Complex Momentum for Optimization in Games

1,2 1,3

Jonathan Lorraine David Acuna

University of Toronto?

Abstract

We generalize gradient descent with momen-
tum for optimization in differentiable games
to have complex-valued momentum. We give
theoretical motivation for our method by prov-
ing convergence on bilinear zero-sum games
for simultaneous and alternating updates.
Our method gives real-valued parameter up-
dates, making it a drop-in replacement for
standard optimizers. We empirically demon-
strate that complex-valued momentum can
improve convergence in realistic adversarial
games—like generative adversarial networks—
by showing we find better solutions with an
almost identical computational cost. We also
show a practical complex-valued Adam vari-
ant, which we use to train BigGAN to improve
inception scores on CIFAR-10.

1 Introduction

Gradient-based optimization has been critical for the
success of machine learning, updating a single set of
parameters to minimize a single loss. A growing num-
ber of applications require learning in games, which
generalize single-objective optimization. Common ex-
amples are GANs (Goodfellow et al., 2014), actor-
critic models (Pfau and Vinyals, 2016), curriculum
learning (Baker et al., 2019; Balduzzi et al., 2019;
Sukhbaatar et al., 2018), hyperparameter optimiza-
tion (Lorraine and Duvenaud, 2018; Lorraine et al.,
2020; MacKay et al., 2019; Raghu et al., 2020), ad-
versarial examples (Bose et al., 2020; Yuan et al.,
2019), learning models (Rajeswaran et al., 2020; Abachi
et al., 2020; Nikishin et al., 2021), domain adversarial
adaptation (Acuna et al., 2021), neural architecture
search (Grathwohl et al., 2018; Adam and Lorraine,
2019), and meta-learning (Ren et al., 2018, 2020).

Games consist of multiple players, each with parameters
and objectives. We often want solutions where no

Proceedings of the 25'" International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s).

Vector Institute?

David Duvenaud!?
NVIDIA3

Paul Vicol!?

player gains from changing their strategy unilaterally,
e.g., Nash equilibria (Morgenstern and Von Neumann,
1953) or Stackelberg equilibria (Von Stackelberg, 2010).
Classical gradient-based learning often fails to find
these equilibria due to rotational dynamics (Berard
et al., 2019). Numerous saddle point finding algorithms
for zero-sum games have been proposed (Arrow et al.,
1958; Freund and Schapire, 1999).

Gidel et al. (2019) generalize GD with momentum to
games, showing we can use a negative momentum to
converge if the eigenvalues (EVals) of the Jacobian of
the gradient vector field have a large imaginary part.
We use terminology in Gidel et al. (2019) and say
(purely) cooperative or adversarial games for games
with (purely) real or imaginary EVals. Setups like
GANs are not purely adversarial, but rather have
both purely cooperative and adversarial eigenspaces
(ESpaces) — i.e., ESpaces with purely real or imaginary
EVals. More generally, we simple say an ESpace is
cooperative when the real part of the EVal is larger
than the imaginary part and adversarial otherwise. In
cooperative ESpaces classical optimization methods
perform best, while in adversarial ESpaces methods
customized for games work best — see Fig. 4.

We want a method that converges with simultaneous
and alternating updates in purely adversarial games —
a setup where existing momentum methods fail. Also,
we want a method that robustly converges with differ-
ent mixtures of adversarial and cooperative ESpaces
— see Fig. 5 — because finding all ESpaces depends on
an eigendecomposition which can be intractable. To
solve this we unify and generalize existing momentum
methods (Lucas et al., 2018; Gidel et al., 2019) to re-
currently linked momentum — a setup with multiple
recurrently linked momentum buffers with potentially
negative coeflicients — see Fig. 7c.

Selecting two of these recurrently linked buffers with
appropriate momentum coefficients can be interpreted
as the real and imaginary parts of a single complex
buffer and complex momentum coefficient — see App.
Fig. 7d. This setup (a) allows us to converge in ad-
versarial games with simultaneous updates, (b) only
introduces one new optimizer parameter — the phase or

Complex Momentum for Optimization in Games

Actual JAX implementation: changes in green

mass = .8 + .3j

def momentum(step_size, mass):

def update(i, g, state):

x, velocity = state

velocity = mass * velocity + g
x=x-jnp.real(step_size(i)*velocity)
return x, velocity

Figure 1: How to modify JAX’s SGD with momentum
here to use complex momentum. The only changes are
in green. jnp.real gets the real part of step_size
times the momentum buffer (called velocity here).
We use a complex mass for our method in this case

B = |Blexp(iarg(B)) = 0.9 exp(iv/s) ~ .8 + .3i.

arg of our momentum, (¢) allows us to gain intuitions
via complex analysis, (d) is trivial to implement in 1i-
braries supporting complex arithmetic, and (e) robustly
converges for different ESpace mixtures.

Intuitively, our complex buffer stores historical gradient
information, oscillating between adding or subtracting
at a frequency dictated by the momentum coefficient.
Classical momentum only adds gradients, and negative
momentum changes between adding or subtracting each
iteration, while we oscillate at an arbitrary (fixed) fre-
quency — see Fig. 2a. This reduces rotational dynamics
during training by canceling out opposing updates.

Our contributions include:

e Providing generalizations and variants of classi-
cal (Polyak, 1964), negative (Gidel et al., 2019),
and aggregated (Lucas et al., 2018) momentum
for learning in differentiable games.

e Showing our method converges on adversarial
games, including bilinear zero-sum games and
Dirac-GAN, with simultaneous and alternating
updates.

e [llustrating a robustness during optimization, con-
verging faster and over a larger range of mixtures
of cooperative and adversarial games than existing
first-order methods.

e Giving a practical extension of our method to
a complex-valued Adam (Kingma and Ba, 2014)
variant, which we use to train a BigGAN (Brock
et al., 2018) on CIFAR-10, improving their incep-
tion scores.

2 Background

Appendix Table 2 summarizes our notation. Consider
the optimization problem:

0* := argming £(0) (1)

We can find local minima of loss £ using (stochastic)
gradient descent with step size . We denote the loss
gradient at parameters 6’ by g7:=g(6”):=V¢L(0)|,; .

6™ =67 —ag’ (SGD)
Momentum can generalize SGD. For example, Polyak’s
Heavy Ball (Polyak, 1964):

0" =0/ —ag’ + 567 —677") (2)

Which can be equivalently written with momentum
buffer p/ = (67-6"")/,,

Wt =ppl — g7, 6" = 07 + ap’ (SGDm)
We can also generalize SGDm to aggregated momen-

tum (Lucas et al., 2018), shown in App. Alg. 3.

2.1 Game Formulations

Another class of problems is learning in games, which
includes problems like generative adversarial networks
(GANs). We focus on 2-player games —with players
denoted by A and B—where each player minimizes
their loss £ 4, Lp with their parameters 0 4,0p5. If L4
and Lp are differentiable in 84 and Op we say the game
is differentiable. In deep learning, losses are non-convex
with many parameters, so we focus on finding local
solutions. If 6};(04) denotes player B’s best-response
function, then solutions can be defined as:

GX = argmineAEA(OA,O; (OA)), (3)

0/5(64):= arg ming, Lp(04,0p)
We may be able to approximately find 6} efficiently if
we can do SGD on:

L3(04) := La(04,05(604)) (4)

Unfortunately, SGD would require computing 4£%/de.,
which often requires 463 /ag,, but 6(04) and its Ja-
cobian are typically intractable. A common opti-
mization algorithm to analyze for finding solutions
is simultaneous SGD (SimSGD) — sometimes called
gradient descent ascent for zero-sum games — where
g = g4(0%,60%) and g}, := g(0%,0%) are estimators
for V9A£A|9/-Z,0é and VQBACB|GZ‘UGEZ
0 . . 0 . .)
0" =0, —ag), 6, =0, —ag, (SimSGD)
We simplify notation with the concatenated or joint-
parameters w:=[04, O] € R? and the joint-gradient vec-
tor field § : R? — R, which at the j** iteration is the
joint-gradient denoted:

g = g(w) = [ga(w’), g5 (w)] = [gh.gh] (5)

Jonathan Lorraine'?, David Acuna'®, Paul Vicol*?, David Duvenaud':?

We extend to n-player games by treating w and g as
concatenations of the players’ parameters and loss gra-
dients, allowing for a concise expression of the SimSGD
update with momentum (SimSGDm):

w =l — g’ W™ = w +ap’™ (SimSGDm)

Gidel et al. (2019) show classical momentum choices
of 8 € [0,1) do not improve convergence rate over
SimSGD in some games, while negative momentum
helps if the Jacobian of the joint-gradient vector field
Vg has complex EVals. Thus, for purely adversarial
games with imaginary EVals, any non-negative momen-
tum and step size will not converge. For cooperative
games — i.e., minimization — V,,g has real EVals be-
cause it is a Hessian of a loss, so classical momentum
works well.

2.2 Limitations of Existing Methods

Higher-order: Methods using higher-order gradi-
ents are often harder to parallelize across GPUs (Os-
awa et al., 2019), get attracted to bad saddle
points (Mescheder et al., 2017), require estimators
for inverse Hessians (Schéfer and Anandkumar, 2019;
Wang et al., 2019), are complicated to implement, have
numerous optimizer parameters, and can be more ex-
pensive in iteration and memory cost (Hemmat et al.,
2020; Wang et al., 2019; Schifer and Anandkumar,
2019; Schéfer et al., 2020; Czarnecki et al., 2020; Zhang
et al., 2020a). Instead, we focus on first-order methods.

First-order: Some first-order methods such as extra-
gradient (Korpelevich, 1976) require a second, costly,
gradient evaluation per step. Similarly, methods alter-
nating player updates must wait until after the first
player’s gradient is used to evaluate the second player’s
gradient. But, many deep learning setups can paral-
lelize computation of both players’ gradients, making
alternating updates effectively cost another gradient
evaluation. We want are interested in convergence
speed in number of gradient queries, so we naturally
looked at methods which updates with the effective
cost of one gradient evaluation — see App. Fig. 9. Also,
simultaneous updates are a standard choice in some
settings (Acuna et al., 2021).

Robust convergence: We want our method to con-
verge in purely adversarial game’s with simultaneous
updates — a setup where existing momentum methods
fail (Gidel et al., 2019). Furthermore, computing a
games eigendecomposition is often infeasibly expensive,
so we want methods that robustly converge over differ-
ent mixtures of adversarial and cooperative ESpaces —
see Fig. 5. We are interested in ESpace mixtures that
are relevant during GAN training — see Fig. 6 and App.
Fig. 10.

2.3 Coming up with our Method

Combining existing methods: Given the preceding
limitations, we would like a robust first-order method
using a single, simultaneous gradient evaluation. We
looked at combining aggregated (Lucas et al., 2018)
with negative (Gidel et al., 2019) momentum by al-
lowing negative coefficients, because these methods
are first-order and use a single gradient evaluation —
see Fig. 7b. Also, aggregated momentum provides ro-
bustness during optimization by converging quickly
on problems with wide range of conditioning, while
negative momentum works in adversarial setups. We
hoped to combine their benefits, gaining robustness
to different mixtures of adversarial and cooperative
ESpaces. However, with this setup we could not find
solutions that converge with simultaneous updates in
purely adversarial games.

Generalize to allow solutions: We generalized the
setup to allow recurrent connections between momen-
tum buffers, with potentially negative coefficients — see
Fig. 7c and App. Alg. 4. There are optimizer pa-
rameters so this converges with simultaneous updates
in purely adversarial games, while being first-order
with a single gradient evaluation — see Corollary 1.
However, in general, this setup could introduce many
optimizer parameters, have unintuitive behavior, and
not be amenable to analysis. So, we choose a special
case of this method to help solve these problems.

