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Abstract

This paper proposes a new approach for test-
ing Granger non-causality on panel data. In-
stead of aggregating panel member statistics,
we aggregate their corresponding p-values and
show that the resulting p-value approximately
bounds the type I error by the chosen signifi-
cance level even if the panel members are de-
pendent. We compare our approach against
the most widely used Granger causality al-
gorithm on panel data and show that our
approach yields lower FDR at the same power
for large sample sizes and panels with cross-
sectional dependencies. Finally, we examine
COVID-19 data about confirmed cases and
deaths measured in countries/regions world-
wide and show that our approach is able to
discover the true causal relation between con-
firmed cases and deaths while state-of-the-art
approaches fail.

1 INTRODUCTION

Within the last decade, there has been growing aware-
ness that causal inference can improve scientific re-
search in many disciplines as interpretability and ro-
bustness become increasingly important (Doshi-Velez
and Kim, 2017; Roscher et al., 2020; Marcinkevičs and
Vogt, 2020; Moraffah et al., 2020). Causality is a crucial
factor for gaining insights into the decision process of
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algorithms, which has many use cases such as avoiding
bias and discrimination (Mehrabi et al., 2019), improv-
ing user experience (Zhou and Fu, 2007) and gathering
biological insights (Angermueller et al., 2016).

If the causal relation between variables is known, causal-
ity can be used to study the interaction between sta-
tistical units such as estimating the average effect of
treatments (Imbens and Rubin, 2015; Holland, 1986),
analyze their mediation (Berzuini et al., 2012), detect
the root causes of anomalies (Janzing et al., 2019) or
quantifying the causal influence of variables in a sys-
tem (Janzing et al., 2013, 2020). However, knowing the
causal relations between variables of interest a priori is
important for such applications. Unfortunately, these
causal relations can often only be recovered from obser-
vational data under strong assumptions, even if hidden
common causes (i.e., confounders) do not exist (Peters
et al., 2017, Proposition 4.1). This leads to a seem-
ingly unsolvable problem if further information about
the data generating process is unavailable. For i.i.d.
data, one way to mitigate this ambiguity is to impose
additional assumptions about the generative process,
such as linear non-Gaussian noise (LiNGAM) (Shimizu
et al., 2006) or non-linear additive noise (Hoyer et al.,
2008). For time series data, however, consequential ad-
ditional information about the data generating process
is fortunately available due to the time order. That
is, the present cannot causally influence the past, and
hence the causal order is known. In many cases, this
information is sufficient to recover the causal direction
among variables in the form of time series (Peters et al.,
2017, Section 10.3.3).

A well-known approach to causal discovery in time
series data was developed by Granger (Granger, 1969,
1980, 2003). Granger-causality is based on a simple
definition: time series {Xt} is said to Granger-cause
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time series {Yt} if the past of {Xt} improves the pre-
diction of {Yt} given its own past. The presence of
Granger-causality implies conditional dependence be-
tween the “present” Yt and the past of Xt, given the
past of Yt. By assuming there are no hidden common
causes, we can deduce from Reichenbach’s principle of
common causes (Reichenbach, 1999) and the known
causal order, that {Xt} causally influences {Yt}. In
this definition of Granger-causality, we restricted to
the bi-variate case for simplicity, however note that
Granger defined the concept for general multivariate
settings.

Although many works have considered new approaches
in time series causal discovery (Shajarisales et al., 2015;
Peters et al., 2013; Hyvärinen et al., 2010; Kawahara
et al., 2011), procedures based on Granger-causality
are still state-of-the-art due to their simplicity and fa-
vorable applicability in practice (Berzuini et al., 2012;
Bressler and Seth, 2011). That is, as stated in Bressler
and Seth (2011) Chapter 22 Section 2.3, Granger
Causality does not rely on specific assumptions about
the data generating process (except the exclusion of
instantaneous effects, if instantaneous effects exist, ad-
ditional assumptions have to be made) and is therefore
particularly convenient for empirical investigations.

Several researchers considered an extension of classical
causal discovery in time series to panel data (Kónya,
2006; Dumitrescu and Hurlin, 2011; Holtz-Eakin et al.,
1988; Juodis et al., 2021). Further, Arkhangelsky and
Imbens (2021); Arkhangelsky et al. (2021); Athey et al.
(2019) studied the potential outcome of treatments in
panel data regimes. See also Hsiao (2003) for general
analysis on panel data.
In the panel data setting, multiple variables are ob-
served for the same members of a so-called panel across
time. Concretely, suppose we are given tuples of time
series (Xi, Yi), i = 1, . . . , N for some N ∈ N where
we succinctly refer to Xi := {Xi,t}Tt=1. Moreover, as-
sume that only one direction of causal influence is
possible. That is, there exists H ⊆ {1, . . . , N} such
that Xi causally influences Yi for all i ∈ H but there
exist no j ∈ {1, . . . , N} such that Yj causally influ-
ences Xj . In this setting, we refer to the set of tuples
{(Xi, Yi), i = 1, . . . , N} as (X,Y ) and we say that X
causally influences Y . For testing the opposite direc-
tion, we can simply interchange the role of X and Y .
A simple example could be whether there is a causal
link between confirmed cases and deaths resulting from
COVID-19 infection in different countries. Here, we are
interested in the general relation of the tuple (COVID-
19 confirmed cases, COVID-19 deaths) across different
members of the panel (i.e., countries), see Section 5.

The paper is organized as follows. In Section 2 we give
a concise exploration of the different approaches to

Granger causality on panel data. Section 3 is dedicated
to the problem set up and proposed method, where
we also provide the main theorem of the paper. In
Section 4, we present experimental results for synthetic
datasets. Finally, in Section 5, we compare the results
of state-of-the-art causal discovery algorithms on panel
data against our approach on COVID-19 data about
confirmed cases and deaths.

2 RELATED WORK

In this section, we explore the existing literature related
to our work. First, we summarize different existing
approaches to Granger causality on panel data. We
then introduce the Dumitrescu-Hurlin test, the most
popular existing Granger causality test for panel data.
Finally, we summarize an existing approach to aggre-
gating p-values for high-dimensional regression, which
provides a core component our method builds upon.

2.1 Hypothesis Testing of Granger Causality
on Panel Data

Existing literature distinguishes between four types
of hypothesis tests for Granger-causality on panel
data, cf. Dumitrescu and Hurlin (2011). Below, we
formulate these tests for the causal influence from X
to Y in terms of their null hypotheses.

Homogeneous Non-Causality (HNC): The null
hypothesis of HNC test is that there is no causal rela-
tion between the variables for any individual, i.e., for
all i it holds that Xi does not Granger-cause Yi.
Homogeneous Causality (HC): Under the null, Xi

causes Yi for all i. Further, it is assumed that the
dynamics of Xi and Yi do not change for different i. In
particular, it is assumed that the regression parameters
from Xi to Yi given the past of Yi are identical for all
individuals.
Heterogeneous Causality (HEC): The null is the
same as for HC except that the test does not assume
that the dynamics of Xi and Yi remain the same across
the panel.
Heterogeneous Non-Causality (HENC): The null
hypothesis is that there exists a subgroup of individuals
for which Xi does Granger-cause Yi and, hence, there
exists at least 1 and at most N−1 individuals for which
Xi does not Granger cause Yi.
All approaches described above are based on the fol-
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lowing assumption of the dynamics of X and Y :

Xi,t = δi,0 +

P∑
p=1

δi,pXi,t−p + ηi,t,

Yi,t = θi,0 +

P∑
p=1

θi,pYi,t−p +

P∑
p=1

βi,pXi,t−p + εi,t,

(1)

where P is the time lag order, and δ, η and β are coeffi-
cients. The concrete assumptions about the coefficient
vectors δ, η and β depend on the considered hypotheses
HNC, HC, HEC or HENC, but in all approaches it is
assumed that the innovation processes ({ηi,t}, {εi,t})i,t
are mutually independent.

