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Abstract

This paper proposes a method to clarify image
regions that are not well encoded by an invert-
ible neural network (INN), i.e. image regions
that significantly decrease the likelihood of
the input image. The proposed method can
diagnose the limitation of the representation
capacity of an INN. Given an input image, our
method extracts image regions, which are not
well encoded, by maximizing the likelihood
of the image. We explicitly model the distri-
bution of not-well-encoded regions. A metric
is proposed to evaluate the extraction of the
not-well-encoded regions. Finally, we use the
proposed method to analyze several state-of-
the-art INNs trained on various benchmark
datasets.

1 INTRODUCTION

Deep generative models have achieved remarkable suc-
cess in image generation [Miyato et al., 2018], natural
language generation [Yu et al., 2016] and audio synthe-
sis [Den Oord et al., 2016]. Among popular generative
models, invertible neural networks (INNs) are distinct,
because INNs guarantee the one-to-one correspondence
between the input data and its latent vector. For each
input image x, an INN directly inverts the latent vector
z back to x without an additional decoder, and INNs
can explicitly compute the likelihood p(x) through the
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change of variables theorem. Therefore, compared with
the explanation for other generative networks, the ex-
planation for INNs proposes distinct challenges and is
of specific values (which will be explained later).

In this paper, we aim to clarify image regions that
are not well encoded by an INN. Theoretically, INNs
can represent all images, because each image x can
be assigned to a unique latent vector z. However, if
an image region in x significantly decreases p(x), we
consider the image region not well encoded. In other
words, the INN usually selectively models certain image
regions and omits trivial or noisy information in the
image. The not-well-encoded regions reflect regions
with significant influence on the probability but have
not been sophisticatedly modeled by the INN.

Given a trained INN and an input image x, our goal is
to disentangle x into two parts: image components x̂
that can be generated with a high likelihood, and ∆x
that are not well encoded, x = x̂+∆x. For example,
in Figure 1, the “headwear” of the female and the
“glasses” of the male are considered as regions that are
not well encoded by INNs.

Through the quantitative disentanglement of not-well-
encoded image regions, our work provides detailed
analysis of the representation capacity of an INN. The
proposed method can be used to visualize infrequent
concepts that are not learned by the INN due to the
dataset bias. Therefore, our work can guide the future
collection of training samples.

In order to disentangle the not-well-encoded image re-
gion ∆x, we propose a method inspired by adversarial
attacking. Given an input image x, we estimate the
image component x̂ which maximizes the likelihood
p(x̂), and meanwhile extract a small not-well-encoded
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input image (a) not-well-encoded
 image regions 

input image (b) not-well-encoded
 image regions 

Figure 1: Given input images, the proposed method
disentangles image regions that are not well encoded,
i.e. those significantly decrease likelihoods of images.

perturbation ∆x. We assume that the concept is lo-
calized, e.g. an abnormal object. This assumption has
been verified in Figure 1 as well as discussions in the
experiment section. Moreover, these assumptions are
discussed in the experiment section. Thus, we explicitly
model the spatial distribution of ∆x.

Previous studies usually diagnose the representation
capacity of neural networks at the sample level, i.e.
clarifying the difference in distributions between gen-
erated images and true images. In comparison, this
study aims to disentangle image regions that signifi-
cantly decrease the likelihood at the pixel level, which
sheds new light on the understanding of INNs.

The proposed method has been used to ana-
lyze on five state-of-the-art INNs, including
the NICE network [Dinh et al., 2015], the Real
NVP network [Dinh et al., 2016], the Glow net-
work [Kingma and Dhariwal, 2018], the FFJORD
network [Grathwohl et al., 2018], and the Res-
Flow [Chen et al., 2019] network. Experimental
results demonstrate the effectiveness of our method
in the disentanglement of not-well-encoded regions.
Meanwhile, our method is applied to diagnose
representation flaws of INNs.

Our contributions can be summarized as follows. (1)
We propose a method to disentangle not-well-encoded
image regions. (2) We apply the method to visualize
concepts that are not well encoded by INNs. (3) We
propose an evaluation metric to verify the effectiveness
of our method. (4) We use the proposed method to
analyze representation flaws of INNs.

2 RELATED WORK

Invertible neural networks: The INN was an
emerging research direction in recent years. Many
INNs were designed to learn promising feature rep-
resentations, and generate more realistic samples.
NICE [Dinh et al., 2015] proposed the additive cou-
pling layer to construct invertible networks. The affine
coupling was proposed in Real NVP [Dinh et al., 2016].
Glow [Kingma and Dhariwal, 2018] improved Real
NVP by replacing the fixed shuffling permuta-

tion with 1 × 1 invertible convolution. Re-
cently, many studies focused on how to de-
sign more flexible transformations to construct
INNs, such as FFJORD [Grathwohl et al., 2018] and
ResFlow [Behrmann et al., 2019, Chen et al., 2019].
Moreover, applications of INNs grew rapidly such as im-
proving adversarial robustness [Jacobsen et al., 2019],
semi-supervised learning [Nalisnick et al., 2019], solv-
ing inverse problems [Ardizzone et al., 2018], generat-
ing 3D point clouds [Yang et al., 2019], etc.

Semantic explanations for neural networks:
It is an intuitive way to interpret neural networks
through visualization of internal feature representa-
tions. Gradient-based methods [Simonyan et al., 2013,
Zeiler and Fergus, 2014, Yosinski et al., 2015] mea-
sured contributions of intermediate-layer activation
units or input units by exploiting gradients of outputs
w.r.t the input image. [Dosovitskiy and Brox, 2016]
inverted feature map convolutional layers back
to the input. Other methods usually estimated
the pixel-wise attribution on an input im-
age [Lundberg and Lee, 2017, Fong and Vedaldi, 2017,
Kindermans et al., 2018]. CAM [Zhou et al., 2016],
Grad-CAM [Selvaraju et al., 2016], and Grad-
CAM++ [Chattopadhay et al., 2018] estimated the
saliency of the input image using intermediate-layer
features. Unlike exploring the semantic explanation, we
aimed to explain the representation capacity of INNs,
which provided a new perspective on understanding
neural networks.