A simple solution: With two momentum buffers and
correctly chosen recurrent weights, we can conveniently
interpret our buffers as the real and imaginary part of
one complex buffer — see App. Fig. 7d. This method is
(a) capable of converging in purely adversarial games
with simultaneous updates — Corollary 1, (b) only in-
troduces one new optimizer parameter — the phase of
the momentum coefficient, (c) is tractable to analyze
and have intuitions for with Euler’s formula — ex., Eq.
(8), (d) is trivial to implement in libraries supporting
complex arithmetic — see Fig. 1, and (e) can be robust
to games with different mixtures of cooperative and
adversarial ESpaces — see Figs. 4 and 5.

3 Complex Momentum

We describe our proposed method, where the momen-
tum coefficient 5 € C, step size a € R, momentum
buffer p € C%, and player parameters w € R%. The
simultaneous (or Jacobi) update is:

HjJrl = 6[‘” - gj,

There are many ways to get a real-valued update from
pn € C, but we only consider updates equivalent to
classical momentum when 3 € R. It is possible for the
update to use the imaginary part of the momentum

Wt = Wl + R(ap™) (SimCM)

Complex Momentum for Optimization in Games

Algorithm 1 SimCM Momentum
1: B,aeC,uleC? w’eR?
2: forj=1...N do
3 it =pui-g’
4: Wl =wi +R(aps™)
return w?

buffer, which also works and could yield better solu-
tions. However, we only use the real component of the
momentum — R(p) — because this is the simplest setup
and sufficient to work.

We show the SimCM update in Alg. 1 and visualize
it in App. Fig. 7d. We also show the alternating
(or Gauss-Seidel) update, which is common for GAN
training:

' =By —ga(w), 03" =04+ Rlap)") (ALLCM)

wi' =By —gp (051 67), 05" = 6%+ R(ap)t)

Generalizing negative momentum: Consider the
negative momentum from Gidel et al. (2019): w/™ =
w! —ag’ + B(w! — wIi™1). Expanding (SimCM) with
w = (W -1/, for real momentum shows the neg-
ative momentum method of Gidel et al. (2019) is a
special case of our method:

W = Wl + R g) (6)

— Wl —agl + B —wi) (7)

3.1 Dynamics of Complex Momentum

For simplicity, we assume NumPy-style (Harris et al.,
2020a) component-wise broadcasting for operations like
taking the real-part R(z) of vector z = [z1,...,2,] €
C", with proofs in the Appendix. Expanding the buffer
updates with the polar components of 3 gives intuition
for complex momentum:

ph=pp —§ = pt=pB)-¢g) -¢

j+1 Zﬁkj k

k=0
k:.
R(p™) == |8]* cos(karg(8))g’ ",
k=0
. k=‘j .
(== > |8|" sin(karg(B))g’ "
k=0

(8)

The final line is simply by Euler’s formula (27). (8)
shows how [controls the momentum buffer p by hav-
ing | 8| dictate prior gradient decay rates, while arg(5)

controls oscillation frequency between adding and sub-
tracting prior gradients, which we visualize in Fig. 2a.

Expanding the parameter updates with the Cartesian
components of « and [is key for Theorem 1, which
characterizes the convergence rate:

wH =g — g — 4
Wu’“) R(B)?R(uj) SBRW)-R(@G), (9)
(™) =S(BR(W!) +R(BS (1)

W =W 4+ R(ap’™) — (10)
=w! —ag’ +R(apR(p) —S(aBR () (11)

So, we can write the next iterate with a fixed-point
operator:
7)w’)

[R(p"). S (") w0 = Fo s ([R(1). S (1
(12)

(9) and (10) allow us to write the Jacobian of F, g
which can be used to bound convergence rates near
fixed points, which we name the Jacobian of the aug-
mented dynamics of buffer u and joint-parameters w
and denote with:

w]ﬂ

RBI ST Vg
RZZV[“"‘,]F%Q: %(ﬁ)[?R(B)I 0
(ap)I —S(af)I I—-aV.g
(13)

So, for quadratic losses our parameters evolve via:
[R(),S(p")] T= R[R(1),S(1)] (14)

We can bound convergence rates near fixed points by
using the spectrum of R with Theorem 1.

Theorem 1 (Consequence of Prop. 4.4.1 (Bertsekas,
2008)). Convergence rate of complex momentum: If the
spectral radius p(VF o g(p*, w*)) <1, then, for [p,w]
in a neighborhood of [u*,w*], the distance of [p?, w’]
to the stationary point [u* w*| converges at a linear
rate O((p(R) + €)7), Ve>0.

Linear convergence means lim;_,qJw’ ¥ |/jwiw*| €
(0,1) here, where w* is a fixed point. We should select
optimization parameters «, 8 so that the augmented
dynamics spectral radius Sp(R(«, 8)) < 1—with the
dependence on « and 8 now explicit. We may want to
express Sp(R(«, 8)) in terms of the spectrum Sp(Vg),
as in Theorem 3 in Gidel et al. (2019):

F(Sp(Vwg), o, B) =Sp(R(e, B)) (15)

We provide a Mathematica command in App. A.2 for
a cubic polynomial p characterizing f with coefficients
that are functions of a, 8 & A € Sp(V.,g), whose roots

Jonathan Lorraine'?, David Acuna'®, Paul Vicol*?, David Duvenaud':?

o N e arg(B)=0 (classical) .
5 arg(B)=F (ours) =
é = arg(B)=n (negative) z
(9] 3 Q
< <
=i =
a [=H
< g
= 8
3 g
2 £
&= -1+ T T T T T [®)

10 20 30 40 50 =

Iteration k&

Figure 2(a): We show the real part of our momen-
tum buffer — which dictates the parameter update —
at the 50" iteration R(*°) dependence on past gra-
dients g* for k=1...50. The momentum magnitude
is fixed to || =0.9 as in Fig. 3. Euler’s formula is
used in (8) for finding dependence or coefficient of "
via R(p*) = = ;207 8] cos(k arg(8))g’*. Com-
plex momentum allows smooth changes in the buffers
dependence on past gradients.

are EVals of R, which we use in subsequent results.
O’donoghue and Candes (2015) and Lucas et al. (2018)
mention that we often do not know the condition num-
ber, EVals — or the mixture of cooperative and ad-
versarial ESpaces — of a set of functions that we are
optimizing, so we try to design algorithms which work
over a large range. Sharing this motivation, we consider
convergence behavior on games ranging from purely
adversarial to cooperative.

In Sec. 4.2 at every non-real 8 we could select o and
|B] so Alg. 1 converges. We define almost-positive to
mean arg(3) =e for small e, and show there are almost-
positive 8 which converge.

Corollary 1 (Convergence of Complex Momentum).

There exist « € R, 5 € C so Alg. 1 converges for bilinear
zero-sum games. More-so, for small ¢ (we show for € =
16/, if arg(B) = € (i.e., almost-positive) or arg(f) =
7w — € (i.e., almost-negative), then we can select «, |G|
to converge.

Why show this? Our result complements Gidel et al.
(2019) who show that for all real «, 8 Alg. 1 does not
converge. We include the proof for bilinear zero-sum
games, but the result generalizes to some games that
are purely adversarial near fixed points, like Dirac
GANs (Mescheder et al., 2017). The result’s second
part shows evidence there is a sense in which the only
B that do not converge are real (with simultaneous
updates on purely adversarial games). It also suggests
a form of robustness, because almost-positive § can
approach acceleration in cooperative ESpaces, while
converging in adversarial ESpaces, so almost-positive
B may be useful when our games have an uncertain or

variable mixture of real and imaginary EVals like GANs.

Sections 4.2, 4.3, and 4.4 investigate this further.

Figure 2(b):
on a Dirac-GAN takes for a set solution distance. We fix step size
a=0.1 as in Fig. 3, while varying the phase and magnitude of our
momentum 3= |G| exp(iarg(B)). There is a red star at the optima,
dashed red lines at real 8, and a magenta line for simultaneous
gradient descent. There are no real-valued S that converge for this
— or any — « with simultaneous updates (Gidel et al., 2019). App.
Fig. 9 compares this with alternating updates (AltCM).

7 ——
| (‘ 2
32_,,| 1 10‘%
I o
2| H g
q -
O e = ST
0 025 05 075 1

Momentum magnitude ||
How many steps simultaneous complex momentum

3.2 What about Acceleration?

With classical momentum, finding the step size «
and momentum [to optimize the convergence rate is
tractable if 0<I< L and Sp(V,g)e[l, L]? (Goh, 2017)
— i.e., we have an [-strongly convex and L-Lipschitz loss.
The conditioning x = L/i can characterize the prob-
lem difficulty. Gradient descent with an appropriate
«a can achieve a convergence rate of ’;—H, but using
momentum with appropriate (¥ 8*) can achieve an
accelerated rate of p* = ‘/Ei However, there is no con-
sensus for constraining Sg(vw.@) in games for tractable
and useful results. Candidate constraints include mono-
tonic vector fields generalizing notions of convexity, or
vector fields with bounded EVal norms capturing a
kind of sensitivity (Azizian et al., 2020a). Fig. 6 shows
Sp(Vwg) for a GAN, motivating varying o and 3 for
each player as done in Sec. 4.4.

3.3 Implementing Complex Momentum

Complex momentum is trivial to implement with li-
braries supporting complex arithmetic like JAX (Brad-
bury et al., 2018) or Pytorch (Paszke et al., 2017).
Given an SGD implementation, we often only need to
change a few lines of code — see Fig. 1. Also, (9) and
(10) can be easily used to implement Alg. 1 in a li-
brary without complex arithmetic. More sophisticated
optimizers like Adam can trivially support complex
optimizer parameters with real-valued updates, which
we explore in Sec. 4.4.

3.4 Scope and Limitations

For some games, we need higher than first-order infor-
mation to converge — ex., pure-response games (Lor-
raine et al., 2020) — because the first-order information
for a player is identically zero. So, momentum methods

Complex Momentum for Optimization in Games

10 >
® Initialization 3
® Optimum =)
= =8
) s
E =
g 1
2
E
] .001
Generator
100 s
g
]
£107?
)
2,
o
21074
8 —— arg(B) =0 (classical)
2106 — arg(B) =g (ours)
w0
A ---- theory
10°8
10 10t 102 10° 10°
Iterations

Figure 3: Complex momentum helps correct rotational
dynamics when training a Dirac-GAN (Mescheder et al.,
2018). Top: Parameter trajectories with step size
a=.1 and momentum §=.9exp(i7/s). We include the
classical, real and positive momentum which diverges
for any . Bottom: The distance to optimum, which
has a convergence rate matching our prediction with
Thm. 1 and (15).

only using first-order info will not converge in general.
However, we can combine methods with second-order
information and momentum algorithms (Lorraine et al.,
2020; Raghu et al., 2020). Complex momentum’s com-
putational cost is almost identical to classical and neg-
ative momentum, except we now have a buffer with
twice as many real parameters. We require one more
optimization hyperparameter than classical momen-
tum, which we provide an initial guess for in Sec. 4.5.

4 Experiments

We investigate complex momentum’s performance in
training GANs and games with different mixtures of
cooperative and adversarial ESpaces, showing improve-
ments over standard baselines. Code for experiments
will be available on publication, with reproducibility
details in Appendix C.

Overview: We start with a purely adversarial Dirac-
GAN and zero-sum games, which have known solutions
w*=(67%,0}) and spectrums Sp(V,,g), so we can assess

convergence rates. Next, we evaluate GANs generating
2D distributions, because they are simple enough to
train with a plain, alternating SGD. Finally, we look
at scaling to larger-scale GANs on images which have
brittle optimization, and require optimizers like Adam.
Complex momentum provides benefits in each setup.

We only compare to first-order optimization methods,
despite there being various second-order methods due
limitations discussed in Sec. 2.2.

