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Abstract

Many learning tasks only receive weak su-
pervision, such as semi-supervised learning
and few-shot learning. With limited labeled
data, prior structures become especially im-
portant, and prominent examples include hi-
erarchies and mutual exclusions in the class
space. However, most existing approaches
only learn the representations separately in
the feature space and the label space, and
do not explicitly enforce the logical relation-
ships. In this paper, we propose a novel
warping layer that jointly learns representa-
tions in both spaces, and thanks to the mod-
ularity and differentiability, it can be directly
embedded into generative models to leverage
the prior hierarchical structure and unlabeled
data. The effectiveness of the warping layer
is demonstrated on both few-shot and semi-
supervised learning, outperforming the state
of the art in practice.

1 INTRODUCTION

Weakly supervised learning represents a very common
scenario in practice, where labeled examples are not
available in a large supply. For example, in few-shot
learning (Finn et al., 2017; Ravi & Larochelle, 2017;
Snell et al., 2017; Vinyals et al., 2016), classifiers need
to adapt rapidly to new classes when only a few ex-
amples are demonstrated. In semi-supervised learning
(Kingma et al., 2014; Narayanaswamy et al., 2017), a
large amount of unlabeled data is available but few are
labeled.

The low-data regime makes it crucial to leverage prior
inductive bias. In the context of multiple classes, an
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important, but under-studied, prior is the logical re-
lationship between labels. For example, if an image
shows a cat, then it must also be relevant to the cat-
egory of animal. Whenever such implication relation-
ships form a tree in the label space, we call it a hi-
erarchical structure. But such relationships can be
more general, such as exclusions where no two labels
can co-exist (e.g., an animal cannot be a dog and a
cat at the same time), or a co-occurrence relationship
which is effectively a bidirectional mutual implication.
The most primitive models leverage such structures
by re-engineering the loss function to penalize the first
mistake along a path from root to a node in a tree
hierarchy (Cesa-Bianchi et al., 2006; Cai & Hofmann,
2004). Inspired by it, Rousu et al. (2006) designed a
kernel on the input-output space jointly to factor in
the hierarchy.

Unfortunately, these methods neither learn feature
representations for each data instance that account
for the label structure, nor learn the representation
for each class. These are the central objects under-
lying many low-data applications. For example, few-
shot learning are commonly based on distance met-
rics between data embeddings (Vinyals et al., 2016;
Snell et al., 2017), and such distances (or equivalently,
embeddings) are the key entities that demand aware-
ness of label structure. Zero-shot learning relies in-
trinsically on class prototypes (Lampert et al., 2009;
Xian et al., 2016; Xie et al., 2019; Yu et al., 2018).
Similarly, semi-supervised learning often capitalizes on
class-conditioned generative models to tap into unla-
beled data. As a result, leveraging logical structures
in low-data regime calls for learning structure-aware
representations.

However, such awareness still lacks a concrete defini-
tion. Recent attempts include Chen et al. (2019); Zhou
et al. (2020) which build a graph where each node
corresponds to a class, and a pair of nodes are con-
nected by a directed edge if an implication relationship
is present. Then the node representation, i.e., the class
representation, is computed through a graph convolu-
tional network (GCN), whose parameters are learned



Warping Layer: Representation Learning for Label Structures in Weakly Supervised Learning

living

animal people

dog cat adult — child

Figure 1: implication () and exclusion (—) relations
between classes, derived from a taxonomy hierarchy

by back-propagation. Despite the improvement in per-
formance, it is unclear how the label space relations is
upheld by the GCN, because such logic is used only to
define its edges. Without any constraint on the graph
convolution parameters (e.g., positivity), there is no
mechanism that explicitly aligns the output class-wise
logits with the logical relationships.

To address this issue, Mirzazadeh et al. (2015) recently
enforced the logics exhaustively on the training data.
Using f(z,y) to quantify the compatibility between
input « and label y, f(x,y1) is constrained to be no
greater than f(z,y2) for all x of interest if class y;
implies yo (y2 subsumes y1). Such constraints lead to
semi-definite programs which are expensive, and they
still do not produce class representations. Most rel-
evant to our work is Ma et al. (2020), which penal-
ized the violation of the logics and used it to warp the
norm of a reproducing kernel Hilbert space (RKHS).
This results in a semi-inner-product (s.i.p.) space,
which preserves the key element in an RKHS—a re-
producing kernel representer for each (example, label)
pair. Training a vanilla linear classifier based on it,
the discriminant value turns out to respect the log-
ical relations even without requiring additional con-
straints, confirming that such a warped joint repre-
sentation does capture the label structure.

In practice, however, such a joint feature map is very
expensive in computation, because a constrained non-
linear optimization problem needs to be solved for each
pair of example and label. It also does not provide a
separate representations for output classes and for in-
put features. Our first contribution, therefore, is to
factorize the joint representation into features specific
to each example and features specific to each class. As
a result, the optimization is accelerated by orders of
magnitude, and feature representations on both sides
can be learned jointly via efficient implicit differen-
tiation. Remarkably, it preserves the logic relations
explicitly in the label space. We call this operation a
warping layer, which can be flexibly embedded into a
general neural network to incorporate structures.