Understanding and visualization of generative
networks: Many previous studies focused on explana-
tions of GANs. [Radford et al., 2016] visualized GANs
by examining the discriminator. [Zhu et al., 2016]
found that inversion could be used to explore the space
of a GAN. [Creswell and Bharath., 2018] exploited the
inversion of a GAN for glyphs to reveal specific strokes
that could not be generated by the generator. Note
that [Zhu et al., 2016, Creswell and Bharath., 2018]
did not explicitly formulate the probability of the im-
age, or just used the log-likelihood to regularize the
output, instead of being taken as the direct evidence to
explain a DNN. Later work [Bau et al., 2019] explained
what a GAN had learned by examining concepts of
intermediate features. Recently, [Bau et al., 2019] ex-
plored what a GAN cannot generate by proposing a
two-stage method: layer-wise network inversion and
layer-wise image optimization. However, the expla-
nation of INNs has an essential difference from the
explanation of GANs in both objective and formula-
tion, as shown in Figure 2. Furthermore, we have
compared the visualization of ∆x extracted by our
method and [Bau et al., 2019] in Figure 2. Therefore,
our methods are not compatible with the explanation
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explaining GANs [Bau et al., 2019] explaining INNs
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Figure 2: Distinct differences between explanations of GANs [Bau et al., 2019] and explanations of INNs. Please
see supplementary materials for detailed experiment settings and more results. Theoretically, the explanation of
INNs are not compatible with that of GANs.

of GANs. Moreover, a recent work [Esser et al., 2020]
uses an INN to explain other neural networks with
considerable impacts. In comparison, our work aims
to explain the INN itself.

3 ALGORITHM

Preliminaries, invertible neural networks:
Given an input image x ∈ Rd and a trained INN f ,
the INN f uses x to compute a latent vector z = f(x)
as the output. d denotes the dimension of the input
image. As the main property that differentiates INNs
from other generative networks, for the INN f , there
exists an inverse function g = f−1 which can invert
the latent vector z back to the image x, i.e. x = g(z).
z is usually assumed to follow a Gaussian distribu-
tion z ∼ N (0, σ2I), so that we can explicitly represent
the probability density function of p(z). Then, the
probability density function of x = g(z) can be cal-
culated through the change of variable theorem as

log p(x) = log p(z) + log
∣∣∣det(∂f(x)

∂x

)∣∣∣ where det(·) is

the determinant of a matrix. The change of variables
theorem provides an efficient way to construct complex
probability distributions by transforming a simple prior
distribution p(z). In general, INNs are trained using the
maximum likelihood objective, i.e. maxf

∑
x log p(x).

Note that the INN requires the dimension of the out-
put to be exactly the same as the input dimension,
and the INN is usually carefully designed to avoid

det |∂f(x)∂x | = 0.

Besides INNs, there are many generative networks,
e.g. variational autoencoders (VAEs) and generative
adversarial networks (GANs), which model the
distribution of the input data. However, unlike the
INN explicitly representing the probability density
function p(x), other generative models can only
approximate or sample the data distribution implicitly.

Problem formulation: In this study, we aim to
disentangle image regions that are not well encoded by
the INN. To simplify the story, we only introduce and

test our method based on the task of image generation.
Given an input image x, our goal is to disentangle
image components x̂ that can be generated with a high
likelihood and regions ∆x that significantly decrease
p(x), as follows,

x = x̂+∆x (1)

We assume that the signal of ∆x of the not-well-
encoded region should be much weaker. Therefore,
we need to consider two terms. First, we maximize
the likelihood p(x̂) of the obtained x̂, i.e. increasing
the probability of well-encoded regions. Second, we
minimize the image regions that are not well encoded,
i.e. constraining the norm of ∆x. Thus, we formulate
the problem as follows,

max
x̂

log p(x̂), s. t. ∥x− x̂∥p < ϵ, 0 ≤ x̂i ≤ 1 (2)

where ∥·∥p denotes Lp norm, and ϵ is a small positive
scalar in order to constrain image regions that are not
well encoded. Moreover, the obtained x̂ is ensured to
be a valid image, i.e. 0 ≤ x̂i ≤ 1. Note that our main
goal is to find ∆x, and ∆x = x− x̂. According to the
change of variable theorem, we could maximize log p(x̂)
as

max
x̂

log p(x̂) ⇔

max
∆x

log p(f(x−∆x)) + log

∣∣∣∣det(∂f(x−∆x)

∂(x−∆x)

)∣∣∣∣ ,
(3)

such that ∥∆x∥p < ϵ, x − ∆x ∈ [0, 1]d. Please see
supplementary materials for the detailed deduction of
Equation (3) based on Equation (2) and the change
of variable theorem. Let ẑ = f(x̂) denote the corre-
sponding latent vector of x̂. The i-th pixel of the input
image only affects ẑ slightly, if the norm of ∂ẑ

∂x̂i
is small.

Otherwise, if the norm of ∂ẑ
∂x̂i

is large, the i-th pixel has
a large impact on the latent vector ẑ. For pixels whose
norms of ∂ẑ

∂x̂i
are small, we consider that information of

these regions is ignored by the INN. For pixels whose
norms of ∂ẑ

∂x̂i
are large, we believe that the INN models

these regions well. Meanwhile, pixels with the large
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(a) image (b) Δx, 
without modeling spatial distribution 

(c) grids (d) Δx, 
with modeling spatial distribution

Figure 3: Comparisons between methods with and
without modeling distributions of not-well-encoded re-
gions.

norm of ∆xi have significant impact on the likelihood
of the image. Thus, we can disentangle ∆x that are
not well encoded by the INN.