2.2 Dumitrescu–Hurlin Test

The most widely used test of Granger-causality in panel
data is the DH test, developed by Dumitrescu and
Hurlin (2011). The test considers the HNC null hy-
pothesis, where no Granger-causal relationships are
assumed to exist for any member i of the panel. The
DH test is based on an aggregated Wald statistic of
individual Granger causality tests.

There exist asymptotic and semi-asymptotic character-
izations of the DH test. More precisely, as stated in
the introduction, we denote by (X,Y ) the panels under
consideration. The DH test considers the generation
process (1) where it is allowed that coefficients vary
across individuals, while being time invariant. Since
the DH test does not assume homogeneous coefficients
across individuals, the null and alternative hypotheses
read as follows:

H0 : (βi,1, . . . , βi,p) = (0, . . . , 0) for all i
H1 : ∃ i s.t. (βi,1, . . . , βi,p) 6= (0, . . . , 0).

(2)

To test this hypothesis, Dumitrescu and Hurlin (2011)
first construct a Wald statisticWi,T for each individual.
The average Wald statistic WHnc

N,T is then given by

WHnc
N,T =

1

N

N∑
i=1

Wi,T .

Under suitable conditions and, in particular, us-
ing the independence between individuals (since
({ηi,t}i,t, {εi,t}i,t) are mutually independent ), Du-
mitrescu and Hurlin (2011) Theorem 2 shows that
the normalized average Wald statistic converges in dis-
tribution to the normal distribution with expectation 0
and variance 1. We include further details in Appendix
A.

The proof relies on the central limit theorem and hence,
the independence between innovation processes is re-
quired (see Assumption 2 of Dumitrescu and Hurlin

(2011)). This implies that dependencies across panel
members are assumed to not exist which is a rather
restrictive assumption, since it prohibits any interac-
tion among the individual panel members. In practice,
however, it is often the case that such interactions ex-
ist. In reference to our example above, the confirmed
COVID-19 cases of different countries may be causally
linked, e.g., because infected people might travel to
different countries and infect locals.

In Section 3, we will take a different approach to de-
velop a hypothesis test where interactions between the
innovation processes are taken into account. This ap-
proach will rely on a p-value aggregation idea for high
dimensional regression. Although that approach is not
connected to panel data, the idea can be used in panel
data settings to obtain a p-value that controls the type
I error by the chosen significance level even if dependen-
cies between individuals (i.e., between the innovation
processes) exist.

Dumitrescu and Hurlin also suggest an alternative ap-
proach in Dumitrescu and Hurlin (2011) Section 6.2
that takes cross-sectional dependencies into account,
which we call DH block bootstrap test in the following.
As stated by the authors, the suggested algorithm re-
sults in very high computational costs; therefore new
panel non-causality tests should be developed to ac-
count for cross section dependencies. For completeness,
we include an explanation of the procedure in Appendix
B and also compare our approach to the DH block boot-
strap test in the experiments.

2.3 A P-Value Aggregation Method From
High-Dimensional Regression

In this section, we describe the key concepts that we use
for our test procedure, which is based on the work of
Meinhausen et al. (2009), see also Dezeure et al. (2015).
As mentioned in the previous section, this concept is not
connected to panel data. Instead, it considers multiple
bootstrap runs in regression, generates p-values for
every bootstrap sample and aggregates them such that
the corresponding test statistic (of the considered test)
bounds the type I error.

More precisely, Meinhausen et al. (2009) consider the
following setup. Let Z be an n-dimensional response
vector and W a n× k dimensional design matrix such
that

Z = Wb+ τ ,

with τ being an i.i.d. n-dimensional random vector
with τi ∼ N (0, σ2) for some σ2 > 0 and b ∈ Rk. Mein-
hausen et al. (2009) consider the problem of finding all
j such that bj > 0. In terms of statistical significance,
Meinhausen et al. (2009) aim to assign p-values for the
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null hypotheses

H0,j : bj = 0,

where they observe n samples (zi, wi), i = 1, . . . , n.
Further, the paper assumes a high dimensional setting,
i.e., k � n, where statistical inference is challenging.
In order to alleviate this issue, Wasserman and Roeder
(2009) proposes to split the data into two parts. The
first part is used for feature selection where important
variables are kept with high probability. The second
half of the data is used to assign p-values to the kept
features by using classical least squares estimation (the
p-values for the dropped features can, for instance, be
set to 1). Under some weak conditions, this procedure
results in an approximately correct p-value.

However, Meinhausen et al. (2009) argue that this
procedure relies on an arbitrary split of the n samples
and hence, the results can vary significantly making
the test hard to reproduce. This problem can be solved
by a multi-splitting approach in which the procedure
of Wasserman and Roeder (2009) is repeated m times.
To understand the key idea of the multi-split approach
of Meinhausen et al. (2009), we ignore the fact that we
want to find all regressors for which bj > 0, but rather
focus on a fixed j for which we want to test H0,j . In the
multi-splitting approach, m p-values P (1)

j , . . . P
(m)
j are

generated, where each P (l)
j , l = 1, . . . ,m corresponding

to each of the m splits, is an approximately correct
p-value for the test H0,j . In the next step, these p-
values are aggregated to a single, approximately correct,
p-value Pj . In contrast to the single split method of
Wasserman and Roeder (2009), the generated p-value
of Meinhausen et al. (2009) is stable and as a result,
makes the experiment reproducible. To aggregate the
m p-values P (1)

j , . . . , P
(m)
j , Meinhausen et al. (2009)

proposes the following procedure:
For arbitrary γ ∈ (0, 1), define

Qj(γ) := min
{

1,

emp. γ-quantile({P (l)
j /γ, l = 1, . . . ,m})

}
.
(3)

Then, Pj := Qj(γ) is an asymptotically correct p-value,
i.e., using Qj(γ), the type one error of the test H0,j

is approximately bounded by the chosen significance
level α ∈ (0, 1) for each γ ∈ (0, 1), see Meinhausen
et al. (2009) Theorem 3.1.

Above, we focused on the case where we are interested
in a single predictor for simplicity. However, this ap-
proach can easily be generalized to the case where we
want to test all predictors. Corresponding FWER/FDR
control procedures are also explained in Meinhausen
et al. (2009).

3 TESTING FOR GRANGER
NON-CAUSALITY ON PANEL
DATA

3.1 Problem Setup

In this paper, we consider a test for the HNC hypothesis,
introduced in the previous section. That is, we assume
that under the null Xi does not Granger-cause Yi for
any i. As in the previous section, we consider the
bivariate case for ease of notation but this can be easily
generalized. We consider the same generation process
as in (1):

Xi,t = δi,0 +

P∑
p=1

δi,pXi,t−p + ηi,t,

Yi,t = θi,0 +

P∑
p=1

θi,pYi,t−p +

P∑
p=1

βi,pXi,t−p + εi,t,

(4)

for i = 1, . . . , N denoting the cross-sectional units (i.e.,
individuals or panel members) and t = 1, . . . , T the
timestamps. We also assume that the stochastic pro-
cesses Yi, Xi are scalar. The parameters θi denote
the heterogeneous, autoregressive coefficients of the
processes. The stochastic processes εi,t and εj,t as
well as ηi,t and ηj,t are not assumed to be indepen-
dent in i 6= j, i.e., cross-sectional dependencies might
exist. Note that in contrast to the DH-test, we do
not rely on an independence assumption across panel
members. Figure 1 illustrates different types of de-
pendencies between members of the panel and shows
how this dependence is reflected in the dependence be-
tween the innovation processes. Our test relies on the
same hypotheses test as the DH-test, namely (2). How-
ever, our algorithm is specifically designed for settings
where the causal relation is the same for all individuals
while the generation processes can be different, i.e., if
βi = (βi,1, . . . , βi,P ) 6= (0, . . . , 0) for one i, then this
holds for all i, but not necessarily βi = βj for i 6= j.
If βi = (βi,1, . . . , βi,P ) = (0, . . . , 0) for one i, then this
holds for all i. The corresponding hypothesis test reads

H0 : X does not Granger-cause Y, i.e.,
βi = (βi,1, . . . , βi,P ) = (0, . . . , 0) for all i

(5)

H1 : X does Granger-cause Y, i.e.,
βi = (βi,1, . . . , βi,P ) 6= (0, . . . , 0) for all i.

