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Abstract

We study the problem of adversarially ro-
bust learning in the transductive setting. For
classes H of bounded VC dimension, we pro-
pose a simple transductive learner that when
presented with a set of labeled training ex-
amples and a set of unlabeled test examples
(both sets possibly adversarially perturbed),
it correctly labels the test examples with a
robust error rate that is linear in the VC di-
mension and is adaptive to the complexity
of the perturbation set. This result provides
an exponential improvement in dependence
on VC dimension over the best known upper
bound on the robust error in the inductive
setting, at the expense of competing with a
more restrictive notion of optimal robust er-
ror.

1 INTRODUCTION

We consider the problem of learning predictors that
are robust to adversarial examples at test time. That
is, we would like to be robust against a perturbation
set U : X → 2X , where U(x) ⊆ X is the set of allowed
perturbations that an adversary might replace x with,
as measured by the robust risk:

RU (h;D) = E
(x,y)∼D

[
sup

z∈U(x)
1 {h(z) 6= y}

]
. (1)

For example, U could be perturbations of bounded `p-
norms (Goodfellow et al., 2015).

Adversarially robust learning has been studied almost
exclusively in the inductive setting, where the task is
to learn, from (non-adversarial) training data, a pre-
dictor with small robust risk (Equation 1) (Montasser
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et al., 2019). In many applications in practice, how-
ever, test examples are available in batches and ma-
chine learning systems are tasked with classifying them
all at once. Transductive learning refers to the learning
setting where the goal is to classify a given unlabeled
test set that is presented together with the training set
(Vapnik, 1998).

In this paper, we study adversarially robust learn-
ing in the transductive setting. In this problem, n
i.i.d. training examples (x,y) ∼ Dn and m separate
i.i.d. test examples (x̃, ỹ) ∼ Dm are drawn from some
unknown distribution D. Then, based on all available
information: x,y, x̃, ỹ, distribution D, perturbation
set U , and white-box access to the transductive learner
A : (X×Y)n×Xm → Ym, an adversary chooses adver-
sarial perturbations of the test set z̃i ∈ U(x̃i)∀i ∈ [m],
which we henceforth denote by z̃ ∈ U(x̃). Finally, the
transductive learner A receives as input the labeled
training examples (x,y) and the perturbed test exam-
ples z̃, and outputs a labeling for z̃ which we denote by
A(x,y, z̃) ∈ Ym1. The performance of A is measured
by the transductive robust risk2:

TRn,m
U (A;D) =

E
(x,y)∼Dn
(x̃,ỹ)∼Dm

[
sup

z̃∈U(x̃)

1

m

m∑
i=1

1 {A(x,y, z̃)(z̃i) 6= ỹi}

]
.
(2)

As we shall show, the transductive setting allows for
much stronger results than what is known in the in-
ductive adversarially robust setting.

How is this possible? In traditional (non-robust) learn-
ing, there are standard transductive-to-inductive and
inductive-to-transductive reductions which establish
that both settings are essentially equivalent statis-
tically. However, in Section 4 we discuss how the
inductive-to-transductive reduction breaks down for
adverserially robust learning, opening the possibility
that transductive robust learning might be inherently

1Throughout the paper, we abuse notation and use
A(x,y, z̃)(z̃i) to refer to the ith entry in the vector
A(x,y, z̃).

2Unless otherwise stated, in this paper we fix the test
set size m = n.
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easier than inductive robust learning. This is good
news, since inductive adversarially robust learning so
far seems challenging. Focusing on adversarially ro-
bust learning of VC classes (hypothesis classes with
bounded VC dimension), although we know all such
classes are adverserially robustly learnable, existing
inductive methods require sample complexity expo-
nential in the VC dimension, and a completely in-
tractable and essentially non-implementable algorithm
Montasser et al. (2019). In contrast, for transductive
adversarially robust learning, we present a simple and
straight-forward learner with sample complexity only
linear in the VC-dimension!

So why are we interested in the transductive setting?
First, if the adversarially robust transductive setting
is indeed easier than its inductive counterpart, it is
important to develop methods that take advantage of
this setting, and could be applicable and beneficial
when entire batches of test examples are processed
concurrently. This paper is the first work, as far as
we are aware, in this direction. Alternatively, perhaps
advances in analyzing the transductive setting could
potentially translate back to the inductive setting—
although the standard reduction does not apply, we
can still be hopeful we might close the gap through
additional ideas.