However, it is difficult to directly optimize Equation (3).
Inspired by the study of adversarial attacking, we ex-
ploit the Lagrange multiplier method to relax the prob-
lem as

min
∆x

− log p(x−∆x) + α∥∆x∥p

s. t. 0 ≤ xi −∆xi ≤ 1
(4)

In the above equation, the first term aims to maxi-
mize the likelihood of image components x̂ = x−∆x
and the second term forces the algorithm to extract a
small perturbation ∆x as the not-well-encoded region.
Notice that adversarial attacks are only inspirations
behind our methods. In fact, traditional adversarial
attack methods cannot explicitly model the spatial in-
formation of not-well-encoded image regions. This will
be shown in Figure 3.

Modeling spatial distributions of not-well-
encoded image regions: Equation (4) extracts not-
well-encoded image regions in a pixel-wise manner.
However, when the learning of an INN is converged,
it usually well encodes most image regions. Not-well-
encoded regions usually correspond to abnormal objects
that are localized. We assume that 1. not-well-encoded
image regions usually correspond to abnormal visual
concepts, and 2. these concepts are localized and rel-
atively small. Therefore, it is necessary to explicitly
model spatial distributions of not-well-encoded regions.

Specifically, we introduce a mask matrix for each im-
age, which divides the entire image into m×m grids as
shown in Figure 3(c). Each grid in Figure 3(c) repre-
sents a small image region. Let M ∈ {0, 1}m×m denote
the mask matrix, and let Λi denote the set of pixels in
the i-th grid. We estimate a set of grids S ⊆ {1, ...,m2}
to represent spatial distributions of not-well-encoded re-
gions. For each not-well-encoded region i ∈ S, Mi = 1.
For each well-encoded region i′ /∈ S, we have Mi′ = 0.
Thus, we re-parameterize ∆x in (4) as ∆x = ∆x′ ⊙M
where ∆xj = ∆x′

j ·Mi, if j ∈ Λi. The overall area of
not well-encoded regions can be computed as A = |S|.

Hence, we consider the following three terms: (1) Mini-
mizing A, i.e. minimizing the area of not-well-encoded
regions. (2) Minimizing ∥∆x∥p, i.e. ∥M⊙∆x′∥p. We
need to estimate not-well-encoded regions at the pixel
level. (3) Maximizing log p(x̂). The maximization of
the log p(x̂) ensures x̂ to be well encoded by the INN.

For implementations, during the learning process, we
approximate M as M = MA,w = A · softmax (w).
w ∈ Rm×m is the parameter to be learned. In this
way, M is a function of A and w. According to the
property of softmax, the value of revised mask MA,w

is sparse. We can transform Equation (4) such that
x−MA,w ⊙∆x′ ∈ [0, 1]d as follows,

min
A,w,∆x′

− log p (x−M(A,w)⊙∆x′)

+ α ∥M(A,w)⊙∆x′∥p + βA,
(5)

where M measures the regional attention, while ∆x′

represents fine-grained analysis. Parameters of A, w
and ∆x′ are learned simultaneously. Figure 3 compares
methods with and without modeling spatial distribu-
tions. In Figure 3(a), we manually add a bird into the
face image. The INN trained on the CelebA dataset
is supposed not to encode this bird. As shown in Fig-
ure 3(b), Equation (4) without encoding the spatial
distribution of ∆x leads to the global change of im-
age pixels, while Equation (5) disentangles the added
bird accurately by explicitly modeling spatial distri-
butions of not-well-encoded regions (see Figure 3(d)).
Moreover, the mask matrix in our method is learned
individually for different images. More importantly,
the knowledge of the mask matrix is learned only from
the likelihood information encoded by a trained INN.
Notice that our method does not use an additional
supervised neural network to obtain the prior informa-
tion about the mask matrix. Thus, the rigor of the
proposed method is ensured.

Parameter settings: According to Equation (5), we
need to ensure that the obtained x̂ is still a valid image,
we need to control the value of x̂i in the range of [0, 1].
This is termed the “box constraint” in the optimization
literature. In order to use optimization algorithms that
do not support box constraints, we adopt the method
in [Carlini and Wagner, 2017] to re-parameterize ∆x′

in Equation (5) as ∆x′
i =

1
A [xi − 1

2 (tanh(Θi) + 1)] by
introducing a new parameter Θ ∈ Rd. In this way, we
can ensure that 0 ≤ x̂i ≤ 1. Note that the value of ∆x′

keep changing along with both A and Θ during the
training process. For implementations, we initialize ∆x
to 0, so that the objective function has the same value of
log p(x) at the beginning of the learning process. Then,
higher likelihood is obtained by maximizing log p(x̂).
After the re-parameterization, the zero initialization of
∆x′ is equivalent to set Θi = tanh−1(2xi − 1), where
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tanh−1(·) denotes the inverse function of tanh.

4 EXPERIMENTS

Baselines & ablation methods: Although the re-
search on INNs has emerged in recent years, to the best
of our knowledge, this study has been the first to dis-
entangle image regions that are not well encoded by an
INN. Nevertheless, in order to conduct comprehensive
comparisons, we have revisited previous methodologies
of explaining generative networks, and extended them
to be compatible with INNs as baselines. In general,
previous methods of explaining generative models could
be summarized as three types: likelihood-based revi-
sion of the input, likelihood-based revision of features,
and learning of the encoder for inversion.

