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Abstract

In many areas of applied statistics and ma-
chine learning, generating an arbitrary num-
ber of independent and identically distributed
(ii.d.) samples from a given distribution is a
key task. When the distribution is known only
through evaluations of the density, current
methods either scale badly with the dimension
or require involved implementations. Instead,
we take a two-step approach by first modeling
the probability distribution and then sampling
from that model. We use the recently intro-
duced class of positive semi-definite (PSD)
models, which have been shown to be effi-
cient for approximating probability densities.
We show that these models can approximate
a large class of densities concisely using few
evaluations, and present a simple algorithm
to effectively sample from these models. We
also present preliminary empirical results to
illustrate our assertions.

1 INTRODUCTION

In many fields such as biochemistry, statistical mechan-
ics and machine learning, effectively sampling arbitrary
numbers of independent and identically distributed
(i.i.d.) samples from probabilities is a key task (Gel-
man et al., 2004; Liu, 2008; Lelievre et al., 2010).

Basic sampling methods include rejection sampling and
gridding, and rely on simple properties of the density.
However, they are suitable only in small dimensions,
except for very structured cases. Moreover, they are
hard to adapt to probabilities which are known up to
their renormalization constant, which is often the case
when dealing with exponential models that are common
in applications (Robert and Casella, 2004).

More involved methods have been developed to address
these dimensionality and renormalization issues, in the
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class of so-called Markov chain Monte Carlo (MCMC)
methods. However, they are complex to set up: in
particular, independence between samples is not di-
rectly guaranteed, convergence can be slow and hard
to measure non-asymptotically (Lelievre et al., 2010;
Robert and Casella, 2004).

In this work, we address the problem in a different way,
by incorporating a modeling step. Instead of sampling
directly from the target density, we first model this
density using a positive semi-definite (PSD) model
(Marteau-Ferey et al., 2020; Rudi and Ciliberto, 2021),
and then sample from this PSD model.

PSD models have been introduced by Marteau-Ferey
et al. (2020) and their relevance for modeling probabil-
ity distributions has been further established by Rudi
and Ciliberto (2021), showing that i) they are stable
under key operations for probabilistic inference, such
as marginalization, integration (also called “sum-rule”),
and product, which can be done efficiently in practice,
and ii) they concisely approximate a large class of prob-
ability distributions. We present these models in Sec. 2.
Building on this work, we show that these models are
also relevant in the context of sampling, making the
following main contributions.

(1) In Sec. 3, we derive an algorithm that is easy to
implement and which can generate an arbitrary number
of i.i.d. samples from a given PSD model, with any
given precision. This answers one of the open questions
outlined by Rudi and Ciliberto (2021) and shows that
one can indeed efficiently sample from a PSD model.

(2) In Sec. 4 we show that we can sample an arbi-
trary number of i.i.d. samples from a target probability
distribution that is regular enough, with any given
precision. The algorithm consists in (a) approximating
the un-normalized density p via a PSD model, using
evaluations of p, and (b) extracting i.i.d. samples from
the PSD model. We show that for sufficiently regular
densities the resulting PSD model is concise and avoids
the curse of dimensionality: to achieve error €, the PSD
model requires a number of parameters and a number
of evaluations of p that are in the order e =2-%# where
d is the dimension of the space and § is the order of
differentiability of the density. For regular probabilities,
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i.e., when 8 > d, the rate does not depend exponen-
tially on d and is bounded by O(¢~3) (the constant
term instead may depend exponentially on d).

In Sec. 5, we also present numerical simulations which
demonstrate the quality of both our sampling technique
and approximation results.

2 BACKROUND ON POSITIVE
SEMI-DEFINITE MODELS

Denote by R‘j_ 4 the vectors of R? with positive com-
ponents and S the set of positive semi-definite m by
m matrices. Following Marteau-Ferey et al. (2020);
Rudi and Ciliberto (2021), a Gaussian PSD model is
parametrized by a triplet (4, X,n) € ST xR™*4xR%
and is defined for any = € R as

f(xv A7Xa 77) = szjzl Aijkn(xaxi)kﬁ(xaxj)7 (1)

where, with diag(n) being the diagonal matrix with
diagonal 7, ky(z,2") = e~ (@=a)T ding(n)(==a") g the
Gaussian kernel of parameter 1 , X € R"*¢ is the ma-
trix whose rows corresponds to the centers x1,...,x,
of the Gaussian PSD model, and A is a matrix of co-
efficients which is positive semi-definite, to guarantee
the non-negativity of f.

When A =aa', a € R™, is a rank-1 operator, a Gaus-
sian PSD model is simply the square of a linear model
flz; A, X,n) = g(z; a,X,n)* of the form,

Z;ZI aikﬂ(xﬁxi)a (2)

for any « € R%. This particular case of PSD model will
appear when approximating an arbitrary probability
density p in Sec. 4.2.

g(x; a, X,n) =

2.1 Main properties of PSD models

As explained in the introduction, PSD models show
properties that make them particularly well suited to
model non-negative functions and probability distribu-
tions. Such properties are analyzed by Marteau-Ferey
et al. (2020) and Rudi and Ciliberto (2021), here we re-
call the ones that are important for our purpose.

Non-negativity. Since A is positive semidefi-
nite, then the PSD model f(z; A, X,n) satisfies
f(z; A, X,n) >0 for all z € RY.

Preservation of convex functionals. Using the
PSD model to represent non-negative functions in
a problem of the form miny>¢L(f), where L is
a convex functional, leads to a convex problem
minges, ®m) L(f(; A, X,n)). Indeed, the constraint
A € S;(R™) is convex, the PSD model f(-; A, X,n) is
linear in the parameter matrix A and a composition of a
convex function L with a linear function is convex. This
allows, e.g., to perform empirical risk minimization for
the square and logarithmic losses.

Conciseness of the representation. under mild
conditions, recalled in Assumption 1, a PSD model can
approximate a density that is S-times differentiable
with error ¢, using a number of centers m = O(e~%/#)
(which is minimax optimal). Rudi and Ciliberto (2021)
provide also an algorithm to learn the PSD model given
i.i.d. samples from the probability. However, we cannot
use this result in our context since we do not assume
to have samples from our density.

Integration over hyper-rectangles in closed
form. Integration of PSD models will play a key
role in the algorithm developed for sampling in Sec. 3,
for theoretical and computational reasons. A hyper-
rectangle Q@ C R? can be parametrized with its corners
a,b € R? a < b, by writing Q = szl [ak, b [; a cor-
responds to the “bottom left” corner and b to the “top
right” one.

For X € R™? and n € RiJr, we denote with
Kx ,, € R™*™ the kernel matriz such that [Kx ,]i; =
Ky (s, z;). The integral of a PSD model in Eq. (1) over
a hyper-rectangle can be expressed with simple ma-
trices, leveraging the fact that for any pair (x;,z;),

it holds ky(z,x;)ky(x,2;) = kyjo(s,x5)koy(z, (i +
x;)/2). Then we have
I(Q; A, X, n) :=/ f(z; A, X, n) dx
= Z A”kn Ti, T / oy (x 2 1Y) dx
1,j=1
= Y Ay[Kxn/2li[Gx om0l (3)
Q=1
where [Gx ,,0lij fQ (2,0) dz, and Q;; = Q —

(xi+x;)/2. These mtegrals can be computed by 2d calls
to the erf function, as, for any 4,5 € {1,...,m}:

G xmqlij =cnlTiey exf(ymrBijk) — erf(\/iiAiji), (4)

where ¢, = (7/4)%? det diag(n) /2, A, B € R&mxm,
A is the tensor of bottom left corners and B is the
tensor of top right corners, defined formally from the
means tensor X”k = *(sz + Xji) as

Aije = ap — Xiji,  Bijie = b — Xyji. (5)
This shows that, for any hyper-rectangle (), we can com-
pute Gx , ¢ with exactly 2dm? calls to the erf function
and dm? arithmetic operations (so there is no depen-
dence on the dimension of the hyper-rectangle).

3 A SAMPLING ALGORITHM FOR
PSD MODELS

In this section, fix a Gaussian PSD model on R?
parametrized by (A4, X,n) € ST x R™*% x R%  for



Ulysse Marteau-Ferey, Francis Bach, Alessandro Rudi

a given m € N. To simplify notations, we will omit
the parameters of the PSD model using f(z) as a
shorthand for f(x; A, X,n) and I(Q) as a shorthand
of I(Q) = I(Q; A, X,n). Given a bounded hyper-
rectangle @, define

pe(@) i= f(2)1q(z)/1(Q), (6)

where 1g(z) = 1 when z € @ and 0 otherwise. In
Sec. 3.2, we explain that even in the case of an infinite
hyper-rectangle (e.g., Q = R?), we can easily find a
finite hyper-rectangle Q on which the whole mass of
f is essentially concentrated, and thus approximately
sample in this case as well. We end this section with
a discussion on the main elements needed to sample,
and which could allow to generalize this approach to
PSD models with different kernels.

3.1 A sampling algorithm on a finite
hyper-rectangle

Given the function f, the algorithm will take three
inputs (Q, N, p): the hyper-rectangle @ (with sides
parallel to the axes) from which we would like to sample,
the number of i.i.d. samples N which we would like to
obtain, and a parameter p which defines the quality
of the approximation of pg from which the algorithm
generates samples. The effect of p on the precision of
the algorithm is established in Theorem 2.

We start with the case N = 1. Starting from @, we
cut @ in half in its longest direction forming two sub-
rectangles (1, Q2. If X were a random variable fol-
lowing the law of pg, then Xg € Q; with probability
pi = 1(Q;)/1(Q), and Xg|{Xg € Q;} follows the law
of pg,. Therefore, when looking for a sample from
pq, we randomly choose with probability p; one of the
two smaller sub-rectangles (; in which to look for the
sample and then call the algorithm recursively to get a
sample from pg,. Of course, we need a stopping crite-
rion: when the maximal side of @) has length smaller
than p then we stop and we return a point sampled
uniformly at random in Q. The complete algorithm is
presented in Algorithm 1 and is explained below.

Details for Algorithm 1. In Line 1, we define the
recursive function SAMPLEREC which will generate
samples recursively. The main algorithm SAMPLE in
Line 15 simply calls the function SAMPLEREC and
randomly reshuffles the samples in order to guarantee
independence (see RANDOMPERM Line 17). In Line 4,
the function MAXLEN applied to @ returns the maxi-
mum of the lengths of the sides of @Q; the condition can
therefore be translated as “if all sides of () are smaller
than p”. If it is the case, in Line 5, we return N i.i.d.
samples from the uniform distribution on @ using SAM-
PLEUNIFORM. If it is not, in line Line 7 we cut the
hyper-rectangle @) in half along its largest side with min-
imal index (i.e., along side k = min argmax (b; — a;)),

yielding two sub hyper-rectangles @1, Q2. This is the
purpose of SPLITLARGESTSIDE. In Line 8, we compute
the probability ¢ that a given sample from pg belongs
to ()1 using the fact that we can integrate the PSD
model exactly. Since we have to generate N samples,
we will select k of them from @1 and N — k from Q-
where k is a sample from a binomial law of paramter
q: this is the purpose of SAMPLEBINOMIAL and Line 9.
We then call the algorithm recursively to generate the
k samples from Q1 using pgo, and the N — k samples
from Q2 from pg, (Lines 10 and 11).

Algorithm 1 Approximately sampling from pg

: function SAMPLEREC(Q, N, p)
if N =0 then
return EMPTYLIST
else if MAXLEN(Q) < p then
return SAMPLEUNIFORM(Q, N)
else
Q1,Q2 = SPLITLARGESTSIDE(Q)
q=1(Q1)/1(Q)
k = SAMPLEBINOMIAL(N, q)
Ly = SAMPLEREC(Qh, k, p)
Ly = SAMPLEREC(Q2, N — k, p)
return CONCATENATE(L1, L)
13: end if
14: end function
15: function SAMPLE(Q, N, p)
16: L = SAMPLEREC(Q, n, p)
17: return RANDOMPERM(L)

18: end function

—
Y=

Guarantees of the algorithm. Given (Q, N, p), Al-
gorithm 1 does not sample N i.i.d. samples from the
exact distribution pg but rather from an approxima-
tion pq,, of pg, controlled by the parameter p. More
formally, let Dg , be the set of dyadic sub-rectangles
of @ with largest possible size smaller than p (see Ap-
pendix D for a formal definition). Our algorithm will
effectively sample from a piece-wise constant approxi-
mation of p on the elements of D ,:

_ 1 1(Qp)
pQ,p - WZQOEDQW ‘Qﬂ‘ 1Q’” (7)

where 1¢, is the indicator function of Q,. The guar-
antees of the algorithm are established in the following
theorem, proved formally in Appendix D.2.

Theorem 1. Given (Q, N, p) where Q is a bounded
hyper-rectangle of R?, p > 0 and N € N, the func-
tion SAMPLE in Algorithm 1 returns N i.i.d. samples
from the distribution pg,, defined in Eq. (7). More-
over, the number of integral computations of the form
I(Q) performed during the algorithm is bounded by
Nlog,(|Q]) + NdlogQ% + 1, and the number of erf

computations is O(N m? d (logy(2|Q|) + dlog,(2/p))),
where m is the dimension of the PSD model.

This theorem shows that the complexity is essentially
O(Nm?d*log(1/p)). This quadratic dependence in d
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is verified in practice and the slicing procedure does
not yield any computational difficulties. However, in
our two step procedure detailed in the next section, the
number m will a priori depend on the dimension, but
this is confined to the learning phase; once the m cen-
ters are set, the complexity is quadratic. Moreover, we
verify the claim that computing integrals is the compu-
tational bottleneck in practice in Appendix D.4.

Approximation error of the algorithm. Since by
Theorem 1, the algorithm does not generate samples
exactly from pg but from the piecewise constant approx-
imation pg , (see Eq. (7)), it is necessary to quantify
the distance between pg and its approximation pq ,.
We do so in Theorem 2 for three different distances.
The weakest distance will be the Wasserstein-1 dis-
tance (earth mover’s distance) (Santambrogio, 2015).
It quantifies the discrepancies in the allocation of mass
between two distributions, and is defined as

/f (p1(x

where Lip(f) is the Lipschitz constant of f for the Eu-
clidean norm. It is structurally the most adapted to
the approximation pg , since on each hyper-rectangle
of Dg.p, PQ,p has the same mass as pg but distributes
it uniformly. Hence, the discrepancy in mass alloca-
tion will be confined to small hyper-rectangles whose
sides are of size at most p. We will also use two
stronger distances: the total variation (TV) distance
drv(p1,p2) = ||p1 — p2llz1(x), and the Hellinger dis-
tance H(p1,p2) = ||\/P1 — /P2ll12(x), which is particu-
larly relevant for exponential models (Lucien Le Cam,
1990), and, in our paper, when using rank-1 PSD mod-
els (see Sec. 4.2). These distances will naturally appear
in Sec. 4 to quantify the discrepancy between a given
probability density and its approximation as a Gaussian
PSD model. For more details on these distances, see
Appendix A.2. Theorem 2 provides bounds on these
distances between the target density pg = f1o/I1(Q)
and pg , as a function of p, and some Lipschitz con-
stant (where Lip_ (g) denotes the Lipschitz constant
of g for the norm ||z||e = sup|z;|). A more general
theorem is proved in Appendix D.3.