As an important example, our second contribution
integrates the structure-aware class representation
into generative modeling, facilitating semi-supervised
learning that utilizes unlabeled data. Our key observa-
tion is that the class representation can naturally serve

as the basis (first layer) of the class-specific part of the
decoder in a variational auto-encoder (VAE). In gen-
eral, partially tying the encoder and decoder requires a
grain of salt, because features useful for discrimination
might not necessarily benefit reconstruction. However,
in the low-data regime, such an inductive bias can be
helpful, and interestingly, our ablation study reveals
significant boost in performance.

In Section 2, we first recap the kernel warping tech-
nique, and extend it to factored structure-aware rep-
resentation learning which can be encapsulated into a
generic warping layer. Section 3 and 4 then apply it to
few-shot learning and semi-supervised VAE, resp. Ex-
perimental results showing superior performance over
the state of the art are presented in Section 5.

2 REPRESENTATION LEARNING
WITH LABEL STRUCTURE BY
KERNEL WARPING

Assume we are given a full taxonomy like WordNet
(Miller, 1995). In practice, it is often easy to infer some
useful logics between classes as a priori. Following
Mirzazadeh et al. (2015); Deng et al. (2012), the tax-
onomy can be represented by a graph G = (Y, E;, E.)
as illustrated in Figure 1. Here Y = (y1,...,ym) is a
set of nodes representing all the classes (leaf and non-
leaf). E; is a set of directed edges between classes
indicating implication. For example, if an object is
a dog, then it must be an animal, and we denote it as
“dog — animal”. Similarly, if an object is a dog, then
it cannot be a cat at the same time. We denote such
exclusion relations as “dog «~ cat”, represented by
undirected edges that collectively form the set E..

To incorporate structured label priors, a natural model
resorts to joint prediction functions f(x,y), which
characterizes the likelihood for each example x to be
relevant to an individual class y. As shown in the
sequel, it also allows representations to be learned
for both input and output. For implication relations
Y1 — Yo, Y2 is a more general class and should achieve
higher likelihood than y;. So Ma et al. (2020) proposed
enforcing f(z,y2) > f(x,y1) for all x by penalizing

[f(z,y1) — f(w,y2)]4, where [z]; = max{0,z}. (1)

To model exclusion relations where two classes should
not receive high likelihood at the same time, one can
impose f(x,y1)+ f(x,y2) < 0. Intuitively, a high like-
lihood attached to one class will demote the likelihood
of the other one. We can implement this constraint by
penalizing

[f (@, 91) + f (2, 92)] - (2)
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Since there is often a large number of implication and
exclusion relations in each taxonomy graph, we con-
sider their maximum violation instead of their sum,
amounting to a regularizer R that accounts for the
structured label prior:

mr ::mIEﬁ [yl—rg;?éEi[f(x’yl) — flz.y)} (3)
+, ma (7@ y) + fw)l] @)

Here, p is the empirical distribution of input z.

2.1 From kernel warping to warping layer

Although regularization such as data augmentation
is commonly used to incorporate priors, recent works
have shown that another effective approach is to en-
code them directly in representation (Ma et al., 2019,
2020). Kernel warping is a typical method of such,
which also provides significant convenience in repre-
sentation learning. It warps an RKHS H with desired
priors to construct a new semi-inner-product (s.i.p.)
space when R is a semi-norm. In particular, it does
not change the set of functions in the RKHS, but en-
dows a new norm on them as || f||% = || f|13, + R(f)*.

Although the new norm | f||% could be used directly
for regularized risk minimization, it is computationally
inconvenient. To work around it, Ma et al. (2020)
pointed out another solution path noting that the s.i.p.
space inherits a kernel representer GG, for any input
x under the semi-inner-product associated with the
norm | f||g, and in general it differs from the original
RKHS representer ky, := k(z, ).

Using G in lieu of k,, a classifier f in H can be sought
to minimize the empirical risk, where the prediction for
x is made by the original RKHS inner product (u, f),,
Extensions can also be easily made to joint kernels,
resulting in representers G, ,. Interestingly, it was
shown that the predicted discriminant values (logits)
faithfully align with the prior logic relationships, even
though the search for f (under pre-computed G, ) is
oblivious to them. This indicates that the represen-
tations G, have already incorporated the prior label
structure.

To restore computational tractability from the infinite
dimensionality of the s.i.p. space, Ma et al. (2020)
showed that G, can be embedded into a Euclidean
space (akin to the Nystrom approximation) by solving

Gy := argmin {d]v]®> + R(v)?}, s.t. (v,ky) =1, (5)
vER

where § > 0 is a trade-off parameter, and tilde de-
notes the Euclidean embedding of an object from the

original RKHS. For example, k, € R? is the Nystrém

approximation k, (Williams & Seeger, 2001). Since
R(f) is a semi-norm, it can be written as the support
function sup,cc (u, f)4 over aset C C H. As aresult,
we take R(v) := sup,cc @' v.