(6)

Note that X and Y can be exchanged in this test and
hence, we can test whether X Granger-causes Y or Y
Granger-causes X.

Compared to the DH-test described in Section 2.2,
the hypothesis test (5) vs (6) is more restrictive, since
we assume that all members of the panel share the
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Figure 1: Example of the summary graph (omitting
self-cycles) of panel data where X causally influences
Y .
Left: Panel data where no cross-sectional dependen-
cies exist, i.e., the innovation processes are independent,
namely εi, ηi, εj , ηj are mutually independent for j 6= i.
This structure satisfies the assumptions about the de-
pendence between members for the DH-test and our
QPPA approach (see Section 3.2).
Middle: Panel data with cross-sectional dependencies
in the sense that εi and εj as well as ηi and ηj are de-
pendent but εi and ηj are independent for j 6= i. This
structure does not satisfy the assumptions about the
panel structure for the DH-test as cross-sectional de-
pendencies exist. However, this structure does satisfy
the assumptions about the panel structure for the QPPA
approach. Further, for QPPA, it is not required that the
cross-sectional dependencies are acyclic, there might be
cycles in the causal dependencies between {Xi : i ∈ N}
as well as {Yi : i ∈ N} and it would still satisfy the
assumptions of the QPPA approach.
Right: Panel data where cross-sectional dependencies
exist where other panel members are also confounders
of Xi and Yi. For the innovation processes this means
that εi and εj as well as ηi and ηj are dependent and ηj
and εi are dependent for all i, j as well. This structure
does not satisfy the assumptions about the panel struc-
ture for the DH-test and our QPPA approach, seeing
that Xi−1 would be a confounder of Xi and Yi.
Note that this figure does not show any relations be-
tween the innovation processes in time. In general, for
all settings we assume that the innovation processes are
independent in time, i.e., for all t 6= s 6= h 6= l, εi,t,
ηi,s, εj,h, ηj,l are mutually independent (for all i, j).

same causes, whereas the DH-test does not rely on
such a strong assumption. That is, in the generation
process of the DH-test under the alternative there exists
at least one member of the panel where βi 6= 0. In
contrast, under (6) it holds that for all i, βi 6= 0.
However, this assumption is realistic in many cases,
as, for instance, in the setting of our experiments on
COVID-19 data. For more details and explanations,
see Section 5. Note, however, that the test procedure
we will introduce can still guarantee type-I error control
under the test scenario (2). We show in Appendix H
that our test is robust when causal connections are
sporadically missing for some individuals, and that the
difference between the two tests is negligible in practice
when our assumption of uniformity in the existence of
causal relations nearly holds.

3.2 Quantile p-value Panel Adjustment
(QPPA)

In this section, we describe the procedure to test (5)
vs (6) using the idea described in Section 2.3. Instead
of using an aggregated Wald statistic (see Section 2.2),
we propose a procedure that is inspired by Meinhausen
et al. (2009) (Section 2.3). That is, Meinhausen et al.
(2009) uses the aggregation method (3) to aggregate
p-values of different bootstrap samples. Translating
this idea into our setting, we can aggregate the p-
values of the panel members, hence, we treat individual
panel members in the same way Meinhausen et al.
(2009) treats different bootstrap runs. The aggregation
will then control the type-I error asymptotically by
the chosen significance level. Since we calculate a
Granger non-causality p-value for every member, we
further need the following technical assumptions that
we carry over from Dumitrescu and Hurlin (2011), see
also (Granger, 1969).

Time i.i.d. residuals: For each fixed i ∈ {1, . . . , N}
εi,t are independent for all t = 1, . . . , T and normally
distributed with E(εi,t) = 0 and E(ε2i,t) < ∞, where
E(ε2i,t) is assumed to be constant in t.

Covariance stationarity: For all i and t, it
holds that Xi,t and Yi,t have finite variance and
E(Xi,tXj,t+h), E(Yi,tYj,t+h), E(Yi,tXj,t+h), E(Yi,t) and
E(Xi,t) do not depend on t.

Under these assumptions, we can introduce our test
procedure, called Quantile p-value Panel Adjust-
ment (QPPA) in two steps.

Step 1: Compute a p-value for every member
of the panel. The first step is the same as for the
DH-test: We apply Granger Non-causality to each indi-
vidual panel member, where we use a Wald-statistic to
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test for the presence of Granger causality. Correspond-
ing to these Wald statistics, we obtain an asymptoti-
cally correct p-value p(i)X→Y for each panel member. For
instance, an f -statistic (which belongs to the family
of Wald-statistics) can be used to calculate the cor-
responding p-values. Note that the construction of
the f -statistic requires the assumption of time i.i.d.
residuals as well as covariance stationarity. Further, in
order for the p-values to be (asymptotically) correct,
ηj,t and εi,s need to be independent for all t, s, j and
i. This requirement is necessary in general and does
not impose additional restrictions to the generation
process compared to the existing literature for Granger
causality (see Figure 1 right for an example where this
assumption is violated).

Step 2: Aggregate p-values. Similar to the proce-
dure in Section 2.3, we aggregate the computed p-values
as follows. For γ ∈ (0, 1), we define

QX→Y (γ) := min

{
1,

emp. γ-quantile
{
p
(i)
X→Y /γ; i = 1, . . . , N

}}
,

(7)

We can now formulate the main theorem of our work,
the proof of which can be found in Appendix D.

Theorem 1. Assume the generation procedure (4) and
let α, γ ∈ (0, 1). Then, QX→Y (γ) is an asymptotically
correct p-value, i.e.,

lim sup
T→∞

P (QX→Y (γ) ≤ α) ≤ α,

where T denotes the number of timestamps.

With this theorem, we obtain type-I error control for
arbitrary γ ∈ (0, 1). Note that the proof does not
require any restrictions on the dependence between p-
values. In particular, the individuals do not need to be
independent, i.e., restrictions on the relation between
εi,t and εj,t as well as ηi,t and ηj,t are not required.

Although Theorem 1 holds for arbitrary γ, choosing
the right γ could be difficult. While Meinhausen et al.
(2009) recommend γ = 0.5 as a practical choice, they
also construct another p-value which only requires to
specify a lower bound for γ. This approach can also be
translated into the panel data setting. We include the
corresponding procedure in Appendix C.

Note that, although our approach is based on the pro-
cedure of Meinhausen et al. (2009) which deals with
high dimensional statistics, we do not consider a high
dimensional setup here. The connection between Mein-
hausen et al. (2009) and our approach is the problem

that a single p-value results in an unstable procedure
which is hence hard to reproduce.

Throughout this paper, we only consider the bivariate
case for simplicity but this can easily be generalized
and corresponding FWER/FDR procedures based on
Meinhausen et al. (2009) can be constructed. More-
over, since QX→Y (γ) is an asymptotically correct p-
value, also classical FWER/FDR control procedures
(e.g. Bonferoni or Benjamini-Hochberg) can be applied
in the multivariate case.