Theorem 2 (Variation bounds). Let Q be a hyper-
rectangle, p > 0, po = flg/I(Q) and pg,, defined in
Eq. (7). It holds:

Wi(p1,p2)= sup p2(x))dz|, (8)

Lip(f)<1

H(pg,pa,) </ 15 i (VH o (9)
drv (pQ,pq.p) < % Lipo, (f)p (10)
Wi (pg,pq.,) < Vip. (11)

Combining the result of Theorems 1 and 2, we have that,
given a PSD model on m centers, an hyper-rectangle

of interest () and an error p, Algorithm 1 provides
N i.i.d.samples whose distribution is distant v/dp in
terms of W, from the density represented by the PSD
model over the hyper-rectangle. In particular, Algo-
rithm 1 computes the NV i.i.d. samples with a cost of

O(N m? d (log,(2|Q|) + dlog,(2/p))).

Figure 1: Samples obtained from Algorithm 1 using
different values for p

Selection of p. In Fig. 1, we observe the effect of
p on the quality of sampling, when sampling from a
PSD model whose distribution is illustrated by the
heat map defined on the top left figure. We highlight
the fact that decreasing p corresponds to refining the
dyadic decomposition of the hyper-rectangle and hence
sampling more precisely. In practice, one can therefore
choose p manually (for instance p = 1074,1076) and
have an upper bound on the distance between pg, , and
pg from Theorem 2. If one wishes to select p in a more
principled way to bound the total variation or Hellinger
distance, this can be done using only accessible quanti-
ties. If f is a PSD model with parameters (4, X, n) for
n =714, and K is a shorthand for Kx ,, the Lipschitz
constants can be bounded using only 7, K and A (or a
s.t. A=aa' for a rank one PSD model).! Combining
these bounds with Eqs. (9) and (10), p can be selected
in an adaptive way.

Remark 1 (Adaptive selection of p). Lete > 0. Let f
be a PSD model with matriz of coefficients A. Define

Y §(~) R - VI@e
Pe 2d|Q[[AK | V27’ pe dv/27(Q|(aT Ka)’ (12)

where pH is deﬁned if A=aa' is rank one. If p = pI'V
(resp. p = pH ), then Algorithm 1 applied to (Q, N, p)
returns N i.1.d. samples from a distribution pg . which

satisfies dpy (pg.po.e) < € (resp. H(pg,pg.) < ¢€).

!See Lemma 5 in Appendix C.1 and Lemma 2 in Ap-
pendix B.1.
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3.2 Discussion

Sampling from the distribution on R¢. It is pos-
sible to approximately sample from an infinite hyper-
rectangle. To do so, one has to find a large enough
hyper-rectangle @) such that almost all the mass is
contained on ) and then apply the previous algorithm
to this hyper-rectangle. One can, for instance, use
Algorithm 2.

Algorithm 2 Finding an approximate support @
function FINDSUPPORT(A, X, 7, 9)
Q = [L1<pca Mini<i<n Xk, maxi<;<n Xix]
I = I(RY)
while I(Q)/I <1—¢ do
@@ = DOUBLESIZE(Q)
end while
end function

One can also concentrate f a priori using only its
parameters (X, A,n), using Eq. (54) of Lemma 4 in
Appendix C.1. One can use this bound to bound the
number of steps in Algorithm 2.

Generality of the algorithm. Algorithm 1 only
relies on the fact that one can compute integrals on
hyper-cubes of the model f. If we were to replace the
Gaussian kernel k,, by a kernel k, and therefore have
a PSD model of the form 3, A;;k(z, x;)k(z, x;) with
another positive definite kernel and A € S, then one
would be able to run the algorithm as soon as integrals
of the form [, k(z,z;)k(z, z;)dx were tractable. This
would extend this framework to more general PSD
models described by Marteau-Ferey et al. (2020).

4 SAMPLING FROM ARBITRARY
DISTRIBUTIONS USING PSD
MODELS

The previous section provides an algorithm to approxi-
mately sample from a distribution in the form of a PSD
model. In this section, we show how to leverage that
fact to be able to generate N approximate i.i.d. samples
from a very general class of probability distributions
on a hyper-rectangle X C R%. The strategy is simple :
a) approximate the target distribution p with a PSD
model p, and b) approximately sample from the PSD
model p using the algorithm presented in Sec. 3. The
main challenge is to quantify the distance between the
target distribution p and its approximation p as a PSD
model.

Approaching a distribution by a PSD model by access-
ing the distribution through samples has been done in
Sec. 3. of Rudi and Ciliberto (2021). Instead, in this
work, we access the distribution through function eval-
uations, as our goal is to be able to generate samples.

However, a similar algorithm can be implemented to
learn a PSD model from function evaluations. More-
over, it can be analysed under the same conditions (see
Assumption 1 and Sec. 4.1). This algorithm is based
on the solving of a semi-definite program to find the
matrix A to form a good approximation f(z; A, X,,,n)
of the density p. In Sec. 4.2, we instead learn a rank-
one PSD model, solving a least-squares problem (and
not a semi-definite program) using tools from Rudi
et al. (2015, 2017); Meanti et al. (2020). This algo-
rithm, faster than the one based on the solving of a
semi-definite program, requires a stronger assumption
to be analysed, and is naturally adapted to densities
of the form p(z) oc e~V (®),

Main hyper-parameters. The two methods pre-
sented in this section (see Sec. 4.1 and Sec. 4.2) will
have hyper-parameters n, m, 7, A, p.

The parameters n and m are integer; moreover, we will
take two sequences of i.i.d. samples uniformly from X
: x1,...,T, represented by X € R™ % and Z1,...,Zm
represented by X,, € R™*?. We will use an isotropic
n = 714 in the Gaussian linear and PSD models for a
strictly positive 7. To simplify notation, take K., :=
K)?m,n and K,,, = KXJ?mm' The parameter A will
always be a strictly positive real number.

The parameters m and 7 will define the PSD model: m
will control the number of points, also called Nystrom
centers, which we use to represent our PSD model (as
n and m increase, the quality of the approximation
increases); and 7 will control the width of the Gaussian
kernel. The parameter n and A control the learning
phase of the algorithm, i.e., the approximation of p by
a PSD model. n is the number of points at which we
evaluate our probability density to estimate it; A will
control the strength of the regularization. Finally, p will
control the scale at which we apply Algorithm 1.

4.1 A general method

In this section, we present a method to approximately
sample from the density by a) approximating it by a
PSD model solving a semi-definite program (SDP) and
b) use Algorithm 1 to sample from that PSD model.
More precisely, we assume that p is known up to a
constant, i.e., that we have a function f, which is
proportional to p which we can evaluate.

Step a): approximation of p. To fit a PSD model
to p, we use an method similar to the one presented in
Section 3 of Rudi and Ciliberto (2021), and construct

a Gaussian PSD model f = f(e; ﬁ, Xm,n), where
A € S is the solution to the following problem

A= argminAeSr Sy f(; A)?da
“2500 ) fylan)f (i A) + N Enlm ARl (13)
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where f(z; A):= f(x; A, Xm,n). This problem is a
quadratic problem in A and can be solved in polynomial
time in_m using semi-definite programming. We then
define Z = [, f(2) dx which can be computed in closed
form as the integral over a hyper-cube of a PSD model,
and p = f/Z, which is our approximation of p.

Problem Eq. (13) can be seen as a variation of empiri-
cal risk minimization for the square loss, with an addi-
tional regularization term )\HK},,/%AK%,?LH r which is
the equivalent of the classical kernel regularization term
in the setting of PSD models. Indeed, the function of A
being minimized is a proxy of || f(:; A) — fp(-)HQLz(X) =
1£C5 Ay + [ Sy(@)f (@i @) da+C. In Eq. (13),
S v fp(x)f(x; a) dr is approximated by its empirical
version, using uniform samples X = (x1,...,z,) (plus
the regularization term). The first term || f(; A)||%2(X)
is kept as such as it is a quadratic function of A which
can be explicitly computed, using the same techniques
as those to compute integrals of PSD models, and de-
scribed by Rudi and Ciliberto (2021). Here, X, X,,,, 7, A
are hyper-parameters; n and m will be taken as large as
possible with a given computational budget, and A and
7 can be selected by validation on a newly generated

test data set (we assume we can generate samples from
X).

Step b): sampling from the approximation p.
We apply Algorithm 1 to p with a parameter p and on
the hyper-rectangle X'. We denote with pganp1e the den-
sity px,, given by Eq. (7), from which Algorithm 1 ef-
fectively samples N i.i.d. samples by Theorem 1.

The two step strategy is detailed in Algorithm 3. What
is specific to this section will be LEARNPSD, which in
this case will solve Eq. (13).

Algorithm 3 Learn and sample
Input p, X, N
Hyper-parameters (approximation) n,m, 7, A

Hyper-parameters (sampling) p

Output N approximate samples from p|x

1: function APPROXSAMPLES(p, X', N,n,m, T, A, p)
2: X, = UNIFORMSAMPLES(n, X)

3 Xm =UNIFORMSAMPLES(m, X)

4: A = LEARNPSD(p, Xpn, Xom, T, \)

bE ﬁ() :f(lAaXmaT)

6: X~ = SAMPLE(X, N, p) from p

7 return Xy

8: end function

Theoretical analysis. Recall that p is the target
density, proportional to f, and that p is the approxi-
mation of p obtained by solving Eq. (13) and psamp1e is
the distribution from which we effectively sample when
applying Algorithm 1 to p. In Proposition 1 and Theo-
rem 3, we show that under certain regularity assump-

tions on p, given € > 0, we can find hyper-parameters
n,m,7, A and p such that dry (p, psampre) < Cé, i.e.
that Algorithm 3 generates N i.i.d. samples from a
distribution Ce close to p.

For simplicity, we will assume X = (—1,1)?, as is done
by Rudi and Ciliberto (2021). In principle, we could
approximate p on any bounded domain X from which
we can sample uniformly, and still obtain analogous
results. In that case, we would apply Algorithm 1 on
a hyper-rectangle containing the domain, and reject a
sample outside of it. Our main assumption on p will be
that p can be written as a sum of squares of functions
belonging to the space W8(X) = W/ (X) N L®(X)
which is the space of bounded functions whose deriva-
tives of order less or equal to 8 are square inte-
grable, and which can be equipped with the norm
ey = -l ey + 11 - o=y (see Appendix A.1
for more precise definitions). The key quantities here
are the dimension d and the regularity of the density 5.
This summarized in the following assumption.

Assumption 1 (Sum of squares distribution). There
evists J € N and functions qi,...,q; belonging to
WA(X) such that p = Z}Izl qu. Moreover, we have
access to p only through function evaluations of the
form f,(x) where f, > 0 is given, is proportional to
p, and where the proportional}'ty constant is unknown.
o 2

We define ||pllsps x g = inf 325, ”qj”WB(X) where the
infimum is taken over all such decompositions of p.

The approximation properties of p w.r.t. p are bounded
in total variation distance in the following proposition,
proved as Proposition 10 in Appendix E.

Proposition 1 (Performance of p). There exist con-
stants g > 0 depending only on d, 3, and Hp||soij7ﬂ
and Cy,C1,C%, C4 depending only on d, 8 such that the
following holds. Let § € (0,1] and € < g, and assume

m > Cle= P log? (%) log (%’) ) (14)
n>e 24P 1og? (1) 1og (2). (15)

Let A = e2t2d/B gqnd + = =2/P.
least 1 — 26, it holds

With probability at

drv (P,p) < C1 [Pllsos x5 € (16)

The key takeaway from this proposition is that the
number of samples n, m needed to perform the first
step of the algorithm (approximation) is polynomial
in the quantities O(¢~1), O(¢~%#), thus leveraging the
regularity 8 of p. When this is the case, we can find
A, 7 such that the distance d(p, p) is of order £. We pro-
vide a choice for p for the second step of the algorithm
(sampling), in order to guarantee a bound for the total
variation distance between the sampling distribution
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and the original distribution in Theorem 3. It is proved
as Theorem 8 in Appendix E. It bounds the total com-
plexity of the algorithm in terms of erf computations,
as a function of NV and the error €.

Theorem 3 (Performance of psampre). Under the as-
sumptions and notations of Proposition 1, there exists
a constant Co depending only on d, 3, such that the
following holds. If p is set either as 't d+V/B o
adaptively as pL'V', then with probability at least 1 — 26,

dTV(p7psample) § C2 ||pHsos7X,[3 €. (17)

Moreover, the adaptive plV s lower bounded by
e AD/B(Cs (|pllyos, 20, 5)- This guarantees that the
complexity in terms of erf computations is of or-
der O(Nm?log(1/p)), which in terms of e vields

(@) (N g=2d/8 log2d+1 (%) log? (é)), where the nota-

tion O includes constants depending on d, 3, Hp||sos’X7ﬂ.

4.2 Efficient method with a rank-one
model

In this section, we present a method to approximately
sample from the density p by approximating it by a
PSD model solving a linear system (as opposed to
a SDP). This simpler and faster method comes at
the expense of the stronger Assumption 2 needed to
provide guarantees. Applying Algorithm 3, we first
approximate the density with a PSD model and then
sample from it using Algorithm 1. The difference lies in
the approximation step (i.e. the LEARNPSD function).
We assume that we can evaluate a function g, such that
gf) o p (usually, this function will be proportional to
the square root of p). We then approximate g, with a
Gaussian linear model Eq. (2) by solving a regularized
empirical least squares problem, which is much faster
than the solving of a SDP. Taking the square of that
linear model, we obtain a PSD approximation of p from
which we can sample using Algorithm 1.

Step a): approximation of p. To fit a PSD model
to p, we start by approximating g, by a linear model
G=g(e: @ Xm,n) (see Eq. (2)), where @ € R™ is the
solution to the empirical problem

mingern 2 320 |g(zi; @) — gp(xi)|” + AT Kppma,
(18)
whete g(z; @) = 9@ @ %mm) and gn =
(gp(x;))1<i<n. @ is the solution to the system:

(KK pm + (M) Kpm) @ = K9, (19)

which can be solved either directly in time O (nm?+m?)
(Rudi et al., 2015) or using a pre-conditioned conjugate
gradient method in time O(m?® + nm) (Rudi et al.,
2017; Meanti et al., 2020; Marteau-Ferey et al., 2019).
We then define f = g which is a rank-1 PSD model

with coefficients A =@a ', Z = Jx Fla)de = 1911222y
which is computable in closed form (see Eq. (3)), and
our approximation p = f/Z of p.

Solving Eq. (18) can be seen as solving a regularized
empirical risk minimization problem for the Hellinger
distance (see Eq. (30) in Sec. 3.1); the regularization
term Aa' K,,,a being a regularization in the norm
of the RKHS associated to the Gaussian kernel (see
Appendix B). The Hellinger distance is particularly
adapted to exponential models of the form exp(—V(z))
for a real-valued potential V, as the square root is
simply exp(—V (z)/2).

Step b): sampling from the approximation p.
We apply Algorithm 1 to p with a parameter p and on
the hyper-rectangle X'. We denote with pganp1. the den-
sity D, given by Eq. (7), from which Algorithm 1 ef-
fectively samples N i.i.d. samples by Theorem 1.

The two step strategy is detailed in Algorithm 3. What
is specific to this section is LEARNPSD, which in this
case solves Eq. (18).

Theoretical Analysis We use the same notation
as introduced in Sec. 4.1. We again assume X =
(—1,1)% for simplicity. To obtain good learning rates
for Algorithm 3, we make the following assumption. It
is stronger than Assumption 1: it assumes that p can
be written as a single square g¢>.

Assumption 2 (Square distribution). There exists
a function q belonging to WB(X) such that p = ¢>.
Moreover, we have access to p only through function
evaluations of the form g,(x), where g, o< ¢ and where
the proportionality constant is unknown.

—V(z)

This assumption is satisfied if p < e for a large

class of potentials V.

In Proposition 2 and Theorem 4, we show that under
certain regularity assumptions on p, given € > 0, we
can find hyper-parameters n,m,7, A and p such that
H(p, psamp1e) < Ce, i.e., that Algorithm 3 generates N
i.i.d. samples from a distribution Ce close to p.