4.1 Opt. in Purely Adversarial Games

Here, we consider the optimizing the Dirac-GAN ob-
jective, which is surprisingly hard and where many
classical optimization methods fail, because Sp(V.,g)
is imaginary near solutions:

min max — log(1 + exp(—zy)) — log(2) (16)
z

Fig. 3 empirically verifies convergence rates given by
Theorem 1 with (15), by showing the optimization
trajectories with simultaneous updates.

Fig. 2b shows how the components of the momentum 3
affect convergence rates with simultaneous updates and
a fixed step size. The best S was almost-positive (i.e.,
arg(f) =e for small €). We repeat this experiment with
alternating updates in App. Fig. 9, which are standard
in GAN training. There, almost-positive momentum
is best (but negative momentum also converges), and
the benefit of alternating updates depends on if we can
parallelize player gradient evaluations.

4.2 Adversarialnesses Effect on Convergence

We compare optimization with first-order methods for
purely adversarial, cooperative, and mixed games. We
use the following game, allowing us to easily interpolate
between these regimes, where if v = I it is purely
adversarial, while if the v=0 it is purely cooperative:

minmaxz ' (YA)y+
x oy

(17)
@' (I -7~)By)z—y' (I -~)B2)y

App. Fig. 8 explores Sp(R) in purely adversarial games

for a range of «, 8, generalizing Fig. 4 in Gidel et al.

(2019). At every non-real f—i.e., arg(5) #m or 0—we

could select «, |3] that converge.

Fig. 4 compares first-order algorithms as we interpolate
from the purely cooperative games (i.e., minimization)
to mixtures of purely adversarial and cooperative ES-
paces, because this setup range can occur during GAN
training — see Fig. 6. Our baselines are simultaneous
SGD (or gradient descent-ascent (GDA)), extragra-
dient (EG) (Korpelevich, 1976), optimistic gradient
(OG) (Chiang et al., 2012; Rakhlin and Sridharan,
2013; Daskalakis et al., 2018), and momentum variants.

Jonathan Lorraine'?, David Acuna'®, Paul Vicol*?, David Duvenaud':?

=>4= arg(B) = 0 (classical)
arg(B) =3 (ours)

== arg(B) =7 (ours)

=>= arg(B) = (negative)

—o— EG
102 | —e= OG
= GDA

103

grad. eval. to converge

0.0 0.2 0.4 0.6 0.8 1.0
Max adversarialness vViaz

Figure 4: We compare first-order methods convergence
rates on the game in (17), with A= B; = B, diagonal
and entries linearly spaced in [1/4,4]. We interpolate
from purely cooperative to a mixture of purely cooper-
ative and adversarial ESpaces in Sp(V,,g) by making
~ diagonal with v; ~ U[0, Ymaz], inducing j* EVal
pair to have arg(\;) ~ ;5. S0, Ymas controls the
largest possible EVal arg or maz adversarialness. Every
method generalizes gradient descent-ascent (GDA) by
adding an optimizer parameter, tuned via grid search.
Positive momentum and do not
converge if there are purely adversarial ESpaces (i.e.,
Ymaz =1). >0
like /s allows us to approach the acceleration of positive
momentum if sufficiently cooperative (i.e., Yimaz <0.5),
while still converging if there are purely adversarial
ESpaces (i.e., Ymaz =1). Tuning arg(f) with complex
momentum performs competitively with extragradient
(EG), optimistic gradient (OG) for any adversarialness —
ex., arg(J) =7/2 does well if there are purely adversarial
ESpaces (i.e., Ymaz=1).

We additionally tuned the extrapolation parameters for
EG and OG separately — a non-standard modification
so EG and OG are competitive with momentum in
cooperative ESpaces; see App. Sec. C.3. We show how
many gradient evaluations for a set solution distance,
and EG costs two evaluations per update. We optimize
convergence rates for each game and method by grid
search, as is common for optimization parameters in
deep learning.

Takeaway: In the regime where all ESpaces are coop-
erative — i.e., Ymar <.5 OF MaxXegp(v,g) ISM/IR() <1
— the best method is classical, positive momentum, oth-
erwise we benefit from a method for learning in games.
If we have purely adversarial ESpaces — i.e.,Ymaz =1
— then GDA, positive and negative momentum fail to
converge, while EG, OG, and complex momentum can
converge. Choosing any non-real momentum S allows
robust convergence for every ESpace mixture. More
so, almost-positive momentum [allows us to approach
acceleration when cooperative, while still converging if
there are purely adversarial ESpaces.

) =>&= arg(B) = 0 (classical) 1.4 ;U
]
%0 103 arg(B) =3 (ours) 12T
E =>é= arg(B) = i (negative) o
Q —e— EG 1.0 ™
: 5
Q 0.8 5
R)
C; 0.6 g
[ab} -t
| r0.4 =
= -+
< 0.2 E
20 w0
0.0 2

o0 0.2 0.4 0.6 0.8 10 2

8

Max adversarialness Vimaz

Figure 5: We show a setup where almost-positive, com-
plex momentum with minimizes risk over
gradient evaluations, by robustly converging for the
distribution of games shown in light blue. We compare
with methods from Fig. 4. Notably, we believe this
distribution of games may be a good proxy for what
occurs during GAN training. The distribution was
calculated during training the GAN from Fig. 6, by
approximating the distribution of 7,4, over the last
1000 training steps with a truncated Gaussian using the
empirical mean and variance. We approximated V,nqqz
by looking at the subset of ESpaces the parameters lie
in and filtering any ESpaces with negative real part, or
where the parameters component in that ESpace was
sufficiently smaller than 10~5 for simple visualization.

In games like GANSs, our eigendecomposition is infea-
sible to compute and changes during training — see
App. Fig. 10 — so we want an optimizer that converges
robustly for any potential ;... A natural goal is to
minimize the risk over the games we could observe of
the number of gradient evaluations to converge. Fig. 5
displays some methods from Fig. 4 superimposed with
a distribution of potential of games. Takeaway: The
best method is complex momentum, because the bulk
of the game distribution is in cooperative ESpaces (i.e.,
Ymaz < -D), but could have purely adversarial ESpaces
(i-e., Ymaz = 1). Also, we believe the displayed game
distribution could be a reasonable proxy for what is
encountered in GAN training.

4.3 Training GANs on 2D Distributions

Here, we investigate improving GAN training using
alternating gradient descent updates with complex mo-
mentum. We look at alternating updates, because
they are standard in GAN training (Goodfellow et al.,
2014; Brock et al., 2018; Wu et al., 2019). We focus
on comparisons to positive and negative momentum,
which were the strongest baselines. Note that EG and
OG do not have obvious generalizations to alternating
updates. We train to generate a 2D mixture of Gaus-
sians, because more complicated distribution require
more complicated optimizers than SGD. Fig. 1 shows
all changes necessary to use the JAX momentum op-
timizer for our updates, with full details in App. C.4.

Complex Momentum for Optimization in Games

We evaluate the log-likelihood of GAN samples under
the mixture as an imperfect proxy for matching.

App. Fig. 11 shows heatmaps for tuning arg(3) and |3]
with select step sizes. Takeaway: The best momentum
was found at the almost-positive 8 ~ 0.7 exp(i7/8) with
step size a = 0.03, and for each a we tested a broad
range of non-real 8 outperformed any real 3. This
suggests we may be able to often improve GAN training
with alternating updates and complex momentum.

4.4 Training BigGAN with a Complex Adam

Here, we investigate improving larger-scale GAN train-
ing with complex momentum. However, larger-scale
GANSs train with more complicated optimizers than
gradient descent — like Adam (Kingma and Ba, 2014)
— have notoriously brittle optimization. We looked
at training BigGAN (Brock et al., 2018) on CIFAR-
10 (Krizhevsky, 2009), but were unable to succeed with
optimizers other than (Brock et al., 2018)-supplied se-
tups, due to brittle optimization. So, we attempted
to change the procedure minimally by taking (Brock
et al., 2018)-supplied code here which was trained with
Adam, and making only the §; parameter — analogous
to momentum — complex. The modified complex Adam
is shown in Alg. 2, where the momentum bias correc-
tion is removed to better match our theory. It is an
open question on how to best carry over the design
of Adam (or other optimizers) to the complex setting.
Training each BigGAN took 10 hours on an NVIDIA
T4 GPU, so Fig. 13a and Table 1 took about 1000 and
600 GPU hours respectively.

Fig. 13a shows a grid search over arg(5;) and |8 | for
a BigGAN trained with Alg. 2. We only changed 3
for the discriminator’s optimizer. Takeaway: The
best momentum was at the almost-positive [=~
0.8 exp(i7/8), whose samples are in App. Fig. 12b.

We tested the best momentum value over 10 seeds
against the author-provided baseline in App. Fig. 13b,
with the results summarized in Table 1. Takeaway:
Our method improves the mean IS with a t-test
significance of p = 0.071, which shows the desired
phenomena — i.e., complex momentum improving
training — with a reasonable significance. Also,
complex momentum improves the best IS found with
9.25(over author code, author reported).
Brock et al. (2018) reported a single inception score
(IS) on CIFAR-10 of 9.22, but the best we could
reproduce over the seeds with the provided PyTorch
code and settings was 9.10.

We trained a real momentum |51 = 0.8 to see if the
improvement was solely from tuning the momentum
magnitude. This occasionally failed to train and de-
creased the best IS over re-runs, showing we benefit
from a non-zero arg(8;).

4.5 A Practical Initial Guess for arg(53)

Here, we propose a practical initial guess for our new
hyperparameter arg(f3). Corollary 1 shows we can
use almost-real momentum coeflicients (i.e., arg(p) is
close to 0). Fig. 4 shows almost-positive § approach
acceleration in cooperative ESpaces, while converging
in all ESpaces. Fig. 6 shows GANs can have both
cooperative and adversarial ESpaces. Fig. 5 shows a
distribution of games — from GAN training — where
almost-positive S robustly converges, and minimizes
the risk of gradient evaluations. Figures 11 and 13a
do a grid search over arg(3) for GANs, finding that
almost-positive arg(3) ~ 7/s works in both cases. Also,
by minimally changing arg(3) from 0 to a small €, we
can minimally change other hyperparameters in our
model, which is useful to adapt existing, brittle setups
like in GANs. Based on this, we propose an initial
guess of arg(8) = € for a small ¢ > 0, where ¢ = 7/3
worked in our GAN experiments.

5 Related Work

Accelerated first-order methods: A broad body of
work exists using momentum-type methods (Polyak,
1964; Nesterov, 1983, 2013; Maddison et al., 2018), with
a recent focus on deep learning (Sutskever et al., 2013;
Zhang and Mitliagkas, 2017; Choi et al., 2019; Zhang
et al., 2019; Chen et al., 2020). But, these focus on
momentum for minimization as opposed to in games.

Learning in games: Various works approximate
response-gradients - some by differentiating through
optimization (Foerster et al., 2018; Mescheder et al.,
2017; Maclaurin et al., 2015) - or leverage game eigen-
structure during optimization (Letcher et al., 2019;
Nagarajan et al., 2020; Omidshafiei et al., 2020; Czar-
necki et al., 2020; Gidel et al., 2020; Perolat et al.,
2020).

First-order methods in games: Zhang et al. (2021,
2020b); Ibrahim et al. (2020); Bailey et al. (2020); Jin
et al. (2020); Azizian et al. (2020a); Nouiehed et al.
(2019); Zhang et al. (2020c) characterize convergence
with first-order methods. Gidel et al. (2019) is the
closest work to ours, showing a negative momentum
can help in some games. Zhang and Wang (2020) note
the suboptimality of negative momentum in a class of
games. Azizian et al. (2020b); Domingo-Enrich et al.
(2020) investigate acceleration in some games.

Bilinear zero-sum games: Zhang and Yu (2019)
study the convergence of gradient methods in bilinear
zero-sum games. Their analysis extends (Gidel et al.,
2019), showing that we can achieve faster convergence
by having separate step sizes and momentum for each
player or tuning the extragradient step size. Loizou
et al. (2020) provide convergence guarantees for games
satisfying a sufficiently bilinear condition.