2.2 Kernel warping under label structure

To incorporate the prior structure defined in (3), we
resort to joint kernels. Given a taxonomy graph
with m classes in total, define the joint kernel
k%Y ((z,y), (2',y") = k*(x,2")kY(y,y’), and for sim-
plicity, let us just use a linear kernel for kY, i.e.,
KY(y,y) = e;jey/, where e, is the one-hot vector for
label y. Then the Euclidean embedding for represen-
ter kg, can be written as Ky y =kg e € R¥*™ where

k. € R% is the embedding of k. Instantlatlng the gen-
eral recipe (5), the warped representation with logical
label relationship can be obtained by solving;:

Gy = argmingegacn {8V +RB2(V)}  (6)
s.t. <V, l;:me;> =1, (7)

where ||V || is the Frobenious norm of V, and R is the
finite approximation of R from (3):

R(V)2 = R [ max {<V, /;me;—l>+<v, %ze;>}i

z~p LY1ey2

- - 2

+ g [(Vikeey, ) = (Ve )| ] ®)

However, this framework requires solving G’xy for each

x and y, which is computationally demanding. Moti-

vated by the fact that all examples share the same label

structure relation, we propose restricting the represen-
tation to a rank one matrix:

Gy =725,

y» Where 7, € R? S, €eR™.  (9)
As a result, G‘%y is decomposed into the feature repre-
sentation r, that is specific to each example z, and the
class representation S, that is specific for each class
y. This significantly simplifies the model and accel-
erates the learning process. Now the constraint (7)
becomes (1] k;)S,, = 1, implying that Sy, (the y-th
entry of S,) is independent of both = and y. So we
assemble all Sy into a class representation matrix as
S =1581,-.-,8m] € R™*™ and let S := {S : Sy =

S;;,Vi # j}. Finally, given a mini-batch D, G Ly can
be computed for all z € B and y by solving

argaiin 3 [3I5 2| + 3 R

SeS, :c reB

st. Syy <r$, IEI> =1, Vy,zeD. (11)

R(r,S]) } (10)

A discussion of efficient optimization strategy is de-
ferred to Appendix B.1. It is noteworthy that differ-
ent from (6) where each G ,, is computed individually,
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here we compute them in mini-batches and for all y.
This is natural because the class representation ma-
trix S is shared by the examples. Indeed, the R in
(8) can also be changed to measure violations on the
mini-batch instead of the entire dataset p. Ideally one
may want to solve (10) over the entire dataset, but
this is overly expensive and does not conform with the
standard practice of mini-batch based training. In ex-
periment, both the r, and S computed from B perform
well, and such a middle ground appears effective.

2.3 From warping optimization to warping
layer

Inspired by the ability of warping in inducing
structure-aware representations, we would naturally
like to encapsulate it as a generic layer, so that it can
be inserted flexibly into a neural network to promote
desired structures. This turns out quite viable thanks
to the “conditional separability” in (10). In particular,
once S is fixed, the optimization over all r, becomes in-
dependent. Therefore, we can regard the shared S € S
as a trainable model parameter associated with a layer
(like convolution weights), and then consider r, as the
output of the layer in response to the input Ky

Ws: R — RY, with (12)

h+—  argmin
r2:S11(rz,h)=

Y
Clearly this layer creates a bi-level optimization for
the overall training objective. Given the gradient with
respect to the layer’s output Wg(h), we need to com-
pute the gradient with respect to both S and the in-
put h. Leveraging implicit differentiation and follow-
ing Amos & Kolter (2017), we can derive the exact
formula for backpropagation, and the details are rele-
gated to Appendix B.2. It is noteworthy that in the
rank-one setting, the onus of incorporating the prior
structure is much more on the feature representation
r; which must be optimized with respect to a given S,.
However, although it appears different from Eq 10 by
not directly optimizing over S, S is still judiciously op-
timized through other pursuits such as regularization,
and the task specific objective, etc.

Remarks. Compared with (10) which computes the
warped representation G’xy by jointly optimizing S
and r,, the warping layer in (12) only optimizes 7,
while keeping the class representation S as a modulat-
ing parameter. By lifting S out of the inner level of
the bi-level optimization, we allow S to be optimized
in a broader context, e.g., when it also participates
in a generative model instead of only a discriminative
model (Section 4).

We will next demonstrate the flexibility and effective-

0 IS llral® + >~ B(raS, )

ness of the warping layer via two low-data tasks.

3 WARPING LAYER FOR
FEW-SHOT LEARNING

Few-shot learning is a classic learning scenario in the
low-data regime, where structured label prior can be
significantly beneficial. In this section, we will briefly
review few-shot learning settings and explain how to
incorporate such priors through the warping layer.

3.1 Few-shot learning background

Few-shot learning aims at inferring a classifier that
adapts to unseen classes after observing only a few
examples from each class. The problem is usually for-
mulated as meta-learning where the goal is to learn a
base learner and a meta learner (Finn et al., 2017; Ravi
& Larochelle, 2017; Snell et al., 2017; Vinyals et al.,
2016; Lee et al., 2019). Generally, the meta learner fo-
cuses on learning a embedding network that maps the
input to a feature space, while the base leaner aims at
learning a classifier that can well separate the represen-
tations in the feature space. The overall meta-learning
goal is to learn embedding representations so that the
base learner can generalize well across tasks.