Relaxed guarantees: choice of competitor
As with most learning theory gurantees, we will
show how, given enough samples, we can approach
the error of some reference competitor. The best
we can hope for is to compete with OPTU =
infh∈H Pr(x,y)∼D [∃z ∈ U(x) : h(z) 6= y], which is the
smallest attainable robust risk against perturbation
set U—this is the best we could do even if we knew
the source distribution. In this work, we consider a
weaker goal where we compete with the smallest at-
tainable robust risk against a stronger adversary:

OPTU−1(U) = inf
h∈H

Pr
(x,y)∼D

[
∃x̃ ∈ U−1(U)(x) : h(x̃) 6= y

]
,

(3)

where U−1(z) = {x ∈ X : z ∈ U(x)} and U−1(U)(x) =
∪z∈U(x)U−1(z) = {x̃ ∈ X : U(x) ∩ U(x̃) 6= ∅}.

In words, OPTU−1(U) is the smallest attainable ro-
bust risk against the larger perturbation set U−1(U).
In particular, when x ∈ U(x), U(x) ⊆ U−1(U)(x)
and OPTU ≤ OPTU−1(U). And what we will
show is a transductive learner A with robust risk
TRU (A;D) which is competitive with the best robust
risk OPTU−1(U) against the larger perturbation set
U−1(U).

For example, consider U(x) = Bγ(x) ,
{z ∈ X : ρ(x, z) ≤ γ} where γ > 0 and ρ is

some metric on X (e.g., `p-balls). In this case,
U−1(U)(x) = B2γ(x). Furthermore, OPTU corre-
sponds to optimal robust risk with radius γ, while
OPTU−1(U) corresponds to optimal robust risk with
radius 2γ. In this case, our guarantees will ensure
robustness to perturbations within radius γ, that
is almost as good as the best possible robust risk
with radius 2γ. In particular, our guarantees in the
realizable setting ensure robustness to perturbations
within radius γ when the smallest robust risk with
radius 2γ is zero, i.e.,OPTU−1(U) = 0. By way of
analogy, guarantees that are similar in spirit are
common in the context of bi-criteria approximation
algorithms for discrete optimization problems (e.g.,
the sparsest cut approximation algorithm due to
Arora et al. (2004)).

Main Contributions We shed some new light on
the problem of adversarially robust learning by study-
ing the transductive setting. We propose a simple
transductive learning algorithm with robust learning
guarantees that are stronger than the known inductive
guarantees in some aspects, but weaker in other as-
pects. Specifically, our algorithm enjoys an improved
robust error rate that is at most linear in the VC
dimension and is adaptive to the complexity of the
perturbation set U , and is also robust to adversarial
perturbations in the training data. This comes at
the expense of competing with the more restrictive
OPTU−1(U), where the inductive guarantees compete
with OPTU .

Specifically, given a class H and a perturbation set U ,
we present a simple tansductive learner A : (X ×Y)n×
Xn → Yn (see Section 3) such that for any distribution
D over X × Y:

If Realizable, OPTU−1(U) = 0,

TRU (A;D) ≤ vc(H) log(2n)

n
. (4)

If Agnostic, OPTU−1(U) > 0,

TRU (A;D) ≤ 2OPTU−1(U) +O

(√
vc(H)

n

)
. (5)

Our transductive learner A simply asks for any pre-
dictor h ∈ H that robustly and correctly labels the
training examples (x,y) with respect to U−1 and ro-
bustly labels the test examples z with respect to U−1.
In Section 3, we show that our transductive learner
additionally enjoys the following properties:

1. Robustness guarantees against adversarial pertur-
bations in the training data. These are the first
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non-trivial learning guarantees against adversar-
ial perturbations in the training data, which has
not been considered before in the literature to the
best of our knowledge.

2. Adaptive robust error rates that are controlled by
the complexity of H and the perturbation set U
in the form of a new complexity measure that we
introduce: the relaxed U-robust shattering dimen-
sion rdimU (H) (see Definition 1). These are the
first general robust learning guarantees that take
the complexity of the perturbation set U into ac-
count.