Before moving to numerical experiments, we briefly
discuss some implications of our assumptions and po-
tential limitations of our approach. Both covariance
stationarity and residuals that are i.i.d. in time are
standard assumptions in Granger causality tests. Al-
though covariance stationarity is a strong assumption,
different data preprocessing procedures could be ap-
plied to obtain stationarity in practice (Hyndman and
Athanasopoulos, 2018), also see Appendix G. For exam-
ple, we employ such methods to make the COVID-19
time series stationary in our study in Section 5. Sim-
ilarly, assuming residuals are i.i.d. or Gaussian are
strong assumptions. Our experiments on COVID-19
data and further experiments in Appendix H examine
the robustness of our algorithm against the violation
of this assumption. Finally, the generation process
(4) has two further implications: assuming ε and η
are independent implicitly assumes causal sufficiency
(i.e., no hidden confounders), and that there are no
instantaneous effects between Xt and Yt. Again, both
assumptions are typical in Granger causality analysis.
We discuss how to decrease the false discovery rate in
the presence of confounding, subject to causal faithful-
ness, in Appendix E and the robustness of our approach
under instantaneous effects in Appendix F.

4 EXPERIMENTS WITH
SYNTHETIC DATA

In this section, we present experimental results on
synthetic data. We compare the DH test, DH block
bootstrap method and our approach (QPPA). To com-
pare these methods, we use the existing xtg-cause
package developed by Lopez and Weber (2017), which
includes the DH-test and the DH block bootstrap test.
For the QPPA approach presented in Section 3, we
use our own implementation where we also rely on the
Granger causality test implementation in statsmodels
(Seabold and Perktold, 2010) to compute f-statistics
and corresponding p-values as explained in Section 3.2.
We compare these approaches in two scenarios, respec-
tively without and with cross-sectional dependencies,
detailed below.
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Experiment 1: For the first experiment, we do not
insert cross-sectional dependencies. The generation
process, an autoregressive process of order 1, is specified
as follows:

Xi,t = δi,1Xi,t−1 + ηi,t

Yi,t = θi,1Yi,t−1 + βi,1Xi,t−1 + εi,t,

where the innovation processes are i.i.d. Gaussian
random variables with ηi,t, εi,t ∼ N(0, 0.1) and we
draw the parameters from a uniform distribution:
δi,1, θi,1 ∼ Unif(0.2, 0.8).

Experiment 2: For this experiment we insert cross-
sectional dependencies for X and Y :

Xi,t = δi,1Xi,t−1 + ζi,t

Yi,t = θi,1Yi,t−1 + βi,1Xi,t−1 + ξi,t,

where ζt := (ζ1,t, . . . ζN,t) ∼ N(0,Σ), ξt :=

(ξ1,t, . . . ξN,t) ∼ N(0, Σ̃), Σ = ATA, Σ̃ = ÃT Ã and
A, Ã are random vectors where each entry is sampled
from Unif(0.5, 1.5). Finally, δi,1, θi,1 ∼ Unif(0.2, 0.8)
as in Experiment 1. The cross-sectional dependency is
embedded in the multivariate normal distribution of the
noise terms ζt and ξt. Note however that there is no
dependence between ζt and ξt and also no dependence
of the noise terms in time.

In both experiments we either sample βi,1 from
Unif(0.2, 0.8) if the null should be rejected and set
βi,1 = 0 if the null should be accepted.

We report power and false discovery rates (FDR) for
DH-test, DH-test with block bootstrap (DH-test-bb),
and QPPA in Tables 1 and 2 for experiments 1 and 2
respectively. Each number reported is an average of
100 experiments. For QPPA we use γ = 0.5 in (7) and
for the DH-test and DH-test with block bootstrap we
use the statistic Z̃HNCN , see Appendices B and A.

Table 1 shows that QPPA performs equally well as
DH and DH-bb in the setting without cross-sectional
dependencies with a sufficiently large history (T>10).
The results in Table 2 exhibit that if cross-sectional
dependencies exist, the FDR of the DH-test increases
significantly above the significance level 0.05 even in
the large sample regime. Also DH-test-bb shows higher
FDR than 0.05 even in the large sample regime. This
is not the case for QPPA which remains robust against
this type of dependency. Moreover, the power of both
tests is 1 in the large sample regime. For low sam-
ple sizes, QPPA is rather conservative (for the choice
γ = 0.5), hence it has low power and low FDR for
T = 10. The opposite holds for the DH-test. Note
that for all approaches we set α = 0.05. However,
in the experiments, we observe lower FDR than the
chosen significance level for QPPA. This is due to the

Table 1: Empirical results for Experiment 1 (no cross-
sectional dependencies)

QPPA DH-test DH-test-bb
Power FDR Power FDR Power FDR

T=10 N=1 0.15 0.211 0.35 0.186 0.33 0.154
N=10 0.000 0.000 0.93 0.212 0.74 0.119
N=30 0.000 0.000 1.0 0.359 0.97 0.110

T=50 N=1 0.77 0.038 0.83 0.117 0.83 0.126
N=10 0.98 0.000 1.0 0.074 1.0 0.074
N=30 1.0 0.000 1.0 0.048 1.0 0.083

T=100 N=1 0.91 0.022 0.94 0.078 0.97 0.093
N=10 1.0 0.000 1.0 0.065 1.0 0.074
N=30 1.0 0.000 1.0 0.074 1.0 0.107

Table 2: Empirical results for Experiment 2 (with cross-
sectional dependencies)

QPPA DH-test DH-test-bb
Power FDR Power FDR Power FDR

T=10 N=1 0.170 0.320 0.420 0.236 0.340 0.261
N=10 0.120 0.000 0.630 0.344 0.320 0.220
N=30 0.160 0.059 0.810 0.449 0.380 0.191

T=50 N=1 0.800 0.048 0.850 0.086 0.850 0.105
N=10 0.920 0.000 1.0 0.180 0.990 0.083
N=30 0.960 0.000 1.0 0.408 0.990 0.075

T=100 N=1 0.940 0.051 0.970 0.049 0.980 0.110
N=10 0.970 0.010 1.0 0.174 1.0 0.074
N=30 1.0 0.000 1.0 0.419 1.0 0.082

fact that the p-values of QPPA are not uniformly dis-
tributed but α is only an upper bound for the false
discovery rate, see Theorem 1. While we heuristically
set γ = 0.5 for results reported in Figures 1 and 2,
we show in Figures 2 and 3 how power and FDR vary
for γ = 0.01, 0.02, . . . , 0.99. The Figure shows that in
these experiments, the power decreases with increasing
γ. However, the FDR is 0 for all γ due to the well
separation between the distribution under the null and
alternative. We add further experiments in Appendix

Figure 2: Empirical results in the experimental setup
1 for QPPA for γ = 0.01, 0.02 . . . 0.99 , where we set
T = 100 and N = 30.

H, where we also include additional results about the
behavior of QPPA for varying γ.
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Figure 3: Empirical results in the experimental setup
2 for QPPA for γ = 0.01, 0.02 . . . 0.99 , where we set
T = 100 and N = 30.

5 EXPERIMENTS WITH COVID-19
DATA

While synthetic data experiments confirm our test per-
forms in line with expectations, we carry out a second
set of experiments to demonstrate both the robustness
of our approach on real-world problems, and how the
problem we address arises ubiquitously. To this end,
we give an illustrative study of causal discovery in time
series related to COVID-19. Here, we regard individual
countries and regions as panel members, and we ana-
lyze the causal relation between confirmed cases and
deaths within each country. Since increasing number
of confirmed cases lead to more deaths (after several
days to approximately two weeks), we regard

confirmed cases −→ deaths

as the ground truth causal relation, and analyze causal
influences from the past two weeks to the present.