Few-shot learning is typically formulated as K-way,
N-shot classification tasks. A collection of tasks
(episodes) T are sampled on the fly from the dataset.
In each task 7 = (P® Q®), K different classes
are chosen with N samples for each class, and these
samples form a support set P = {(z,,y,) : n =
1,..., K x N}. Typically, N is a small value in [1,5].
The same K classes with M different samples are sam-
pled in addition, forming a query set Q™ = {(z,,,yy) :
n=1,..., K x M}. The overall goal of learning is to
minimize the prediction error across tasks on the query
sets given the support sets. To summarize, the meta
objective can be formulated as:

min B B L"(g(f4(2)),y), (13)

¢ T (z,y)eQ®

where fy is the embedding network and ¢ is the meta
parameter. ¢ is the base learner, for which vari-
ous choices are available. A typical one is the near-
est neighbor classifier, such as in matching network
(Vinyals et al., 2016) and prototypical network (Snell
et al., 2017). They learn the representation of each
class in the feature space by the examples in the sup-
port set. Then the query examples are matched to
their nearest neighbor classes based on a certain dis-
tance metric. The base learner g is defined as the pos-
terior probability of each class k in the current task:

_exp(—d(f. (2),cx))
wIol0)) = 5 d o), )

(14)
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where ¢ is the center of class k computed from the
corres-ponding examples in the support set P(*) (de-

noted as P,gi)):

Cp = ‘P]gl)|71 . E(wn,yn)eP,gi) f¢(l’n) (15)

Another choice of base learner is a discriminatively
trained linear classifier, e.g., SVM (Lee et al., 2019)
or ridge regression (Bertinetto et al., 2019). In this
case, the base parameter 6 for g is learned through the
following objective:

L7 (go(fo(x))y)-  (16)

argmin £
0 (z,y)eP®

3.2 Incorporating label structures by
warping layer

To leverage the structured label prior through the
warping layer Wg as constructed in (12), we can en-
code the prior into the embeddings learned by meta
learner. As a result, the meta learner’s objective be-
comes

L (g(Ws(fo(2))),y)- (A7)

min E E

¢9E€S T (2,y)eQ®
The parameter S which captures the property of
classes will be learned along with other meta parame-
ters like ¢. The behavior of the base learner remains
intact. The new embeddings Ws(fy(z)) are thus en-
coded with desired prior without sacrificing the free-
dom of choosing the base learner.

We remark in passing that the effective application
of warping requires the availability of logical relation-
ships covering the classes in the latest task. This is
realistic in practice because the training data in the
support set do carry the label, and many commonly
used datasets are derived from ImageNet which car-
ries a label hierarchy in the first place.

4 WARPING LAYER FOR
SEMI-SUPERVISED VAE

Semi-supervised learning is another common scenario
in learning with low data, and the key challenge is to
make full use of unlabeled examples. One approach
is the VAE model. It encompasses a discriminative
learning branch (encoder) for inference, and a genera-
tive decoder, which allows unlabeled examples to im-
prove the learning of latent representation. We will
first briefly review the components in semi-supervised
VAE, and then introduce how to apply the warping
layer to instill the label structure. Specifically, we will
explain how the prior is incorporated in both the infer-
ence/encoding and the generation/decoding process.

’

X
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Decoder gq
fsly) < y
z y ?
(’_ T— CIass_i;er Cp , ‘—\|
| Encoder .lld,, gy Warping Wy |
.. W—-—" = /
X
Figure 2: Apply warping to semi-supervised VAE

model. Variables in rectangles indicate trainable pa-
rameters or networks, and diamond shaped variables
indicate latent variables. The encoder and

data flows are shown as blue and arrows, re-
spectively, while the arrows indicate the pa-
rameters concerning the warping layer.

4.1 Semi-supervised VAE background

Semi-supervised VAE (Narayanaswamy et al., 2017;
Kingma et al., 2014) builds a probabilistic model to
make use of unlabeled data. It consists of a generation
process and an inference process parameterized by 6
and ¢ respectively. In the generation process, the data
is generated by a latent class variable y and a latent
continuous variable z:

po(zly, 2) = N(z|90(y, 2)) (18)
p(2) = N(2]0,1) (19)
p(y) = Cat(y|m) (20)
p(m) = SymDir(y), (21)

where Cat(y|r) is the multinomial distribution of the
class variable. SymDir is the symmetric Dirichlet dis-
tribution with hyper-parameter ~.

The inference process learns disentangled represen-
tation and assumes z and y are conditionally inde-
pendent given x. Thus the approximate posterior
g4(y, z|z) can be factorized as follows:

a6 (Y 2|2) = qp(2]7)qe (ylz) (22)
where g4 (z|z) = N (z|pg(z), 05 (2)) (23)
q¢(ylw) = Cat(y|cy(hg(z))). (24)

Here g, 04, he,cy are all defined as neural networks.
he can be regarded as the backbone network for learn-
ing hidden representations, and c4 as the classifier net-
work which outputs probability logits.
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4.2 Incorporating label structures by
warping layer

Our first step is to incorporate the structured label
prior into the semi-supervised VAE by embedding the
warping layer of (12) in the inference process. This
is analogous to warping the few-shot model in (17),
changing the posterior distribution from (24) to

40,5 (ylw) = Cat(y|cs (Ws(hy(x))))- (25)

What makes warping particularly interesting and ef-
fective in VAE is the possibility of further utilizing the
class representation S in the generation process. Not-
ing that S captures the relationship between classes,
we inject it into the generation process by replacing the
posterior distribution of z in (18) as follows, while leav-
ing the prior distributions p(y), p(z), p(7) unchanged:

po,s(xly,z) = N(zlgo([s(y),2)) where [s(y) =Sy.
Remarks. The final model is illustrated in Figure 2.
Integrating .S, into the decoder is not an adventitious
reuse of model, but carries subtle and significant con-
sequences. Intuitively, S, captures salient features for
identifying class y and promotes structure-aware repre-
sentations. But whether it thus provides better clue for
reconstructing the input x remains debatable. How-
ever, in the low-data regime, S, appears more informa-
tive than the one-hot vector e, in providing a basis for
generative modeling. Therefore, as also corroborated
by empirical performance, such a parameter sharing is
significantly beneficial for semi-supervised VAE.