Practical Implications In the context of deep
learning and robustness to `p perturbations, and in
scenarios where (adversarial) unlabeled test data is
available in batches, our results suggest that to incur
a low error rate on the test data it suffices to per-
form adversarial training (e.g., Madry et al. (2018);
Zhang et al. (2019)) to find network parameters that
simultaneously: (a) robustly and correctly fit the la-
beled training data, and (b) robustly fit the unla-
beled (adversarial) test data. For instance, our trans-
ductive learner corresponds to Unsupervised Adver-
sarial Training with Online Targets (Strategy 1 in
[AUH+19]). Compared with inductive learning, where
it is empirically observed that adversarial training does
not always guarantee robust generalization (Schmidt
et al., 2018), transductive learning offers a new per-
spective on adversarial robustness that highlights how
unlabeled adversarial test data can inform local ro-
bustness, which perhaps is easier to achieve than global
robustness.

2 PRELIMINARIES

Let X denote the instance space and Y = {±1}.
Let H ⊆ YX denote a hypothesis class and vc(H)
denotes its VC dimension.Let U : X → 2X de-
note an arbitrary perturbation set such that for each
x ∈ X , U(x) is non-empty.Denote by U−1 the in-
verse image of U , where for each z ∈ X , U−1(z) =
{x ∈ X : z ∈ U(x)}. Observe that for any x, z ∈ X
it holds that z ∈ U(x) ⇔ x ∈ U−1(z). For an in-
stance x ∈ X , U−1(U)(x) denotes the set of all nat-
ural examples x̃ that share some perturbation with x
according to U , i.e., U−1(U)(x) = ∪z∈U(x)U−1(z) =
{x̃ ∈ X : U(x) ∩ U(x̃) 6= ∅}. For any sequence of la-
beled points (x,y) ∈ (X × Y)n, any sequence of ad-
versarial perturbations z ∈ Xn, and any predictor
h : X → Y let errx,y(h) = 1

n

∑n
i=1 1 {h(x) 6= y} de-

note the standard 0-1 error, and define

RU−1(h; z,y) =
1

n

n∑
i=1

sup
x̃∈U−1(zi)

1 {h(x̃) 6= yi} , (6)

RU−1(h; z) =
1

n

n∑
i=1

sup
x̃∈U−1(zi)

1 {h(x̃) 6= h(zi)} . (7)

Our transductive robust learning guarantees (pre-
sented in Section 3) are in fact in terms of an adaptive
complexity measure – that is in general tighter than
the VC dimension and takes into account the complex-
ity of both H and U – which we introduce next:

Definition 1 (Relaxed Robust Shattering Dimen-
sion). A sequence z1, . . . , zk ∈ X is said to be re-
laxed U-robustly shattered by H if ∀y1, . . . , yk ∈ {±1} :
∃xy11 , . . . , x

yk
k ∈ X and ∃h ∈ H such that zi ∈ U(xyii )

and h(U(xyii )) = yi∀1 ≤ i ≤ k. The relaxed U-
robust shattering dimension rdimU (H) is defined as
the largest k for which there exist k points that are
relaxed U-robustly shattered by H.

The above complexity measure is inspired by the ro-
bust shattering dimension that was introduced by
Montasser et al. (2019) and shown to lower bound the
sample complexity of robust learning in the inductive
setting:

Definition 2 (Robust Shattering Dimension – Mon-
tasser et al. (2019)). A sequence z1, . . . , zk ∈
X is said to be U-robustly shattered by H if
∃x+1 , x

−
1 , . . . , x

+
k , x

−
k ∈ X such that ∀i ∈ [k], zi ∈

U(x+i ) ∩ U(x−i ) and ∀y1, . . . , yk ∈ {±1} : ∃h ∈ H such
that h(U(xyii )) = yi∀1 ≤ i ≤ k. The U-robust shatter-
ing dimension dimU (H) is defined as the largest k for
which there exist k points U-robustly shattered by H.

We remark that for any class H and any perturbation
set U , it immediately follows from the definitions above
that: dimU (H) ≤ rdimU (H) ≤ vc(H).