Proposition 2 (Performance of p). Let v >
min(1,d/(28)). There exists a constant g9 depend-
ing only on HqHWB(X),B,d, constants Cy,Cs, C3,Cy de-
pending only on B,d and a constant C| depending only
on B,d,V such that the following holds. Let 6 € (0,1]
and € < &g, and assume m and n satisfy

m > Cre~ 4P log? (22) log $2 (20)
n>Cie*log 8. (21)

Let 7 = e 2/8 and A = 214/,
least 1 — 30, it holds

H.p) < Callglls ) & (22)

With probability at
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Once again, the key takeaway from this proposition
is that the number of samples n,m needed to per-
form the first step of the algorithm (approximation)
is polynomial in the quantities O(e~'), O(e~%#), thus
leveraging the regularity 3 of ¢ s.t. ¢> = p. When
this is the case, we can find A, 7 such that the distance
H(p,p) is of order e. We provide a choice for p for the
second step of the algorithm (sampling), in order to
guarantee a bound for the Hellinger distance between
the sampling distribution and the original distribution
in the following theorem. It is proved as Theorem 10
in Appendix F. In particular, it bounds the total com-
plexity of the algorithm in terms of erf computations,
as a function of N and the desired error .

Theorem 4 (Performance of psampre). Under the as-
sumptions and notations of Proposition 2, there exists
a constant Cs depending only on d, 3, such that the
following holds. If p is set either as e t(d+2)/(28) op
adaptively as p? (see Remark 1), then with probability
at least 1 — 36,

H(papsample) S C5||q||Wﬁ(X) €. (23)

Moreover, the adaptive pH is lower bounded by
gl+(d+2)/8 /(O lalliacx))- In both cases, the com-
plexity in terms of erf computations is bounded
by O(NmQIOg%), which, in terms of &, wyields

O (N £=2d/B |pg2dtl (%) log? (é)) where the notation

O includes constants depending on d, 57”‘1”'1/176(;()'

4.3 Discussion

The two methods presented in Sec. 4.1 and Sec. 4.2
share many interesting properties, both from a practical
and theoretical viewpoint.

On the theoretical side, even though we only have ac-
cess to the distribution up to a re-normalizing constant,
this does not influence the theoretical results, i.e., the
bounds we get only depend on the density p through
its norm ||p||. Moreover, the number of samples n,m
needed (and hence the complexity of the sampling and
of the approximation algorithm) is polynomial in the
quantities O(e~1), O(e~%#), showing that as soon as
B > d, the dimension plays no role in the exponents of
these error terms and thus breaking the curse of dimen-
stonality in the rates. However, the constants in the
O(+) term can be exponential in d, and without more
hypotheses, they are unimprovable (Novak, 2006).
We therefore keep a form of “curse of dimensionality”
in the constants, but not in the rate. Concretely this
means that we need a number of points in the order
of the constants before having a reasonable error (i.e.,
e = 1). However, as soon as this number is reached,
one can rapidly gain in precision, if the function is reg-
ular. Moreover, in practice, we do not always pay this

exponential constant, owing to some additional regular-
ity of the function. Interestingly, this phenomenon is
shared with approximation, learning and optimization
problems over a wide family of functions (see (Novak,
2006) for more details).

On the practical side, Algorithm 3 can be run for any
hyper-parameter both in the SDP and rank one case
(even though this might not have statistical sense), mak-
ing it easy to use. More importantly, we can evaluate
the learnt model a posteriori using empirical metrics
(like the empirical total variation distance or the empir-
ical Hellinger distance for instance) on a new data set
generated uniformly from X. We could also evaluate it
using certain empirical divergences since we are able
to sample from pgampre. This can help in both selecting
7 and X\ by validation, as well as in simply evaluating
the performance of the learnt model, with error bars if
needed. In Fig. 2 for example, we evaluate the perfor-
mance of learnt PSD models for the empirical Hellinger
distance. We perform 5 different tests and plot the
associated error bars: this methods seems very robust
for evaluation.

Hellinger distance, d = 1(

B
o] — -

Hellinger distance, d = 2

Figure 2: Evolution of the empirical Heliinger distance
between p and p on a test set, when increasing the
number of evaluation points n for fixed values of m.
We learn p through Eq. (18). (left) Learning py with
d = 10 defined in Sec. 5. (right) Learning p; defined
in Sec. 5.

5 EXPERIMENTS

The experiments in this work were executed on a Mac-
Book Pro equipped with a 2.8 GHz Quad-Core Intel
Core i7 processor and 16Gb of RAM?.

Influence of m and n. In Fig. 2, we show how m
and n interact in order to set the precision of our
approximation in the learning phase (step a)). For
m = 50, 100, 200, m is so small that increasing n beyond
1000 does not yield better performance (the variations
are due to the fact that points are always resampled
accross experiments). However, when m = 500, 1000,
we see that increasing n yields better performance,
before arriving at a plateau. This plateau corresponds
to the transition from the phase where n is the limiting
statistical factor to the phase where m is.

The code is available at https://github.com/
umarteau/sampling_psd_models
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Qualitative performance of our algorithm. In
Fig. 3, we show an example of the way our al-
gorithm approximates a certain target density p;
known up to a renormalization constant: p;(z)
0.08kg.7(x,—(1,1))—0.4kg ¢(x, (1,1))+0.4ko 7(z, (1, 1)).
In the top left figure, a heat map of p; is plotted. Note
that p; is not a Gaussian PSD model, as the widths
of the Gaussian kernels are not the same. We then
use Algorithm 3 to approximate p; by a rank one PSD
model p; (whose heat-map is plotted on the top right
figure) and then sample N = 1000 samples from this
approximation (plotted in the bottom left figure). In
order to approximate p; by pi, n = 10°,m = 300 were
fixed and 7 = 2, A = 107 were selected on a test set.
In Appendix G, we perform and comment another ex-
periment when trying to learn a density which is not
smooth (and therefore out of the scope of Theorems 3
and 4).

Ground truth Approximation

Figure 3: (top left) distribution py, (; top right) approxi-
mation py of py. (bottom left) samples generated from
D1, (bottom right) performance in MMD distance.

Quantitative performance of our algorithm.
To further demonstrate the promising nature of our
sampling algorithm, we tried learning the density
p2(x) o< (kyys(z, (1,..,1)) — kiys(2,—(1,...,1)))* on
Q = [-1,1]4, for d = 5. Contrary to p;, this is a PSD
model, we can sample from it with very high precision
(we chose p = 107°). Our goal here is to be able to
compare methods through generated samples.

We compared the performance of our model to the
naive gridding algorithm which, if allowed n function
evaluations, computes a grid G of side n'/?, which we
identify to the set of centers of the tiles of the grid,
and evaluates p at each point in the grid. To sample
a point, one chooses a point g € G with probability
P(9)/ > hee p(h), and then draws a sample uniformly
in that tile. It is the algorithm called ’grid’ in the
bottom right figure of Fig. 3.

We compare our algorithm with the gridding algo-
rithm by fixing the number n of function evaluations
of p each method is allowed, and computing the dis-
tance between each method and the ground truth.
The distance we use between distributions is the em-
pirical version of the Maxmium Mean Discrepancy
distance (MMD) (Sriperumbudur et al., 2010, 2011),
which is defined, for the Gaussian kernel k,, of parame-
ter 1, as dy(p, P) = [Exnp[dn(X)] = Expln(X)]lly,
where ¢, is the embedding associated to the gaus-
sian kernel k, (for more details, see Appendix A).
This distance can be approximated using N samples
(xi)1<i<n from p and N samples (Z;)i1<j<n from p
as dy,(p,p) = H% ZZV:I on(@i) — % Zjvzl (fbn(jj)HH .
This quantity can be computed explicitly using kerngl
matrices (Sriperumbudur et al., 2010). However, Tol-
stikhin et al. (2016) show that the minimax rate cannot
exceed 1/\/N, i.e., that ‘jn approximates d, only with
precision of order 1/v/N.

In our experiments, we take N = 10*. We compute the
empirical distances d,, five times using newly generated
samples from each distribution, and compute an em-
pirical mean and standard deviation, reported as error
bars on the plot. When approximating p, by a rank
one PSD model using Algorithm 3, we take m = 50, as
there is no need to increase m to reach better precision
than the target distribution for d,. We take p = 1073
and select 7, A by using half of the evaluation points as
a test set.

The results reported on the bottom-right plot of Fig. 3
show that in dimension 5, the ’grid’ method is not
competitive anymore, and is close to the uniform distri-
bution in performance for n = 2. The choice of 7 in a
wide range from 0.1 to 10 does not change these results.
They also show that when taking only N = 10* to
approximate the MMD distance, our method is below
the noise level.

6 EXTENSIONS

Natural extensions of this work include the fact that
while we cast a least squares problem in Sec. 4.1, we can
actually minimize more general convex losses adapted
to distributions, such as maximum log-likelihood es-
timation. Moreover, as mentioned in Sec. 3, the
proposed algorithm only relies on integral computa-
tions, and could therefore be extended to other ker-
nels, provided they can easily be integrated on hyper-
rectangles.

Future work will start with trying to scale the sampling
method up in terms of generation of samples, by both
theoretical means (to make computation saving ap-
proximations) and computational means (use of GPUs,
parallelization).
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Supplementary Material:
Sampling from Arbitrary Functions via PSD Models

Organization of the Supplementary Material

A. DEFINITIONS AND NOTATIONS

We set the main notations and tools of the appendix (Fourier transform, vector and matrix notations,
notations concerning hyper-rectangles, RKHS and specifically the Gaussian kernel).

A.l.

Sobolev spaces
In this section, we focus more on notations and basic results concerning Sobolev spaces, as they will be
our main tool to measure the regularity of a function.

. Measuring distances between probability densities

In this section, we define and compare the basic distances we will be using to compare probability
distributions in the paper, since we are always ”approximating” a certain distribution with another. In
particular, we define the total variation, Hellinger and Wasserstein distances.

. General PSD models

We define PSD models in general (Marteau-Ferey et al., 2020; Rudi and Ciliberto, 2021). They will be
our main tool for approximation and sampling, and relates to the more restrictive definition in Sec. 2.

B. PROPERTIES OF THE GAUSSIAN RKHS

Throughout the paper the Gaussian kernel &, and the associated Gaussian RKHS will be central objects.
We introduce different properties and results.

B.1.

B.3.

Properties of the Gaussian kernel k,
We introduce certain properties of the Gaussian kernel involving products, as well as a bound on the
derivative of the associated embedding in Lemma 2.

. Useful Matrices and Linear Operators on the Gaussian RKHS

We introduce the most important theoretical objects of the paper. We introduce kernel matrices, matrices
which will appear in the integration of Gaussian PSD models, operators which relate L? to the RKHS
H,,, operators which allow to discretize using samples and ”compression” operators which allow concise
representations.

Approximation properties of the Gaussian kernel
We prove two important results concerning the approximation properties of the Gaussian RKHS in
Proposition 7 and the concise representation of models in Lemma 3.

C. PROPERTIES OF GAUSSIAN PSD MODELS

We present the results specific to Gaussian PSD models. These results are often reformulations of theorems
presented by Rudi and Ciliberto (2021).

C.1.

Bounds on the support and the derivatives
We present result to understand how the mass of a Gaussian PSD model is concentrated (Lemma 4)
and how the derivative of a Gaussian PSD model can be bounded using only its parameters (Lemma 5).

. Compression as a Gaussian PSD model

We restate Theorem C.4 of Rudi and Ciliberto (2021) as Theorem 5 on the effect of a compression
operator on a PSD model.
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C.3. Approximation properties of Gaussian PSD model
We refine Theorem D.4 of Rudi and Ciliberto (2021) in Theorem 6 in order to approximate a sum of
squares using a PSD model on the Gaussian RKHS H,,.

D. THE SAMPLING ALGORITHM

We prove that the sampling algorithm indeed returns N i.i.d. samples from the right distribution, and
characterize the distance between the sampling distribution and the original PSD distribution.

D.1. Dyadic decompositions and convergence of Algorithm 1
We formally prove that Algorithm 1 finishes and returns N samples from a distribution characterized by
a structural induction formula (see Lemma 6).

D.2. Proof of Theorem 1
We prove Theorem 1 by structural induction, showing that when the samples are randomly shuffled, we
end up with N i.i.d. samples from the distribution defined in Eq. (7). This is done by matching the
distribution with the one from the previous section using a structural induction.

D.3. Evaluating the error of the sampling algorithm : proof of Theorem 2
We prove Theorem 2 in Theorem 7, bounding the distance between the distribution of the PSD model
and the actual distribution from which Algorithm 1 samples (see Eq. (7)). This is done in different
distances, all related to the problem in different way (Wasserstein is the most adapted in spirit, but we
also need stronger distances such as total variation and Hellinger, which can be bounded using Lipschitz
constants of the PSD models).

D.4. Time complexity
We illustrate that the time complexity of the algorithm is indeed taken up by the integral computations.

E. A GENERAL METHOD OF APPROXIMATION AND SAMPLING

We prove that we can approximate any probability distribution satisfying Assumption 1 using non necessarily
normalized function values, by solving Eq. (13) with the right parameters in Proposition 10 which is labeled
in the main text as Proposition 1. We then show that applying Algorithm 1 with the right value of p yields
a good sampling algorithm from a good approximation of the distribution. This proves Theorem 3 and is
proved here as Theorem 8.

F. APPROXIMATION AND SAMPLING USING A RANK ONE PSD MODEL

We prove that we can approximate any probability distribution satisfying Assumption 2 using non necessarily
normalized function values, by solving Eq. (18) with the right parameters in Proposition 11 which is labeled
in the main text as Proposition 2. This has an advantage compared to the previous method which is that
the approximation phase is much faster (it solves a linear system instead of an SDP). We then show that
applying Algorithm 1 with the right value of p yields a good sampling algorithm from a good approximation
of the distribution. This proves Theorem 4 and is proved here as Theorem 10.

G. ADDITIONAL EXPERIMENTAL DETAILS

A DEFINITIONS AND NOTATIONS

In this section we recall results from Rudi and Ciliberto (2021) which will be useful in the different statements
and proofs.

Basic vector and matrix notations. Let n,d € N. We denote by Ri 4 the space vectors in R? with positive
entries, R™*¢ the space of n x d matrices, ST =S4 (R™) the space of positive semidefinite n x n matrices. Given
a vector n € R% we denote diag(n) € R?*? the diagonal matrix associated to 1. We denote by A o B the
entry-wise product between two matrices A and B. We denote by ||A||, || A]|,det(A), vec(A) and AT respectively
the Frobenius norm, the operator norm (i.e. maximum singular value), the determinant, the (column-wise)
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vectorization of a matrix and the (conjugate) transpose of A. With some abuse of notation, where clear from
context we write element-wise products and division of vectors u,v € R? as uv,u/v. The term 1,, € R™ denotes
the vector with all entries equal to 1.

Hyper-rectangles Define a hyper-rectangle @) as a product of the form szl [ak, b [, where a < b. Given

a hyper-rectangle @) we denote its extremities with a(Q) < b(Q) € R? (ie. Q = HZ:1 [ak(Q), br(Q)[), and its
side-lengths p(Q) = b(Q) — a(Q). We sometimes omit ¢ when it is implied by the context.

We will also use the so-called error function, which is defined as follows :
x 2
erf(z) = %/0 et

This function is implemented as an elementary function in most libraries.

Multi-index notation Let a € N%, 2 € R? and f be an infinitely differentiable function on R?, we introduce
the following notation

d d . d o N 8|o¢\f
— — — J —
j=1 j=1 j=1 ! d

We introduce also the notation D® that corresponds to the multivariate distributional derivative of order a and
such that

Do f =%
for functions that are differentiable at least || times (Adams and Fournier, 2003).

