as described in Algorithm 5. Now, each client i € [N]
will run standard LinUCB algorithm (line 9-10 in Algorithm 5), until it collects enough data to construct an
unbiased estimate of 6(9) (line 12 in Algorithm 5): either by using aggregated updates it has received from the
server; or by collecting enough history data locally. Our Assumption 1 guarantees the clients are able to collect
a rank-sufficient dataset locally, and how long it takes for the first client to do so is determined by the constant
A¢, i.e., the lower bound for the minimum eigenvalue of the covariance matrix X.. Then after using the unbiased
estimate of #(9) to initialize AM steps (line 13 in Algorithm 5), which we mark as State(i) = 1, the client will
proceed with the same steps as in Algorithm 3 (line 18-21 in Algorithm 5).

G Proof of Theorem 3.4 (Regret and Communication Upper Bound for
Async-LinUCB-AM)

Regret and communication cost: The instantaneous regret r; can be upper bounded w.r.t. the confidence
bounds for global component and local component:

T’tZGT *fﬁTxtSétT_lxt 9 Xt = (Qt 1*9)
_ (é(g) . g(g))Txgg) + (ét(zj% . o(zt))TXEl)

! !
< QCBEtg)t 1(x gg)) + QCBgt),t—l(Xg ))
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Algorithm 5 Asynchronous LinUCB Algorithm with Alternating Minimization
1: Input: thresholds vy,vp > 1, dg,d; for i € [N], 0,A >0, 6 € (0,1)
2: Initialize server: Vo = 0q4,xd,, bg,0 = Oq,
3: for t=1,2,...,T do
Observe arm set A, for client i; € [N]
5 if Client i; is new then
6 Initialize client i;: State(i) =0, Z;, ;-1 =0, Vi, .t—1 = 04, xd,, bi,,t—1 = Oa,
7: Initialize server’s download buffer for client i;: AV_;, 1 = Vg1, Ab_s, 1—1 = bgt—1
8
9

AN

if State(i;) = 0 then
: Select arm x; € A; by Eq (5) and observe y;
10: Iit,t = Iit,t—l ] (t)

11: if ) oo x,x, or V;, ;1 is full rank then
iyt s
12: Initialize AM on local data {(xr,y-)}rez,, , to get the estimated partial reward vectors y@, y®
13: IhﬂMedmmitV%t+:X@FX@%mM—H:XﬂywﬁAWm_p:X@WX@%Amm_p:XW§@%
v =x0Tx0 B0 = xtTg
14: Set State(zt) =1
15:  else
16: Select arm x; € A; by Eq (8) and observe y;
: . N DFTOINC T
17: Run AM by Eq (7) to get the estimated partial rewards: y( 9 = =y — ( )7 Ol(t?t, y,g ) = Y — (g) Ol(tg’)t
18: Update client #;: V3, 4 += x(g)x(g) s bigt += xgg)@t(g), AV += xgg) (g) , Abs, 1+ = x(g)yt(g), Vlil)t
Xgl)xgl) bgl)t 4= X(l) ,El)
19: Event-triggered Communications (Algorithm 1)
where 6;,_1 denotes the optimistic estimate used in UCB strategy, and {0?’;, G(g )1} denote its global and local

components, respectively. Then the accumulative regret can be upper bounded by

RT<2§:CBH1 g)+2§:CB%t1 Wy

t=1

<23 -on )42y 3 onll o)

=1 teN;(T)

5 T al NG (T
= O(dg\/TIOg 5 min(VN, \/Ap[l + (N — 1)(yw — 1)] + Zdi\/ IN:(T)|log T)

with probability at least 1 — (N 4 1)d, where the first term is upper bounded following the same procedure as in
Section 3.3, and the second is essentially the regret upper bound for running N independent LinUCB algorithms
in each client i for 0. Intuitively, when the problems solved by different clients become more similar, the first
term dominates as d, becomes larger compared with d;.