3 MAIN RESULTS

We obtain strong robust learning guarantees against
worst-case adversarial perturbations of both the train-
ing data and the test data. Specifically, after training
examples (x,y) ∼ Dn and test examples (x̃, ỹ) ∼ Dn
are drawn, an adversary, which has white-box access
to the learner, perturbs both training and test exam-
ples by choosing adversarial perturbations z ∈ U(x)
and z̃ ∈ U(x̃). Our transductive learner observes as
input (z,y) and z̃, and outputs ĥ(z̃) ∈ Yn where
ĥ ∈ ∆UH(z,y, z̃) defined as follows:
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If Realizable (OPTU−1(U) = 0),

∆UH(z,y, z̃) =
{
h ∈ H : RU−1(h; z,y) = 0

∧RU−1(h; z̃) = 0
}
.

(8)

If Agnostic (OPTU−1(U) > 0),

∆UH(z,y, z̃) = argmin
h∈H

max {RU−1(h; z,y),RU−1(h; z̃)} .

(9)

Our transductive learner simply asks for any predictor
h ∈ H that robustly and correctly labels the training
examples (z,y) with respect to U−1 and robustly la-
bels the test examples z with respect to U−1. Observe
that requiring robustness on z and z̃ with respect to
U−1 implies, by definition of U−1, that the i.i.d. ex-
amples x and x̃ will be labeled in the same way as z
and z̃, even though the learner does not observe x and
x̃. This is the main insight that we rely on to obtain
our transductive robust learning guarantees:
Theorem 1 (Realizable). For any n ∈ N, δ > 0, class
H, perturbation set U , and distribution D over X ×Y
satisfying OPTU−1(U) = 0:

Pr
(x,y)∼Dn
(x̃,ỹ)∼Dn

[
∀z ∈ U(x),∀z̃ ∈ U(x̃),

∀ĥ ∈ ∆UH(z,y, z̃) : errz̃,ỹ(ĥ) ≤ ε
]
≥ 1− δ,

where ε =
rdimU−1 (H) log(2n)+log(1/δ)

n ≤
vc(H) log(2n)+log(1/δ)

n .
Theorem 2 (Agnostic). For any n ∈ N, δ > 0, class
H, perturbation set U , and distribution D over X ×Y,

Pr
(x,y)∼Dn
(x̃,ỹ)∼Dn

[
∀z ∈ U(x),∀z̃ ∈ U(x̃),

∀ĥ ∈ ∆UH(z,y, z̃) : err(z̃,ỹ)(ĥ) ≤ ε
]
≥ 1− δ,

where

ε = min

{
2OPTU−1(U) +O

(√
vc(H) + log(1/δ)

n

)
,

3OPTU−1(U) +O

(√
rdimU−1(H) log(2n) + log(1/δ)

n

)}
.

The proofs of Theorem 1 and Theorem 2 are deferred
to Section 5.

4 TRANSDUCTIVE
VS. INDUCTIVE

For purposes of the discussion below, let AI : (X ×
Y)∗ → YX denote an inductive learner and AT : (X ×

Y)n × Xm → Ym denote a trnasductive learner. The
inductive robust risk of AI is defined as

IRn
U (A;D) = E

(x,y)∼Dn
RU (A(x,y);D).

For standard (non-robust) supervised learning, i.e.,
when U(x) = {x}, there isn’t much difference between
the transductive and inductive settings in terms of sta-
tistical performance—an observation which has been
employed in designing and analyzing inductive learn-
ing algorithms by relying on the transductive setting
(Vapnik and Chervonenkis, 1974). We can always take
an inductive learner AI and use it transductively as AT
defined as

∀i ∈ [m] : AT (x,y, x̃)(x̃i) = AI(x,y)(x̃i), (10)

and so TRn,m(AT ;D) ≤ IRn(AI ;D).

In the other direction, given a transductive learner AT ,
if it’s guarantee doesn’t depend on the test set size m
(i.e., holds even when m = 1), we can consider an
inductive learner AI that outputs a predictor which
just runs the transductive learner at test-time defined
as

∀x ∈ X : AI(x,y)(x) = AT (x,y, x), (11)

ensuring IRn(AI ;D) = TRn,1(AT ;D).