Likelihood-based Revision of the Input (LRI):
Several previous studies [Zhu et al., 2016,
Creswell and Bharath., 2018] of explaining GANs
approximated the real boundary of image compo-
nents that could be generated by GANs through
solving z∗ = minz ∥x− gGAN(z)∥2. The deviation
∆x = x− gGAN(z

∗) revealed image components that the
GAN could not generate. We extended the method of
explaining GANs to explain INNs. We used a small
perturbation ∆x, which maximized log p(x−∆x), i.e.
log p(x̂), to disentangle image regions that were not
well encoded by INNs. This baseline method, which
directly maximized the likelihood of the input image,
was termed LRI. Recall that the proposed method
used a mask matrix M to make obtained image regions
sparse. Thus, we designed another baseline method,
which maximized the likelihood of the input image
with the mask matrix. As a variant of LRI, this
designed baseline method was termed LRIM.

Likelihood-based Revision of Features (LRF): Previous
methods of explaining GANs faced the challenge of ap-
proximating the inversion of a GAN generator by solv-
ing minz ∥x− gGAN(z)∥2. [Bau et al., 2019] relaxed the
condition of directly inverting GAN by the layer-wise
training approach, i.e., optimizing feature representa-
tions of intermediate-layers in the generator. Therefore,
we used the similar layer-wise strategy to design base-
lines for explaining INNs. For implementations, we first
need to point out the difference between the method
used in [Bau et al., 2019] and the baseline method ex-
tended to INNs. In [Bau et al., 2019], the authors first
trained an additional neural network for reconstruc-
tion. Then, they optimized the feature representation
of each intermediate-layer in the generator. Meanwhile,
they added the regularization on the perturbation on
each intermediate-layer. Due to the invertibility of the
INN, we did not need an additional neural network
for reconstruction. Thus, we revised their method and

directly maximized log p(x̂) by optimizing the repre-
sentation of each intermediate-layer. For a given INN
f with each layer denoted by fl, the architecture of
the INN could be represented as x → z(1) → z(2) →
· · · → z(L) = z where z(l) = fl(z

(l−1)) = g−1
l (z(l−1)),

and gl denoted the inverse function of fl. For each
l-th layer’s output z(l) of the INN, we trained the
perturbation ∆z(l) to maximize the likelihood log p(x̂)

with the regularization on
∥∥∥∆z(l)

∥∥∥
2
, i.e. we obtained

x̂ = g1(∆z(0)+g2(· · · (∆z(L−2)+gL(∆z(L−1)+gL+1(z
(L)))))

by min
∆z1,··· ,∆zL

(− log p(x̂) +
∑

l λl

∥∥∥∆z(l)
∥∥∥2

). This baseline

method was termed LRFN. The first variant of the base-
line method aimed to maximize the likelihood log p(x̂)
by training the perturbation on a single intermediate-
layer. Meanwhile, the magnitude of the perturbation
was regularized. We termed this variant as likelihood-
based revision of a single feature, LRSFN. The second
variant of the baseline method aimed to maximize the
likelihood log p(x̂) by training the perturbation on a
single intermediate-layer without the regularization of
the perturbation. We termed this variant as LRSF.

Learning of the Encoder for Inversion (LEI): Another
methodology of explaining generative networks was to
use another network (which was termed an encoder)
to model the inversion, e.g. for a GAN, x = gGAN(z),
the encoder approximated the inversion z = g−1

GAN(x).
Thus, we extended this methodology to be compatible
with INNs.

Note that an INN could exactly compute both x = g(z)

and f(x) = z. The motivation to learn an encoder
could be understood as follows. The encoder usu-
ally learned concepts that frequently appeared in the
dataset [Hinton et al., 2015]. The encoder usually ex-
tracted image regions that were well encoded by the
INN. Thus, we conducted the baseline method as fol-
lows. Given an input image x, we first approximated
the inversion ẑ = encoder(x) of an INN. Then, we got
x̂ = g(ẑ) by inverting the approximated ẑ. Finally,
we obtained ∆x = x − x̂ which could be regarded as
not-well-encoded image regions. This baseline method
was termed LEI. In experiments, we used ResNet-50
to learn an encoder.

Analysis of INNs based on real images and eval-
uation of the proposed method: We used our
method to analyzed five state-of-the-art INNs, includ-
ing the NICE network, the Real NVP network, the
Glow network, the FFJORD network, and the Res-
Flow network. We conducted experiments on three
benchmark datasets: the CelebA dataset, the CUB200-
2011 dataset, and church images in the LSUN dataset.
Please see detailed experimental settings in the supple-
mentary materials.
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       Δx disentangled from real images

Figure 4: For real images, we visualized ∆x disentan-
gled from the Glow trained on the CelebA dataset.
Visualization results indicated that the “glasses,” the
“headwear,” and the “float text” could not be well en-
coded by the INN.

Note that different INNs were proposed and originally
tested on images of different sizes. To enable fair com-
parisons, we trained all INNs using images that were
resized to 64× 64 pixels. We set M as an 8× 8 matrix.
We directly projected 8× 8 elements in M back to the
image resolution (64× 64 pixels), i.e. image pixels in a
local area shared a single Mi value. We also conducted
experiments using M of different sizes as the ablation
study. Please see the supplementary material for the
ablation study about the size of M. In this way, we
could conduct the elementwise multiplication M⊙∆x
in Equation (5). Given a trained INN and an input im-
age, we learned ∆x for this image. For implementation
details, we set β = 0.01 and p = 1 for all INNs in all
experiments.

Figure 4 visualizes ∆x disentangled from the Glow
trained on the CelebA dataset. We analyzed images
with concepts of the “hat,” the “glasses,” and the
“float text” in the CelebA dataset. Notice that these
concepts are typical attributes contained in the CelebA
dataset. The disentangled ∆x was relatively small and
concentrated, which demonstrated the effectiveness of
our method on real images. We found that regions of
the “face” were well learned by the INN, but regions
of the “hat,” the “glasses,” and the “float text” could
not be well encoded by the INN. We noticed that
concepts of the “hat,” the “glasses,” and the “float
text” had significant influence on p(x), although images
containing some concepts only took a small portion of
training images. However, these concepts were usually
not well encoded, i.e. small perturbations may yield
unstable probability. Quantitative evaluation: In
this experiment, we tested whether our method could
extract concepts that did not appear in the training
set. INNs were not supposed to learn these concepts.