Now we are ready to derive the warped semi-
supervised VAE objectives. Following Kingma et al.
(2014), the variational lower bound on labeled data is:

logpg s(z,y) > E  [logps,s(zly, z) +logp(y)

q4,s(z|z,y
+log p(z) — log q¢,5(2|z, y)]

= E [logpes(zly,z) +logp(y)]
q4,s(z|zy

— KL{gg,s(z]z, y)||p(2)]
—=: ELBO,(z,y).

For unlabeled data, y is treated as a latent variable
which is then marginalized out over all classes. The
variational lower bound on unlabeled data is:

logpes(z) > E  [logpe,s(z|z,y) + logp(y)

a¢,5(2,y]z)
+log p(z) — log qg,5(y, 2|2)]
= E [ E [logpes(zly,z)+logp(y)]

96,5 (Y|T) q¢,5(2|T)
— KL[gp,s(2|2)||p(2)] + log ¢p,s (y|2)]

= Xyqs,5(y|lz)[ELBO.(z, y) + log ¢¢.s (y|z)]
=: ELBOy(z).

The classification loss is £, = —logge s(y|z). Com-
bined with the VAE objectives for both labeled and
unlabeled data, the final objective for the warped semi-
supervised VAE can be written as

L=L.—-) E

(z,y)~Dr

ELBOg(z,y) — A E

z~Dy

ELBOy,(z),

where Dy, and Dy stand for the labeled and unlabeled
datasets, respectively. The hyperparameter A controls
the trade-off between ELBO and the discriminative
loss.

5 EXPERIMENT

We now demonstrate that the warping layer empiri-
cally improves the performance in low-data regimes by
incorporating the hierarchical prior. We first present
the evaluation results and analysis on few-shot learn-
ing, and then move on to semi-supervised learning with
warped VAE. The implementation code for both tasks
are available in Github!

5.1 Experiment on few-shot learning

We tested on three datasets for few-shot learning, and
their corresponding hierarchical prior is summarized
as follows.

minilmageNet: The minilmageNet dataset (Vinyals
et al., 2016) consists of 100 classes, each having 600
images with resolution 84 x 84. In few-shot learn-
ing, 16 and 20 classes were reserved for validation
and testing, and the remaining 64 classes were used
for training. Since minilmageNet is a subset sampled
from ImageNet which carries a hierarchical label struc-
ture derived from WordNet (Miller, 1995), it inherits
the hierarchy. There are 100 observed classes and 43
hidden/non-leaf classes. The hierarchy trivially speci-
fies the implication constraints, and we extracted ex-
clusion constraints from siblings of the same parent.
As a result, we derived 138 implication and 202 exclu-
sions relations that were used in the warping operator.

CIFAR-FS: The CIFAR-FS dataset (Bertinetto
et al., 2019) contains all the 100 classes form CI-
FAR100. In each class, there are 600 images of size
32 x 32. The dataset was split into 64, 16, 20 classes
for training, validation, and testing, respectively. CI-
FAR100 comes with super-classes. However, there
is only one level of super-class and it is too shallow
to serve as a useful prior. So instead, we followed
the hierarchy of CIFAR100 used in Barz & Denzler
(2019) to derive implication and exclusion relations.
This amounted to 100 observed classes and 50 hidden

thttps://github.com /myy920213 /WarpingLayer
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Table 1: Test accuracy on 5-way 1-shot and 5-way 5-shot tasks (#shot refers to support set at testing)

mini-imagenet CIFAR-FS FC100

Methods 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ProtoNet 53.384+0.52  70.43+0.42 | 56.27+0.64  72.60+0.60 | 35.42+0.58  48.65+0.49
ProtoNet+W 54.194+059 70.96+0.51 | 56.92+0.69 73.344058 | 35.90+0.56 49.12+0.52
MetaSVM 52.754+0.59  68.65+0.40 | 56.65+0.68  73.14+059 | 34.88+058  48.22+0.55
MetaSVM+W | 54.03+0.60 69.42+0.42 | 58.02+0.71 74.89+0.68 | 35.68+0.62 48.98+0.60
R2D2 52.1240.54  68.4240.40 | 56.50+0.62  72.76+0.62 | 34.76+059  47.78+0.56
R2D2+W 53.44+058 69.02+0.45 | 57.49+0.70 73.49+0.65 | 35.22+0.59 48.25+0.54

classes, along with 149 implication and 182 exclusion
relations.

FC100: FC100 (Oreshkin et al., 2018) is another
dataset derived from CIFAR100. It shares the same
number and size of images as CIFAR-FS, but differs
in the dataset partitioning. As was mentioned above,
CIFAR100 comes with super-classes. FC100 was split
along super-classes, and the training set consisted of
60 randomly selected classes out of 12 super-classes.
20 classes from 4 super-classes were sampled for vali-
dation, and another 20 classes from another 4 super-
classes for testing. The implication and exclusion re-
lations used for warping were the same as those in
CIFAR-FS.