More generally, if the transductive learner AT does
rely on having multiple test examples, e.g., m = n as
in our case, we can randomly split the training set,
using some of the training examples as test examples:

∀x ∈ X : AI(x,y)(x) = AT (x′,y′,x′′ ∪ {x})(x), (12)

where x′ and x′′ are random disjoint subsets of x of
size

⌊
n
2

⌋
and

⌊
n
2

⌋
− 1, and x′′ ∪ {x} is a random per-

mutation of the concatenation. This ensures

IRn(AI ;D) = E [1 {AT (x′,y′,x′′ ∪ {x})(x) 6= y}]
= E

(x,y)∼Dn/2

(x̃,ỹ)∼Dn/2

E
i∼Unif[n/2]

[1 {AT (x,y, x̃)(x̃i) 6= ỹi}]

= E
(x,y)∼Dn/2

(x̃,ỹ)∼Dn/2

2

n

n
2∑
i=1

1 {AT (x,y, x̃)(x̃i) 6= ỹi}

= TR
n
2 ,
n
2 (AT ;D).

Why is the robust setting different? We can still re-
duce transductive to inductive just the same. Given
an inductive learner AI , the construction of Equa-
tion 10 is still valid, and we have TRn,m

U (AT ;D) ≤
IRn
U (AI ;D).

But what happens in the reverse direction? If trans-
ductive learner AT doesn’t rely on having multiple
test examples, i.e., its guarantee doesn’t depend on m
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and is valid even if m = 1, the construction in Equa-
tion 11 can still be used, and we have IRn

U (AI ;D) =
TRn,1
U (AT ;D). This reduction has the potential of aid-

ing in designing robust inductive learning methods,
but it relies on the transductive method not depend-
ing on the number of test examples, or equivalently
referred to as 1-point transductive learners (e.g., the
one-inclusion graph prediction algorithm due to Haus-
sler et al. (1994)). Unfortunately, this is not the case
for our transductive learner AT (presented in Section
3) which requires m = n.

Trying to apply the other reduction from Equation 12
and its analysis in the transductive setting, we would
need to implement: AT (x′,y′, z′′∪{z}). To apply our
transductive learner AT , we would need not the subset
of training points x′′, but rather their perturbations
z′′. But how could we obtain this? This is not given
to us. If x ∈ U(x), we can try using z′′i = x′′i , i.e.
AT (x′,y′,x′′ ∪ {z}), for which we get the following
inductive error:

IRn
U (AI ;D) = E

(x,y)∼Dn/2

(x̃,ỹ)∼Dn/2

[
E

i∼Unif[n/2]

sup
z̃i∈U(x̃i)

1
{
AT (x,y, x̃1:i, z̃i, x̃i+1:n2

)(z̃i) 6= yi
}]
.

But the right hand side here is only a (loose) upper
bound on TR

n/2,n/2
U (AT ;D). Specifically, in the above,

the supremum representing the adversary, comes in af-
ter knowing which one of the n

2 points we are evalu-
ating on. On the other hand, in a true transductive
setting, i.e., in the definition of TR

n/2,n/2
U , the adver-

sary needs to commit to a perturbation that would be
bad (for us) on all n2 of the points. In a sense, the fact
that the adversary must perturb all points, and we can
leverage knowledge of these perturbations, is what re-
stricts the power of the adversary in the transductive
setting, and allows us to better protect against adver-
sarial attacks affecting many examples (we might still
get a few examples wrong, but that’s OK).

Proper vs. Improper Another issue where we see
a difference between inductive and transductive ad-
versarially robust learning is with regards to whether
the learning can be proper. Montasser et al. (2019)
showed that learning some VC classes in the inductive
setting necessarily requires improper learning. Specif-
ically, there are classes H with constant VC dimen-
sion that are not robustly PAC learnable with any in-
ductive proper learner AI : (X × Y)∗ → H, where
proper learning is defined as outputting a predictor
in H. Even in the case of robust realizability with
respect to U−1(U), i.e., OPTU−1(U) = 0, we can still
adapt the construction of Montasser et al. (2019) to

conclude that improper learning is needed in the in-
ductive setting, whereas for transductive learning, our
learner from Section 3 is proper. But this isn’t sur-
prising, and also in the standard (non-robust) setting
we can expect differences in properness between trans-
ductive and inductive.