Fourier Transform Given two functions f,g : R — R on some set R?, we denote by f - g the function
corresponding to pointwise product of f,g, i.e.,

(f-9)(@) = f(x)g(x), VaeR:

Let f,g € L'(R?) we denote the convolution by f * g

(Fxo)le) = [ fwate =)y

We now recall some basic properties, that will be used in the rest of the appendix.
Proposition 3 (Basic properties of the Fourier transform (Wendland, 2004), Chapter 5.2.).

(a) There exists a linear isometry F : L(RY) — L*(RY) satisfying
Flf] z/ e_Q”i”T”’f(x) de Yfe LYRY N L*RY),
Rd

where i = /—1. The isometry is uniquely determined by the property in the equation above.
) Let f € L*(R?), then | F[f]l|r2®ay = || fllp2®a)-

(c) Let f € L2(R?),r > 0 and define f.(x) = f(£),Vx € RY, then F[f.](w) = r?F[f](rw).
(d) Let f.g € L'(RY), then F|f - g] = F[f] * Flg
)

)

)

318

Let a € N, f, D f € L*(RY), then F[D® f](w) = (27i)1*w* F[f](w), Yw € R.
Let f € L'(R?) N L2(RY), then || F[f]ll Lo ey < 1 fllL1 @ay-

Let f € L=(RT) N L2 (RY), then || f|| o< (rey < IF[f]ll 21 ma)-



Sampling from Arbitrary Functions via PSD Models

Reproducing kernel Hilbert spaces for translation invariant kernels. We now list some important facts
about reproducing kernel Hilbert spaces in the case of translation invariant kernels on R?. For this paragraph, we
refer to Steinwart and Christmann (2008); Wendland (2004). For the general treatment of positive kernels and
Reproducing kernel Hilbert spaces, see Aronszajn (1950); Steinwart and Christmann (2008). Let v : R — R
such that its Fourier transform F[v] € L'(RY) and satisfies F[v](w) > 0 for all w € R%. Then, the following
hold.

(a) The function k : R x R? — R defined as k(z,2’) = v(z — 2’) for any x,2’ € R is a positive kernel and is
called translation invariant kernel.

(b) The reproducing kernel Hilbert space (RKHS) H and its norm || - || are characterized by

[ FIf](w)]?

Fiol) dw, (24)

M= (e Y |l <oob, 1= [

(c) H is a separable Hilbert space, whose inner product (-, -),, is characterized by

= [, PTG,

In the rest of the paper, when clear from the context we will simplify the notation of the inner product, by
using f g for f,g € H, instead of the more cumbersome {f, 9)y-

(d) The feature map ¢ : R? — H is defined as ¢(z) = k(z — -) € H for any x € R4,

(e) The functions in H have the reproducing property, i.e.,

fx) = (£, ¢(@))y, VfeH,zeR,
in particular k(z/,z) = (¢(a'), #(z)),, for any 2,z € R%

We now introduce the main tool of our analysis, the Gaussian RKHS, which will be further explored in
Appendix C.

Example 1 (Gaussian Reproducing Kernel Hilbert Space). Let n € RiJr and k,(xz,z') = e~(@=a)" diag(n)(z—2")
for x,x' € R? be the Gaussian kernel with precision n. The function ky is a translation invariant kernel, since
ky(x,2") = v(x — a') with v(z) = eID221 p = diag(n) and Fv](w) = c,,e_”2“D71/2‘“”2, cy = m¥/% det(D)~1/2,
for w € R is in LY(R?) and satisfies F[v](w) > 0 for all w € RY. The associated reproducing kernel Hilbert space
M, is defined according to Eq. (24), with norm

112, = = [ \FA@P P70 g, v e L2(RY). (25)

C"7 Rd
The inner product and the feature map ¢, are defined as in the discussion above.

A.1 Sobolev spaces

Let 3 € N,p € [1,00] and let Q2 C R? be an open set. The set LP(f2) denotes the set of p-integrable functions on
Q) for p € [1,00) and that of the essentially bounded on © when p = co. The set Wf(Q) denotes the Sobolev

space, i.e., the set of measurable functions with their distributional derivatives up to S-th order belonging to
LP(8),

Wﬂm=ﬁem®HWW@<mLHﬂ%®=;%WW%®, (26)

where D denotes the distributional derivative. In the case of p = oo,

Hf”wfo(g) = |ICI¥1\222’ 1D fHLoc(Q)
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We now recall some basic results about Sobolev spaces that are useful for the proofs in this paper. First we start
by recalling the restriction properties of Sobolev spaces. Let Q C € C R? be two open sets. Let § € N and
p € [1,00]. By definition of the Sobolev norm above we have

lglellws ) < llgllws @,

and so glo € W, (Q) for any g € W;(€2'). Now we recall the extension properties of Sobolev spaces, which will
allow us to consider the case

The formal definition of a set with Lipschitz boundary is provided by Adams and Fournier (2003). If X = (—1,1)4,
as will be the case later on for simplicity, then X is bounded and has Lipschitz boundary.

The following result shows that being in an intersection space allows to extend the function to the whole of R?.
This will be useful in order to use the properties of translation invariant kernels in order to approximate functions
which are a priori defined only on X but which we extend using this result.

Proposition 4 (Corollary A.3 of Rudi and Ciliberto (2021)). Let X C R? be a non-empty open set with Lipschitz
boundary. Let 8 € N,p € [1,00]. Then for any function f € Wﬁ( )N L (X) there exists an extension f on RY,

i.e. a function f € Wf(Rd) N L= (RY) such that
f:ﬂ?( a.e. on X, ”JZHLw(Rd) SC”fHLO"(X)v ||f||wf(1[§d) SOl”f”wf()()'
The constant C depends only on X, d, and the constant C' only on X, ,d,p

The following proposition gives an idea of what these intersection spaces contain.

Proposition 5 (Proposition A.4 of Rudi and Ciliberto (2021).). Let X be an open bounded set with Lipschitz
boundary. Let f be a function that is m times differentiable on the closure of X. Then there exists a function
feW(X)N LX(X) for any p € [1,00], such that f = f on X.

The following proposition provides a useful characterization of the space W2ﬁ (R?) in terms of Fourier transform;
this will be particularly useful when approximating functions in Wzﬁ (R?) by functions in a Gaussian RKHS H,,
using the characterization of the norm in terms of Fourier transform for those kernels in Eq. (24).

Proposition 6 (Characterization of the Sobolev space W¥(R¢), Wendland (2004), Proposition A.5 of Rudi and
Ciliberto (2021)). Let k € N. The norm of the Sobolev space || - [|ywx(ra) is equivalent to the following norm

s = [ PP O+ o) o, vF e 2R
and satisfies
el sy < Wy < 21y € 2R (27)
Moreover, when k > d/2, then WE(R?) is a reproducing kernel Hilbert space.

A.2 Measuring distances between probability densities

In this work, since our aim is to approximate a probability distribution, we will often compare probability
distributions, with different distances.

To simplify definitions, we will only consider distances between probability densities pi,p2 defined on a Borel
subset X' of R? with respect to the Lebesgue measure. While the total variation distance, the Hellinger distance
and the Wasserstein distance do not actually depend on the choice of such a base measure and can be defined
intrinsically, the L? distance cannot; that is why it is less appropriate from a statistical point of view. We consider
it here because it is the natural distance in which we are able to solve Eq. (13).

The total variation (TV) or L' distance

dry (p1,p2) == |lp1 — p2llLr(x) = / Ip1(x) — p2(z)|de. (28)
X

This distance can also be expressed using a dual formulation (see Chapter 3.2 of Lucien Le Cam (1990)).

/f (1 () — pa(a)) de

drv(p1,p2) = sup
FAS!
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The Hellinger distance : (this distance is particularly suitable in the case of exponential models; see Lucien
Le Cam (1990) and in particular Chapter 3).

1/2
Hpy,p2) = VBT — valzea) = ( [ Wt - vt dm) (30)

The Wasserstein distance In the case where X is bounded (for simplicity), the p Wasserstein distance for
p > 1 (see chapter 5 of Santambrogio (2015)):

We(p1p2) = inf / & — ylP dy(z,y), (31)
YEll(p1,p2) Jxxx

where II(p1,p2) is the set of all probability measures on X x X with marginals p; and p2. Note that one has
the following easier dual formulation when p = 1 (see the chapter on Kantorovich duality by Santambrogio
(2015)):

Wippe) = sw [ f@)() - po)d (32)
fELip, (X) J X

where Lip, (X) is the set of 1-Lipschitz functions on X. Wasserstein distances capture the moving of mass; they
are quite weak but are well-adapted to capture the behavior of our sampling algorithm which approximates
probability densities on each hyper-rectangle.

The L? distance

[p1 — pallL2(x) = (/X (p1(z) — pa(x))? dl‘)l/z (33)

Relating these difference distances . The following well known bounds exist between distances.

H*(p1,p2) < drv(p1,p2) < V2H (p1, pa). (34)

Moreover, if X' is bounded, we have for any p > 1, using the Holder inequality:

Wy (p1,p2) < diam(X) P~ D/PWy (1, p) /7, (35)
Wi(p1,p2) < diam(X)drv (p1, p2), (36)
drv (p1,p2) < |X)Y2(|py — p2llz2(x), (37)

where diam(X) denotes the diameter of the set X'.

A.3 General PSD models

In this section, we recall the definition of a PSD model more generally as introduced by Rudi and Ciliberto
(2021).

Following Marteau-Ferey et al. (2020); Rudi and Ciliberto (2021), we consider the family of positive semi-definite
(PSD) models, namely non-negative functions parametrized by a feature map ¢ : X — H from an input space
X to a suitable feature space H (a separable Hilbert space e.g. R?) and a linear operator M € S (H), of the
form

fla; M, ¢) = d(x) "M ¢(x). (38)

PSD models offer a general way to parametrize non-negative functions (since M is positive semidefinite,
f(x; M,¢) > 0 for any € X) and enjoy several additional appealing properties discussed in the follow-
ing. In this work. we focus on a special family of models i.e. Gaussian PSD models defined in Sec. 2 and
Eq. (1). These models parametrize probability densities over X C R%. It is a special case of Eq. (38) where i)
o=y : R¢ — H, is a feature map associated to the Gaussian kernel defined in Example 1, or by Scholkopf
and Smola (2002) and, #¢) the operator M lives in the span of ¢(z1),...,d(z,) for a given set of points (x;)" 4,
namely there exists A € S; (R") such that M =}, A (i) (2) "
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Thus, given the triplet (A4, X,n) characterizing the Gaussian PSD model in Eq. (1), we have
Z A”kn(x,xl)kn(x,x])=f(a:,A,X,77)=f(a:,M,¢n)
1<i,j<n
M= 3" Aydy(zi) @ dy(x;),

1<ij<n

where (u ® v)w = uw ' w = (v, w) u.

B PROPERTIES OF THE GAUSSIAN RKHS

In this section, we introduce notations and results associated to the Gaussian RKHS (see Example 1) #,, for
a given 7 € Ri + (n will sometimes be taken in the form 714). Recall that the Gaussian embedding is written
On - R¢ — H,, and that the Gaussian kernel is denoted with k.

B.1 Properties of the Gaussian kernel &,

The following lemma has an immediate proof.

Lemma 1 (product of gaussian kernels). Let K € N, let ny,...,nKx € R‘Lr and let y1, ...,y € R, The following
equality holds:

K K
Vr € RY, Hk,]kxyk ) = kx( xyanyk,
k=1 k=1

_ K _ _
where =731 i and § =3y nkYk/7
Let us now state an useful corollary.

Corollary 1. Letn € ]R‘Lr, y1,y2 € R:. Then
Vo € R, ky(x, y1)ky (2, y2) = kon(z, (y1 + Y2)/2)ky2(y1, yo). (39)

Lemma 2 (Gaussian embedding derivative). Letn € R%,, x € R? and o € N, The derivative d,¢y () is well
defined in H,, and ||0ady(x)|n, = 211/2pa/2 = Moreover, if g € My, then sup,epa [(0ag) ()| < 2|a‘/277‘1/2||g||ﬂn.

Proof. Let a € N% and let v,(2) = ky(2,0) = exp(—=2" diag(n)z). If the function %kn(x, y) belongs to H,, then
Oatn(x) is in H, and is equal to that function by the reproducing property.

First, note that
e,y € R, Zoky(@,y) = (=1)10aa[v,)(y),

’ Dz
where 7, : f — f(- — ), commutes with the differential operator d,, and satisfies the following relation wrt to the

Fourier transform : F[7,g](£) = e~ 2™ F[f](£). Hence, using (e) of Proposition 3, we get the following fourier
transform wrt y:

FylGeakn(z,9)](€) = (=2mi)l g2 Flu, ) (€).

Hence, we have using Eq. (24):

k(o M, = [ relee o)) de
— (_1\lel it 2|a| (2a v
(0! [ (il R, 6) de
= (1) [ Fdaawy)(€) d = (~1)10200,(0),
Rd
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where the last equality comes from the inverse Fourier transform. A simple recursion then shows that
(—1)'0“82av,7(0) = 2lolpe hence the result. The last point of the lemma is simply a consequence of the
fact that 0,g(x) = <g,8u¢,,(x)>7_tn.

O

B.2 Useful Matrices and Linear Operators on the Gaussian RKHS

Recall that we denote with ¢, the embedding associated to the RKHS H,, of the Gaussian kernel k,, defined in
Example 1. In this section, we define operators which will be useful throughout the rest of this section and which
we will use in Appendixes E and F. In order to make the dependence in 7 appear (indeed, n will be a parameter
to choose in the the next sections), we will keep it as an index for all of these operators. Recall that for any two
vectors u, v in a Hilbert space H, we can define their tensor product v ® v which is a linear rank one operator
on H defined by (u ® v)w = (v,w),, u. For the sake of simplicity, we will often write u ® v as uv ', so that the
formula (v ® v)w = wv " w is formally true.

Kernel matrices. We start off by setting the notations for kernel matrices as done by Rudi and Ciliberto (2021).
Let X € R"*? and X’ € R™ *4 be two matrices corresponding to points x1, ..., , € R? and 27, ..., 2/, € R%. We
denote with Kx x/, the matrix in R™*"" such that

Vl S 7 S n, Vl S] S n', [KX,X’,n]ij = kn(xi,x;-). (40)
If X = X', then we just write Kx , and it is positive semi-definite, i.e. Kx , € S;(R").

Integration matrices. In this work, we also define, for a given hyper-rectangle QQ = Hizl[ak, bx], the following
integration matrix Gx x/.,.q € Rm*"'

where the erf function is defined in the notations section. Similarly, if X = X', we simply write Gx , ¢.

This matrix is defined in order to satisfy the following property, which is a direct application of Eq. (39): for any
X eR™ any A€ S and n € Rle_, the following holds.

/ f(m, A, X, T}) d(l) = Z [A [e] KXJI/Q [¢] GX,Zn,Q]ij = vec(A [e] KXJI/Q o GX727]7Q)T1"2 (42)
Q

1<ij<n

Co-variance operator. Let X C R? be a measurable set of R? with finite Lebesgue measure |X|. Define the
associated co-variance operator:

CreSiiy).  Cy=ry [ o@@on(a) o, Cpa=Cya. (43)

Note that C, is a trace class operator with and that Tr(C,) = 1 by linearity of the trace and since
Tr (¢ (2) ® ¢y(2)) = ||y (2)||? = ky(,2) = 1. Moreover, since C,, \ = A, C,, » is inverible for any A > 0.

Note that we do not make the set X appear in the notation of the co-variance operator (which can actually be

defined with respect to any probability distribution on R? and not just 1TXC|I$). This is because the set X will

usually explicit in the next sections, and in particular equal to the unit hyper-cube X = (—1,1)<.
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Sampling operators. Let n € N (z1,..,2,) € (R?)" be points of R? which should be seen as samples from a
certain distribution. We define the following sampling operators.