In addition, as the clients only communicate sufficient statistics for (%), following the same steps for upper
bounding the communication cost in Section 3.3, we can show that the communication cost for Async-LinUCB-
AM is Cr = O(dgN log T'/ log min(yy, vp))-

H Experiments on Real-world Dataset

We continue investigating the effectiveness of our proposed solution on real-world datasets. Note that these
real-world datasets do not necessarily satisfy the assumption that all the clients are homogeneous, in other words
not all the users have the same preference, we pay special attention to Async-LinUCB-AM in the comparison,
by setting x4, = x;,Vi € [N], as mentioned in Section 3.1. This allows the clients to learn a global model col-
laboratively, and in the meantime each learns a personalized model independently. Intuitively, this should make
Async-LinUCB-AM more robust to different settings, i.e., the clients are either homogeneous or heterogeneous.
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H.1 Real-world Dataset

We compared Async-LinUCB, Async-LinUCB-AM and Sync-LinUCB on three public recommendation datasets:
LastFM, Delicious and MovieLens (Cantador et al., 2011; Harper and Konstan, 2015), with various threshold
values (logarithmically spaced between 1072 and 10%). The LastFM dataset contains N = 1892 users, 17632
items (artists), and 7" = 96733 interactions. We consider the “listened artists” in each user as positive feedback.
The Delicious dataset contains N = 1861 users, 69226 items (URLs), and T' = 104799 interactions. We treat the
bookmarked URLs in each user as positive feedback. The MovieLens dataset used in the experiment is extracted
from the MovieLens 20M dataset by keeping users with over 3000 observations, which results in a dataset with
N = 54 users, 26567 items (movies), and T = 214729 interactions. We consider all items with non-zero ratings
as positive feedback. The datasets were preprocessed following the procedure in Cesa-Bianchi et al. (2013) to fit
the linear bandit setting (with TF-IDF feature d = 25 and arm set K = 25).

H.2 Discussion about Experiment Results

Experiment results on the three real-world datasets are shown in Figure 4(a)-4(c). In the scatter plots, each dot
denotes the cumulative communication cost (x-axis) and normalized reward by a random strategy (y-axis) that
an algorithm (Async-LinUCB, Async-LinUCB-AM, or Sync-LinUCB) with certain threshold value (labeled next
to the dot) has obtained at iteration 7. To understand the results of these algorithms on the three real-world
datasets, we can first look at how well the two extreme cases, Async-LinUCB with v = 1 (as the communication
cost of this algorithm is outside of the figure, its result is illustrated as text label) and Async-LinUCB with
v = 400 perform.

(1) LastFM & Delicious (Figure 4(a)-4(b)): On both LastFM and Delicious datasets, Async-LinUCB with
v = 400 (illustrated as the red dot) attains very high reward, which suggests users in these two datasets have
very diverse preferences, such that aggregating their data has a negative impact on the performance. Since the
homogeneous clients assumption does not hold in this case, both Async-LinUCB and Sync-LinUCB perform as
badly as the extreme case of Async-LinUCB with 4 = 1, which is especially true when the clients frequently
communicate with each other, i.e., with lower threshold values. In comparison, Async-LinUCB-AM attains rela-
tively good performance even when the clients frequently communicate with each other, as it allows personalized
models to be learned on each client. Note that on Delicious dataset, in the low communication/high thresh-
old region (top left corner of Figure 4(b)), the reward of Async-LinUCB actually increases as communication
increases. Our hypothesis is that, with high threshold, only the most active users contribute to global data
sharing, and when the other less active clients download these data, the benefit from reduced variance outweighs
the harm caused by the increased bias (due to user heterogeneity). However, with the threshold further reduced,
many more clients are able to contribute to global data sharing, such that the global data would become so
heterogeneous that it starts to hurt the overall performance. Additional experiment and visualization are given
in appendix (Section H.3) to validate this hypothesis.

(2) MovieLens (Figure 4(c)): Note that on this dataset, Async-LinUCB with v = 1 attains very high reward,
which indicates that the users share similar preferences, so that data aggregation over different users becomes
vital for good performance. In this case, learning a personalized model on each client becomes unnecessary
and slows down the convergence of model estimation, which leads to the lower accumulative reward of Async-
LinUCB-AM compared with the other two algorithms. However, we can see that Async-LinUCB-AM can still
benefit from collaborative model estimation, as it has a much higher accumulative reward than the extreme case
of Async-LinUCB with v = +o0.