We mentioned that any transductive non-robust
learner can be transformed to an inductive learner,
using the reduction in Equation 12. But even if the
transductive learner is proper, the resulting inductive
learner is not. And furthermore, any improper trans-
ductive learner, whether non-robust or robust, can be
transformed to a proper transductive learner. Specif-
ically, for any transductive learner AT and any input
(x,y, z̃) ∈ (X × Y)n × Xm, we can project the label-
ing AT (x,y, z̃) to the closest proper labeling in the
set ΓH(z̃) = {(h(z̃)) : h ∈ H}. In the realizable set-
ting, when ∃h ∈ H s.t. RU (h;D) = 0, we are guar-
anteed that whenever A(x,y, z̃) has ε error then the
proper labeling has 2ε error. In the agnostic setting,
we are guaranteed that the proper labeling will in-
cur robust error at most 3 infh∈HRU (h;D) + 2ε when-
ever A(x,y, z̃) has robust error of infh∈HRU (h;D)+ε.
We therefore see that in the transductive setting, im-
properness can never buy a significant advantage, and
we should not be surprised that learning that must be
improper in the inductive setting can be proper in the
transductive one.

5 PROOFS

We start with stating a helpful lemma that extends
the classic Sauer-Shelah-Perles lemma for the robust
setting (the proof is deferred to Appendix A).

Lemma 3 (Sauer’s lemma for rdimU (H)). For any
class H, any perturbation set U , and any sequence of
points z1, . . . , zn ∈ X ,∣∣ΠUH(z1, . . . , zn)

∣∣ ,∣∣∣{(h(z1), . . . , h(zn))
∣∣∣ ∃x1,...,xn∈X ,∃h∈H:
zi∈U(xi)∧h(U(xi))=h(zi)∀1≤i≤n

}∣∣∣
≤
(

n

≤ rdimU (H)

)
,

rdimU (H)∑
i=0

(
n

i

)
.

5.1 Realizable Setting

Proof. (Proof of Theorem 1) It suffices to show that

Pr
(x,y)∼Dn
(x̃,ỹ)∼Dn

[
∃z ∈ U(x),∃z̃ ∈ U(x̃),

∃ĥ ∈ ∆UH(z,y, z̃) : errz̃,ỹ(ĥ) > ε

]
≤ δ.
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Observe that since OPTU−1(U) = 0, it holds by defini-
tion of ∆UH (see Equation 8) that the set ∆UH(z,y, z̃)
is non-empty with probability 1.

We will first start with a standard observation stating
that sampling two iid sequences of length n, (x,y) ∼
Dn and (x̃, ỹ) ∼ Dn, is equivalent to sampling a single
iid sequence of length 2n, (x,y) ∼ D2n, and then ran-
domly splitting it into two sequences of length n (using
a permutation σ of {1, . . . , 2n} sampled uniformly at
random). Thus, it follows that

Pr
(x,y)∼Dn
(x̃,ỹ)∼Dn

[
∃z ∈ U(x),∃z̃ ∈ U(x̃),∃ĥ ∈ ∆UH(z,y, z̃) :

errz̃,ỹ(ĥ) > ε

]
= E

(x,y)∼D2n

[
Pr
σ

[Eσ,z|(x,y)]
]
,

where σ is a permutation of [2n] sampled uniformly at
random and Eσ,z is defined as:

Eσ,z =

{
∃zσ(1:2n) ∈ U(xσ(1:2n)),

∃ĥ ∈ ∆UH(zσ(1:n),yσ(1:n), zσ(n+1:2n)) :

errzσ(n+1:2n),yσ(n+1:2n)
(ĥ) > ε

}
.

High error on z’s implies high error on x’s. It
suffices to show that for any (x,y) ∼ D2n such that
∃h∗ ∈ H with h∗(U−1(U)(x)) = y (which occurs with
probability one): Prσ [Eσ,z|(x,y)] ≤ δ. To this end,
we will start by showing that the event Eσ,z implies
the following event Eσ,x:

Eσ,x =

{
∃zσ(1:2n) ∈ U(xσ(1:2n)),

∃ĥ ∈ ∆UH(zσ(1:n),yσ(1:n), zσ(n+1:2n)) :

errxσ(n+1:2n),yσ(n+1:2n)
(ĥ) > ε

}
.