Ours LRI LRIM LRFN LRSFN LRSF LEI

S∆x 1.44 1.33 1.30 1.32 1.31 1.30 1.02

Table 1: S∆x of different methods on real images.
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Figure 5: Visualization of outlier ∆x extracted by
different methods. The green circle in each sub-figure
roughly indicated the square patch added to the image.

First, we trained a Glow network using images without
concepts of the “hat,” the “glasses,” and the “float text”
in the CelabA dataset. The “hat” and the “glasses”
were attributes provided in the CelebA dataset, and the
“float text” was annotated by ourselves. Second, we
used images with concepts of the “hat,” the “glasses,”
and the “float text” for test. Moreover, we annotated
bounding boxes of the “hat,” the “glasses,” and the
“float text” as ground-truth regions.

We proposed an evaluation metric to evaluate whether
these concepts could be disentangled by our method.
Let I denote the region of the entire input image x, and
let Ω denote the ground-truth outlier region. We used

the score S∆x =
(

1
|Ω|

∑
i∈Ω ∥∆xi∥

)
/
(

1
|I|

∑
i∈I ∥∆xi∥

)
to measure the ratio of the average magnitude of the
perturbation in outlier regions to the average magni-
tude over the entire image for evaluation. A large
value of S∆x indicated that outlier regions could be
disentangled by our method. Note that, besides outlier
regions, images still contained some regions that were
not well encoded. However, we assumed that the not-
well-encoded regions mainly existed in outlier regions.



Zenan Ling, Fan Zhou, Meng Wei, Quanshi Zhang

Thus, S∆x measured the relative concentration of the
obtained image regions. S∆x of different methods on
real images are shown in Table 1. Quantitative results
illustrated that the proposed method achieved better
performance than baselines. Please see more results in
supplementary materials.

Evaluation on constructed images: Although we
had compared our method with baselines on real im-
ages in Table 1, in order to provide a new perspective
to evaluate our method, we constructed new datasets
based on existing datasets. For each image in the ex-
isting dataset, we added an image patch of the outlier
concept into the image. The added patch was supposed
the image region that was not well encoded. For the
trustworthiness of our experiments, we would like first
to choose off-the-shelf INNs provided by the authors
if they were available online. Please see supplemental
materials for sources of INNs that were trained using
different datasets. Based on the evaluation of ∆x, we
could differentiate well-learned and not well-learned
INNs. We noticed that well-learned INNs could dis-
tinguish raw images from images with outlier patches;
whereas not-well-learned INNs could not. Not every
image yielded highly concentrated ∆x because of the
bad representation quality of the not well learned INN.
On the one hand, some images naturally contained dif-
ficult concepts, but other images did not. On the other
hand, some added image patches had no significant
impact on the change of the likelihood. In order to
compare the INN’s representation quality between the
raw image in the dataset and the image with added
patches, we measured the difference of their bits per
dimension (BPD) ∆BPD as ∆BPD = log(p(xraw))−log(p(x))

|I|×log 2
.

Note that sometimes ∆BPD was even negative value,
which indicated the bad representation quality of the
INN, i.e. the image with outlier patches was even
better modeled than the raw image by the INN. In fur-
ther experiments, we computed likelihood distributions
of raw images and images with outlier patches. Our
method could identify INNs in which many concepts
were not well-encoded. Meanwhile, likelihoods of raw
images and images with outlier patches verified our
conclusions.

We constructed two datasets by adding outlier im-
age patches in two ways. (a): For each image in the
dataset, we added an image patch of the red box. (b):
For each image in the dataset, we added an image
patch from another dataset. We compared the pro-
posed method and baselines on constructed images.
Visualization results are shown in Figure 5. Except for
NICE and FFJORD networks, our method achieved
better performance than other baselines in most cases.
Moreover, neither our method nor baseline methods
could disentangle added patches when we used NICE

log-likelihoods of original images log-likelihoods of images with added patches

Glow-CelebA  
ΔBPD=0.74

well learned INNs
NICE-CUB 

ΔBPD=0.04 
NICE-CelebA  

ΔBPD=0.01

not well learned INNs
Real NVP-CUB 

ΔBPD=2.09

INNs
adding red boxes adding other datasets’ patches

CUB CelebA Church CUB CelebA Church

NICE 0.04 0.01 0.04 0.02 0.05 0.03
Real NVP 2.09 1.34 0.76 0.66 0.41 0.23

Glow 1.09 0.74 0.35 0.47 0.17 0.27
FFJORD 1.74 0.30 0.58 0.36 0.09 0.15
ResFlow 22.57 0.53 0.64 2.18 0.11 0.13

Figure 6: Histograms of likelihood distributions veri-
fied the representation capacity of different INNs which
were evaluated by our method. Left: Histograms of
likelihood distributions. Right: The table of average
∆BPD of different INNs on different datasets. Note
that BPD can only provide an overall score to evaluate
whether the image is well encoded entirely. In compari-
son, our method is proposed to locate not-well-encoded
regions within images in a fine-grained manner. Please
see more results in supplementary materials.

and FFJORD networks. Please see more visualization
results in supplemental materials. Notice that Fig-
ure 5 showed results of ∆x′⊙M, where M denotes the
regional mask, and ∆x′ indicates the fine-grained anal-
ysis of not-well-encoded pixels. Thus, the pixel-wise
visualization is more accurate than regional analysis.