H.3 Additional Experiment and Visualization on Delicious Dataset

In Figure 4(b), the blue stars illustrate the results of Async-LinUCB with its threshold + ranging from 9001 to
1.01. And within this range, we observe that the reward decreases from 1.8322 to 1.2887 as the communication
increases from 14599 to 12901135. However, we can see from the figure that when ~ is set in the interval between
oo and 9001, the reward seems to increase as communication increases, which implies a changing point for the
relationship between communication and reward on this dataset. To validate this, we have run some additional
experiments on Async-LinUCB with ~ ranging from 10* to 10%°. We observed that, in this low-communication
region (e.g. with v > 10%), the reward indeed increases when communication increases. Specifically, the reward
increased from 1.6891 to 1.8348, as the communication increased from 0 to 14230.
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Figure 4: Experiment results on real-world recommendation datasets.
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Our hypothesis for this observation is: as the threshold is high in the low-communication region, only the most
active users are able to contribute to global data sharing. The observation that this boosts the overall performance
indicates that, as the less active clients download this data, the benefit from reduced variance outweighs the
harm caused by the increased bias (due to user heterogeneity). However, with the threshold further reduced,
many more clients are able to contribute to global data sharing, such that the global data would become so
heterogeneous that it starts to hurt the overall performance.

To verify this hypothesis, we split all the users into ten groups based on their number of interactions, and
then include the following statistics about the results for Async-LinUCB with v = 400 (Cr = 0), v = 6001
(Cr = 14230), and v = 3 (Cp = 54006), respectively in Table 2.

Table 2: Statistics about experiment results split into ten groups.

Cr=0 Cr = 14230 Cr = 54006
group user no. data no. uploadno. reward uploadno. reward upload no. reward
0-10 161 680 0 0 118 21 24 22
10-20 102 1514 0 1 75 123 117 61
20-30 103 2575 0 0 79 214 202 103
30-40 114 3988 0 0 92 290 308 124
40-50 185 8253 0 0 144 704 764 298
50-60 243 13330 0 0 185 680 751 424
60-70 352 22693 0 1 280 1419 1576 978
70-80 336 24972 0 1 252 1628 1701 1351
80-90 213 17785 0 6 167 1185 1369 1341
90-100 38 3456 0 2 31 414 448 389
sum 1847 99246 0 11 1423 6678 7251 5091

Note that abbreviations used in the header of Table 2 stand for:

User No: number of users in each group

Data No. total number of data points users in each group have

Upload No: total number of uploads that users in each group have triggered
Reward: cumulative reward obtained by users in each group

First, we can see that, with v = 6001 (Cp = 14230), most upload came from the active users, and with v = 3.0
(Cr = 54006), every group contributed considerable amount to the upload. Second, when Cp = 14230, almost
all the groups have improved performance, which suggests that data uploaded by users in groups 80-100 can help
improve the performance of other users. However, when C1 increased to 54006, the cumulative reward for the
less active groups (10-80) dropped dramatically, while that for the most active groups (80-100) received much
less negative impact.

We further investigate the reason behind the observation above by visualizing the relationship among the indi-
vidual users. Specifically, we use the average feature vector over all the positive items in a user as this user’s
embedding vector. Then we use PCA to reduce its dimension from 25 to 2 to plot in a 2-D space, with each
point labeled with the user’s group ID. The plot is shown in Figure 5.

We can see that points corresponding to the most active groups (80-100) are centered near the origin, while points
for the less active groups are distributed along two nearly orthogonal directions. This provides an intuitive
explanation for our observations: data from groups 80-100 can boost the overall performance of most users
because they roughly lie in the center of most points; but aggregating data across the less active users (0-80)
degrades their own performance, because such users are extremely heterogeneous and distinct from each other.
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Figure 5: Visualization of user embedding vector