An € S4(Hy), An =+ Z¢n($z) ® on(wi), Coa=Cp+ Al (44)
i=1

Sy Hy =R Sy(9) = 2 (g(z:))1<i<n (45)

§; :R™ — H,, g,*](a) = ﬁ Zaifbn(%) (46)

where §; and §7, are adjoint operators. We will usually use the ® notation to denote sampling operators, and
imply the underlying (z1, ..., 2,). These operators will be used in later sections in order to quantify the difference
between objects resulting from the sampling of distributions and the ”ideal” objects (typically the difference
between an empirical risk minimizer and the true expected risk minimizer). For instance, it is clear the @7 is an
empirical version of C,, if the z; are i.i.d. samples from the uniform distribution on X.

Compression operators. Following the notations of Rudi and Rosasco (2017); Rudi et al. (2015); Rudi and
Ciliberto (2021), a compression operator of size m is an operator Zn,m : Hy — R™. We call it a compression
operator since we use it to project every element of H,, onto the range of the adjoint operator Z rm R = H,.
This range, which we denote with 7—[,7 m C ’Hn, is a subset of dimension at most m. We also denote with

P,, m : "y — H, the orthogonal projection onto Hn m, which can also be written P,7 m = Z* (Z Z ) Z,, s
where f denotes the Moore-Penrose pseudo-inverse.

In this work, we will always use the notation e, to denote a compression operator, and the index m to make the
size of the compression explicit.

In this work, we take a specific form of compression operator as in appendix C of Rudi and Ciliberto (2021).
Indeed, let X, € R™*? bhe a data point matrix representing vectors Z1, ..., ,, € R?. The compression operator
associated to X, is the following :

Zn,m tHy — R™, Zn,m(g) = (g(i‘j))lijﬁm = (9T¢77(53j))1§jﬁm' (47)

Note that Z Z;,k m = K, and hence the projection operator can be written ﬁmm = Z; mK; me and
that it is snnply the projection onto span{¢,(Z;)}1<i<m. This compression is also chosen to satlsfy the two

following properties :
o if h € H,, then ﬁn,mh represents a function of the form g(e; a,)?m, 1) where a = K}( anmh (see Eq. (2)
for the definition of the Gaussian linear model ¢(z; a, Xom, n);

e if M €S, (H,), then for any x € R?, it holds

f(fE; Pn,mMPn,mv ¢n) = f(xa A7 Xm, 77)7 A= K;L‘Zm)nZn,mMZ;,mK;’zm’nv (48)

meaning that compressed linear (resp. PSD) models can be compressed as a sum of m (resp. m?) Gaussian
kernel functions. We quantify the effect of this compression in Lemma 3 and Theorem 5.

B.3 Approximation properties of the Gaussian kernel

This section aims in quantifying the approximation power of the Gaussian RKHS. We start in Proposition 7 by
quantifying the approximation power of the Gaussian RKHS by finding an € approximation of a regular function
with controlled norm. We then quantify the ”size” of a compression for the Gaussian RKHS in Lemma 3, which
essentially bounds the possible variations of a function in #,, if it is equal to zero on the compression points

X
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Approximation of a Sobolev function. This paragraph remolds results in the proof of Theorem D.4 of
Rudi and Ciliberto (2021) whose goal is to approximate any function g € W5 (R?) N L>(R%) by a function in
Hy.

Proposition 7 (Approximation of W} (R%) N L>(R%) in Hy). Let g be a function in W2 (R N L (RY) and
n € R4, . Denote with || the product |n| = H?:l n; and 1o = minj<j<qn;. For any e € (0,1], there exists 6 € H,,
such that

16 = gllzage) < elgllys g
{ L 6l < Co Nl ey I (14 eexp (5:257)) - (49)

10 = gll L ey < Cr ' lglle

where ||glle = llgllL=@e) if 6 < d/2 and |[glle = llgllyp ey if 8 > d/2, v = min(1,d/(26)) and Cy,Cy are
constants which depend only on d, 3.

Proof. Recalling the notations from the proof of Theorem D.4. of Rudi and Ciliberto (2021), let g; := t~%g; (x/t)
where g; is defined as g in equation (D.2) of Rudi and Ciliberto (2021). The following result hold.
e By step 1 of the proof of Theorem D.4, [|g — g * g¢ r2ra) < (2t)° ||9||W25(]Rd)'

e By step 2 and the beginning of step 3 of the proof of Theorem D.4,

lg % gellae, < 257441+ (1/3)° exp(2% )9y g

e As in step 5 of the proof of Theorem D.4 and in particular the Young convolution inequality combined with
the fact that ||g1 || 11 (ray is finite, [|g * g¢ll oo (may < |lg1llL1(me) 9]l Lo (may Which in turn implies ||g — g * g¢]| <
(L4 llg1llzr®ey) 119l Loo (Ray-

Replacing t by ¢!/8 /2, we get all the bounds except the bound for the L> norm in the case where 5 > d/2. In
that case, we proceed in the following way. Recycling results and notations from the proof of Theorem D.4 of
Rudi and Ciliberto (2021), denoting with F the Fourier transform defined in Proposition 3, it holds

ILf — f*gillLeemay < |F(f — f *ge)ll L1 (ray Proposition 3
= [|F(HQA = Flge)ll 22 wa)
<A+ wlP)P2F ) 2@ay 11+ wl?) 772 F(1 = go)ll 2@y

1/2
<2 ( [ sy dw> 1l ey Bt 27)
llwll>1/t
1/2
=98 (Sd/ rd=l (14 72)7P dr) ||f||W;(Rd) (spherical coord.)
r>1/t

1/2
< 5/3/2561/2 </ y pd—1-28 dr> ||f||W2g(Rd) (t<1/2)
>

_eB/2_ 1 1/2,8-d/2
—5/m5dt /

—Bal/2 -
— 5B/29d/2 Bsd/ ﬁsl d/(QB)HfHWZf’(Rd)’

”f”Wzﬁ(]Rd)

where S, is the surface area of the d — 1 dimensional hyper-sphere. O

A bound on the performance of compression when using uniform samples from X = (—1,1)%. In
this paragraph, we study the effect of performing compression with a compression operator of the form Zn’m
(see Eq. (47)) where the associated X,, are i.i.d. samples from the uniform measure on the unit hyper-cube
X =(-1,1)4.

Lemma 3. Let m € N, 6 € (0,1], 7 > 1 and p € (0,1]. Let n = 714 € ]Rle_. Let X,n € R4 pe g
data matriz corresponding to vectors Ti,...,T.,, which are sampled independently and uniformly from X =
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(=1,1)¢ and let ﬁnm be the associated projection operator in H,. With probability at least 1 — 0, if m >
C1 72 (log CZ) (log +log 7 + loglog €2 ) then it holds :

sup [|(1 = By ()| < p, (50)
zeX

where Cy,Co, Cs are constants which depend only on the dimension d and not on 7,m, 0, p.

Proof. Let h denote the fill distance with respect to )?m, ie.

h= max min |z — | (51)
z€[-1,1]4 1<) <m

Using Lemma 12 p.19 of Vacher et al. (2021), we there exists two constants C7, Co depending only on d such that
h < (Clm’l(log(cgm/é))l/d.

Applying Theorem C.3 from Rudi and Ciliberto (2021) in the case where X = (—1,1)%, 5 = 714, there exists
constants Cs, Cy, Cs depending only on the dimension d such that when h < 7=/ oy ! the following holds :

~ _Cs ., G5
sup [[(I — Py.m)dn(2)|| < Cae™ 772k 8 7172R (52)
reX

Now note that taking Cs = max(Cy 6C5) and C7; = max(e, Cy), as soon as h < Ce7~/2/log %, it holds a)

h <7 Y2051 b) 1/2h > e and thus log =& —7% > 1, and hence c) sup ¢y [[(1 — P77 m)on(x)|| < p using Eq. (52).
Using the bound on h, this is satisfied as soon as

d
m > Cer?/? (log %) log(Cam/9),

where Cg = max(C1/ C’g, e). Using the fact that Cs, Cs > e, and using the reasoning in the proof of Theorem C.5
of Rudi and Ciliberto (2021), in equation (C.44), a sufficient condition is the following :

d
m > 2CsTY? (1og %) <log(202Cg/5) + 2log 7 + dloglog %) . (53)

The result in the theorem is obtained by taking C; < 2Cgsd, Cs < C7, C3 < 2C5C5. O

C PROPERTIES OF GAUSSIAN PSD MODELS

In this section, we detail some of the properties specific to Gaussian PSD models.

C.1 Bounds on the support and the derivatives

In this section, we present results which can be used to bound the tail and derivatives of a Gaussian PSD model.
These bounds can be used both for theoretical purposes (see Appendixes E and F) and to perform adaptive
bounds in an algorithm (see Sec. 3)

Lemma 4 (tail bound). Let § = (6;) € R4, n € R, X € R"*? and A € S.(R"). Let f(z; A, X,n) be the
associated PSD model. Define T, x :

V1 <k <d, 7, = max X;i, 2, = min Xi.
1<i<n 1<i<n

Let Qs = Q(z — 6, T+ d). Then the following bound holds:

d
/MQ | (5 A, X, ) |da < (%d/?det(dlag 2)) /> Ze”’”‘; ) S [Ao Kyl (54)
S5

=1 1,J
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Proof. Start by recalling the following simple Chernoff bound:

+OO 2 2
Va > 0, / e dt < me™® (55)
x
Indeed, take A > 0. Since e=2** ?M < 1, it holds

e t? 22z A2 e t—\)>2 2 (A—x)?
/ e " dt <e e / e =N gt < Ve @ A=)
xr — 00

Hence, taking A = z, we get the bound. Then we perform the following bound.

1
/ ky(x,0)de = —— /
RAN\Q(—4,8) e, m/ Rd\@( ENGENG)

(d=1)/29 /OO et dt)
i 177” ? ; ( B

< omd/? det(diag(n -1/2 Z e_‘sk""

ki (x,0)dx

where we go from the first to the second line by noting that
R4\ Q(—6,0) C UL R x ... x R\ [<0k, 03] X ... x R,

and the last inequality comes from a Eq. (55).

The result immediately follows from Eq. (39) as well as the fact that Qs contains (z; + z;)/2 + Q(—9, ) for all
1<i,j<n.

O

Lemma 5 (derivative bound for general PSD model). Let n € RY,, M € S;(H,) X € R™*¢ and A € S;. The
following bounds hold :

sup |0af(x; M, )| < 2219172 /2 | M) (56)
rEeRI
sup 0o f(x; A, X, )| < 2219172 902 | K2 AR (57)
zEeRI

Proof. By derivation of a bi-linear form, we get

00 fas M,0n) = 3 () Osta(0). MO sn ),

B<a

Hence, using Lemma 2, we get, for any = € R¢,

« a— o— « «
|Oaf(z; M, y)| < | M]| Z( )2“"/27#/22' Pl ple=p)lz = g3leli2yer2| ), (58)
BLla

In particular, since f(z; A,X,n) = f(x; Ma,¢,) with Ma = Z*AZ for Z : h € H, — h(z;)1<i<n, and since
27" = Kx p, it holds

IMall = (127 AZ) = |AY2 227 42| = | AV K x , AY2)| = | K2 AR,

and hence the second equation of the lemma. O
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C.2 Compression as a Gaussian PSD model

In this section, we restate Theorem C.4 of Rudi and Ciliberto (2021) on the compression of a PSD model of the
form f(xz; M,¢,) into a Gaussian PSD model.

Let n € R_H_, M e S+(7-L ). Given a matrix X,, € Rmxd representing vectors Z1, ..., Z,, € R%, and the associated
pI‘OJeCthH operator P,] m (for more details, see Appendix B.2), one can compress the PSD model f(e; M, $,)

into f(e; P,7 mMP,7 m) which is also a Gaussian PSD model of the form f(e; A, X,,,7) (A is defined in Eq. (48)).
The quality of the compression is given by the following theorem.

Theorem 5 (Theorem C.4 of Rudi and Ciliberto (2021)). Using the previous notations, the compressed model
associated to P,, mMP,, m of M onto X, has a distance to the original PSD model associated to M bounded, for
any x € X, by

|f(33, M7¢n)_f(x anManad)n | < \/f x; M, ¢77 ”]MHI/2 bupH([ P?;th)¢n( )i

+ M| sup I = Byn) by (@)1 (59)

We therefore see that the quality of the compression depends mainly on the quantity
sup (I = P)oy ()],
reX

which can be bounded using Eq. (50) in Lemma 3.

C.3 Approximation properties of Gaussian PSD model

Define, for any measurable  C R? and any f : Q — R, the following function (set to 4oo if the set is
empty).

Q Q
1f lsos0,6 = inf § > max((Lfillzocoys 1 fillws ) | F=D_f7 Q€ [0,+00] (60)

i=1 j=1
Here, we recall Theorem D.4 of Rudi and Ciliberto (2021), refined in a small way to have more control over the
dependence in the f;.

Theorem 6 (Theorem D.4 of Rudi and Ciliberto (2021)). Let T > 1 and e € (0,1] and f such that || f|| ;o ga 5 < 00
Let n = 714. There exists M, . € Si(H,) such that fr.:= f(e; M, ¢,) is € close to p in L* norm and has

controlled trace norm:
[ fr.e = fllL2eray < C1 ([ fllsosrep €
Tr (Mr) < Co || fllyospap ™/2(1+ €% exp(Cy e%/F /7)), (61)

where the constants C1,Ca,Cs depend only on 3, d

Proof. Let § > 0 and take Qs € [0, +00] as well as fs5; such that f = 2?21 f62,j point-wise and

Q

D gy 1l U o) < 1 o

Now using exactly the same reasoning than in the proof of Theorem D.4 of Rudi and Ciliberto (2021) but setting
simply ¢t = £'/#, it holds the existence of Ms ;. and Cy, Cq, C3 depending only on 3, d such that

i = Flissy < O (1f oo s+ 9)
Tr (Ms,re) < C2 ([ fllsos.ra 5 1+ 9) 7421 + 2 exp(Cs €728 /7).

Note that in the proof, M; ;. is well defined since its trace norm is bounded (normal convergence). Now if
[ fllsos 2 g = O, then f = 0 and there is nothing to prove. If not, then taking § = || f|| s ga 5. the theorem
holds. O
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D THE SAMPLING ALGORITHM

In this section, we formally prove that Algorithm 1 converges, as in Theorem 1, as well as the different results
of Sec. 3. We start by introducing some notations around dyadic decomposition of hyper-rectangles. We then
introduce a well founded order relation, which we will then use to both construct the random variables we study,
justify the convergence of the algorithm and prove its correctness.

Recall we are given a density (up to a scaling factor) f(z) and that we denote with I(Q) the quantity | 0 f(z)dx
on any hyper-rectangle Q.
D.1 Dyadic decompositions and convergence of Algorithm 1

Dyadic sub-rectangles Let Q = Hi:l [ax, bi[ be a hyper-rectangle where a < b and let § = b—a. Let ¢ € N%.
We define Dg 4 to be the set of dyadic sub-rectangles of () whose k-th size is cut in half g, times, i.e.

d d
Dq.q = {H[ak+5k23k7ak+5k§i—;[ D s € H [0, 2%+ 1]]}
k=1

k=1

We denote with Dg the set of dyadic sub-rectangles of @, i.e. the union quNd Dg,q-

Moreover, if ¢ = max(0, [log, %1), we also define Dg . := Dg 40 to be the set of dyadic sub-rectangles whose
size is just below p.