Jonathan Lorraine'?, David Acuna'®, Paul Vicol*?, David Duvenaud':?

Algorithm 2 Complex Adam

CIFAR-10 BigGAN IS for 10 seeds

variant without momentum
bias-correction

1: B1€C, Bae[0,1) 8
aeRT, eeRT
:for j=1...N do
. Hj+1:ﬁl “j _ gj
v =Byl +(1-F2) (g7 P

Discriminator (1 Max Mean Median Std.

0, BigGAN default 9.10 8.93 8.89 0.076

.8 exp(im/s), ours 9.25() 8.97() 8.97(.08) 0.079(.003)
9.05(—.05) 7.19(—1.7) 8.82(.07) 2.753(2.67)

Table 1: We display the inception scores (IS) found over 10 runs for
training BigGAN on CIFAR-10 with various optimizer settings. We use
a complex Adam variant outlined in Alg. 2, where we only tuned S for

i it the discriminator. The best parameters found in App. Fig. 13a were
v T =Gy v B1 = 0.8 exp(i7/8), which improved the max IS in our runs, as well as the
wtl=wd + a%ie final mean, and median IS of the BigGAN authors baseline, which was
return wV the SoTA optimizer in this setting to best of our knowledge. We tested

B1 = 0.8 to see if the gain was solely from tuning |3 |, which occasionally

failed and decreased the IS.

Learning in GANs: Various works make GAN train-
ing easier with methods leveraging the game struc-
ture (Liu et al., 2020; Peng et al., 2020; Albuquerque
et al., 2019; Wu et al., 2019; Hsieh et al., 2019).
Metz et al. (2016) approximate the discriminator’s re-
sponse function by differentiating through optimization.
Mescheder et al. (2017) find solutions by minimizing
the norm of the players’ updates. Both of these meth-
ods and various others (Qin et al., 2020; Schéfer et al.,
2019; Jolicoeur-Martineau and Mitliagkas, 2019) re-
quire higher-order information. Daskalakis et al. (2018);
Gidel et al. (2018); Chavdarova et al. (2019) look at
first-order methods. Mescheder et al. (2018) explore
problems for GAN training convergence and Berard
et al. (2019) show that GANs have significant rotations
in learning.

6 Conclusion

In this paper we provided a generalization of exist-
ing momentum methods for learning in differentiable
games by allowing a complex-valued momentum with
real-valued updates. Our method robustly converges in
games with a different range of mixtures of cooperative
and adversarial ESpaces than existing methods. We
also presented a practical generalization of our method
to the Adam optimizer, which we used to improve Big-
GAN training. More generally, we highlight and lay
groundwork for investigating optimizers which work
well with various mixtures of cooperative and competi-
tive dynamics in games.

Societal Impact

Our main contribution in this work is methodological
— specifically, a scalable algorithm for optimizing in
games. Since our focus is on improving optimization
methods, we do not expect there to be direct negative
societal impacts from this contribution.

Spectrum of Jacob of joint-grad Sp(Vg’) for GAN

& e
—]
= ° g
o0 &3]
—

T El
<
>]
= E &
kS ' g 2
=
@ © g
e
<= Kl &
A o,
)
<
oo &
& s

10 -8 6 4 -2 0 2

Log-magnitude of EVal log(|A])

Figure 6: A log-polar visualization reveals structure in
the spectrum for a GAN at the end of the training on a
2D mixture of Gaussians with a 1-layer (disc)riminator
and (gen)erator, so the joint-parameters w e R7
App. Fig. 10 shows the spectrum through training.
There is a mixture of many cooperative (i.e., real or
arg(\) ~ 0, £7) and some adversarial (i.e., imaginary
or arg(A) ~ +7) EVals, so — contrary to what the name
may suggest — generative adversarial networks are not
purely adversarial. We may benefit from optimizers
leveraging this structure like complex momentum.

EVals are colored if the associated EVec is mostly in
one player’s part of the joint-parameter space — see
App. Fig. 10 for details on this. Many EVecs lie mostly
in the the space of (or point at) a one player. The
structure of the set of EVals for the disc. () is
different than the gen. (red), but further investigation
of this is an open problem. Notably, this may motivate
separate optimizer choices for each player as in Sec. 4.4.

Complex Momentum for Optimization in Games

Acknowledgements

Resources used in preparing this research were provided,
in part, by the Province of Ontario, the Government
of Canada through CIFAR, and companies sponsoring
the Vector Institute. Paul Vicol was supported by
an NSERC PGS-D Scholarship. We thank Guodong
Zhang, Guojun Zhang, James Lucas, Romina Abachi,
Jonah Phillion, Will Grathwohl, Jakob Foerster, Murat
Erdogdu, Ken Jackson, and Ioannis Mitliagkis, and

Barbara Norton for feedback and helpful discussion.

We would also like to thank C. Daniel Freeman, Hérve
Jégou, Noam Brown, and David Acuna for feedback
on this work and acknowledge the Python community
(Van Rossum and Drake Jr, 1995; Oliphant, 2007) for
developing the tools that enabled this work, including
NumPy (Oliphant, 2006; Van Der Walt et al., 2011;
Harris et al., 2020b), and Matplotlib (Hunter, 2007).

References

Tan Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing
Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. Generative adversarial nets. In Ad-

vances in Neural Information Processing Systems, pages
2672-2680, 2014. [Cited on pages 1, 7, and 24]

David Pfau and Oriol Vinyals. Connecting generative adver-
sarial networks and actor-critic methods. arXiv preprint
arXiw:1610.01945, 2016. [Cited on page 1]

Bowen Baker, Ingmar Kanitscheider, Todor Markov, Yi Wu,
Glenn Powell, Bob McGrew, and Igor Mordatch. Emer-
gent tool use from multi-agent autocurricula. In Inter-
national Conference on Learning Representations, 2019.
[Cited on page 1]

David Balduzzi, Marta Garnelo, Yoram Bachrach, Wojciech
Czarnecki, Julien Perolat, Max Jaderberg, and Thore
Graepel. Open-ended learning in symmetric zero-sum

games. In International Conference on Machine Learning,
pages 434-443. PMLR, 2019. [Cited on page 1]

Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel
Synnaeve, Arthur Szlam, and Rob Fergus. Intrinsic moti-
vation and automatic curricula via asymmetric self-play.
In International Conference on Learning Representations,
2018. [Cited on page 1]

Jonathan Lorraine and David Duvenaud. Stochastic hyper-
parameter optimization through hypernetworks. arXiv
preprint arXiv:1802.09419, 2018. [Cited on page 1]

Jonathan Lorraine, Paul Vicol, and David Duvenaud. Op-
timizing millions of hyperparameters by implicit differ-
entiation. In International Conference on Artificial In-
telligence and Statistics, pages 1540-1552. PMLR, 2020.
[Cited on pages 1, 5, and 6]

Matthew MacKay, Paul Vicol, Jon Lorraine, David Duve-
naud, and Roger Grosse. Self-Tuning networks: Bilevel
optimization of hyperparameters using structured best-
response functions. In International Conference on Learn-
ing Representations (ICLR), 2019. [Cited on page 1]

Aniruddh Raghu, Maithra Raghu, Simon Kornblith, David
Duvenaud, and Geoftrey Hinton. Teaching with commen-
taries. arXw preprint arXiv:2011.03037, 2020. [Cited on
pages 1 and 6]

Avishek Joey Bose, Gauthier Gidel, Hugo Berrard, Andre
Cianflone, Pascal Vincent, Simon Lacoste-Julien, and
William L Hamilton. Adversarial example games. arXiv
preprint arXiv:2007.00720, 2020. [Cited on page 1]

Xiaoyong Yuan, Pan He, Qile Zhu, and Xiaolin Li. Adver-
sarial examples: Attacks and defenses for deep learning.
IEEE Transactions on Neural Networks and Learning
Systems, 30(9):2805-2824, 2019. [Cited on page 1]

Aravind Rajeswaran, Igor Mordatch, and Vikash Kumar. A
game theoretic framework for model based reinforcement
learning. arXiv preprint arXiv:2004.07804, 2020. [Cited
on page 1]

Romina Abachi, Mohammad Ghavamzadeh, and Amir-
massoud Farahmand. Policy-aware model learning for pol-
icy gradient methods. arXiv preprint arXiv:2003.00030,
2020. [Cited on page 1]

Evgenii Nikishin, Romina Abachi, Rishabh Agarwal, and
Pierre-Luc Bacon. Control-oriented model-based rein-
forcement learning with implicit differentiation. arXiv
preprint arXiv:2106.05273, 2021. [Cited on page 1]

Jonathan Lorraine'?, David Acuna'®, Paul Vicol*?, David Duvenaud':?

David Acuna, Guojun Zhang, Marc T Law, and Sanja
Fidler. f-domain-adversarial learning: Theory and algo-
rithms for unsupervised domain adaptation with neural
networks, 2021. URL https://openreview.net/forum?
id=WqXAKcwfZtI. [Cited on pages 1 and 3]

Will Grathwohl, Elliot Creager, Seyed Kamyar Seyed
Ghasemipour, and Richard Zemel. Gradient-based opti-
mization of neural network architecture. 2018. [Cited on
page 1]

George Adam and Jonathan Lorraine. Understanding

neural architecture search techniques. arXiv preprint
arXiv:1904.00438, 2019. [Cited on page 1]

Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake Snell,
Kevin Swersky, Joshua B Tenenbaum, Hugo Larochelle,
and Richard S Zemel. Meta-learning for semi-supervised
few-shot classification. arXiv preprint arXiv:1803.00676,
2018. [Cited on page 1]

Mengye Ren, Eleni Triantafillou, Kuan-Chieh Wang, James
Lucas, Jake Snell, Xaq Pitkow, Andreas S Tolias, and
Richard Zemel. Flexible few-shot learning with contex-
tual similarity. arXiv preprint arXiv:2012.05895, 2020.
[Cited on page 1]

Oskar Morgenstern and John Von Neumann. Theory of
Games and Economic Behavior. Princeton University
Press, 1953. [Cited on page 1]

Heinrich Von Stackelberg. Market Structure and Equilib-
rium. Springer Science & Business Media, 2010. [Cited
on page 1]

Hugo Berard, Gauthier Gidel, Amjad Almahairi, Pascal
Vincent, and Simon Lacoste-Julien. A closer look at
the optimization landscapes of generative adversarial
networks. In International Conference on Learning Rep-
resentations, 2019. [Cited on pages 1 and 9|

Kenneth Joseph Arrow, Hirofumi Azawa, Leonid Hurwicz,
and Hirofumi Uzawa. Studies in Linear and Non-Linear
Programming, volume 2. Stanford University Press, 1958.
[Cited on page 1]

Yoav Freund and Robert E Schapire. Adaptive game play-
ing using multiplicative weights. Games and Economic
Behavior, 29(1-2):79-103, 1999. [Cited on page 1]

Gauthier Gidel, Reyhane Askari Hemmat, Mohammad
Pezeshki, Rémi Le Priol, Gabriel Huang, Simon Lacoste-
Julien, and Ioannis Mitliagkas. Negative momentum for
improved game dynamics. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages
1802-1811. PMLR, 2019. [Cited on pages 1, 2, 3, 4, 5, 6,
8, 16, 18, 20, 21, and 23]

James Lucas, Shengyang Sun, Richard Zemel, and Roger
Grosse. Aggregated momentum: Stability through pas-
sive damping. In International Conference on Learning
Representations, 2018. [Cited on pages 1, 2, 3, 5, and 18|

Boris T Polyak. Some methods of speeding up the con-
vergence of iteration methods. USSR Computational
Mathematics and Mathematical Physics, 4(5):1-17, 1964.
[Cited on pages 2, 8, 15, and 18]

Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. [Cited on pages 2 and §]

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large
scale gan training for high fidelity natural image synthesis.
In International Conference on Learning Representations,
2018. [Cited on pages 2, 7, and 8]

Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse,
Rio Yokota, and Satoshi Matsuoka. Large-scale dis-
tributed second-order optimization using Kronecker-
factored approximate curvature for deep convolutional
neural networks. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 12359-12367, 2019. [Cited on page 3]

Lars Mescheder, Sebastian Nowozin, and Andreas Geiger.
The numerics of GANs. In Advances in Neural Informa-
tion Processing Systems, pages 1825-1835, 2017. [Cited
on pages 3, 5, 8, and 9]

Florian Schéfer and Anima Anandkumar. Competitive
gradient descent. In Advances in Neural Information
Processing Systems, pages 7623-7633, 2019. [Cited on
page 3|

Yuanhao Wang, Guodong Zhang, and Jimmy Ba. On solv-
ing minimax optimization locally: A follow-the-ridge
approach. In International Conference on Learning Rep-
resentations, 2019. [Cited on page 3|

Reyhane Askari Hemmat, Amartya Mitra, Guillaume
Lajoie, and Ioannis Mitliagkas. LEAD: Least-action
dynamics for min-max optimization. arXiv preprint
arXiv:2010.18846, 2020. [Cited on page 3]

Florian Schéfer, Anima Anandkumar, and Houman
Owhadi. Competitive mirror descent. arXiv preprint
arXiv:2006.10179, 2020. [Cited on page 3]

Wojciech Marian Czarnecki, Gauthier Gidel, Brendan
Tracey, Karl Tuyls, Shayegan Omidshafiei, David Bal-
duzzi, and Max Jaderberg. Real world games look like
spinning tops. arXiv preprint arXiw:2004.09468, 2020.
[Cited on pages 3 and 8]

Guojun Zhang, Kaiwen Wu, Pascal Poupart, and Yaoliang
Yu. Newton-type methods for minimax optimization.
arXiv preprint arXiv:2006.14592, 2020a. [Cited on page 3|

GM Korpelevich. The extragradient method for finding
saddle points and other problems. Matecon, 12:747-756,
1976. [Cited on pages 3, 6, and 24|

Charles R Harris, K Jarrod Millman, Stéfan J van der
Walt, Ralf Gommers, Pauli Virtanen, David Cournapeau,
Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J
Smith, et al. Array programming with numpy. Nature,
585(7825):357-362, 2020a. [Cited on page 4]

D Bertsekas. Nonlinear Programming. Athena Scientific,
2008. [Cited on pages 4 and 15]

Brendan O’donoghue and Emmanuel Candes. Adaptive
restart for accelerated gradient schemes. Foundations of
computational mathematics, 15(3):715-732, 2015. [Cited
on page 5]

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin.
Which training methods for gans do actually converge? In
International Conference on Machine learning (ICML),
pages 3481-3490. PMLR, 2018. [Cited on pages 6 and 9]

Gabriel Goh. Why momentum really works. Distill, 2(4):
€6, 2017. [Cited on page 5]

Walss Azizian, loannis Mitliagkas, Simon Lacoste-Julien,
and Gauthier Gidel. A tight and unified analysis of
gradient-based methods for a whole spectrum of differ-
entiable games. In International Conference on Artifi-
cial Intelligence and Statistics, pages 2863—-2873. PMLR,
2020a. [Cited on pages 5 and §]

Complex Momentum for Optimization in Games

James Bradbury, Roy Frostig, Peter Hawkins,
Matthew James Johnson, Chris Leary, Dougal
Maclaurin, and Skye Wanderman-Milne. JAX: com-

posable transformations of Python+NumPy programs,
2018. URL http://github.com/google/jax. [Cited on
page 5]

Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Au-
tomatic differentiation in PyTorch. Openreview, 2017.
[Cited on page 5]

Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad
Mahdavi, Chi-Jen Lu, Rong Jin, and Shenghuo Zhu. On-
line optimization with gradual variations. In Conference
on Learning Theory, pages 6—1. JMLR Workshop and
Conference Proceedings, 2012. [Cited on page 6]

Alexander Rakhlin and Karthik Sridharan. Optimization,
learning, and games with predictable sequences. In Pro-
ceedings of the 26th International Conference on Neural
Information Processing Systems, pages 3066—-3074, 2013.
[Cited on page 6]

Constantinos Daskalakis, Andrew Ilyas, Vasilis Syrgkanis,
and Haoyang Zeng. Training GANs with Optimism. In
International Conference on Learning Representations
(ICLR 2018), 2018. [Cited on pages 6, 9, and 24]

Yan Wu, Jeff Donahue, David Balduzzi, Karen Simonyan,
and Timothy Lillicrap. Logan: Latent optimisation
for generative adversarial networks. arXiv preprint
arXiw:1912.00958, 2019. [Cited on pages 7 and 9|

Alex Krizhevsky. Learning multiple layers of features from
tiny images. Technical report, University of Toronto,
2009. [Cited on page 8]

Yurii E Nesterov. A method for solving the convex pro-
gramming problem with convergence rate o (1/k" 2).
In Dokl. Akad. Nauk SSSR, volume 269, pages 543-547,
1983. [Cited on page 8|

Yurii Nesterov. Introductory lectures on convexr optimiza-
tion: A basic course, volume 87. Springer Science &
Business Media, 2013. [Cited on page §|

Chris J Maddison, Daniel Paulin, Yee Whye Teh, Brendan
O’Donoghue, and Arnaud Doucet. Hamiltonian descent
methods. arXiv preprint arXiv:1809.05042, 2018. [Cited
on page 8]

Ilya Sutskever, James Martens, George Dahl, and Geoffrey
Hinton. On the importance of initialization and momen-
tum in deep learning. In International Conference on
Machine Learning, pages 1139-1147, 2013. [Cited on
pages 8 and 18]

Jian Zhang and Ioannis Mitliagkas. Yellowfin and the art
of momentum tuning. arXiv preprint arXiv:1706.03471,
2017. [Cited on page 8|

Dami Choi, Christopher J Shallue, Zachary Nado, Jachoon
Lee, Chris J Maddison, and George E Dahl. On empiri-
cal comparisons of optimizers for deep learning. arXiv
preprint arXiv:1910.05446, 2019. [Cited on page 8|

Michael R Zhang, James Lucas, Geoffrey Hinton, and
Jimmy Ba. Lookahead optimizer: k steps forward, 1
step back. arXiv preprint arXiv:1907.08610, 2019. [Cited
on page 8|

Ricky TQ Chen, Dami Choi, Lukas Balles, David Duvenaud,
and Philipp Hennig. Self-tuning stochastic optimization

with curvature-aware gradient filtering. arXiv preprint
arXiv:2011.04803, 2020. [Cited on page 8|

Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shi-
mon Whiteson, Pieter Abbeel, and Igor Mordatch. Learn-
ing with opponent-learning awareness. In International
Conference on Autonomous Agents and MultiAgent Sys-
tems, pages 122-130, 2018. [Cited on page 8]

Dougal Maclaurin, David Duvenaud, and Ryan Adams.
Gradient-based hyperparameter optimization through
reversible learning. In International Conference on Ma-
chine Learning, pages 2113-2122, 2015. [Cited on page 8]

Alistair Letcher, David Balduzzi, Sébastien Racaniere,
James Martens, Jakob N Foerster, Karl Tuyls, and Thore
Graepel. Differentiable game mechanics. Journal of Ma-
chine Learning Research, 20(84):1-40, 2019. [Cited on
page 8|

Sai Ganesh Nagarajan, David Balduzzi, and Georgios Pil-
iouras. From chaos to order: Symmetry and conservation
laws in game dynamics. In International Conference on
Machine Learning, pages 7186-7196. PMLR, 2020. [Cited
on page 8]

Shayegan Omidshafiei, Karl Tuyls, Wojciech M Czar-
necki, Francisco C Santos, Mark Rowland, Jerome Con-
nor, Daniel Hennes, Paul Muller, Julien Pérolat, Bart
De Vylder, et al. Navigating the landscape of multiplayer
games. Nature Communications, 11(1):1-17, 2020. [Cited
on page 8|

Gauthier Gidel, David Balduzzi, Wojciech Marian Czar-
necki, Marta Garnelo, and Yoram Bachrach. Minimax
theorem for latent games or: How I learned to stop wor-
rying about mixed-Nash and love neural nets. arXiv
preprint arXiv:2002.05820, 2020. [Cited on page 8|

Julien Perolat, Remi Munos, Jean-Baptiste Lespiau,
Shayegan Omidshafiei, Mark Rowland, Pedro Ortega,
Neil Burch, Thomas Anthony, David Balduzzi, Bart
De Vylder, et al. From poincar\’e recurrence to conver-
gence in imperfect information games: Finding equilib-
rium via regularization. arXiv preprint arXiv:2002.08456,
2020. [Cited on page 8]

Guodong Zhang, Yuanhao Wang, Laurent Lessard, and
Roger Grosse. Don’t fix what ain’t broke: Near-
optimal local convergence of alternating gradient descent-
ascent for minimax optimization. arXww preprint
arXiv:2102.09468, 2021. [Cited on page 8|

Guodong Zhang, Xuchao Bao, Laurent Lessard, and Roger
Grosse. A unified analysis of first-order methods for
smooth games via integral quadratic constraints. arXiv
preprint arXiw:2009.11359, 2020b. [Cited on page §|

Adam Ibrahim, Waiss Azizian, Gauthier Gidel, and Ioannis
Mitliagkas. Linear lower bounds and conditioning of
differentiable games. In International Conference on
Machine Learning, pages 4583-4593. PMLR, 2020. [Cited
on page 8]

James P Bailey, Gauthier Gidel, and Georgios Piliouras.
Finite regret and cycles with fixed step-size via alternat-
ing gradient descent-ascent. In Conference on Learning
Theory, pages 391-407. PMLR, 2020. [Cited on page 8|

Chi Jin, Praneeth Netrapalli, and Michael Jordan. What
is local optimality in nonconvex-nonconcave minimax
optimization? In International Conference on Machine
Learning, pages 4880-4889. PMLR, 2020. [Cited on

page 8]

Jonathan Lorraine'?, David Acuna'®, Paul Vicol*?, David Duvenaud':?