Some remarks on the ground truth causal relation:
Although one might argue that deaths can causally
influence confirmed cases because more vulnerable im-
mune systems reduce as the number of deaths increase,
we expect such effects to take place over longer periods
of time that should not occur in the scope of our study.
Further, if a huge proportion of death cases did not get
tested before death, death cases can causally influence
confirmed cases because died people might get tested
post mortem. However, confirmed cases is a proxy for
the number of infections and, additionally, COVID-19
deaths where people are not going to the hospital and
die without confirmation but get tested post mortem
are rather rare and should not be statistically signifi-
cant.

As one might expect, cross-sectional dependencies
among countries should exist, e.g., through active cases

traveling between countries (see Appendix I.2 for an
analysis confirming this hypothesis).

We use the Johns Hopkins CSSE COVID-19 data repos-
itory1 (Dong et al., 2020). The data set contains con-
firmed cases and deaths due to COVID-19, collected
globally in 280 countries or regions, where cases are
recorded daily between 22nd January 2020 and 4th Oc-
tober 2021. After applying preprocessing steps outlined
in Appendix I.1, there remain 335 days of data for 225
panel members (i.e., countries or regions). In Table 3
we give p-values of the DH-test, DH-test with block
bootstrap and QPPA for the causal influence from con-
firmed cases to deaths and visa versa, where we allow a
time order in the underlying models to allow influence
for up to two weeks. The results show that the DH-test

Table 3: Results of the covid-19 causal discovery study.
p-val QPPA relates to the p-values obtained by our
QPPA approach with γ = 0.5 in (7), p-val DH-test
to the p-values obtained by the DH-test and p-val DH-
test-bb to the p-values obtained by the DH-test with
block bootstrap, where we use 20 breps, see Appendix
B and the statistics Z̃HNCN , see Appendix A. c→ d is
the corresponding p-value to the causal link "confirmed
cases causes deaths" and d→ c the p-value to the causal
link "deaths causes confirmed cases".

P (=lag order) p-val QPPA p-val DH-test p-val DH-test-bb
c -> d d -> c c -> d d -> c c -> d d -> c

1 0.610 0.607 0.000 0.000 0.000 0.000
2 0.323 0.343 0.000 0.000 0.000 0.000
3 0.183 0.239 0.000 0.000 0.000 0.000
4 0.091 0.133 0.000 0.000 0.000 0.000
5 0.055 0.094 0.000 0.000 0.000 0.000
6 0.036 0.084 0.000 0.000 0.000 0.000
7 0.015 0.110 0.000 0.000 0.000 0.000
8 0.005 0.064 0.000 0.000 0.000 0.000
9 0.003 0.082 0.000 0.000 0.000 0.000
10 0.002 0.080 0.000 0.000 0.000 0.000
11 0.001 0.065 0.000 0.000 0.000 0.000
12 0.001 0.056 0.000 0.000 0.000 0.000

and DH-test with block bootstrap reject the null for
both directions with p-value of 0.000 for all lags, lead-
ing to a wrong conclusion (confirming that deaths also
cause confirmed cases). In contrast, QPPA rejects the
null only for the correct direction (confirmed cases →
deaths) to the significance level of 5% after a reasonable
time order is given. Further, it is reasonable that the
null from confirmed cases to deaths gets only rejected
after including multiple lags, because infection (more
precisely confirmation of infection that is recorded in
the data under consideration) with COVID-19 causes
death with some time delay. Figure 4 shows power and
FDR of QPPA for γ = 0.01, 0.02, . . . , 0.99. Compared

1The data set can be downloaded at https:
//github.com/CSSEGISandData/COVID-19/tree/master/
csse_covid_19_data/csse_covid_19_time_series, from
this repository we used the global csv files

https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series
https://github.com/CSSEGISandData/COVID-19/tree/master/csse_covid_19_data/csse_covid_19_time_series


Lenon Minorics, Caner Turkmen, David Kernert, Patrick Bloebaum, Laurent Callot, Dominik Janzing

to the corresponding study in Section 4 shown in Figure
2 and 3, we can see that the FDR and power for small
γ is large and monotonically decreasing with increasing
γ. Hence, choosing γ amounts to a trade-off between
high power and low FDR. We include more results of
the behavior of QPPA for varying γ in Appendix I.4
where we use different numbers of countries/regions
per run.

We conclude from our results that failing to account
for cross-sectional dependencies can easily result in
wrong conclusions using baseline methods, and that
QPPA not only mitigates this risk but is also robust
against real-world cases where some of its assumptions
about the data generating process (e.g., Gaussianity of
innovations) do not hold.

Figure 4: Empirical results for COVID-19 data about
confirmed cases and deaths using QPPA with γ =
0.01, 0.02, . . . , 0.99. To calculate power and FDR, we
randomly selected 60 countries/regions out of the 225
and checked whether QPPA detects the causal relation
c→ d and d→ c respectively to the significance level
5% and repeat this 100 times.

In general, if one wants to recover the unknown causal
relations of a panel time series dataset, we recommend
to apply QPPA for varying γ. If the results are consis-
tent for a large interval of γ, there is strong evidence
to believe that the obtained causal structure for these
γ captures the relations of the underlying generative
process.

6 CONCLUSION AND OUTLOOK

In this paper, we propose a new approach to causal
discovery on panel data with Granger causality using
a quantile based p-value adjustment approach. We
calculate a Wald statistic for each individual and cor-
respondingly generate an asymptotically correct aggre-
gated p-value for the panel. Compared to the most
widely used causal discovery method on panel data, the

DH-test, we aggregate p-values instead of the individ-
ual Wald statistics. In this way, we are able to account
for cross-sectional dependencies that may exist among
individuals in the panel.

Numerical experiments on synthetic data confirm that
our approach outperforms both the DH-test and its
block bootstrap variant, designed to address cross-
sectional dependencies. Notably, in contrast to baseline
methods, our approach also correctly discovers causal
relationships in a real world scenario – the cause-effect
relationship between COVID-19 infections and deaths.
Our results show that not capturing cross-sectional
dependencies easily leads to incorrect conclusions, and
also that our method is robust in real-world settings
where some of its statistical assumptions may be vio-
lated.

Finally, we emphasize that the p-value aggregation
method we employ is a general approach and does not
depend on the specific generation process. Therefore,
this method could be applied in other applications or
causal discovery methods for panel data (e.g., on non-
time series data), which remains an exciting avenue for
further research.
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Supplementary Material:
Testing Granger Non-Causality in Panels with Cross-Sectional

Dependencies

A FURTHER EXPLANATIONS OF THE DH TEST

Corresponding to the average Wald-static

WN,T :=
1

N

N∑
i=1

Wi,T ,

Dumitrescu and Hurlin (2011) show that for the normalized statistics under some regularity conditions it holds

ZHncN,T :=

√
N

2P
(WN,T − P )

T,N→∞−→ N(0, 1)

Z̃Hnc
N :=

√
N
[
WHnc
N,T −N−1

∑N
i=1 E(Wi,T )

]
√
N−1

∑N
i=1 Var(Wi,T )

N→∞−→ N(0, 1)

(8)

in distribution, where N(0, 1) denotes the normal distribution with expectation 0 and variance 1 (where P denotes
the lag order, T the number of timestamps and N the number of individuals). Eq. (8) can now be used to test (2):
If the probability of obtaining the realization of Z̃Hnc

N , ZHncN,T respectively w.r.t. the standard normal distribution
is low (corresponding to the chosen significance level), H0 is rejected. Juodis et al. (2021) constructed a different
test statistic in the same setting with the additional benefit that, in contrast to the DH-test, it accounts for
"Nickell" bias which occurs if N/T 2 → 0 does not hold.