Well founded order relation on hyper-rectangles For all p > 0, we define the following strict order
relation. We say that @ <, Q' if the following conditions hold :

2. There exists k € [1,d] such that &, > p and §; < 0}

This relation is obviously transitive. Moreover, if s(Q) := ZZ=1 0k(Q), it is easy to show that @ <, Q' implies
s(Q) < s(Q") — p/2. Since s > 0, this in turn shows that any strictly decreasing sequence for <, is finite, and
that Q <, Q" and Q' <, Q are incompatible.

We are now ready to define the random variable Y, g , by structural induction on @ for any n € N. Recall that
for Q c R?, we denote with Ug the uniform law on .

Definition of the random variable Y, , and relation to the algorithm We now define a random
variable from whose distribution we sample when SAMPLERREC in 1 is applied.

o If §(Q) < p, then for any n € N, Y, g.n ~US"

e Else, let n € N and kg = minargmax; ., 0x(Q) be the smallest index amongst the largest sides of Q.
Define @1 and Q2 to be the two hyper-rectangles obtained by cutting ) in half along the direction kg. Since
dko > p and @1, Q2 are dyadic sub-rectangles of @), we have Q1,Q2 <, Q.

By structural induction, we give ourselves a probability space on which we take we take the following random
variables to be independent : Y1, ~ Y ) 01m, Yom~ Y, 0,m for 0 <m <nand M ~ B(n,1(Q1)/1(Q))
and define

Yoon= (Yp,QthY/LQz,n—M) = Z Ly=m (Y 1,m, Y 2,n—m)- (62)

m=0

Lemma 6 (Termination of the algorithm and first result). For any inputs p > 0, hyper-rectangle Q and n € N,
SAMPLERREC in Algorithm 1 terminates and returns a sample (y1,...,yn) from'Y , g n.

Proof. This is a simple application of structural induction on the well-founded order <, for the termination and
then again for the fact that a sample (y1,...,y,) from Y, g ,, using the definition of Y above. O
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D.2 Proof of Theorem 1

In this section, we prove Theorem 1. To do so, we define a random variable X, o, compute its density with
respect to the Lebesgue measure on the hyper-rectangle ) (and show it is our target density), and show that
Y = X up to some random shuffling.

Definition of the variable X, Recall the definition of Dg , from Appendix D.1. We define a random
variable R, g on Dg, , whose law is defined P(R, g =) = I(r)/1(Q). Recall that for any r C R, we denote with
U, the uniform law on r. We give ourselves a measure space on which there exists a family of random variables
U, ~U, for r € Dg , and R ~ R, o which are all independent and define

Xpq=Ur= Y 1zl (63)

r€Dq,p

Lemma 7 (density of X, o). The density of X, g with respect to the Lebesque measure is given by Eq. (7), i.e.

Vo€ Q, px, (@) = > fgp (64)

Proof. For any measurable function f, it holds

E[f(Xpr)] = E[lR:rf(Ur)]

dx

O

Action of a permutation and decomposition Let n € N. For any permutation 7 € &,, and vector v € R",
denote with 7 v the permuted vector (v;-1(;))1<i<n-

We now define a decomposition of a permutation of n variables as i) a permutation of the first m variables and a
permutation of the last n — m variables ii) followed by a rearrangement of these variables.

Given I C [1,n] of size m, define 77 as the unique permutation satisfying I = {7;(1),...,7r1(m)}, I° = {7r(m +
1),...,7r(n)} and 77(1) < ... < 77(m) and 77(m + 1) < ... < 77(n). For any m € [0,n], if Py, (n) denotes the set of
subsets of {1,...,n} of size m, the map from P,,(n) x &,, x &, _,, to &,, defined as

(1,0 O (2 — {Tl(am(i)) _ ifi<m ) (65)

Tr(m+ op_m(i —m)) otherwise

is a bijection.
Lemma 8. Let p > 0. Let n € N, Q be a hyper-rectangle of R%. Let o be a random permutation independent of

Yp,Q,n- Then <Y[o)-,(8,n)1§1§n ~ X’(?g

Proof. Once again, we prove this by structural induction. Fix p > 0. We will prove the following property by
structural induction on the set of hyper-rectangles () equipped with the strict order relation <, :

For any n € N, if ¢ is a random permutation (i.e. distributed uniformly amongst all permutations in &,,),
Yo.n ~Y,0n and both random variables are independent, then (Yg(g)lgign ~ Xg’;.
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1) Ifé6(Q) <p.
On the one hand, by definition of ¥, g, it holds that for any n € N, Y, g.n ~ U5" and hence Y ~ US".

By invariance of the product measure by permutation, it also holds that (YJQ(Q)ISiSn ~ Z/{S".

On the other hand, since §(Q) < p, it is easy to see that ¢” = 0 and hence Dg , = {Q}. Hence, by definition of
X,,0 in Eq. (63), R is deterministic and hence X, o = Ug ~ Ug.

Putting things together, this yields (YUQ(;)‘)lgign ~ X?Q

2) Assume 6(Q) > p and take n € N. By definition of Y, ¢, in Eq. (62), and since our property only concerns
a convergence in law, we can assume that Y g, is of the form

n
YQ,n = Z ]-M:nz(YQl,m»YQz,n—m)v

m=0

where Y g, m, Y g,,m and M are independent and independent of o, Y g, .m ~ Y p.01,ms Y Qaym ~ Y p,Qq,m for
0<m<nand M~ B(n,I(Q1)/1(Q)), and Q1, Q2 are defined just before Eq. (62). It is easy to see that since
Q1UQ2=Q and Q1,Q2 <, Q, it holds Dg , = Dg, , UDq,, , where Ll symbolises a disjoint union.

Fix a measurable function f. Using the independence of M from the other variables and the fact that it is
discrete, it holds

Elf(cxYqn) = Z P(M = m)E[f(o* (Y q1,m, Y Qsn—m))]-
m=0

Now note that using our bijection Eq. (65), it holds

EavYQl,WuYQan [f(a' * (YQl,ma YQg,n—m))]

1
= a Z ]EYQI,'HL;YQZ,M, [f(T* (YQ1,m) YQ?an_m))]
‘red,

1
] S>3 D Eve, Yoy FErx (015 Y Qum 025 Y gy nem)))]

T IC[1,n] 01€6m 026G _m
[I|=m

1

== Y Boroa¥o, Yoy FTr % (015 Y Qm 02 % Y Qynm)))]

(:"Ll) IC[1,n]
[I|l=m

Now note that by induction, o1 Y g, m ~ X3¢ and 0o x Y g, nm ~ ijgl;m).

Let X{,..., X7 ~ X, o, and X{,.., X} ~ X, o, be 2n i.i.d. random variables; the previous statement shows
that , 77 % (01 * Y 0, m, 02 % Y 9pn—m) ~ (Xilier + (1 — Lier) X&) 1<i<n (here, I is fixed). Moreover, note that
P(M =m) = (::l)qm(l —q)" ™ where ¢ = I(Q1)/I1(Q). Hence

Elf(cxYqn)] = Z g"l(1- q)n_lllEX;',X; (Xilier + (1 = Lier) X3)1<i<n
IC[1,n]

Now let By, ..., B, be n i.i.d. Bernoulli variables of parameter ¢ independent of the X7, X5. Note that from the
previous equation, _ _
Elf(0*Y gn)] = E[f(X1B; + X3(1 — Bi))1<i<n)]

It is easy to see that (X{B; + Xi(1 — B;))1<i<n are i.i.d. and distributed as X, ¢, which concludes the proof.
0
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Proof of Theorem 1. Theorem 1 is now a simple consequence of Lemmas 6 to 8. The bound on the number of
integral computations can be easily obtained by noting that for any sample, at most sumzzlq,’j hyper-rectangles
are visited (we do not count the first since this computation is done once and for all in any case). Since
af = Mogy(8k/p)] < logy(284/p), this yields a bound of logy(24Q|/p%) = logy(Q]) + dlogy(2/p) per sample,
hence the result. O

D.3 Evaluating the error of the sampling algorithm : proof of Theorem 2

Theorem 2 is a specific case of the following theorem. For a given function g defined on a hyper-rectangle @,
define its Lipschitz constant with respect to the infinity norm :

. g\r)—g9y
Vo € Q, |z|loo = sup |xi, Lip,,(g) = sup 7| (z) ( )l (66)
1<k<d z,y#eQ lz —ylloo
zAy

Theorem 7 (Variation bounds). Let Q be a hyper-rectangle, p > 0, pg = f/I1(Q) and pq,, defined in Eq. (7).
Recall the definition of Lip, (f), Lipo, (v f) from Eq. (66). The following bounds hold.

drv (po:Pa.p) < 1055 Lipw(f) p (67)
H(pq.pa.p) < \/ 715y Libe(v/F) p (68)
W, (p,p.,) < Vdp, p> L (69)

Proof. Recall that pg = f1¢/I(Q) and hence

Vo e Q, po(x) = ﬁ Z f(x)1q, ()

QpeDva
Combining the previous equation with Eq. (7), it holds :
I
¥z € Q, po(r) —po,(@) = gy Y. (fz) - 1310, (@) (70)
QPEDQ,p

1. Distance between f and its mean on a small cube. Let @, € Dg , and = € Q,, it holds

|F(z) — 12| < Lipoo (f) p. (71)
Indeed, expanding the mean, we get f(z) — II(QQppl) = ‘le‘ pr (f(z) = f(y)) dy. Moreover, |f(z) — f(y)] <

Lipo. (f) ||z — y|/sc- Plugging that back in the previous equation and using the fact that ||z — y|loc < p on Q,, we
get Eq. (71)

2. Bounds on the total variation and L? distances. Using Eqs. (70) and (71), we immediately get

I
[ Ibo@) - pos(@lde =ty S [ If@) - 4ldo
Q QpeDQ>P Qp
1QILipo (f) p
=TT

3. Bound on the Wasserstein norm W,. Consider the following density on @ x @:

Vo) =g Y f@)le, (@) g1, W) (72)
Qo€DQ,p
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A simple computation shows that v € II(pg,pg,p) (see Santambrogio (2015) and Eq. (31)), i.e. that its marginals
are pg and pg,,. Hence, by definition Eq. (31), we have

W2 (pq:PQ.p) Z / |z — |p dmdy
XQp

Q,;EDQ

Now using the fact that if z,y € Q,, we have ||z — y|| < Vdp as @, is a hyper-rectangle with all sides of length
less than or equal to p, we finally get : W, (pg,p0,,) < Vdp

4. Hellinger distance bound. Note that we could get a looser bound using Eq. (34) which only relies on the
Lipschitz constant of f and not on that of 1/f. Here, we concentrate on that case.

Let Q, € Dg,,. By the intermediate value theorem, there exists z € Q, such that f(z) = 1‘%9:‘) and hence for any

x € @, it holds
V@) = TG = [V@) = VG| < LinaVD) e =l < Lina V) 5.

Bounding the distance between pg , and pg by decomposing on dyadic hyper-rectangles using the previous
expression, it holds

2
H(pq,rq.p) Q) ~ |QP|I?Q)‘ dz
Qp€Dq,p
B 1Q.)
-y X / %
Qpr€Dq,p
2
Li 2 .
< WieeV) ol N / ldx( 785 Lio (v/F) p) :
Qr€EDQq,p

D.4 Time complexity

In the Theorem 1, we measure the cost of the algorithm in terms of evaluation of integrals of the PSD model and
in particular in the number of calls to the erf function (or subtractions) in the computation of such integrals.
The fact that this is the true bottleneck of the algorithm can be seen in Appendix D.4, as integrals take 95% of
the CPU time.

Table 1: Main computing times (% of the CPU time)

’ PART ‘ MAIN OPERATION ‘ TIME ‘
’ Integration \ Egs. (3) to (5) \ ‘
Computing Kx ; /2 1%
Computing X 6%
Computing Gx 2,0 | Computing A, B 8%
Calls to erf 6%
Other 8%
Other 1%
’ Sampling \ Algorithm 1 \ ‘
Computing I(Q) Calls to erf 34%
Computing A, B 26%
Mulitplications /1 11%
Other 24%
Other 5%




Ulysse Marteau-Ferey, Francis Bach, Alessandro Rudi

E A GENERAL METHOD OF APPROXIMATION AND SAMPLING

In this section, we prove Proposition 1 and Theorem 3 using mainly results from Rudi and Ciliberto (2021). We
introduce those results sequentially, showing the how each one is a building block towards the final result.

For this section, fix a probability distribution p on the set X = (—1,1)? (this is for the sake of simplicity; any
hyper-rectangle could do), and assume that Assumption 1 holds for a certain § € N, 8 > 0, i.e. there exists J € N
and qq,...,q5 € Wf (X) N L*®°(X) such that p = Zj qj2.. In this section, this probability distribution p is only
known through a function f, proportional to its density. Denote with Z, > 0 this proportionality constant, i.e.
fo/Zy = p, and with f; the renormalized q; : q;/\/Z, = f; s.t. f, = > f2 Our goal is to be able to generate
i.i.d. samples from a distribution as close as possible to p.

To do so, we first approximate f, by a Gaussian PSD model f:mw\ = f(-;gﬂmy,\,f(m,n) where 7 = 714 and
7> 0, X, € R™*4 i5 obtained as (Z1, ...y a?m)T from m i.i.d. uniform samples from X', and A, ,,  is obtained by
solving the problem Eq. (13) which we rewrite here for a given A > 0 :

A, X, n)dx —2 O (i A, X, K'Y2AK/? 1
Aegil%m/fx n)*de prx fis A, Xom) + A e (13)

where K = K o and the (z;)1<i<n represented by X € R"*? are n i.i.d. samples from the uniform distribution
on X.
The parameters 7, m,n, A are selected in order to have an € approximation of the probability p.

USlng the fact that we can easily compute 1ntegrals of Gaussian PSD models, we can easily have access to
pT,m,A me/\/ZTm/\ where ZTm/\—Hme)\HLl fo‘rm)\ )

We then apply Algorithm 1 to Dr , z, the hyper—rectangle X, the desired number of samples NV and a certain p
controlling the size of the dyadic decomposition of X in order to sample from a distribution whose total variation
distance to p is less than a constant times €.

Existence of a compressed e¢-close Gaussian PSD model. We start by invoking Theorem 6 in order to
obtain an e-approximation of f, in the form of a general PSD f. . with associated operator M, . € S, (H,). This
PSD model can then be compressed using a compression operator as described in Appendix C.2. This is the
object of the following proposition.

Proposition 8 (Compression of M, ). Let e € (0,1], 7 > e=2/# and define n = 714 € R%. Let M, . be given by
Theorem 6 applied to f, and satisfying Eq. (61) and fr . the corresponding PSD model.

Let m € N, Xm € Rm*d pe a data matrix corresponding to vectors Iy, ..., T, which are sampled independently
and uniformly from X, and P, n, be the associated orthogonal projection in H,. Let My p, ¢ := Py mMr Py m be

the operator associated to the compressed PSD model fﬂm’ﬁ of fr.e onto Xom (see Eq. (47) and Eq. (48) for the
definitions).

Let § € (0,1]. If one of the two following are true
m > Cir/? (log % + 2 1log 7') (log + 2log T + loglog =2 ) (73)
m > Cle= P (1og %’) <log + log 5 ) ) r=¢"%8 (74)
then with probability at least 1 — §, it holds

HfT,e - fT m e||L2(X) < 2d HfT,e - fT,m,e”LOO(X) < 2C pr”sos,]Rd,BE
Tr (MTm 6) <Tr (MT,E) <C ”fPHSOS,Rd’ﬁ /2 (75)

The constants C,C1,C%, C%, CY depends only on d, B, and not on T,&,m, 6.