Implementation details To pre-process the data,
we applied horizontal flip, random crop, and color jit-
ter following the practice in Lee et al. (2019). We used
the standard 4-layer convolution network in Snell et al.
(2017) as the embedding network for the meta learner.
The embedding dimension is d = 1600 for minilma-
genet, and d = 256 for both CIFAR-FS and FC100.
The warping operator was implemented by following
Section 3.2, and we adopted linear kernel in practice.

The regularizer R in (8) requires computing the ex-
pectation over the entire training set. To save com-
putation, we selected five examples from each class as
anchor points to represent the whole training set. Em-
pirically, it appeared effective to choose the five points
lying closest to the center of each class in the input
image space. We also tried selecting anchor points
based on the embedding space, but observed no signif-
icant difference in the result. The hyperparameter ¢§
was selected from [50, 20, 10,5, 1,0.5,0.1] based on the
performance on the validation set.

Baselines We evaluated the effectiveness of warping
by applying it to three different base learners. The first
is the soft distance based classifier used by Prototypi-
cal Network (ProtoNet, Snell et al., 2017). The other
two are linear classifiers, namely SVM (MetaSVM, Lee
et al., 2019) and ridge regression (R2D2, Bertinetto
et al., 2019).

We emphasize that our aim is to demonstrate warp-
ing as a general performance booster flexibly applica-
ble to a range of base learners. Hence, the performance
difference resulting from the base learners themselves
is not of our concern.

Setup We first trained each baseline model to their
best by following the strategy in Lee et al. (2019), in-
cluding the learning rate schedule, and each model was
trained for 60 epochs by SGD. Afterwards, we inserted
the warping layer, and continued training for 20 more
epochs by SGD.

We set training episodes to 5-way 5-shot for all base
learners and datasets, except that 10 shots were used
for FC100 when training MetaSVM and R2D2 to ob-
tain competitive performance. This remains a fair
comparison for warping, and the same shot setting was
used after applying warping. The query sets contained
5 examples at training time and 15 examples at test
time for all methods and datasets.

Results Table 1 shows the test accuracy under
5-way 1-shot and 5-way 5-shot. ProtoNet+W,
MetaSVM+W, and R2D24+W correspond to apply-
ing the warping layer to ProtoNet, MetaSVM, and
R2D2, respectively. Each setting was evaluated over
2000 episodes to report the mean and standard devi-
ation. Clearly, warping can significantly improve the
performance across all datasets and base learners. The
improvement is more significant in 1 shot, indicating
the hierarchy prior is more informative in lower data
settings. To the best of our knowledge, there is no
existing few-shot learning algorithm that can leverage
such a prior.

5.2 Experiment on Semi-supervised VAE

In this section, we will investigate the effectiveness of
applying the warping layer to semi-supervised VAE.

Datasets We conducted semi-supervised learning on
two datasets: CIFAR100 and minilmageNet. The
statistics of the datasets, along with the implication
and exclusion relations, are the same as in Section 5.1
for few-shot learning. On both datasets, 40k examples
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were used for training, 10k for validation, and 10k for
testing.

Baselines We selected two standard VAE models for
semi-supervised learning as baselines, and then applied
the warping layer to them respectively for comparison.
The first baseline is the M2 model proposed in Kingma
et al. (2014), and its structure was introduced in Sec-
tion 4.1. The other one is SHOT-VAE (Feng et al.,
2020), which learns disentangled hidden representa-
tions to utilize unlabeled data for improving inference
accuracy. It also applies mixup and the label smooth-
ing technique to further improve the efficiency of using
unlabeled examples. To apply the warping layer effi-
ciently, we selected anchor points from labeled dataset
to represent the whole training set, same as in the few-
shot learning. The resulting models are referred to as
M2+4+W and SHOT-VAE+W.

For reference, we also included a supervised learning
method (denoted as SL), which is simply the classi-
fication branch of the M2 model (Y in Figure 2 but
without using Wg). Although this is no longer a gen-
erative model, warping can still provide an effective
mechanism to tap into unlabeled data. In particular,
we incorporated Wy to SL as in Figure 2 (no decoder
included), and let the regularizer R take expectation
from the union of anchor points and a random subset
of unlabeled data. We call the model SSL+W.

Implementation details We used WideResNet-28-
2 as the backbone network and the embedding di-
mension was d = 512 for both datasets. The hyper-
paramter 0 was selected from [10, 50, 100, 150, 200, 500]
based on the validation set. The decoder architecture
was directly adopted from Feng et al. (2020). The
images in minilmageNet are sized 84 x 84 which is
different from CIFAR100. According to our observa-
tion, reconstructing larger dimensional images hardly
improves the inference accuracy. Thus, when training
models on minilmageNet, we fed the original images
as input to backbone network, but used down-sampled
images (32 x 32) for reconstruction to save computa-
tion.

We followed the strategy in Feng et al. (2020) to train
each baseline, including the learning rate schedule.
Each model was trained for 700 epochs with SGD. To
apply warping, we first trained each baseline for 400
epochs, and then added warping before resuming the
training process up to 700 epochs.

Results Figures 3 and 4 demonstrate the test per-
formance attained by all learners on CIFAR100 and
minilmageNet, respectively. The numerical results are
listed in Table 2 and 3 in Appendix A for reference.
We evaluated each method five times by randomly
splitting labeled and unlabeled examples to report the
mean and standard deviation. We also varied the ra-
tio of labeled examples on each dataset. For VAE
based methods, we reported both inference accuracy
and negative ELBO value to illustrate the impact on
both the inference process and the generation process.
For non-VAE based methods, only inference accuracy
was reported.