Maher Nouiehed, Maziar Sanjabi, Tianjian Huang, Jason D
Lee, and Meisam Razaviyayn. Solving a class of non-
convex min-max games using iterative first order methods.
Advances in Neural Information Processing Systems, 32:
14934-14942, 2019. [Cited on page §]

Guojun Zhang, Pascal Poupart, and Yaoliang Yu. Opti-
mality and stability in non-convex smooth games. arXiv
e-prints, pages arXiv—2002, 2020c. [Cited on page 8|

Guodong Zhang and Yuanhao Wang. On the suboptimality
of negative momentum for minimax optimization. arXiv

preprint arXiv:2008.07459, 2020. [Cited on page 8|

Waiss Azizian, Damien Scieur, Ioannis Mitliagkas, Simon
Lacoste-Julien, and Gauthier Gidel. Accelerating smooth
games by manipulating spectral shapes. arXiv preprint
arXiv:2001.00602, 2020b. [Cited on page 8]

Carles Domingo-Enrich, Fabian Pedregosa, and Damien
Scieur. Average-case acceleration for bilinear games and
normal matrices. arXiv preprint arXiv:2010.02076, 2020.
[Cited on page 8]

Guojun Zhang and Yaoliang Yu. Convergence of gradient
methods on bilinear zero-sum games. In International
Conference on Learning Representations, 2019. [Cited on
page 8]

Nicolas Loizou, Hugo Berard, Alexia Jolicoeur-Martineau,
Pascal Vincent, Simon Lacoste-Julien, and Ioannis
Mitliagkas. Stochastic Hamiltonian gradient methods
for smooth games. In International Conference on Ma-
chine Learning, pages 6370-6381. PMLR, 2020. [Cited
on page 8]

Mingrui Liu, Youssef Mroueh, Jerret Ross, Wei Zhang, Xi-
aodong Cui, Payel Das, and Tianbao Yang. Towards
better understanding of adaptive gradient algorithms
in generative adversarial nets. In International Confer-
ence on Learning Representations, 2020. URL https:
//openreview.net/forum?id=SJxImOVtwH. [Cited on
page 9]

Wei Peng, Yu-Hong Dai, Hui Zhang, and Lizhi Cheng.
Training GANs with centripetal acceleration. Optimiza-
tion Methods and Software, 35(5):955-973, 2020. [Cited
on page 9|

Isabela Albuquerque, Jodo Monteiro, Thang Doan, Bre-
andan Considine, Tiago Falk, and loannis Mitliagkas.
Multi-objective training of generative adversarial net-
works with multiple discriminators. In International
Conference on Machine Learning, pages 202-211. PMLR,
2019. [Cited on page 9]

Ya-Ping Hsieh, Chen Liu, and Volkan Cevher. Finding
mixed Nash equilibria of generative adversarial networks.
In International Conference on Machine Learning, pages
2810-2819. PMLR, 2019. [Cited on page 9]

Luke Metz, Ben Poole, David Pfau, and Jascha Sohl-
Dickstein. Unrolled generative adversarial networks.
arXiv preprint arXiw:1611.02168, 2016. [Cited on page 9]

Chongli Qin, Yan Wu, Jost Tobias Springenberg, Andrew
Brock, Jeff Donahue, Timothy P Lillicrap, and Push-
meet Kohli. Training generative adversarial networks by
solving ordinary differential equations. arXiv preprint
arXiv:2010.15040, 2020. [Cited on page 9]

Florian Schifer, Hongkai Zheng, and Anima Anandku-
mar. Implicit competitive regularization in GANs. arXiv
preprint arXiv:1910.05852, 2019. [Cited on page 9|

Alexia Jolicoeur-Martineau and Ioannis Mitliagkas. Con-
nections between support vector machines, Wasserstein
distance and gradient-penalty GANs. arXiv preprint
arXiv:1910.06922, 2019. [Cited on page 9]

Gauthier Gidel, Hugo Berard, Gaétan Vignoud, Pascal Vin-
cent, and Simon Lacoste-Julien. A variational inequality
perspective on generative adversarial networks. In Inter-
national Conference on Learning Representations, 2018.
[Cited on page 9]

Tatjana Chavdarova, Gauthier Gidel, Francois Fleuret, and
Simon Lacoste-Julien. Reducing noise in GAN train-
ing with variance reduced extragradient. In Proceedings
of the International Conference on Neural Information
Processing Systems, 2019. [Cited on page 9]

Guido Van Rossum and Fred L Drake Jr. Python refer-
ence manual. Centrum voor Wiskunde en Informatica
Amsterdam, 1995. [Cited on page 10|

Travis E Oliphant. Python for scientific computing. Com-
puting in Science € Engineering, 9(3):10-20, 2007. [Cited
on page 10]

Travis E Oliphant. A guide to NumPy, volume 1. Trelgol
Publishing USA, 2006. [Cited on page 10]

Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux.
The NumPy array: A structure for efficient numerical
computation. Computing in Science & Engineering, 13
(2):22-30, 2011. [Cited on page 10]

Charles R Harris, K Jarrod Millman, Stéfan J van der Walt,
Ralf Gommers, Pauli Virtanen, David Cournapeau, Eric
Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith,
et al. Array programming with NumPy. Nature, 585
(7825):357-362, 2020b. [Cited on page 10]

John D Hunter. Matplotlib: A 2D graphics environment.
Computing in Science & Engineering, 9(3):90-95, 2007.
[Cited on page 10]

Tim Salimans, lan Goodfellow, Wojciech Zaremba, Vicki
Cheung, Alec Radford, and Xi Chen. Improved tech-
niques for training GANs. In Advances in Neural In-
formation Processing Systems, pages 2234-2242, 2016.
[Cited on page 24]

Simon Foucart. Matrix norm and spectral ra-
dius. https://www.math.drexel.edu/ foucart/
TeachingFiles/F12/M504Lect6.pdf, 2012. Accessed:
2020-05-21. [Cited on page 15|

Stephen Boyd, Stephen P Boyd, and Lieven Vandenberghe.
Convex Optimization. Cambridge university press, 2004.
[Cited on page 18]

Richard HR Hahnloser, Rahul Sarpeshkar, Misha A Ma-
howald, Rodney J Douglas, and H Sebastian Seung. Dig-
ital selection and analogue amplification coexist in a
cortex-inspired silicon circuit. Nature, 405(6789):947—
951, 2000. [Cited on page 20]

Complex Momentum for Optimization in Games

A Supporting Results

First, some basic results about complex numbers that are used:

z =R(z) +i(z) = |z| exp(iarg(z))

Z129 = (%(21)%(22) — S(Zl)(\\f‘(ZQ)) + Z(%(Zl)%(ZQ) + 3?(2’1)%(22))

2122 = |21]|z2] exp(i(arg(z1) + arg(22)))

2P = |2|F exp(iarg(2)k) = |z|F(cos(k arg(z)) + isin(k arg(z))

(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)

(27)

This Lemma shows how we expand the complex-valued momentum buffer g into its Cartesian components as in

(9).
Lemma 1.
pt =g — g —
R(p™) = RBR(W) — S(B)S(1!) — R(@G), S(W) = S(BYR(W) + R(B)
Proof.

Nj+1 _ Bﬂj _ gj

— W = (R(B) +iS(8)) (R(w) +iS(w)) — (R(G) +iS(57))

=
tm
=
I
=
=
=
t&)
|
<%
=
@
T

) =R(G), S() =S(B)R(W) +R(B)S (1) ~3(g”)

O

We further assume (g”) is 0 - i.e., our gradients are real-valued. This Lemma shows how we can decompose
the joint-parameters w at the next iterate as a linear combination of the joint-parameters, joint-gradient, and

Cartesian components of the momentum-buffer at the current iterate as in (10).

Lemma 2.

W = Wl Rap) = W = W~ R()g’ + R(@B)R(W) — S(aB)S(W)

Jonathan Lorraine'?, David Acuna'®, Paul Vicol*?, David Duvenaud':?

Proof.
R(ap™)
= (R()R(1™) = S(@)S ("))
= (R(@) (RERW) = S(B)S(W) — 7) = S(0) (SBIR() + RB)S(w)))
=~ R(a)g’ + (R(a) (RER() — S(B)S())) — S(a) (SBIR(W) + R(B)S(w)))
=~ R(a)g’ + (R(@)R(B) ~ H(a)S(8) R(w!) — (R()S(B) + S(a)R(3)) S(w?)
— ~ R(a)g’ + RBR(W) — S(aB)S (1)
Thus,

A.1 Theorem 1 Proof Sketch

Theorem 1 (Consequence of Prop. 4.4.1 (Bertsekas, 2008)). Convergence rate of complex momentum: If the
spectral radius p(VF g(p*, w*)) <1, then, for [p,w] in a neighborhood of [u* w*], the distance of [u’,w?] to
the stationary point [u* w*] converges at a linear rate O((p(R) + €)7), Ve>0.

Proof. We reproduce the proof for a simpler case of quadratic games, which is simple case of the well-known
method from Polyak (1964) for analyzing the convergence of iterative methods. Bertsekas (2008) generalizes this
result from quadratic games to when we are sufficiently close to any stationary point.

For quadratic games, we have that g’ = (V,,g)' w’. Well, by Lemma 1 and Lemma 2 we have:

R(p) R(p)
%(/ﬂl) =R %(L;J) (28)

By telescoping the recurrence for the j** augmented parameters:

R(p) [R(u)
%(;;J) =R %(lgo) (29)

We can compare p’ with the value it converges to pu* which exists if R is contractive. We do the same with w.
Because u* = Ru* = R pu*:

R(w’) — R(p*) (R(1°) — R(p*)
%(ujj) - %gku*) =R %(uog - %gu*) (30)
By taking norms:

R(p) — R(p*) [R(p°) — R(p*)

S() = 30) || = B { 30) — 3(u”) (31)
wl — w*) w? —w*)

R(p) — R(p*) | R(°) = R(p*)

= || SW)) = S(p*) || <|R, %(Mog - 3(p*) (32)

wl — w*) w? — w*)

With Lemma 11 from (Foucart, 2012), we have there exists a matrix norm Ve > 0 such that:

IR < (p(R) + ¢ (33)

Complex Momentum for Optimization in Games

We also have an equivalence of norms in finite-dimensional spaces. So for all norms | - ||, 3C' = B > 0 such that:
B|R| < |R'|: < C|R| (34)
Combining (33) and (34) we have:

R(p') — R(p*) R(p°) — R(p*)
() =S(w*) || <C(p(R)+e) %(Mog = 3(p*) (35)
w! —w*) w? — w*)
So, we have:
R(p) — R(p*)
C\\f(ujj)l —) || = O((p(R) +¢)) (36)
Thus, we converge linearly with a rate of O(p(R) + €). O

A.2 Characterizing the Augmented Dynamics Eigenvalues

Here, we present polynomials whose roots are the eigenvalues of our the Jacobian of our augmented dynamics
Sp(R), given the eigenvalues of the Jacobian of the joint-gradient vector field Sp(V,,g). We use a similar
decomposition as (Gidel et al., 2019).

We can expand Vg = PTP~! where T is an upper-triangular matrix and)\; is an eigenvalue of Vg.

Alox L. %
0

=1 (37)
0 ... 0 Mg

We then break up into components for each eigenvalue, giving us submatrices Ry, € C3*3:

R(pB) —S(8) — Ak
Ry :=| 3(6) R(p) 0 (38)
R(ap) —S(ap) 1—R(a)

We can get the characteristic polynomial of Ry with the following Mathematica command, where we use substitute
the symbols r + iu = A, a = R(B), b = F(B), ¢ = R(a), and d = F(a).

CharacteristicPolynomial [{{a, -b, -(r + u ID}, {b, a, 0}, fac-Dbd, -(bc+ad, 1-c(r
+u D}, x]

The command gives us the polynomial associated with eigenvalue A\ = r + 1u:

2 2

pr(z) = —a’x + a® + acrx + iacuz + 2ax* — 2ax — b*x + b? + bdrx + ibdux — cra® —icuz® —2® + 2% (39)

Consider the case where Ay is imaginary — i.e, 7 = 0 — which is true in all purely adversarial and bilinear zero-sum
games. Then (39) simplifies to:

pe(2) = —a®z + a® + iacuzr + 2ax? — 2ax — b2 + b + ibdur — icux® — 2® + 2° (40)

Our complex A\, come in conjugate pairs where A\ = ugi and A = —Ugi. (40) has the same roots for A\ and
Ak, which can be verified by writing the roots with the cubic formula. This corresponds to spiraling around the
solution in either a clockwise or counterclockwise direction. Thus, we restrict to analyzing \; where uy is positive
without loss of generality.

If we make the step size « real — i.e., d = 0 — then (40) simplifies to:
pi(2) = 2(—a® +iacu — 2a — b?) + a® + 2*(2a — icu + 1) + b* — 23 (41)

Using a heuristic from single-objective optimization, we look at making step size proportional to the inverse of
the magnitude of eigenvalue k —i.e., ay = ‘f\‘k‘ = - With this, (41) simplifies to:

pi(z) = 2(—a® +iad’ — 2a — b*) + a* + 2%(2a — ia’ + 1) + b* — 2° (42)

Jonathan Lorraine'?, David Acuna'®, Paul Vicol*?, David Duvenaud':?