Proof. Using Eq. (61) in Theorem 6 applied to f,, we see that if ¢ <1 and 7 > £72/8 there exists constants
Cy, Cs depending only on d ,3, and not on 7,e such that |[f(:; Mr.e,¢n) — fpllr2(x) < Ca [[fpllgogpap € and
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Tr (M. ) < Cs ||fp||SOS R B 72 (we set C5 = Cy(1 4 e©3) where Cy, Cs3 are introduced in Theorem 6). Now

setting p = 575z which is less than 1 since e <1 and 7 > £72/8 > 1, we can apply Lemma 3 and hence, with
probability at least 1 — o, if

m > C17%2(log C"‘Tw)d (1og % + log 7 + log log C"‘TT(W) , (76)

with Cy « C] from Leinma 3, Cy + max(e, C’gZd) where Cs is given by Lemma 3 and C3 < C3 from Lemma 3,
it holds sup,cx ||(I — Ppm)én(x)|| < p (hence Cy, Cs, C3 depend only on d).

1. Let us now show that Eq. (76) is implied by Eq. (73). Let us bound :

= log (log C2 (1 + ‘iil(’?))
g

= log log 2 + log (1 + d/QIOgZT)

€

log log €2~

< loglog % + glogT,

where the last inequality is obtained since log(1l + ¢) <t and Cy/e > Cy > e by definition of Cs and since ¢ < 1.
Setting C1 = 3C1, C% = Cy and C% = Cs, it is therefore clear that Eq. (73) implies Eq. (76).

2. Moreover, Eq. (73) is in turn implied by Eq. (74). Indeed, in the case where 7 = £~2/#, we have the bound
loglog —|—dlog7'<log —|—dlog7'_log 2 4 dlog < (1+d/ﬂ)log
since C% > e > 1. Thus, taking C} = C}(1 + d/B)?*!, Eq. (74) implies Eq. (73).

3. If Eq. (76) holds, then Eq. (75) holds with probability at least 1 — 4. Indeed, for the first part, since Eq. (76)
holds, with probability at least 1 — &, sup,cx [|({ = Pym)0y(2)|| < p = 55272

Moreover, using Eq. (59) combined with the fact that for any x € X, |f(z; Mre, dp)| = | (0n(x), My cpp(2)) | <
16n (@) 13, Myl = | M ]| since [|éy(x)|[* = kn (2, x) = 1, it holds

1F (5 More, ) = f (3 Mram.es )l ) < [ M el (0 + ) < 2/|M: e

We conclude using the fact that for any operator M, and any orthogonal projection P, ||M| < Tr (M) and
Tr (PMP) < Tr (M). We then conclude the proof by using the definition of p and the fact that [, 1 do =2,
and setting C' + C5.

O

Comblnlng Eq. (61) and Eq (75), we see that if m is large enough, one can find a Gaussian PSD model of the form
fmmE =f( - ATm €,Xm,Tld) (where ATm ¢ is defined through Eq. (48) from MTm ) which is C ||fp||soS Rd g E
close to f, and whose trace is controlled. It now remains to compare the performance of fT’m,6 with the Gaussian
PSD model learned from evaluations of fp, ﬁ,m’ A, which is the solution of Eq. (13) which we can compute.

Controlling the L? distance between J?nm, » and f,. This theorem is a rewriting of Theorem 7 of Rudi
and Ciliberto (2021), but with the point of view of € instead of n.

Proposition 9 (Performance of ﬁmk) Letn € N and let (x1,...,x,) be n i.i.d. samples from p. Let § € (0,1]
and € < % Assume n satisfies

n > e ([420/816g¢ (L) 10g (2), (77)

Let m € N and assume m satisfies Eq. (74) and let Xm € R™X4 be a data matriz corresponding to vectors
F1,..., &m which are sampled independently and uniformly from X. Let A = e2(B+d/6 7 = ¢=2/F gpd from.x be

the Gaussian PSD model associated to the solution A\TM,)\ of Eq. (13) with )Z'm, A, 7. With probability at least
1 — 29, the following holds

~ — 1/2
(1Frimr = ol ae) = MM rmalF) " < C fpllyua s < (78)

where C is a constant depending only on d, B, and not on €,6,\,m, 7, fp.
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Proof. We start by applying the same reasoning as in the proof of Theorem 7 by Rudi and Ciliberto (2021).

Note that since 7 = e~2/# and Eq. (74) is satisfied, with probability at least 1 —§, it holds ||J?T,mve — ﬁ',m,A”L?(X) <
201 | fpllgosma g € (where Cy <= C from Eq. (75)) and hence | f, — frimallz2(x) < (Co +2C1) [[fplleoepap €
(where Cy « Cy from Theorem 6). Cpy,Cy are both constants depending only on d, 3. Moreover, since the

Frobenius norm is bounded by the trace norm, by definition of 7, we also have H]\/Zﬂm,)\HF < Tr (J\/ZT,m’A) <
Cr Nfollsos s 7% < C1 I fpllaog e g €.

We can modify Theorem E.2 from Rudi and Ciliberto (2021) by taking o = 237" | f,(2;)¢y(2;) and v =
fX fp(x)iy(x) da; all the formulas then remain true and adapt to our problem Eq. (13). Applying Theorem E.2
from Rudi and Ciliberto (2021) to A, ,, . and using Lemma E.3 of Rudi and Ciliberto (2021) to simplify notation,
as well as the bound on the term HQ;l/z(ﬁ— v)|| combining Lemma E.4 (with ¢ = Q;l/pr(m)zbn(x)) using s = d

and Lemma E.5 (again, for more details, see part 2 of the proof of Theorem 7 by Rudi and Ciliberto (2021)) and
using the fact that va +b < \/a + Vb, a,b> 0, with probability at least 1 — 4§, it holds :

N - 1/2 ~
(1Frimr = Fol2aaey F AMrmalF) < 1 Frame = Folliagay

~ log%
+ \/XHMT,m,e| F+ 02 pr”sos,Rd,B ’I'LAl/4
74/4 (log + 4/2 log 2 12
+ 03 pr“sos,]Rd,ﬁ ( A,BL]_/Q ( 6) ) (79)

where Cy and Cj are constants which depend only on d.

Note that in the proof of Lemma E.4 of Rudi and Ciliberto (2021), ||¢|| is bounded in essential supremum and
standard deviation by || f,| 1 x)x a quantity independent of f, which is then bounded, hence the previous
concentration bound since || fpllz () < [ fpllgos ra p-

26+2d
Now combining both events in a union bound, and plugging in the fact that A\=¢ B8 and 7 = ¢ 2/#, we see
that with probability at least 1 — 24, the left hand term is bounded by the following quantity:

€ [[fpllsospap (Co+3C1+T), (80)
38+d _ /2 1/2
T—c e 28 log2 o em (a2 (Ligw log %) (log %) /
=C2 " + C3 2

e—(d+28)/8 logd(l) 1Og<2)
Now the goal is to bound the term T. Note that as soon as € < e 1and s < 2,if Y = — 3 o
then it holds T' < 10232Y + Cg\/?. Now note that Y < 1 iif n > ¢~ (d+28)/5 logd (é) log (%) The theorem

therefore holds with C' < 1+ 3C; + Cy/log® 2 4 Cs.

i

Finally, the fact that all bounds involving || f, ||, s ga 5 can be replaced, up to constants depending only on 3, d,
by the norm || f, || . » 5+ is simply a consequence of Proposition 4. O

We now come to the final part of our section detailing the proof of Proposition 10 and Theorem 8, which consists
in approximately sampling from the learnt model f; ,, x using Algorithm 1 with well chosen parameters.

Performance of the re-normalized probability measure p,,, . We start off with a technical
lemma.

Lemma 9 (Technical lemma). Let || - || be a norm on a vector space E, and let z,y € E\ {0}. Then it holds:

a_ _ b
b

2|ja — 0|
ol ~ T HH S (81)

lall

Moreover, if ||a —b|| < ||al|/2, it holds

Jla]
el < 2 (82)
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Proof. Introduce the quantity ﬁ in order to get

a—>b
‘ﬁ_ﬁug‘ﬁ HaH IL_I%HH |||| |||| %_%‘
One concludes by writing
R i’ 16 = llall} _ 1o — al
el 1l lall ol = llall llo]l”
where the last inequality is simply the triangle inequality. This concludes the proof of Eq. (81). The proof of
Eq. (82) is simply the result of applying the bound ﬁ < m < ﬁ O

Proposition 10 (Performance of p;,, x). Let p be a probability density w.r.t. the Lebesgue measure on X =
(—1,1)? satisfying Assumption 1 for a certain B. There exists €9 > 0 depending only on d, 3, and ||p|,,, » 5 and
C1, Cq, C1, CY, CY depending only on d, B such that the following holds.

Let n € N and let (x1,...,x,) be n i.4.d. samples selected uniformly at random from X. Let § € (0,1] and e < &g,
= 2B+d/B gnd 7 = e2/P. Assume n satisfies Bq. (77), i.e

n > e~ (4+20)/8 g (1)log (2). (77)

Let m € N and assume m satisfies Eq. (74), i.e

m > Cle=P <log C}) (log + log 5 ) (74)

and let )Z'm € R™*4 be a data matriz corresponding to vectors Ty, ..., &, which are sampled independently and
uniformly from X.

Let fﬂm,)\ be the Gaussian PSD model associated to the solution Eﬂm))\ of Eq. (13) with )N(m, A, 7 and let Prom x

be the associated probability density on X (i.e. the re-normalization of frm ). Let ITBT,W,\ be PSD operator on
Hy associated to Drm n. With probability at least 1 — 24, it holds

dTV(ﬁT,m,)UP) S Cl Hp”sos’xﬁ g, ||R‘r,m,)\||F S 02 ||pHsg‘9’X’ﬂ g_d/ﬁ~ (83)

Proof. Since the assumptions of Proposition 9 are satisfied, we have by Eq. (78) the existence of a constant C'
depending only on d, 8, and not on €,d, A, m, 7, fp, such that

1 Frmx = follzz) S C Ifplsosrs & 1Mrmalle S C | folloge v s €7, (84)

where we have used the fact that \ = ¢2+24/8,

Now using the fact that || e ||z1(x) < 2%/2|| ® || 12(x) (by Cauchy-Schwarz inequality), Eq. (84) shows in particular
that ||]?T’m’)\ — follprxy < 242%C | fpllgos, v 5 € Now applying Eq. (81) of Lemma 9, using the fact that

DromA = J?T7m,/\/||ﬁ,m7A||L1(X) and p = fp /| fpll L1 (x), it holds

dTV(ﬁT,m,,\ap) = ||15r,m,,\ _P||L1(X) < 2||f'r,m,>\ - fp”Ll(X)/prHLl(X) (85)
< 21/2 ¢ ||fp|‘sos7x75 /||prL1(X) E.

Since p = fp/|| fpllLr(x), we have || fpllooq x5 /I fpllzr(x) = [Pllsos,2,5- This shows
drv (Broma.p) < 292F1C 1Pllsos,2,5 €-

Now set g9 = min(e~!,2-4/2-1C~1 ||p||Sos x.5)- If € < eo, we have 24/2C 1 follsos. .5 € < [ fpllLi(x)/2 and hence

||meA — follorxy < ||fp||L1 x)/2- By Eq. (82) of Lemma 9, we therefore have | f,|lL1(x) /H]?Tm Aoy =
p/ZTm)\ < 2. Now since er)\ = TmA/ZTm)\, using Eq. (84), it holds ||er>\|| < Cy Hp||sosxﬂ g=d/B
where Cy = 2C, which depends only on g, d.

O
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Theorem 8 (Performance of psamp1e). Under the assumptions and notations of the previous theorem (Proposi-
tion 1), there exists a constant Cs depending only on d, 3, such that the following holds.

Let prm,x be given by the previous proposition. Let Dsampie be the dyadic approximation of promx on Q = X =
—1,1)? and of width p (see Eq. (7)). Recall from Theorem 1 that Algorithm 1 applied to Q@ = (—1,1)%, N,

p P
returns N i.i.d. samples from psampie-

If on the one hand p is set to et 4HD/B  then with probability at least 1 — 2,

dTV(ﬁ‘r,m,)\;psample) S CB ||pHsgs,)(,5 g, dTV(p7psample) S (Cl + CB) ||pHsos,X,ﬂ €. (86)

If on the other p is set adaptively to guarantee drv (Dsampies Drom,n) < € as in Remark 1 then with probability at
least 1 — 26, p > ' d+V/8 /(O3 |Ip|l ., ), and hence

dTV(ﬁT,m,)\apsample) < g, dTV(pypsample) < Cl ||p||5057X7B €+e. (87)

In any case, this guarantees that the complexity in terms of erf computations is bounded by
O(Nm?log 1) = O (N 74/710g2"1 (1) (10g (1) +1og (3))) (88)
where the O notations is taken with constants depending on d, B, [|p||sps x 5-

Proof. Let us bound Lip_ (Pr.m,x). Note that

d

Lipoo(]/)\ﬂmv)\) S sup Zakﬁ‘r,m,k(x)‘
reX 1

Using Lemma 5, we get Lipo, (Pramx) < d2%/2y/T||Ry.m |l Using the fact that 7 = e=2/# and that by Eq. (83),
IR mall < | Rrmalle < Co [[Pllgos v g €Y7, we therefore have Lipe, (Drm,n) < 282dCo [|pllsos x5 €~ /7.
Hence, applying Theorem 7 to prm,x, We get

dTV(psampleap\T,m,)\) < 23/2 QddCZ HpHsos,X,B Ei(dJrl)//B p- (89)

(d+1)
On the one hand, if we use Algorithm 1 with p = R , by the previous equation, we get drv (Dsampres Drm,x) <
23/2d 2d02 ||p||sos,X,5 €

If on the other hand we find p adaptively by computing a bound
EE(A) _ 23/2T1/2dHK1/2AK1/2” _ 23/27—1/2d||§'r,m,)\”F

from p- m.» as in Remark 1, and finding p such that 2dfi5(A) p= %E(A) p = €, since the adaptive bound
will have computed

Lip(4) <2%2dCy |pllsge 5 e D77,

we will get p > 57 /;Id“g:l”);ﬁ and hence drv (Psanpie; Dr,m,n) < €. The last point is just a consequence of
sos, X, 3
Theorem 1 and the bound on m in Eq. (74). O

F APPROXIMATION AND SAMPLING USING A RANK ONE PSD
MODEL

In this section, we prove the results in Sec. 4.2, i.e. Proposition 2 and Theorem 4.

For this section, fix a probability which has density p with respect to the Lebesgue measure dz on X = (—1,1)%,
(this is for the sake of simplicity; any hyper-rectangle could do), and assume that Assumption 2 holds for a
certain f € N, 8 > 0, i.e. there exists q € WQB(X) N L (X) such that p = ¢%. This is the case, for instance, when
p o< eV (®) where V is 8 times differentiable.

One of the main advantages of our method will be to deal with probability measures which are known up to
a constant; therefore, in this section, we take f, such that p = f,/Z(f,) where Z(f,) = [, fp(z)dz. Assuming
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Assumption 2 holds, we take g, € Wzﬂ (X)NL>°(X) such that gf) = fp as and assume that p is only known through
function evaluations of g,, i.e. we can evaluate the function g,(z) for any =z € X.

Once again, our goal is to be able to generate NV i.i.d. samples from a distribution which is e-close to p, in a sense
which we will define. To do so, we first approximate g, by a Gaussian linear model - ;. x = g(®; @rm.x, Xim, 1)

(see Eq. (2) for a definition) where n = 714 for some 7 > 0, X,, € R™*? is obtained as (%1, ..., Z,,) " from m i.i.d.
uniform samples from X, and @, » is obtained by solving the problem Eq. (18) which we rewrite here for a
given A > 0 and for n i.i.d. samples (21, .., z,) sampled uniformly from X:

Q7 m,» = argmin = L Z 9(xi; ayTm,T1q) — gp(mi)) + )\aTK;( a- (18)
ac€R™ i—1

This yields a Gaussian linear model g, € H,, of g,. Since g g A = ﬁ,m’,\ is a PSD model (indeed ]?T’m)\ =

f(e; /Lvm)\, X, 714) with AT mA = Gr.m AaT m.\)y We can see fmn’)\ as a Gaussian PSD model of f,, and hence
its renormalized version pr ., x as a PSD model of p.