Table 2 showed the efficiency of extracting not-well-
encoded regions of different methods on different
datasets. On the one hand, for Real NVP, Glow and
ResFlow networks, our method had higher S∆x than
baselines. Quantitative results of S∆x illustrated that
image regions ∆x extracted by our method were much
more concentrated than those extracted by baselines
in most cases. On the other hand, we noticed that
NICE and FFJORD networks had relatively worse S∆x

than other INNs. It indicated that NICE and FFJORD
networks could not distinguish raw images from images
with outlier patches. Thus, we conjectured that an
INN had low representation capacity if it had small
S∆x on the corresponding dataset. In order to verify
the correctness of our conjecture, we calculated like-
lihood distributions and average ∆BPD as shown in
Figure 6. Results in Figure 6 were consistent with the
conclusion conjectured from our method. Thus, our
method can be used as an effective tool to diagnose
the representation capacity of an INN. Further discus-
sion about results in Figure 6: As shown in Figure 6,
samples with added patches sometimes even yielded
higher probabilities than original images. Such phe-
nomenon was also shown in [Nalisnick et al., 2018]. If
the obtained x̂ is far away from the input image x,
i.e. x̂ is out of the dataset distribution, the estimated
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by adding red boxes

LRI LRIM LRFN LRSFN LRSF LEI

CUB

NICE 1.40 1.36 1.39 1.43 1.32 1.26 1.16
Real NVP 6.49 0.05 1.35 3.92 2.05 2.70 1.92

Glow 7.17 3.01 3.63 4.62 5.28 4.42 2.08
FFJORD 2.50 0.97 1.12 0.63 0.35 0.47 2.06
ResFlow 8.85 4.09 5.41 0.13 0.69 0.67 2.05

CelebA

NICE 1.23 1.13 1.16 1.01 1.20 1.12 1.03
Real NVP 6.64 0.03 1.44 4.69 1.60 2.67 1.97

Glow 9.55 2.82 3.85 4.68 7.79 7.25 2.15
FFJORD 1.62 0.61 0.59 0.67 0.71 0.34 1.61
ResFlow 6.29 3.25 3.21 1.68 3.41 3.35 1.83

Church

NICE 1.36 1.34 1.40 2.50 1.56 1.49 1.17
Real NVP 8.47 0.03 1.34 2.77 0.72 1.70 2.38

Glow 3.47 1.61 1.66 2.67 1.20 1.57 1.92
FFJORD 1.27 0.90 0.82 0.10 1.09 1.08 0.86
ResFlow 5.53 2.92 3.52 0.93 2.89 1.22 1.96

by adding patches from other datasets

CUB

NICE 1.41 1.29 1.37 1.05 1.36 1.29 1.25
Real NVP 4.35 1.96 1.97 2.05 1.72 1.71 1.13

Glow 5.73 1.61 1.69 2.14 1.75 1.58 1.18
FFJORD 4.21 1.96 2.58 1.92 2.15 1.35 1.19
ResFlow 5.01 2.82 1.18 1.16 1.17 1.37 1.14

CelebA

NICE 1.47 1.23 1.19 1.36 1.43 1.25 1.03
Real NVP 3.15 1.67 1.62 2.39 1.60 1.50 0.94

Glow 4.98 1.53 1.89 1.86 1.54 1.51 1.18
FFJORD 0.84 1.05 1.08 2.04 1.72 1.51 1.20
ResFlow 1.95 1.59 1.03 1.34 1.45 1.59 0.92

Church

NICE 1.36 1.36 1.34 1.43 1.45 1.37 1.23
Real NVP 1.84 1.56 1.62 1.14 0.90 1.22 1.16

Glow 2.01 1.34 1.33 1.20 0.69 0.73 1.20
FFJORD 1.14 1.36 1.13 2.39 1.51 1.09 1.13
ResFlow 1.54 1.32 1.46 1.04 1.00 1.01 0.99

Table 2: S∆x of different methods on two constructed
datasets. In most cases, our method had higher S∆x

than baselines. It indicated that image regions ∆x
extracted by our method were much more concentrated
than those extracted by baselines.

likelihood p(x̂) is no longer a reliable index to reflect
the “true probability” with which the INN can generate
x̂. To avoid this phenomenon, the constraint on ∥∆x∥p
is necessary here to keep the obtained x̂ close to the
input image x. In this way, x̂ is guaranteed to be in
the dataset distribution and the comparison between
p(x̂) and p(x) is reliable.

Diagnosis of INNs: In this experiment, we applied
the proposed method to diagnose representation flaws
of existing state-of-the-art INNs. In order to diagnose
representation flaws, we first constructed images with
abnormal concepts, which did not exist in the dataset.
Then, we used the proposed method to test whether
abnormal concepts could be disentangled. We added
three types of abnormal concepts to images in existing
datasets. (a), we added an additional abnormal concept
to the image. (b), we shuffled positions of concepts
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Figure 7: We visualized ∆x extracted from the Glow
trained on the CelebA dataset. The green circle in each
sub-figure roughly indicated abnormal concepts. From
top to bottom, we constructed abnormal concepts by
adding an additional eye to the image, shuffling posi-
tions of eyes and the nose in the image, and maximizing
the saturation level on the random selected region of
16 × 16 pixels in the image, respectively. For all of
three cases, regions of abnormal concepts could not be
disentangled. It illustrated that the INN did not well
encode these concepts.

in the image. (c), given an image in the dataset, we
first randomly selected an image region. Then, we
maximized the saturation level in this region. We
visualized ∆x extracted from the Glow trained on the
CelebA dataset in Figure 7. For the CelebA dataset
specifically, we constructed abnormal concepts type
(a) by adding an additional eye to the face; (b) by
shuffling positions of eyes, mouths, and noses; and (c)
by maximizing saturation level in a randomly selected
region of 16× 16 pixels on the face image.

As shown in Figure 7, extracted image regions were
not concentrated, i.e. abnormal concepts could not be
disentangled. It indicated that abnormal concepts did
not have significant influence on likelihoods. Specifi-
cally, the amount of concepts, the position relationship
between concepts, or saturation level information could
not be well learned by the INN for face images. Please
see more results of various INNs on different datasets
in supplementary materials.