In words, in case there are adversarial per-
turbations zσ(1:2n) ∈ U(xσ(1:2n)) and a pre-
dictor ĥ ∈ ∆UH(zσ(1:n),yσ(1:n), zσ(n+1:2n)) with
many mistakes on the adversarial perturbations:
errzσ(n+1:2n),yσ(n+1:2n)

(ĥ) > ε, then this implies
that ĥ makes many mistakes on the original non-
adversarial test sequence: errxσ(n+1:2n),yσ(n+1:2n)

(ĥ) >
ε. This is because for any zσ(1:2n) ∈ U(xσ(1:2n)),
by definition of ∆UH (see Equation 8), any ĥ ∈
∆UH(zσ(1:n),yσ(1:n), zσ(n+1:2n)) robustly labels the per-
turbations zσ(1:2n): ĥ(U−1(zσ(1:2n))) = ĥ(zσ(1:2n)).
That is,

(∀1 ≤ i ≤ 2n)
(
∀x̃ ∈ U−1(zσ(i))

)
: ĥ(x̃) = ĥ(zσ(i)).

By definition of U−1, it holds that xσ(1:2n) ∈
U−1(zσ(1:2n)). Thus, it follows that ĥ(zσ(n+1:2n)) =

ĥ(xσ(n+1:2n)), and therefore, event Eσ,z implies event
Eσ,x.

Finite robust labelings on x’s Based on the
above, it suffices now to show that: Prσ [Eσ,x|(x,y)] ≤
δ. To this end, we will show that for any permu-
tation σ, any zσ(1:2n) ∈ U(xσ(1:2n)), and any ĥ ∈
∆UH(zσ(1:n),yσ(1:n), zσ(n+1:2n)) it holds that the la-
beling ĥ(xσ(1:2n)) is included in a finite set of pos-
sible behaviors ΠUH defined on the entire sequence
x = (x1, . . . , x2n) by:

ΠUH(x1, . . . , x2n)

=
{

(h(x1:2n))
∣∣∣ ∃z1∈U(x1),...,z2n∈U(x2n),

∃h∈H:h(U−1(zi))=h(xi)∀1≤i≤2n

}
.

Consider an arbitrary permutation σ and an ar-
bitrary zσ(1:2n) ∈ U(xσ(1:2n)). For any ĥ ∈
∆UH(zσ(1:n),yσ(1:n), zσ(n+1:2n)), by definition of ∆UH,
it holds that ĥ

(
U−1(zσ(1:n))

)
= yσ(1:n) and

ĥ(U−1(zσ(n+1:2n))) = ĥ(zσ(n+1:2n)). Therefore,
zσ(1:2n) ∈ U(xσ(1:2n)) and the predictor ĥ ∈ H are
witnesses that satisfy ∀1 ≤ i ≤ 2n:

zσ(i) ∈ U(xσ(i)) ∧ ĥ(U−1(zσ(i))) = ĥ(xσ(i)).

Thus, by definition of ΠUH, it holds that ĥ(xσ(1:2n)) ∈
ΠUH(x1, . . . , x2n). This allows us to establish that the
event Eσ,x implies the event that there exists a label-
ing ĥ(xσ(1:2n)) ∈ ΠUH(x1, . . . , x2n) that achieves zero
loss on the training examples errxσ(1:n),yσ(1:n)

(ĥ) = 0,
but makes error more than ε on the test examples
errxσ(n+1:2n),yσ(n+1:2n)

(ĥ) > ε. Specifically,

Pr
σ

[Eσ,x] ≤

Pr
σ

[
∃ĥ ∈ ΠUH(x1, . . . , x2n) : errxσ(1:n),yσ(1:n)

(ĥ) = 0

∧ errxσ(n+1:2n),yσ(n+1:2n)
(ĥ) > ε

]
(i)

≤
∣∣ΠUH(x1, . . . , x2n)

∣∣ 2d−εne
(ii)

≤ (2n)
rdimU−1 (H)