B DH BLOCK BOOTSTRAP TEST

The DH block bootstrap procedure relies on a resampling idea, cf. Dumitrescu and Hurlin (2011) Section 6.2.:

1. Define the model for each panel member to test Granger causality. Here, the model under consideration is

Yi,t = θi,0 +

P∑
p=1

θi,pYi,t−p +

P∑
p=1

βi,pXi,t−p,

see (1).

2. Estimate the model and compute the corresponding test statistics ZHncN,T , Z̃
Hnc
N for each panel member.

3. Estimate the model under the null (no Granger causality, see 2), i.e., estimate a model

Yi,t = θ̃i,0 +

P∑
p=1

θ̃i,pYi,t−p

for each panel member and compute the residual vectors of size (T, 1).

4. Resample the residuals with replacement for each panel member with "blocks" of size 1, if we want to take
dependencies across time into account, we could increase the block size.
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5. Construct resampled time series Ỹi,t under the null:

Ỹi,t = θ̃i,0 +

P∑
p=1

θ̃i,pỸi,t−p + ε̃i,t

where (ε̃i,t)t denotes the resampled noise of the i-th panel member.

6. Estimate the model defined in step 1 for the resampled time series {Ỹi,t}t and construct the statistics of step
2 for this model and resampled time series.

7. Repeat steps 5 and 6 a large amount of times.

8. Compare the test statistics of step 2 against the test statistics obtained from steps 5 - 7.

Since this procedure relies on resampling, we create dependencies especially in low sample regimes. Further, it
relies on the generation of a new dataset in step 5 which could be not robust to violation of assumptions on real
data. The DH block bootstrap approach is implemented in the xtg-cause library developed by Lopez and Weber
(2017). Different parameters can be specified, e.g., the number of lags (this parameter can also be specified for
the DH-test in the same library) and the number of breps which denotes the number of repetitions of step 7.

C QPPA WITH LOWER BOUND ON γ

As explained in Section 3.2, our aggregation procedure relies on the choice of a γ ∈ (0, 1). Since a proper selection
of γ is difficult, a different aggregation method is proposed. Specify a lower bound for γ, which we denote by
γmin ∈ (0, 1) and correspondingly define

PX→Y := min

(
(1− log γmin) inf

γ∈(γmin,1)
QX→Y (γ), 1

)
(9)

for some fixed γmin ∈ (0, 1), where a recommended choice is γ = 0.05. Then, it holds:
Theorem 2. Assume the generation procedure (4) and let α, γ ∈ (0, 1). Then, PX→Y (γ) is a asymptotically
correct p-value, i.e.,

lim sup
T→∞

P (PX→Y (γ) ≤ α) ≤ α,

where T denotes the number of timestamps.

Similar to Theorem 1, the aggregation idea (9) relies on an aggregation idea from high dimension statistics (see
Meinhausen et al. (2009) Theorem 3.2).

D PROOFS

D.1 Proof of Theorem 1

Proof. We follow the idea of the proof of Meinhausen et al. (2009) Theorem 3.1. Therefore, let

fX→Y (u) :=
1

N

N∑
i=1

1{p(i)X→Y ≤ u}, u ∈ (0, 1). (10)

Notice that

QX→Y (γ) ≤ α ⇔ fX→Y (αγ) ≥ γ (11)

and hence

P (QX→Y (γ) ≤ α) = P
(
fX→Y (αγ) ≥ γ

)
.
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Using the Markov inequality, we have

P
(
fX→Y (αγ) ≥ γ

)
≤ 1

γ
E
(
fX→Y (αγ)

)
=

1

γ

1

N

N∑
i=1

E
(
1{p(i)X→Y ≤ αγ}

)
.

=
1

γ

1

N

N∑
i=1

P
(
p
(i)
X→Y ≤ αγ

)
Since p(i)X→Y is by assumption asymptotically correct for each i, it holds

lim sup
T→∞

P
(
p
(i)
X→Y ≤ αγ

)
≤ αγ for all i

and hence

lim sup
T→∞

P
(
fX→Y (αγ) ≥ γ

)
≤ lim
T→∞

1

γ

1

N

N∑
i=1

P
(
p
(i)
X→Y ≤ αγ

)
≤ 1

γ

1

N

N∑
i=1

αγ = α

which completes the proof.

D.2 Proof of Theorem 2

Proof. We follow the idea of the proof of Meinhausen et al. (2009) Theorem 3.2. Therefore, first note that for a
uniformly distributed random variable U , it holds

sup
γ∈(γmin,1)

1{U ≤ αγ}
γ

=


0 U ≥ α
α/U αγmin ≤ U < α

1/γmin U < αγmin

(12)

And therefore

E

[
sup

γ∈(γmin,1)

1{U ≤ αγ}
γ

]
= α(1− log γmin).

Since p(i)X→Y is an asymptotically correct p-value, it holds that for the cdf of p(i)X→Y denoted by K(i) and the cdf
of U denoted by G it holds that limT→∞K(i)(x) ≤ G(x) for all x and i and therefore, for every weakly decreasing
bounded function u and all i it holds that

lim sup
T→∞

∫
u(x) dK(i)(x) =

∫
u(x) d

(
lim sup
T→∞

K(i)(x)

)
≤
∫
u(x)dG(x). (13)

Seeing that for arbitrary fixed i, it holds

sup
γ∈(γmin,1)

1{p(i)X→Y ≤ αγ}
γ

=


0 p

(i)
X→Y ≥ α

α/p
(i)
X→Y αγmin ≤ p(i)X→Y < α

1/γmin p
(i)
X→Y < αγmin,

(14)

the only difference between E
[
supγ∈(γmin,1)

1{U≤αγ}
γ

]
and E

[
supγ∈(γmin,1)

1{p(i)X→Y ≤αγ}
γ

]
is in the second case in

(12) vs (14), but since u(x) := α/x is monotonically decreasing in [αγmin, α] and because of (13), we obtain

lim sup
T→∞

E

[
sup

γ∈(γmin,1)

1{p(i)X→Y ≤ αγ}
γ

]
≤ E

[
sup

γ∈(γmin,1)

1{U ≤ αγ}
γ

]
= α(1− log γmin)
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Taking the mean over all panel member, we obtain

lim sup
T→∞

E

[
sup

γ∈(γmin,1)

1
N

∑N
i=1 1{p

(i)
X→Y ≤ αγ}
γ

]
≤ (1− log γmin).

Using again the Markov inequality, we obtain

lim sup
T→∞

P

[
sup

γ∈(γmin,1)

1{fX→Y (αγ) ≥ αγ}

]
≤ α(1− log γmin),

where we use the definition of fX→Y from (10). Using (11), we obtain

lim sup
T→∞

P
[

inf
γ∈(γmin,1)

QX→Y (γ) ≤ α
]
≤ α(1− log γmin)

and hence

lim sup
T→∞

P
[

inf
γ∈(γmin,1)

QX→Y (γ)(1− log γmin) ≤ α
]
≤ α

which completes the proof.