5 CONCLUSION

In this paper, we focus on a new task, i.e. exploring
image regions that are not well encoded by an INN.
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Inspired by adversarial attacking, we propose a method
to disentangle image regions that significantly decrease
the likelihoods of the image. In particular, our method
explicitly models the spatial information of not-well-
encoded regions, so that we can disentangle visual
concepts that are not well encoded by an INN. Consid-
ering that there is no ground truth of not-well-encoded
image regions, we proposed a new evaluation metric
to measure the concentration of extracted regions by
our method. Experimental results have demonstrated
the effectiveness of the proposed method. Moreover,
we use the method to diagnose representation flaws of
several state-of-the-art INNs both through quantitative
analysis and visualization results.
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Supplementary Material:
Exploring Image Regions Not Well Encoded by an INN

A Detailed deduction of Equation 3

max
x̂

p(x̂), s. t. ∥∆x∥p < ϵ

⇔max
x̂

log p(x̂), s. t. ∥∆x∥p < ϵ

⇔max
x̂

log p(ẑ) + log

∣∣∣∣det( ∂ẑ

∂x̂

)∣∣∣∣ , s. t. ∥∆x∥p < ϵ

⇔max
x̂

log p(f(x̂)) + log

∣∣∣∣det(∂f(x̂)

∂x̂

)∣∣∣∣ , s. t. ∥∆x∥p < ϵ

⇔max
∆x

log p(f(x−∆x)) + log

∣∣∣∣det(∂f(x−∆x)

∂(x−∆x)

)∣∣∣∣
s. t. ∥∆x∥p < ϵ

where ẑ = f(x̂) = f(x−∆x).

B Detailed experimental settings

NICE Real NVP Glow FFJORD ResFlow

CUB None None Code None None

CelebA None Code Net Code Net
Code Code

Church None None Net None None
Code

Table 3: Sources of INNs that were trained using different datasets. In order to obtain trustworthy conclusions, we
preferred to use off-the-shelf INNs in the second experiment. “Net” indicates that pre-trained INNs were released. “Code”
indicates that off-the-shelf codes were available. “None” indicates that neither the model nor the code was available online.
In this case, we trained INNs by ourselves according to settings suggested by authors.

According to Equation (4), we need to ensure that the obtained x̂ is still a valid image, we need to control the
value of x̂i in the range of [0, 1]. This is termed the “box constraint” in the optimization literature. In order to use
optimization algorithms that do not support box constraints, we adopt the method in [Carlini and Wagner, 2017]
to re-parameterize ∆x′ in Equation (4) as ∆x′

i = 1
A [xi − 1

2 (tanh(Θi) + 1)] by introducing a new parameter
Θ ∈ Rd. In this way, we can ensure that 0 ≤ x̂i ≤ 1. Note that the value of ∆x′ keep changing along with
both A and Θ during the training process. For implementations, we initialize ∆x to 0, so that the objective
function has the same value of log p(x) at the beginning of the learning process. Then, higher likelihood is
obtained by maximizing log p(x̂). After the re-parameterization, the zero initialization of ∆x′ is equivalent to set
Θi = tanh−1(2xi − 1), where tanh−1(·) denotes the inverse function of tanh.

Note that different INNs were proposed and originally tested on images of different sizes . To enable fair
comparisons, we trained all INNs using images that were resized to 64 × 64 pixels. We set M as an 8 × 8
matrix. We directly projected 8× 8 elements in M back to the image resolution (64× 64 pixels), i.e. image pix-
els in a local area shared a singleMi value. We also conducted experiments usingM of different sizes as the ablation
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study. Please see the supplementary material for the ablation study about the size of M. In this way, we could
conduct the elementwise multiplication M⊙∆x in Equation (4). Given a trained INN and an input image, we
learned ∆x for this image. For implementation details, we set β = 0.01 and p = 1 for all INNs in all experiments.

C More results on real images

For real images, we visualized ∆x disentangled from the Glow trained on the CelebA dataset in Figure 8. As
Figure 8 showed, the disentangled ∆x was relatively small and concentrated, which demonstrated the effectiveness
of our method on real images. From Figure 8, we observed that regions of “face” were well learned by the INN,
but regions of the “headwear” , the “glasses”, and the “foat text” could not be well encoded by the INN.

Figure 8: More results on real images.
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D More results for constructed images by adding red boxes

We visualized ∆x extracted by different methods. In this experiment, we added the red box to the image. For Real
NVP, Glow and ResFlow networks, visualization results showed that our method could successfully disentangle
added patches, while baseline methods could not. For NICE and FFJORD networks, neither our method nor
baseline methods could disentangle red boxes. Moreover, image regions extracted by our method were more
concentrated than those extracted by baselines.
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Figure 9: More results for revised images by adding red boxes to images in the CUB200-2011 dataset.
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Figure 10: More results for revised images by adding red boxes to images in the CelebA dataset.
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Figure 11: More results for revised images by adding red boxes to church images in the LSUN dataset.
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E More results for constructed images by adding image patches from other
datasets

We visualized ∆x extracted by different methods. The green circle in each sub-figure roughly indicated the square
patch added added to the image. For Real NVP, Glow and ResFlow networks, results showed that our method
could successfully disentangle added patches, while baseline methods could not. For NICE and FFJORD networks,
neither our method nor baseline methods could disentangle outlier patches. Moreover, image regions extracted by
our method were more concentrated than those extracted by baselines. Moreover, in Figure 15, we used green
boxes to mark INNs that had lower S∆x. Figure 15 showed that in green boxes, likelihood distributions of raw
images and images with outlier patches had no significant differences, i.e. image distributions were not well
learned by corresponding INNs. Results in Figure 15 were consistent with the conclusion conjectured from our
method. Thus, our method can be used as an effective tool to diagnose the representation capacity of an INN.