Notably, in (42) there is no dependence on the components of imaginary eigenvalue Ay = r + iu = 0 + iu, by
selecting a « that is proportional to the eigenvalues inverse magnitude. We can simplify further with a® +b? = |3]2:

pr(@) = 2(R(B)(ia’ — 2) — |B°) + 2 (2R(B) —ia’ +1) + |B]* — 2? (43)
We could expand this in polar form for 3 by noting R(3) = | 8| cos(arg(3)):
pr(@) = 2(|B] cos(arg(B)) (ia’ — 2) — [B]?) + 2*(2|8| cos(arg(B)) —ia’ + 1) + |B]* — 2 (44)
We can simplify further by considering an imaginary 8 - i.e., R(8) = 0 or cos(arg(8)) = 0

pr(x) = B> — 2| — 2% (ia — 1) — 2 (45)

The roots of these polynomials can be trivially evaluated numerically or symbolically with the by plugging in 3, v,
and Ag then using the cubic formula. This section can be easily modified for the eigenvalues of the augmented
dynamics for variants of complex momentum by defining the appropriate R and modifying the Mathematica
command to get the characteristic polynomial for each component, which can be evaluated if it is a sufficiently
low degree using known formulas.

A.3 Convergence Bounds

Corollary 1 (Convergence of Complex Momentum). There exist « € R, 8 € C so Alg. 1 converges for bilinear
zero-sum games. More-so, for small € (we show for € = {5), if arg(B) = € (i.e., almost-positive) or arg(B) = m — ¢
(i.e., almost-negative), then we can select o, |B| to converge.

Proof. Note that Theorem 1 bounds the convergence rate of Alg. 1 by Sp(R). Also, (41) gives a formula for 3
eigenvalues in Sp(R) given «, 8, and an eigenvalue A € Sp(V,,g). The formula works by giving outputting a cubic
polynomial whose roots are eigenvalues of Sp(R), which can be trivially evaluated with the cubic formula.

We denote the k" eigenspace of Sp(V,,g) with eigenvalue A\, = icj, and |¢1| < - -+ < |c,], because bilinear zero-sum
games have purely imaginary eigenvalues due to Vg being antisymmetric. Eigenvalues come in a conjugate
pairs, where Ay = i(—cy)

If we select momentum coeflicient § = |5]exp(iarg(f)) and step size ay = %, and use that A € Sp(V,.g) are
imaginary, then — as shown in Appendix Section A.2 — (41) simplifies to:
pr(x) = (|6 cos(arg(8)) (iaj, — 2) — |B[*) + 2*(2| 8| cos(arg(B)) — iaj, + 1) + |B]* — 2° (46)

So, with these parameter selections, the convergence rate of Alg. 1 in the k*" eigenspace is bounded by the largest
root of (46).

Note that if we find a separate o that converges in each eigenspace k, then selected the smallest o converges
in every eigenspace, because the convergence rate in eigenspace k is a convex function of « that equals 1 when
«a = 0 and is minimized when « > 0.

First, consider arg(3) = m — ¢, where € = 5. We select aj, = 0.75 (equivalently, oy, = (I)CZ?) and |8] = 0.986 via

grid search. Using the cubic formula on the associated p(z) from (46) the maximum magnitude root has size
~ 0.9998 < 1, so this selection converges in the k" eigenspace. So, selecting:

a < mkin Qg (47)
= min 0-75 (48)
k Ck
0.75
= — (49)
maxy Ck
0.75
= - 50
Vil (50)

with § = 0.986 exp(i(m — €)) will converge in each eigenspace.

Complex Momentum for Optimization in Games

gradient Buy 5

sclr]
«a

update

(a) Classical (b) Aggregated (c¢) Recurrently linked (d) Complex

(Polyak, 1964) (Lucas et al., 2018) (new) (ours)

Figure 7: We show computational diagrams for momentum variants simultaneously updating all players parameters,
which update the momentum buffers p at iteration j+1 with coefficient 8 via p/*' = (Bu’/—gradient). Our
parameter update is a linear combination of the momentum buffers weighted by step sizes a. (a) Classical
momentum (Polyak, 1964; Sutskever et al., 2013), with a single buffer and coefficient 8 € [0,1). (b) Aggregated
momentum (Lucas et al., 2018) which addb multiple buffers with different coefﬁments (c) Recurrently linked
momentum, which adds cross-buffer coefficients and updates the buffers with p’ k =2 Bu k)u(—gradient). We
allow f(; x) to be negative like negative momentum (Gidel et al., 2019) for solutlons with Slmultaneous updates in
adversarlal games. (d) Complex momentum is a special case of recurrently linked momentum with two buffers
and B1,1)=B2,2)=N(B), B(1.2)=—B(2,1) =S(8). Analyzing other recurrently linked momentum setups is an open
problem.

(n)

Now, consider arg(3) = € = {5 with aj, = 0.025 and [3| = 0.9. Using the cubic formula on the associated p(x)
from (46) the maximum magmtude root has size ~ 0.973 < 1, so this selection converges in the k" eigenspace.
So, selecting;:

& < HEH g (51)
= min 0.025 (52)
k Ck
0.025
= — (53)
maXxyg Ck
0.025
= (54)
IVwgl2

with 8 = 0.9 exp(ie) will converge in each eigenspace.
Thus, for any of the choices of arg(f) we can select &, || that converges in every eigenspace, and thus converges.

O

In the preceding proof, our prescribed selection of & depends on knowing the largest norm eigenvalue of Sp(Vg),
because our selections of & oc m. We may not have access to largest norm eigenvalue of Sp(V,,g) in-practice.
Nonetheless, this shows that a parameter selection exists to converge, even if it may be difficult to find. Often, in
convex optimization we describe choices of «, § in terms of the largest and smallest norm eigenvalues of Sp(V,,g)

(i.e. the Hessian of the loss) (Boyd et al., 2004).

B Algorithms

Here, we include additional algorithms, which may be of use to some readers. Algorithm 3 show aggregated
momentum (Lucas et al., 2018). Algorithm 4 shows the recurrently linked momentum that generalizes and unifies
aggregated momentum with negative momentum (Gidel et al., 2019). Algorithm 5 shows our algorithm with
alternating updates, which we use for training GANs. Algorithm 6 shows our method with all real-valued objects,
if one wants to implement complex momentum in a library that does not support complex arithmetic.

Jonathan Lorraine'?, David Acuna'®, Paul Vicol*?, David Duvenaud':?

Algorithm 3 Aggregated Momentum Algorithm 4 Recurrently Linked Momentum
1: Select number of buffers K € N 1: Select number of buffers K € N
2: Select By € [0,1) for k=1... K 2: Select By eRforl=1...Kandk=1...K
3: Select ay € R for k=1... K 3: Select) eRT for k=1... K
4: Initialize u(()k) fork=1...K 4: Initialize u(()k) fork=1...K
5. for j=1...N do 5. for j=1...N do
6: fork=1...K do . 6: fork=1...K do ‘
7 Hﬁ; = By — 9’ 7 By =20 Bammy — 9’
8 Wt =wi + 38 agpll 8 Wl =wi + 3N agpll
k=1 %(k) (k) k=1 % (k) (k)
return wy return wy
Algorithm 5 (AltCM) Momentum Algorithm 6 (SimCM) Complex Momentum - R valued
1: Select Be C,ae R 1: Select R(B),3(B), R(a), 3(a) e R
2: Initialize p%), pp 2: Select R(B), 3(B), R(a), () € R
3: forj=1...Ndo 3: Initialize R(p)?, S(u)°
4:]H—ﬁHA g) 4: for j=1...N do
i 63" =6+ Rlap)) 5 R = RBR(W) - S(B)I(w) —
6:]“ = Bl — g5(65,6%) 6 SI(p) =RB)S(W) + (B)R(K) _
7: 0J+1 0 + R(apl) 7 wh=wl —R(ag +R(aHR() — S (aBS (1)
return Wy return wy

B.1 Complex Momentum in PyTorch

Our method can be easily implemented in PyTorch 1.6+ by using complex tensors. The only necessary change to
the SGD with momentum optimizer is extracting the real-component from momentum buffer as with JAX — see
here.

In older versions of Pytorch, we can use a tensor to represent the momentum buffer u, step size a, and momentum
coefficient 8. Specifically, we represent the real and imaginary components of the complex number independently.
Then, we redefine the operations __add__ and __mult__ to satisfy the rules of complex arithmetic — i.e., equations
(24) and (25).

C Experiments

C.1 Computing Infrastructure and Runtime

For the purely adversarial experiments in Sections 4.1 and 4.2, we do our computing in CPU. Training each 2D

GAN in Section 4.3 takes 2 hours and we can train 10 simultaneously on an NVIDIA T4 GPU. Training each
CIFAR GAN in Section 4.4 takes 10 hours and we can only train 1 model per NVIDIA T4 GPU.

C.2 Optimization in Purely Adversarial Games

We include the alternating update version of Fig. 2b in App. Fig. 9, which allows us to contrast simultaneous and
alternating updates. With alternating updates on a Dirac-GAN for a=0.1 the best value for the momentum
coefficient 8 was complex, but we could converge with real, negative momentum. Simultaneous updates may be a
competitive choice with alternating updates, only if alternating updates cost two gradient evaluations per step,
which is common in deep learning setups.

C.3 Adversarialnesses Effect on Convergence

We include the extragradient (EG) update with extrapolation parameter o’ and step size a:
WtE =i —o/gj (EG)
wj+1 —a g]+2

and the optimistic gradient (OG) update with extrapolation parameter o’ and step size a:

Wl =wl 20§’ +a'g’ " (OG)

Complex Momentum for Optimization in Games

3
arg(8) = 0 arg(B) = 7 arg(B) = 5 arg(f) = arg(8) = m .
Best Spectral Norm = 1.00 * Best Spectral Norm = 0.92 * Best Spectral Norm = 0.91 * Best Spectral Norm = 0.99 Best Spectral Norm = 1.00
U —— - o=, = e |l -
5
: =
5 1 5 1 5 1 5 1 5 1 0

" The real componeﬁt of the spectrum of the augmented leafning dynamics §R(Sp(R))

Figure 8: The spectrum of the augmented learning dynamics R is shown, whose spectral norm is the convergence
rate in Theorem 1. Each image is a different momentum phase arg(3) for a range of a,|8|€[0,1]. The opacity of
an EVal is the step size o and the color corresponds to momentum magnitude |3]. A red unit circle shows where
all EVals must lie to converge for a fixed «, 5. If the max EVal norm <1, we draw a green circle whose radius is
our convergence rate and a green star at the associated EVal. Notably, at every non-real 8 we can select «,|f|
for convergence. The EVals are symmetric over the z-axis, and EVals near () =1 dictate convergence rate.
EVals near the center are due to state augmentation, have small magnitudes, and do not impact convergence rate.
Simultaneous gradient descent corresponds to the magenta values where |3|=0.

Often, EG and OG are used with o = o/, however we found that this constraint crippled these methods in
cooperative games (i.e., minimization). As such, we tuned the extrapolation parameter o/ separately from the
step size o, so EG and OG were competitive baselines.

We include Fig. 10 which investigates a GANs spectrum throughout training, and elaborates on the information
that is shown in Fig. 6. This shows that there are many real and imaginary eigenvalues, so GAN training is
neither purely cooperative or purely adversarial. Also, the structure of the set of eigenvalues for the discriminator
is different than the generator, which may motivate separate optimizer choices. The structure between the players
persists through training, but the eigenvalues grow in magnitude and spread out their phases. This indicates how
adversarial the game is can change during training.

C.4 Training GANs on 2D Distributions

For 2D distributions, the data is generated by sampling from a mixture of 8 Gaussian distributions, which are
distributed uniformly around the unit circle.