Our focus is again on the effect of warping on the orig-
inal models. Based on the two figures, it is clear that
the warping layer always promotes the performance
of inference accuracy. For VAE based methods, the
warping layer can lower the negative ELBO value, in-
dicating improved generation process as well. On both
datasets, semi-supervised VAE clearly outperforms SL
(supervised learning), and SHOT-VAE outperforms
M2. Warping boosts the accuracy slightly more sig-
nificantly on M2 than on SHOT-VAE. SSL-W does
predict more accurately than SL thanks to the warp-
ing layer which incorporates both unlabeled data and
the hierarchical structure. But overall it still inferior
to generative approaches. In almost all cases, warping
is more effective when the labeled set is smaller.

Ablation study To investigate the impact of warp-
ing layer in more depth, we set up two ablation ex-
periments. Firstly, recall that the hierarchical label
prior is incorporated by not only inserting the warping
layer in the inference process, but also sharing S with
the decoder. To analyze the source of gain, we stud-
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ied the consequence of not sharing S with the decoder
(M2+4W-no-share). The experiment was conducted on
CIFAR100 with 10% labeled examples. Moreover, we
varied the trade off weight A\ € [le-4, le-1] to better
illustrate the impact on both inference accuracy and
ELBO. This range ensured that both labeled and un-
labeled data were given appropriate weights.

Figure 5 illustrates the trade off between accuracy and
negative ELBO under varied values of A (indicated by
+,*, etc.). The upper left corner represents the ideal
result. As warping was only applied in the classifica-
tion branch, the best accuracy achieved by M2+W-
no-share is 0.4% below that of M24+W. In addition,
even under other values of A where M2+W-no-share
achieves similar accuracy as M24+W, it is still infe-
rior in negative ELBO (higher), indicating a sacrifice
of performance in the generation process. These two
observations corroborate the importance of sharing S,
indicating that the learned S can efficiently character-
ize the prior, hence benefiting both the inference and
the generation process. More results under other per-
centages of labeled data (5, 15, 25%) are available in
Appendix A.

Secondly, we would like to study whether warping sup-
presses the efficiency of utilizing unlabeled examples.
So we tested M2 and M24+W on CIFAR100 with 10%
(4k) labeled examples, but varied the number of unla-
beled examples. As can be read from Figure 6, warp-
ing improves the accuracy and ELBO under all pos-
sible sizes of unlabeled set. Thus, warping does not
suppress the efficiency of using unlabeled data; con-
versely, it offers additional promotion.

Explainable parameters The semi-supervised
VAE with a warping layer learns the representation of
classes as encoded by S. Different from most neural
network layers where the learned parameters are hard
to explain, the value of S turns out explainable. To
verify that S, represents the classes, we plot in Figure
7 the t-SNE embeddings of S, for some typical classes
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representations

in the hierarchy. We added directed and undirected
edge to illustrate implication and exclusion relations,
respectively. Clearly, classes that share similar
relations with other classes trend to gather closer.
For example, girl and boy share the same relations
with higher level classes like child and people. Their
representations are close but not too close to overlap
because of the exclusion relations between them.
Therefore, the learned class representations well
reflect the enforced prior.

Computation complexity To demonstrate the ef-
ficiency of warping layer, we here provide the com-
putation complexity analysis. The forward pass
of warping layer requires solving the optimization
in Eq 12, whose bottleneck is the inner prod-
uct between all 7, in the current batch and all
k, in the anchor point set. So the computation
cost is (# anchor point) x (# hidden dimension) X
(mini-batch size) x (# BFGS iterations). In our ex-
periment, all datasets used 500 anchor points, and the
hidden dimension was in [256, 1024]. 10 steps of BFGS
gave sufficiently good results. These led to just one
second for each forward pass. Backpropagation given
in §B.2 costs the same order of magnitude.

6 CONCLUSION

We developed a novel warping layer that allows label
structure priors to be effectively incorporated into fea-
ture and class representation learning. Improved per-
formance was achieved in few-shot learning and semi-
supervised learning. Future work will extend the tech-
nique to a broader range of priors, such as smooth-
ness in label space (mixup, Zhang et al., 2018) and
relational learning with more involved logic (Getoor &
Taskar, 2007).
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A Additional Experimental Results

A.1 Numerical results on CIFAR100 and minilmageNet

Section 5.2 has shown the results for semi-supervised learning in Figure 3 and 4. For a clearer and more in-depth
comparison, we here list the numerical results in Table 2 and 3, respectively. The improvement is more significant
when there are fewer labeled examples.