G
lo
w

R
es
F
lo
w

R
ea
l

N
V
P

F
F
JO
R
D

N
IC
E

Ours LEILRFN LRSFN LRSFLRI LRIMInput

G
lo
w

R
es
F
lo
w

R
ea
l

N
V
P

F
F
JO
R
D

N
IC
E

Ours LEILRFN LRSFN LRSFLRI LRIMInput

G
lo
w

R
es
F
lo
w

R
ea
l

N
V
P

F
F
JO
R
D

N
IC
E

Ours LEILRFN LRSFN LRSFLRI LRIMInput

G
lo
w

R
es
F
lo
w

R
ea
l

N
V
P

F
F
JO
R
D

N
IC
E

Ours LEILRFN LRSFN LRSFLRI LRIMInput

G
lo
w

R
es
F
lo
w

R
ea
l

N
V
P

F
F
JO
R
D

N
IC
E

Ours LEILRFN LRSFN LRSFLRI LRIMInput

G
lo
w

R
es
F
lo
w

R
ea
l

N
V
P

F
F
JO
R
D

N
IC
E

Ours LEILRFN LRSFN LRSFLRI LRIMInput

Figure 12: More results for revised images by adding image patches from other datasets to images in the
CUB200-2011 dataset.
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Figure 13: More results for revised images by adding image patches from other datasets to images in the CelebA
dataset.
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Figure 14: More results for revised images by adding image patches from other datasets to church images in the
LSUN dataset.
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histograms of log-likelihoods of original images

histograms of log-likelihoods of images with added patches

Histograms in green boxes indicated that corresponding INNs had small SΔx values on constructed
datasets, i.e. low representation capacity. Whereas, histograms out of green boxes indicated that 
corresponding INNs had large SΔx values on constructed datasets, i.e. high representation capacity.

Figure 15: We used histograms of likelihood distributions images to verify the representation capacity of different
INNs that were evaluated by our method. First, according to our quantitative analysis of the representation
capacity based on S∆x, we differentiated all INNs into well-learned ones (with relatively high S∆x values) and
not well-learned ones (with relatively low S∆x values), indicated by green boxes. Thus, in this figure, we could
see well-learned INNs usually yielded significantly distinct histograms of log-probabilities between raw images
and modified ones. Whereas, not well-learned INNs could not differentiate raw images from modified ones. Thus,
this figure verified the effectiveness of our method.
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F More results for diagnosis of INNs

F.1 The CelebA dataset

In Figure 20, Figure 16, Figure 17, Figure 18, and Figure 19, we visualized ∆x extracted from the NICE, the
Real NVP, the Glow, the FFJORD, and the ResFlow trained on the CelebA dataset, respectively. The green
circle in each sub-figure roughly indicated abnormal concepts. In each figure, from top to bottom, we constructed
abnormal concepts by adding an additional eye to the image, shuffling positions of eyes and the nose in the image,
and maximizing the saturation level on the random selected region of 16× 16 pixels, respectively. For all of three
cases, regions of abnormal concepts could not be disentangled. It illustrated that the INN did not well encode
these concepts.
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Figure 16: More results for diagnosis of the Real NVP network.
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Figure 17: More results for diagnosis of the GLOW network.
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Figure 18: More results for diagnosis of the FFJORD network.
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Figure 19: More results for diagnosis of the ResFlow network.
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Figure 20: More results for diagnosis of the NICE network.
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F.2 Church images in the LSUN dataset

In Figure 21, Figure 22, Figure 23, Figure 24, and Figure 25, we visualized ∆x extracted from the NICE, the
Real NVP, the Glow, the FFJORD and the ResFlow trained on the LSUN dataset, respectively. The green circle
in each sub-figure roughly indicated abnormal concepts. In each figure, from top to bottom, we constructed
abnormal concepts by adding an additional church to the image, shuffling positions of churches, and maximizing
the saturation level on the random selected region of 16× 16 pixels, respectively. For all of three cases, regions of
abnormal concepts could not be disentangled. It illustrated that the INN did not well encode these concepts.
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Figure 21: More results for diagnosis of the NICE network.
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Figure 22: More results for diagnosis of the Real NVP network.
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Figure 23: More results for diagnosis of the GLOW network.



Zenan Ling, Fan Zhou, Meng Wei, Quanshi Zhang

S
hu

ff
li

ng
 c

on
ce

pt
s

A
dd

in
g 

co
nc

ep
ts

M
ax

im
iz

in
g 

sa
tu

ra
ti

on
(=

25
5/

25
5)

 lo
ca

ll
y

Figure 24: More results for diagnosis of the FFJORD network.
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Figure 25: More results for diagnosis of the ResFlow network.
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G More results for essential differences between explaining GANs and explaining
INNs

Figure 26 presents differences between explanations of GANs [Bau et al., 2019] (top) and explanations of INNs
(bottom). For explanations of GANs, Bau et al. [Bau et al., 2019] use a ProGAN trained on church images in the
LSUN dataset. We use this method to disentangle the added red box from the image. For explanations of INNs,
we use a ResFlow network (an INN, not a GAN) trained on church images in the LSUN dataset. We use the
proposed method to disentangle ∆x from each testing image. Results show that our method can disentangle
not-well-encoded regions accurately, while the method of explaining GANs can not.
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Figure 26: More results for essential differences between explaining GANs and explaining INNs.

H Ablation Study on the Size of the Mask Matrix

In this section, we conduct th ablation study of the size of the mask matrix M. We use the proposed method
with different sizes, i.e. 8× 8 and 16× 16, of the mask matrix M to disentangle ∆x. In Figure 27, we visualized
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16×168×8 16×168×8

Figure 27: Ablation study on the size of the mask matrix.

∆x from the Glow trained on the CelebA dataset. The results demonstrate that the size of the matrix does not
have a significant effect of the proposed method.