For the GAN, we use a fully-connected network with 4 hidden ReLLU (Hahnloser et al., 2000) layers with 256
hidden units. We chose this architecture to be the same as Gidel et al. (2019). Our noise source for the generator
is a 4D Gaussian. We trained the models for 100 000 iterations. The performance of the optimizer settings is
evaluated by computing the negative log-likelihood of a batch of 100000 generated 2D samples.

Jonathan Lorraine'?, David Acuna'®, Paul Vicol*?, David Duvenaud':?

SimCM for # grad. eval. = # steps AltCM for # grad. eval. AltCM for # steps
2 H
Q 0 1
5 =
E’_P 3 104 104 .,
& 7 =)
2 2 i
E= &, g
o 0% 10%
g . S e
7 o 2
= o 3
5 = =
< [0}
= 102 3 102 ®
EO 0 0.25 0.5 0.75 1 0 0.25 0.5 0.75 1 03
)

Momentum Magnitude |3

Figure 9: We show many steps and gradient evaluations, both simultaneous and alternating complex momentum
on a Dirac-GAN take for a set solution distance. We fix step size «=0.1 as in Fig. 3, while varying the phase
and magnitude of our momentum = |5]exp(iarg(f)). There is a red star at the optima, dashed red lines at
real 8, and a dashed magenta line for simultaneous or alternating gradient descent. We only display color for
convergent setups. Left: Simultaneous complex momentum (SimCM). This is the same as Fig. 2b, which we
repeat to contrast with alternating updates. There are no real-valued 8 that converge for this — or any — o with
simultaneous updates (Gidel et al., 2019). Simultaneous updates can parallelize gradient computation for all
players at each step, thus costing only one gradient evaluation per step for many deep learning setups. The
best rate of convergence per step and gradient evaluation is ~ 0.955. Middle: Alternating complex momentum
(AItCM), where we show how many gradient evaluations — as opposed to steps — to reach a set solution distance.
Alternating updates are bottlenecked by waiting for first player’s update to compute the second players update,
effectively costing two gradient evaluations per step for many deep learning setups. Negative momentum can
converge here, as shown by Gidel et al. (2019), but the best momentum is still complex. Also, Alternating updates
can make the momentum phase arg(/) choice less sensitive to our convergence. The best rate of convergence per
gradient evaluation is ~ 0.965. Right: AItCM, where we show how many steps to reach a set solution distance.
The best rate of convergence per step is ~ 0.931. Takeaway: If we can parallelize computation of both players
gradients we can benefit from SimCM, however if we can not then AItCM can converge more quickly and for a
broader set of optimizer parameters. In any case, the best solution uses a complex momentum g for this a.

Complex Momentum for Optimization in Games

Jacobian of joint-gradient V,,g° for GAN EVec v components for eigenvalues A € Sp(V,,g)
0 ta

3

—— D/G Border
A684 =(0.000000, — 0.000000)
A559 =(0.000018, 0.000010)

100

P
[N]

200 1.0 A

300 0.8
400 4 0.6

500 4 0.41

Abs of EVec component

600 0.2 4

Joint-gradient g index [
(B7A w10y (5 + |¥in|)So

700

7 e Bl - S i P (R i
0 100 200 300 400 500 600 700
Joint-parameter w index k

0 100 200 300 40 500 600 700
Index into v — first 337 are for D’s params

Log-polar graph of the spectrum of Jacobian of the joint-gradient Sp(ngj) throughout training

Start of training End of training
& e
7
o
5
= o
Okl
ob =
~
< <
) : 2
= wh B e 35w W e® DoD BB o $7} g g
§’ n O
() a =
: £ &
@ t+
.20 ©
<] =+
E & -
[a]
g v
& g
. : : : : : . —— J Hg ™
& -10 -8 -6 -4 -2 0 2 -10 -8 -6 -4 -2 0 2 =
1

Log-magnitude of eigenvalue log(|\|)
Figure 10: These plots investigate the spectrum of the Jacobian of the joint-gradient for the GAN in Fig. 6
through training. The spectrum is key for bounding convergence rates in learning algorithms.
Top left: The Jacobian Vg for a GAN on a 2D mixture of Gaussians with a two-layer, fully-connected 16 hidden
unit discriminator (D) and generator (G) at the end of training. In the concatenated parameters w € R™3, the
first 337 are for D, while the last 386 are for G. We display the log of the absolute value of each component plus
€ = 10719, The upper left and lower right quadrants are the Hessian of D and G’s losses respectively.
Top Right: We visualize two randomly sampled EVecs from V,,g. The first part of the parameters is for the
discriminator, while the second part is for the generator. Given an eigenvalue with EVec v, we roughly approximate
attributing EVecs to players by calculating how much of it lies in D’s parameter space with “V”ﬂ,‘“i‘ I _ ”Vﬁj‘ﬁf”l CIf
this ratio is near 1 (or 0) and say the EVec mostly points at D (or G). The blue EVec mostly points at G, while
the orange EVec is unclear. Finding useful ways to attribute eigenvalues to players is an open problem.
Bottom: The spectrum of the Jacobian of the joint-gradient Sp(V,,g’) is shown in log-polar coordinates, because
it is difficult to see structure when graphing in Cartesian (i.e., ® and &) coordinates, due to eigenvalues spanning
orders of magnitude, while being positive and negative. The end of training is when we stop making progress
on the log-likelihood. We have imaginary eigenvalues at arg(\) = +7/2, positive eigenvalues at arg(\) = 0, and
negative eigenvalues at arg(\) = +m.
Takeaway: There is a banded structure for the coloring of the eigenvalues that persists through training. We may
want different optimizer parameters for the discriminator and generator, due to asymmetry in their associated
eigenvalues. Also, the magnitude of the eigenvalues grows during training, and the args spread out indicating the
game can change eigenstructure near solutions.

Jonathan Lorraine'?, David Acuna'®, Paul Vicol*?, David Duvenaud':?

Step size a = 0.001 Step Size o = 0.003

| 4.4

n

I93)9(= Iamo] ‘TN

NGl

Momentum phase arg(/3)

o5l wx

00 01 02 03 04 06 07 08 09 1.0 00 01 02 03 04 06 07 08 09 1.0 3.0

Momentum Magnitude |3|

Figure 11: Heatmaps of the negative log-likelihood (NLL) for tuning arg(f), |3| with various fixed « on a 2D
mixture of Gaussians GAN. We highlight the best performing cell in red, which had arg(5) ~ 7/s. Runs equivalent
to alternating SGD are shown in a magenta box. We compare to negative momentum with alternating updates
as in Gidel et al. (2019) in the top row with arg(8) = m. Left: Tuning the momentum with o = 0.001. Right:
Tuning the momentum with « = 0.003.

Figure 12(a): Mixture of Gaussian samples from GAN
with the best hyperparameters from Fig. 11

T o o e o o o o o 5'_'
—~ 2 Q
) 920 @
= 2
5 9158
q')% » o e o ececocoooe w
% 910 8
'&Z b o e o eecccceceoe 5
g eeo0cecoe ﬂﬂsE
E LI I B Y) o]
g 1T ¢ e o o ::3':":.. >9’00g‘
‘é—’s » o e o o TEEE =
S ¢ e e o ecooe eeooe 805 ||
216 TR EEEEER] R

0ot ° e o 00880000000 &

8.90 ¢
0.0 0.2 0.4 0.6 0.8 e

Momentum magnitude |3 |

Figure 13(a): The inception score (IS) for a grid search
on arg(f1) and |B1] for training BigGAN on CIFAR-
10 with the Adam variant in Algorithm 2. The £ is
complex for the discriminator, while the generator’s
optimizer is fixed to author-supplied defaults. Red
points are runs that failed to train to the minimum IS
in the color bar. The vertical magenta line denotes runs
equivalent to alternating SGD. Negative momentum
failed to train for any momentum magnitude |B1| > .5,
so we do not display it for more resolution near values
of interest.

Figure 12(b): Class-conditional CIFAR-10 samples from
GAN with the best hyperparameters from Fig. 13a

w
— |B1]=0.0,arg(B) =0

9.2
— |B1l=0.8, arg(B) =5

wn
—
N—
[«6]
fart
o
[}
wn
e
e)
S
o,
]
[}
=]
—
sok 70K 90k 110k 130k
Iteration

Figure 13(b): We compare the best optimization pa-
rameters from grid search Fig. 13a for our complex
Adam variant (i.e., Algorithm 2) shown in green, with
the author provided values shown in red for the CIFAR-
10 BigGAN over 10 seeds. A star is displayed at the
best IS over all runs, a cross is displayed at the worst
IS over all runs, while a circle is shown at the best IS
for each run. Dashed lines are shown at the max/min
IS over all runs at each iteration, low-alpha lines are
shown for each runs IS, while solid lines are shown for
the average IS over all seeds at each iteration. The
results are summarized in Table 1.

Complex Momentum for Optimization in Games

Table 2: Notation

SGD
CM
SGDm, SimSGDmm, ...
SimSGD, SimCM
AltSGD, AltCM
GAN
EG
oG
IS
z,y,z,---€C
x,y,z,---€C"
XY Z . -..eCrxm
xT

2| := V22
arg(2)
zeC is almost-positive
A B
da,dp €N
(7]

04 € R4 05 € R
L:R" >R
L4(64,05),L5(04,05)
QA(9A7 03)7 gB(0A7 03)
004 := argeminﬁB(BA,@B)

B
L5(04):=La6,67(04))
0} :=argmin L} (64)
04
d:=ds+dp
w = [QA,OB] € Rd
9(w):=[ga(w), gp(w)] € R
w0 = [69,63] € RY
‘ J
g = glw) e B
Vi’ = Vudle € RIx4
aeC
BeC
preC
peC?
AeC
Sp(M) e C™
Purely adversarial/cooperative game
p(M) ‘=MaX eSp(M) ‘Z|
Fo«ﬁ([ﬂ»w])
R := V[“)w]FQﬁ € R3dx3d
o f* :=arg min p(R(w,))
o,

p* = p(R(a*, 5%))
K 1= maxSp(Vwg)
: min Sp(Vwg)
02 (M):=max Sp(M " M)

min

Stochastic Gradient Descent
Complex Momentum
... with momentum
Simultaneous . ..
Alternating . ..
Generative Adversarial Network (Goodfellow et al., 2014)
Extragradient (Korpelevich, 1976)
Optimistic Gradient (Daskalakis et al., 2018)
Inception Score (Salimans et al., 2016)
Defined to be equal to
Scalars
Vectors
Matrices
The transpose of matrix X
The identity matrix
The real or imaginary component of z € C
The imaginary unit. z€ C = z = R(2) +iS(z)
The complex conjugate of z € C
The magnitude or modulus of z € C
The argument or phase of z€ C = z = |z]exp(iarg(z))
arg(z) =« for small € respectively
A symbol for the outer/inner players
The number of weights for the outer/inner players
A symbol for the parameters or weights of a player
The outer/inner parameters or weights
A symbol for a loss
The outer /inner losses — R44+45 > R
Gradient of outer/inner losses w.r.t. their weights in R%4/45
The best-response of the inner player to the outer player

The outer loss with a best-responding inner player
Outer optimal weights with a best-responding inner player

The combined number of weights for both players
A concatenation of the outer/inner weights
A concatenation of the outer/inner gradients
The initial parameter values
An iteration number
The joint-gradient vector field at weights w’
The Jacobian of the joint-gradient § at weights w’
The step size or learning rate
The momentum coefficient
The first momentum parameter for Adam
The momentum buffer
Notation for an arbitrary EVal
The spectrum — or set of EVals — of M € R™"*"
Sp(V.,g) is purely real /imaginary
The spectral radius in Rt of M € R"*"
Fixed point op. for CM, or augmented learning dynamics
Jacobian of the augmented learning dynamics in Corollary 1
The optimal step size and momentum coefficient

The optimal spectral radius or convergence rate
Condition number, for convex single-objective optimization

The minimum singular value of a matrix M