E HOW TO DEAL WITH CONFOUNDING

Since we apply Granger causality on every individual of the panel to test whether Xi causes Yi, we have to
deal with the problem that Granger causality disregards hidden confounding. In this section, we want to give a
practical solution to this problem. In the following, we denote by past(t) the past timestamps of t. We now give
sufficient conditions for confounding vs actual causal influence. For that, we consider two arbitrary time series W
and V without the context of panel data. The following Proposition is closely related to Mastakouri et al. (2021)
Theorem 1.b. and requires partially the same assumptions which we list bellow (note that we always assume that
the present cannot causally influence the past):

Assumptions Appendix E:

1. The Causal Markov condition in the full time graph holds.

2. Causal Faithfulness in the full time graph

3. Stationary full time graph: the full time graph is invariant under a joint time shift of all variables

Proposition 3. Assume that Assumption Appendix E holds, Wpast(t) 6⊥⊥ Vt|Vpast(t), Wt ⊥⊥ Vpast(t)|Wpast(t) for
all t and that W is not causing V . Then, there exists a (potentially high dimensional) memoryless (i.e. it does
not hold that Zt−1 → Zt) confounder Z such that the triplet {W,V,Z} is causally sufficient and there exists at
least one t′ ∈ past(t) such that Zt′ → Vt and Zt′ → Wt−n for some n > 0 but there exists no t′′ ∈ past(t) such
that Zt′′ →Wt and Zt′′ → Vt−n for some n > 0.

Proof. Assume that W is not causing V , then according to Reichenbachs principle of common causes, there exists
a confounder Z between W and V . Further, without loss of generality, we can assume causal sufficiency for the
triplet {W,V,Z} since, if another confounder exists we include it to the (potentially high dimensional) confounder
Z. It then follows, that there exists no t′′ ∈ past(t) such that Zt′′ →Wt and Zt′′ → Vt−n for some n > 0 because
otherwise Wt 6⊥⊥ Vpast(t)|Wpast(t) which is a contradiction to the assumption. Further, there exists at least one
t′ ∈ past(t) such that Zt′ → Vt and Zt′ →Wt−n for some n > 0 because otherwise Wpast(t) ⊥⊥ Vt|Vpast(t) which is
a contradiction to the assumption.
It remains to show that Z has no memory effect. If Z would have a memory effect, then

Vt ← Zpast(t) → Zt → Zt+1 →Wt+1

and hence Wt+1 6⊥⊥ Vpast(t+1)|Wpast(t+1) which is a contradiction to the assumption.
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In particular, this proposition shows that if we observe W causing V but not V causing W , then this can only be
due to hidden confounding if the confounder has the following structure: Z has to causally influence the present
of V with larger time delay than the present of W . Further, Z cannot have a memory effect.
Hence, a practical way of dealing with hidden confounding is to exclude bi-directional influence between W and V .
In that way, we might decrease the true positive rate but also remove false positives due to hidden confounding.
Since our QPPA approach relies on Granger causality for the individual panel members, the same also holds for
QPPA.

Here, we want to mention that Peters et al. (2017) argue after Figure 10.7.(a) that such a confounder structure
occurs in real data using the example of price of butter and cheese. They state that the price of butter and cheese
are confounded by the price of milk but the influence from milk to cheese has a larger time delay than from milk
to butter because it takes longer to produce cheese.
However, this is only an example for such a confounder structure if the price of milk has no memory effect,
otherwise we observe significant influence (of course depending on the strength of influence and memory effect)
from the past of cheese to the present of butter and from the past of butter to the present of cheese.

F DETECTING INSTANTANEOUS CAUSAL INFLUENCES

According to the dynamics (4), instantaneous effects are excluded. However, as Peters et al. (2017) Chapter
10.3 argue that, under some assumptions, Granger causality is able to detect causal influence even if it is purely
instantaneous. Namely, if faithfulness holds and time series X has a memory effect (note that here we specifically
consider the bi-variate case, in multi variate cases, instantaneous effects can lead to non-identifiability), i.e.,
Xt−1 → Xt for all t, then if X causes Y , the present of Y is not independent of the past of X given the past of Y
because of the causal influence Xt−1 → Xt → Yt. The following figure, taken from Peters et al. (2017) illustrates
this dependence. Hence, including the past of X into the prediction of Y decreases the prediction error and

Figure 5: Example of a causal relation with only instantaneous influences taken from Peters et al. (2017) Figure
10.8.(b) where Granger causality is able to detect the causal relation from X to Y . In this example, X and Y
denote single time series, contrary to our panel data notation where X, Y denote panels.

therefore Granger causality could be detected. Since our panel Granger Non-causality test relies on Granger
causality on every individual panel member, our algorithm is thus capable of detecting causal influence even if it
is purely instantaneous. This is shown in the following experiment.

Experiment for instantaneous effects: The generation process with only instantaneous causal effects (which
is, as the processes in Section 4, an autoregressive process of order 1) is specified by:

Xi,t = δi,1Xi,t−1 + ηi,t,

Yi,t = θi,1Yi,t−1 + βXi,t + εi,t,

where the innovation processes are i.i.d. Gaussian random variables with ηi,t, εi,t ∼ N(0, 0.1) and i.i.d. δi,1, θi,1 ∼
Unif(0.2, 0.8). Further, we either draw β from Unif(0.2, 0.8) if the null should be rejected or set β = 0 if the null
should be accepted. The instantaneous effect comes from the influence βXi,t on Yi,t and this generation process



Lenon Minorics, Caner Turkmen, David Kernert, Patrick Bloebaum, Laurent Callot, Dominik Janzing

results in the causal structure corresponding to Figure 5. Since the dependence of Xt−1 and Yt given Yt−1 is
indirect through the memory effect and the instantaneous effect, we need a stronger signal to detect the relation
via QPPA, therefore we also include results of QPPA where we draw β from Unif(0.6, 0.8). The results in Figure
6 show that for T = 50, the power decreases relatively fast. Also, for T = 100, the power is smaller than for causal
influence with time delay. However, we also see in in Figure 6.(d) that QPPA is still able to recover the true
causal relation in most cases for γ between 0.01 and approx. 0.5 even if the influence is purely instantaneous.

(a) T = 50, β ∼ Unif(0.2, 0.8) (b) T = 100, β ∼ Unif(0.2, 0.8

(c) T = 50, β ∼ Unif(0.6, 0.8) (d) T = 100, β ∼ Unif(0.6, 0.8)

Figure 6: Empirical results of Experiment for instantaneous effects for QPPA with γ = 0.01, 0.02, . . . , 0.99. We
choose N = 30 and T = 50, 100.

G DEALING WITH NON-STATIONARITIES

A common way to deal with non-stationarities to test for Granger Non-causality is to difference the processes.
More precisely, following Granger (1981); Engle and Granger (1987), we say that a time series W is integrated of
order d, denoted by I(d), if {(1− L)dWt}t is (covariance) stationary, where L denotes the lag operator. Different
test procedures can be applied to find the order of integration, we examine one option for the COVID-19 study in
Appendix I.1.
If we want to test the existence of Granger causality between two time series W and V , we can first search for the
order of integration using stationarity tests on the n-th difference process where we stop as soon as stationarity
gets accepted. If W and V have different orders of integration, say dW and dV , we take the maximum and
difference both time series max(dW , dV )-times. The difference processes often lead to stationary time series in
practice. However, note that such a d does not necessarily exist and hence this approach is not applicable for all
datasets.
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H FURTHER EXPERIMENTS WITH SYNTHETIC DATA

Experiment for sporadically missing connections: For this experiment we again consider the model
without cross-sectional dependencies:

Xi,t = δi,1Xi,t−1 + ηi,t,

Yi,t = θi,1Yi,t−1 + βXi,t−1 + εi,t,

where the innovation processes are i.i.d. Gaussian random variables with ηi,t, εi,t ∼ N(0, 0.1) and i.i.d. δi,1, θi,1 ∼
Unif(0.2, 0.8). Further, we either draw β from Unif(0.2, 0.8) if the null should be rejected or set β = 0 if the
null should be accepted. To show robustness against sporadically missing connections, we set β to zero with
probability a in the case where the null should be rejected where we let a range from 0.1 to 0.9. The proportion
of missing connections when the null should be rejected is a, i.e., for every panel member there is the chance of a
that β = 0 although the null should be rejected. The results in Figure 7 show that especially in the large sample

(a) T = 50 (b) T = 100

Figure 7: Empirical results of Experiment for sporadically missing edges for QPPA, where we randomly set β to 0
in the case where the null should be rejected with probability a where we let a range from 0.1 to 0.9. We choose
N = 100 and T = 50, 100 and γ = 0.5.

regime, QPPA is robust against sporadically missing edges since the power drops only after the probability that
an edges is missing although it should be there is higher than 50%.