The parameters 7, m, A\, n are selected in order to have an £ approximation of the probability p.

Furthermore, note that the first term in the optimized quantity in Eq. (18) is an empirical version of the

quantity
|X|/ ‘\/meA \/ﬁ

This quantity is related to Hellinger distance H (p, Pr,m,») defined in Eq. (30).

< /X Grmn(@) — gp(@)° da.

This will therefore be the natural measure in which to express the quality of the approximation pr ,  of p in this
section.

The bound obtained on the performance of p; ., » can be decomposed into two steps.
o We start by bounding the distance between any g € #H,, and G, » in Theorem 9.

e We then select a g . which is e-close to gp, and use it as a reference point in order to bound the distance
between g, and gr . To do so, we need to apply different concentration inequalities to obtain a final bound

in terms of performance for both f;m A with respect to f, and D, » with respect to p in Hellinger distance
in Proposition 2.

Bound on the performance of g, ,, » compared to an arbitrary function g. Here, we adapt Theorem
2. from Rudi et al. (2015).

Theorem 9 (Bounding the error (Rudi et al., 2015)). Let n € R%, and g € H,,.
1€ (9 = Grm )| < 0362 Gy = Syglme (90)

ol (14 6162-4.62) (50 17 = Byon(@)l 447

where 0y = |C,\2CY2|, 0 = |20 2|l and G, = (g,(25)/v/M)1<i<n € R™.

Proof. Let g € H,. We can apply a modification of Theorem 2 by Rudi et al. (2015). Indeed, consider in the

notations of Rudi et al. (2015) the loss £(f) = ||C%/2(f — 9)|l,, and note that the assumptions are satisfied
with v = 0 and R = ||g||#, . since g minimizes € and ||C~ %3, = ||gll#,. Moreover, note that in the proof of
that theorem, one can replace C;, by C, x without changing the result (indeed, in the proof, one always bounds

||Crl,/2 x| < ||C%/QC’;§/2|| HC’;/2 x| < ||C1/2 % ||). Thus, in that setting, without combining the ”constant” terms
in the bounds and looking into the proof of Theorem 2 of Rudi et al. (2015), it holds
1/2 1~ ~1/28%~ & B \ol/2
1€ @rmr = DI < 63 1,3 285(@, = Su0)l| + RO+ 6262 (I = Py ) O, + RENZ, - (91)

where 61 = |G, €, ¥ and 0, = [, XC, \?].
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—1/2 G/~ 5 —1/2 G« _~ 4 _~ 5 . —1/2 G«
Note that [|C;3/?S:@, — Syl < 1C, 32800 1G5 — Soglln < 02 115, — Spgllre since [C; /2851
124 ~—1/2 -1/25 -1/2
e,V cncn,{ I < l1C; 3/ *CnC; 2 =63,

Moreover, using the definition of C}), it holds

I( = Py CyRIP = (I = By )Coy(I = Pym) + AT = Py
< |l [ T = Prm)dn(x) ® ¢y(@)(I = Pym) da|| + M1 = Pym)|
< sup (1 = Py ) (@) + 2
Combining these results and using the fact that va + b < v/a + v/b for any a,b > 0, we get the bound. O

Performance of p-,, x. We can now state the main results of this section, i.e. the bound on the performance
of ﬁ’r,m,)\-

Proposition 11 (Performance of p,.,.1). Let p be a probability density on X = (—1,1)%, and assume p = ¢>
and g € L>®(X) N WQﬁ(X) for some > 0. Let v > min(1,d/(28)). There exists a constant €9 depending only on
gl oo (), ||q||W25(X),B, d, constants C1,Cs,C3,Cy,C5 depending only on B,d and a constant C} depending only
on B,d,v such that the following holds.

Let 6 € (0,1] and € < g9, and assume (z1,...,Zpn) and (Z1,...,Tm) are respectively n and m uniform i.i.d. samples
on X, satisfying

m > Cre~ %P log? % log % (92)
n>Cie*#log 8 (93)

Let 7 = ¢ 28, = 714 and X\ = £2T4/B. Let Armx € R"™ be the vector obtained by solving Eq. (18) and
Gr.m.\ € Hyy the associated Gaussian linear model (see Eq. (2)). Let ]?T,W,\ =92 ;. be the associated Gaussian
PSD model, Z\Tym’)\ = fX fr,m,A(x) dx be the normalizing constant, and Pr.m x = ﬁ,m,A/Zﬂm’A be the renormalized
PSD model, which is a probability density. Let }A%T7m7,\ be PSD operator in Si(H,,) associated to prm -

With probability at least 1 — 36, it holds

H(Promoa,p) < C4||(1||Lf>°(zc)mWf(X)<€
2

< Csllqll;

Gr,m.A
Z Lo (X)NWE (x)
H

e~ B, (94)

T,m, A\

Tr (Rymy) = ‘

where || o ||Lm(X)mW2ﬁ(X) = max(|| e HW2B(X), [ ®lze(x))-

Proof. Let 7 > 0, and define n = 714. By Proposition 4, we can extend g, to the whole of R? and there exists an
constant C such that ||9P||W2’3(1Rd) < ||ngW§(X) and [|gp || oo re)y < Cllgpll Lo (x). We still denote with g, such an
extension. Let gr . be given by Proposition 7 when approximating g,.

28+d
Setting 7 = e~ 2/# and A\=¢ P | since we assume € < 1, Eq. (49) gives us two constants C;, Cy depending only
on 3,d such that

d/4

”97',6”7-[" <Oy HgPHWf(Rd) 7/

ng,a - ngL?(Rd) < 5||gp||wﬁ(]Rd) _a
{ : =Cy ||9p||w23(Rd)5 28.

lgre = gpllLoe(mey < Cr €' llgplla

1. Bounding ||g, — 1797 cllrn Apply Theorem 3 of Boucheron et al. (2013), reformulated in Proposition 10 from
Rudi et al. (2015). Consider the random variable ¢ = (g, — g,)(X)? — ﬁ”gmE - ng%Q(X) where X follows the
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uniform law on . Then [¢] < [lgr.c = gpll3 ) almost surely, and EC?] < llgr.c = gpl13 () hrll9mc = 9ol
Applying the concentration bound yields that with probability at least 1 — ¢, it holds

2llgr,c = plI300 () 108 §
15y = Sngrclln — @rllgre — gollfan) < =020

1 1
\/2|9r,s—9w|ioo(x) T l9rc=9pll 2 () 108 5
n )

and thus 5

1 210g3
gy — ngTEHR" > ﬁ”gﬂa - 9p||L2(X) + lgre — gp||L°°(X) n

Hence, by Eq. (49), and because |X| = 2%, there exists two constants Cs and C, depending only on d and /3 such
that with probability at least 1 — 4, it holds

.5 1gplle log 5
ng - ngT,EHR" < Cse ||gp||W2f3(Rd) + 045];,7\/55- (95)

2. Guaranteeing sup,cy ||(/ — ﬁmm)qbn (z)|| < A\V/? = 1+4/(28) Using Lemma 3 and proceeding in the same
way as in point 2 of the proof of Proposition 8, we see that there exists constants Cs, Cs, C7 depending only on d
and B such that as soon as

m > Cse™ /P (log C; ) log & = (96)
it holds sup,cy ||(I — Py.m)on(z)|| < A2 with probability at least 1 — 4.

3. Finding a lower bound for ||C,|| This will be necessary in the next bound. Let v(z) = k,(0, z) = e~l=l”,
Then |v]|3, =1 and

ICy20lf = oy [ oG da

“(f )

1 d
zb( [ dt) 2 _ g 2,
—1

where the last inequality comes from the fact that 7 > 1 since ¢ < 1. Hence, ||C,|| > Cs7~%?2 where Cj is a
constant depending only on d. Hence, as soon as A < Cg7~%2 which rewrites ¢ < 1/Cy, it holds A < ||C,||.

d

¥

4. Bounding 6;,0;. Using the same reasoning as that of Proposition 2. of Rudi et al. (2015), if b =
C,,, 1/2(0 —Cy)C, 5 1/2|| then #; < 1/(1 —b) and 3 < 1+ b. Bounding b can be done using Proposition 8 of
Rudi et al. (2()15) if X < ||Cy]], and & € (0,1] it holds, with probability at least 1 — 0 :

2(1+ N (X)) log = N 2N (A) log &

3n n ’ (97)

lC;, V(G — Oy VPl <

where we have used the fact that Tr (C,) < 1.

Note that Noo(A) = sup,cx \|C;i/2¢n(x)||2 < Cor(s=Dd/(25) \=d/(25) for any s > d/2 where Cy depends only on

s,d by a proof completely analogous as that of Step 2 of Lemma E.4 by Rudi and Ciliberto (2021). Replacing the
2d(f+s)—d?

values of 7, \ yields : Noo(\) < Coe 258

Note that the function v : s €]d/2, +oo[— % is a homography and therefore reaches all the values v

strictly between 2 and d/S.

Therefore, for any I > v, there exists a constant C1¢ depending only on d and 7 such that (1 4+ N (X)) log <
01087217.
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Hence, there exists a constant depending only on d, 8,V such that if n > 0115_2; log 8 §, and if £ < min(1/2,/Cy)
then b < 1/3 (here we have bounded log £ by a constant times log § log § provided ¢ < 1/2 and hence A < 1/4.
Moreover, note that C1; can be taken large enough, by Eq. (95), to guarantee the following, also with probability
1-6:

||/g\p - Sng‘r,EHR" < Cse ||gp||W25(Rd) + 045”917”0- (98)

5. Applying Theorem 9 to g,.. Combining all the previous equations, we get that if n > Cp;e72" log%,
e < min(1/2,y/Cg) and m > Cse= P (log CE") log Z it holds Eq. (98) and b < 1/3 as well as

supgex ||(1 — Ign,m)¢n(x)|| < A2 and hence, using the bound on g,., there exists a constant Ci2 depend-
ing only on d, 8 such that

1/2 ~
1R (972 = Gramn) | < Cramax(llgpllyyp gy 19 llo)e-

Thus, using the bound on ||g;c — gpl12(re), and the fact that gCpg = %Hg”LQ(X) we get

||9p - /Q\T,m,AHLQ(X) < (i3 maX(ngvaf(Rd)v ||9p||-)5a

97 mall3, < Cramax(llgplly s gays Igplle) €27 (99)

. ~ |7, m Al .
6. Bounding the performance of p;,, ». Note that ¢ = ”ngLQ(X) and \/Prm = Tormallez Thus, using
Eq. (81), it holds

» [gr.m.l
H(prm,p) = ‘ Tl L2y MarmoallL2 ‘ L2(x)
<9 ”gT,m,k - 9p||L2(X)

||gp||L2(X)

Hence, since ¢ = g,/||gpllz2(x), we have by Eq. (99) :

H(paﬁT,m,A) <2Cy3 maX(HQHWZﬁ(Rd)v ||Q||0)5~

Moreover, by Eq. (82), if 2C13 max(|lqyyz za), lglle)e < 1, then Moreleziy < 9 and hence again by Eq. (99),

”g-r,m,k”[,%x)

1Bramallie, < 201 max(lallyg . lalle) €42 Setting e = min(1/2, v/Cs, (2013 max(lglly s ga. lalle)) ™).
we therefore have all the desired properties.

7. Replacing norms on R? with norm on X. To do so, we just use Proposition 4, which does not change
anything up to multiplicative constants depending only on d, 3.

O

Theorem 10 (Performance of pgamp1c). Under the assumptions and notations of the previous theorem (Proposi-
tion 11), there exists a constant Cg depending only on d, B, such that the following holds. Let prm. x be given by
the previous proposition. Let Dsampre be the dyadic approximation of Drmx on Q = X = (-1, 1) and of width p
(see Eq. (7)). Recall from Theorem 1 that Algorithm 1 applied to Q = (—1,1)%, N, p returns N i.i.d. samples
f?"O’ﬁ’L psa.mple-

If on the one hand p is set to e'T(d+2)/28) " then with probability at least 1 — 36,

H(ﬁT,m,Avpsa.mpZe) < CGHQHQx(x)gm/f(x) €
H(papsample) S (04 + CG)HqHL‘”(X)mWf(X) E. (100)
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If on the other p is set adaptively to guarantee H(Dsampre; Drom,x) < € as in Remark 1, then with probability at
least 1 — 36,
p = 51+(d+2)/ﬂ/(06 HCIHLoo()qmwf(X )7

H(I/)\T,m,kapsa,mple) S 57 H(pvpsample) S (Cl + 1)5 (101)

In any case, this gquarantees that the complexity in terms of erf computations is bounded by
O(Nm?log 1) = O (N =24/710g2"1 (1) (10g (1) +1og (3))) (102)
where the O notations is taken with constants depending on d, 3, ||qHLOC(X)mW2g(X).

Proof. Let us bound Lip, (1/Pr,m,r). Note that since for any z,y € X, it holds

VB @) = VBrmr )] = 1 r @] = [Grm A W1/ Zrmr

< Grmr (@) = Grama DI/ Zrmo,

we have Lipoo(\/ Prma) < Lipeg @\‘r’m,k)/zﬂm,% Now

d

Lip.. (Gr.m.») < sup Zak/g\ﬂmv\(@-
TeX T

Using Lemma 2, we get Lip(Grm.x) < dV27|[grmalln,- Using the fact that 7 = e7%/# and that

by Eq. (94), [grmalln,/ Zﬂm,)\ < \/05||q||Lw(X)mW£(X)5_d/(25), we therefore have Lip.(\/Drm.x) <
d\/2C5||q||Loo(X)mwzﬁ(x)ef(d“)/(w). Hence, applying Theorem 7 to pr m.x, we get

H(psampleaﬁf,m,)\) < 2d/2d\/ 205HQHLoo(x)nwf(x)é‘i(dJrZ)/(zB) p- (103)

(d+2)
On the one hand, if we use Algorithm 1 with p = PR , by the previous equation, we get H (Psampie; Drm,x) <

24/24,/2C5 e.

If on the other hand we find p adaptively by computing an upper bound ﬂ}g(a) defined in s.t. ﬂg(a) =
V27d|| K 2a)| = \/2Td||§7,m,>\|\/\/27,m,>\ > Lipo (v/Dr.m,x) from Pr o, » and finding p such that 24/2Lip(a) p = e,

gl+(d+2)/(28)
2d/2 ¢ \/QCSHqHL&(X)mWéB(X)

of Theorem 1 and the bound on m in Eq. (92).

we will get p > and hence H (Psamp1e, Pr,m,n) < €. The last point is just a consequence

G ADDITIONAL EXPERIMENTAL DETAILS

As mentioned in Sec. 5, we report in Fig. 4 an experiment in which we learn the density of the indicator function
of [-1,1] using Algorithm 3 learning a rank one PSD model.

Note that this is out of the setting of Theorem 4, as these bounds rely on the regularity of the target density
which is not at all the case here.

However, in order to sample approximately from p as a rough approximation, Algorithm 3 could be relevant :
it shows that we must develop tools which analyse these algorithms beyond notions of regularity, with rougher
objectives.
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Densities Samples from the PSD model

target
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Figure 4: Trying to learn a non-continuous function using a rank one PSD model. (left) Plot of the target and
learnt distributions using Algorithm 3. (right) 1000 samples generated from the learnt distribution psampie-
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