Table 2: Accuracy and ELBO loss results on CIFAR100

Label ratio 5% 10% 15% 25%

Acc. Neg. ELBO | Acc. Neg. ELBO | Acc. Neg. ELBO | Acc. Neg. ELBO
SL 29.02+0.68 - 45.16+0.51 - 48.67+0.32 - 58.62+0.33 -
SSL+W 33.19+0.45 - 46.51+0.40 - 51.02+0.42 - 59.53+0.28 -
M2 36.04+0.58  30.81+0.77 49.40+0.33  28.69+0.54 52.96+0.27  21.59+0.42 61.14+0.25  19.92+0.40
M24+W 38.15+0.60 30.72+0.56 51.80+0.52 27.80+0.52 54.84+0.50 20.50+0.30 62.25+0.44 19.29+0.34
SHOT-VAE 47914082  30.20+0.77 58.20+0.78  27.08+0.91 60.02+0.50  25.27+0.42 68.17+0.32  24.44+0.38
SHOT-VAE+W | 49.75+0.52  30.80+0.82 60.17+0.89 26.44+0.70 61.52+0.45 25.02+0.48 69.03+0.34 23.45+0.28

Table 3: Accuracy and ELBO loss results on minilmageNet
Label ratio 5% 10% 15% 25%
Acc. Neg. ELBO | Acc. Neg. ELBO | Acc. Neg. ELBO | Acc. Neg. ELBO

SL 28.71+0.685 - 40.65+0.52 - 48.76+0.40 - 56.62+0.3¢ -
SSL+W 31.54+0.56 - 42.01+0.72 - 50.33+0.38 - 57.43+0.31 -
M2 36.52+0.61  45.92+0.82 47.27+0.35  43.01+0.45 55.22+0.32  41.3040.40 58.76+0.44  37.02+0.36
M2+Warping 39.87+0.72  45.0540.80 50.03+0.56 42.84+0.58 57.12+0.40 39.03+0.56 60.05+0.41  36.18+0.39
SHOT-VAE 42.61+0.92  48.02+0.67 56.28+0.60  45.3340.44 60.81+0.55  45.02+0.47 63.02+0.50  41.0740.42
SHOT-VAE+Warping | 45.24+0.78 47.83+0.79 | 57.61+065 44.89+0.78 | 62.19+0.42 43.98+042 | 63.89+0.45 39.08+0.42

A.2 More results on ablation study with varied proportion of labeled examples

In Section 5.2, we showed the effect of not sharing S with the generation process under the setting of 10% labeled
examples. We now provide in Figures 8 to 10 the results of such effect under additional percentages of labeled
examples. In all figures, the inference accuracy first grows as the value of A decreases, until it reaches the peak.
Then the accuracy decays if A is reduced further. The peak point specifies the most efficient trade-off value of A
for utilizing unlabeled data. An overly high value of A will distract the learning process from the classification
task, while an overly low value suppresses the benefit of unlabeled data. When similar accuracy is achieved
under different values of A, M2+W-no-share usually obtains lower (better) negative ELBO value than M2+W.
This corroborates the benefit of sharing the class representation S.
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B Optimization Related to Warping Operation

B.1 Efficient optimization of (10)

We first duplicate (10) here for convenience:

min S [FISIE el + 32 Rtre])?] (26)
zeB v

SeS, {re

st Syy <rm, l~c$> =1, Vy, z€e€B. (27)

The main difficulty lies in the nonconvex constraint, making it hard to project to the feasible domain. We resolve
this issue by first noticing that, by the constraint, there is o € R, such that Sy, = o, and <rw, l;;$> = é So we

can reparameterize .Sy by
Sy = aey + By, where Sy, =0. (28)

This allows us to rewrite the objective as

min  min min lé <ma2 + Z ||ﬁy||2> 72| + Zﬁ(rm(aey + ﬂy)T)Q] (29)
B y

@ {By}:Byy=0{r} ze "
s.t. <r$,l~c$> =1/a, VzeB. (30)

So given «, the projection to the constraint set is just projecting to a hyperplane, which admits a closed-form
solution. Furthermore, given a and {8,}, the optimization over {r;} is convex. Similarly, given a and {r.},
the optimization over {3, } is also convex. So we can alternate in optimizing {3,} and {r,}. Finally, the outer-
loop optimization over « is simply a 1-D line search, and with the gradient in «, the optimization is generally
completed in about 10 iterations.

B.2 Details on implicit differentiation

As R(v) is sublinear in v, we denoted R as R(v) := Sup,ec @' v at the end of Section 2.1. Given x and the
corresponding optimal v, let u := argmax,, .~ @ v and z := @. So R? can be approximated about v by (2Tv)2,
and we further define Q = 2(3I + 2z"). We regretfully note that there was a typo in Equations (5), (6), (10),
(12) where all R and R should be squared, to be consistent with Ma et al. (2020). Our implementation did follow
the squared formulation. Then the Lagrangian of (5) can be derived as:

G(v,\) = %UTQU + A"k — a) (31)

where A is the dual variable for equality constraint. The KKT conditions of the above optimization are:

Qu* + Nk, =0 klv —a=0 (32)
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Taking the differentials of these conditions we can get:

Q k| [dv]  [dQu* + \*dk, (33)
EF o] [dN] T | v*Tdky —da |°
=A =B

We can derive the derivatives of different parameters by taking the matrix vector product between the Jacobian

« T .
matrix and backward pass vector ‘Z—ﬁ. For example: aaTL = gl’-i g—ﬁ. The Jacobian g% can be obtained by
setting dk, = I and other parameters to 0, followed by solving for dv. However, we never need to have the actual
Jacobian for backpropogation:

Ly* * OL
o | =at M 2E ey || (34)
A v Ok, 0
Ok . ,
=C

Notice that we can first compute:

1] [8],

The matrix inversion can be efficiently addressed via the conjugate gradient method. Then the gradients with
respect to k, and all other parameters can be derived by

VL(ky) = Ndy + dyv* (36)
VL(a) = —d) (37)
VL(Q) = dyv* " +v*d]. (38)

And the gradients for other parameters in @ or a can be derived through the chain rule.
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