Experiment non-Gaussian noise: Again, we consider the model without cross-section dependencies:

Xi,t = δi,1Xi,t−1 + ηi,t,

Yi,t = θi,1Yi,t−1 + βXi,t−1 + εi,t,

where the innovation processes are i.i.d. uniformly distributed random variables with ηi,t, εi,t ∼ Unif(0.2, 0.8)
and i.i.d. δi,1, θi,1 ∼ Unif(0.2, 0.8) and β ∼ Unif(0.2, 0.8) if the null should be rejected and β = 0 if the null
should be accepted. The results in Figure 8 show that non-Gaussian noise does not decrease the power/FDR of
QPPA, cf. Figure 2.

Experiment non i.i.d noise: Also for this experiment we use the model without cross-sectional dependencies:

Xi,t = δi,1Xi,t−1 + ηi,t,

Yi,t = θi,1Yi,t−1 + βXi,t−1 + εi,t,

where we sample the innovation processes from 3-blocks, i.e., ηi,1, ηi,2, ηi,3 are dependent, ηi,4, ηi,5, ηi,6 are
dependent etc. and similar for εi,t. Further, δi,1, θi,1 are i.i.d. Unif(0.2, 0.8)

In Figure 9, we see similar results as in Figure 8. It shows that QPPA is robust against this type of dependent
residuals.
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(a) T = 50 (b) T = 100

Figure 8: Empirical results of experiment for non-Gaussian noise effects for QPPA with γ = 0.01, 0.02, . . . , 0.99.
We choose N = 30 and T = 50, 100.

(a) T = 50 (b) T = 100

Figure 9: Empirical results of Experiment for non-Gaussian noise effects for QPPA with γ = 0.01, 0.02, . . . , 0.99.
We choose N = 30 and T = 50, 100.

I ADDITIONAL RESULTS TO COVID STUDY

I.1 COVID-19 Data Preprocessing Steps

The preprocessing steps we apply on the COVID-19 data about confirmed cases and deaths are as follows:

1. We remove all members of the panel (i.e., Countries/Regions) which have at least one missing value in
confirmed cases or deaths since neither the Granger causality implementation of statsmodel nor xtg-cause
can deal with missing values. However, note that QPPA could deal with missing values here, it would only
require an implementation of Granger causality that can deal with missing values.

2. Although the dataset contains records starting from 22nd January 2020, we only consider the time range 1st
November 2020 until 4th October 2021 because many countries did not have confirmed COVID-19 cases
(and therefore also no death cases) in the beginning of the pandemic.

3. We standardize the data.

4. Since Granger causality can only deal with stationary time series, we first apply a stationarity test for
panel data that we developed based on the augmented Dickey-Fuller test (adf test) (Dickey and Fuller,
1979), combined with the p-value aggregation method explained in Section 2.3 to test for unit root for each
member of the panel. We include more explanation and the test results in Appendix I.3. If the null gets
accepted to the significance level of 5% (where the null is that there exists a unit root, i.e., the time series
are non-stationary), we generate the first difference of the panel members and apply the test again on the
difference process. If the test again accepted the null (again to the significance level of 5%), we generate the
second order difference processes. We continue this procedure until the null gets rejected. The results are
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also given in Appendix I.3. Our test procedure rejects the null for the second order difference process which
we will use from now on for the following analysis.

5. From the panel we remove those members for which either the stationary version of confirmed cases or deaths
is constant since causality cannot be conducted from constant time series.

I.2 Cross-Sectional Dependence Test

To test for cross-sectional dependence, we use the Stata-implementation (De Hoyos and Sarafidis, 2006) which
contains the test procedures of Pesaran (2004); Frees (1995); Friedman (1937). There, we apply every test on the
preprocessed data according to Appendix I.1. The null of these tests is that the individual panel members are
independent. For every test, we obtain the p-value 0.000 and therefore all three tests strongly reject the null.
Hence, we accept the alternative that cross-sectional dependencies exist.

I.3 Non-Stationarity Test

There are several existing non-stationarity tests for panel data, see Breitung (2000); Breitung and Das (2005);
Choi (2001); Hadri (2000); Harris and Tzavalis (1999); Im et al. (2003); Levin et al. (2002). However, most of them
assume independence across panel members. Here, we want to present another panel stationarity test that relies
on the same procedure as our QPPA approach, Section 3.2, except that in step 1 we instead of applying Granger
causality on the individual panel members, we apply a stationarity test and then aggregate the corresponding
p-values with the procedure described in step 2. For the stationarity test, we use the augmented Dickey-Fuller
test (adf), see Dickey and Fuller (1979). Hence, we apply the adf test on each individual panel member on the
COVID-19 data about confirmed cases and deaths, where we use 12 time lags. Afterwards, we aggregate these
p-values using the aggregation method

min{1, emp. γ-quantile(pj/γ : j ∈ 1, . . . , N)},

where pj denotes the p-value of the adf test for the j-th panel member. Our hypothesis test reads

H0 : The panel has a unit root
H1 : The panel has no unit root.

Similar to the hypotheses test of QPPA, we assume that either each member of the panel has a unit root or none
of them.
To find the order of integration (see Section G), we apply the adf test combined with the second step of QPPA.
Table 4 show the results for different γ. We see consistent rejection of the null for the second order difference
processes, whereas for the first order we only reject for γ = 0.1 and without generating the difference process, the
null is not rejected for any γ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}. Hence, we have clear indication that the COVID-19 data
is second difference order stationary. Since we need stationary data for Granger causality, we will henceforth use
the second order processes for the analysis.
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Table 4: Empirical results for the stationarity test of COVID-19 using adf combined with the second step of
QPPA. With a slight abuse of notation, we say that the panel is d-order integrated (denoted by I(d)) if the null of
our panel adf test is rejected for the panel {{(1− L)dXi,t}t}i and {{(1− L)dYi,t}t}i respectively where X denotes
confirmed cases and Y denotes deaths, where L denotes the back shift operator. For more details see Section G.

Order of γ p-val
integration confirmed cases deaths

I(0) 0.1 0.414 1.0
0.25 1.0 1.0
0.5 1.0 1.0
0.75 1.0 1.0
0.9 1.0 1.0

I(1) 0.1 0.001 0.003
0.25 0.337 0.098
0.5 0.569 0.426
0.75 0.745 0.641
0.9 0.957 0.843

I(2) 0.1 9.883e-14 1.877e-12
0.25 2.297e-12 2.457e-10
0.5 2.543e-08 1.702e-06
0.75 5.574e-05 0.001
0.9 0.004 0.006

I.4 Additional COVID-19 Experiments

We repeat the experiment in Figure 4 with different number of countries/regions. The results, given in Figure 10,
show that the accuracy of QPPA increases with increasing number of countries/regions per run.

(a) N = 30 (b) N = 60, also used in the main text (c) N = 100

Figure 10: Empirical results for COVID-19 data about confirmed cases and deaths using QPPA with γ = 0.01,
0.02, . . . , 0.99. To calculate power and FDR, we randomly selected N countries/regions out of the 225 (here, N
is specified in the subfigures) and checked whether QPPA detects the causal relation c → d and d → c respectively
to the significance level 5% and repeat this 100 times. Here, we use the complete time series length available
which is T = 335.
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