2d−εne,

where inequality (i) follows from applying a union
bound over labelings ĥ ∈ ΠUH(x1, . . . , x2n), and ob-
serving that for any such fixed ĥ:

Pr
σ

[
errxσ(1:n),yσ(1:n)

(ĥ) = 0

∧ errxσ(n+1:2n),yσ(n+1:2n)
(ĥ) > ε

]
≤ 2−dεne.
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To see this, suppose that s =
∑2n
i=1 1{ĥ(xi) 6= yi} ≥

dεne (otherwise, the probability of the event above is
zero). Now, when sampling a random permutation σ,
the chance that all of the mistakes fall into the test
split is at most 2−s ≤ 2−dεne. Because if we pair the
s mistakes and any s out of the 2n − s non-mistakes
while fixing the remaining non-mistakes to be in the
training split, then the chance that all the s mistakes
appear in the test split is at most 2−s.

Finally, inequality (ii) follows from applying Sauer’s
lemma on our introduced relaxed notion of ro-
bust shattering dimension (Definition 1). Setting
(2n)

rdimU−1 (H)
2d−εne ≤ δ and solving for ε yields the

stated bound.

5.2 Agnostic Setting

Proof. (Proof of Theorem 2) Let n ∈ N. For nota-
tional brevity, we write OPT = OPTU−1(U). We will
assume that OPT (see Equation 3) is attained by some
predictor h∗ ∈ H.3 Let (x,y) ∼ Dn, (x̃, ỹ) ∼ Dn be
independent.

We will establish that with high probability over the
drawings of (x,y), (x̃, ỹ) ∼ Dn: for any adversarial
perturbations z ∈ U(x), z̃ ∈ U(x̃), and any predictor
ĥ ∈ ∆UH(z,y, z̃):

1. ĥ achieves low robust error on the training exam-
ples: RU−1(ĥ; z,y) ≤ OPT + ε0.

2. ĥ is robust (but not necessarily correct) on many
of the test examples: RU−1(ĥ; z̃) ≤ OPT + ε0.

We will then combine properties (1) and (2) above with
a standard guarantee from VC theory to show that ĥ
achieves low error on the test examples z̃.

We now begin with showing (1) and (2). For the above
fixed h∗, observe that by a standard Hoeffding bound,

for ε0 =
√

ln(2/δ)
2n , it holds that

Pr

[ (
RU−1(U)(h

∗;x,y) ≤ OPT + ε0
)

∧
(
RU−1(U)(h

∗; x̃, ỹ) ≤ OPT + ε0
)]
≥ 1− δ.

By definition of RU−1(U), this implies that

Pr

[
(∀z ∈ U(x) : RU−1(h∗; z,y) ≤ OPT + ε0)

∧ (∀z̃ ∈ U(x̃) : RU−1(h∗; z̃) ≤ OPT + ε0)

]
≥ 1− δ.

3Otherwise, we can always choose a predictor h∗ ∈ H
attaining OPT + ε′ for any small ε′ > 0.

This implies that

Pr

[
∀z ∈ U(x),∀z̃ ∈ U(x̃) :

min
h∈H

max {RU−1(h; z,y),RU−1(h; z̃)} ≤ OPT + ε0

]
≥ 1− δ.

By Equation 9, we have

Pr

[
∀z ∈ U(x),∀z̃ ∈ U(x̃),∀ĥ ∈ ∆UH(z,y, z̃) :

max
{

RU−1(ĥ; z,y),RU−1(ĥ; z̃)
}
≤ OPT + ε0

]
≥ 1− δ.

VC Guarantee Next, to show that ĥ achieves low
error on the test examples z̃, we will combine the prop-
erties above with a standard guarantee in the trans-
ductive setting from VC theory, which states that for

ε = O

(√
vc(H)+log(1/δ)

n

)
:

Pr [∀h ∈ H : |errx,y(h)− errx̃,ỹ(h)| ≤ ε] ≥ 1− δ.

Thus, for ε = O

(√
vc(H)+log(1/δ)

n

)
:

Pr

[
∀z ∈ U(x),∀z̃ ∈ U(x̃),∀ĥ ∈ ∆UH(x,y, z) :

max
{

RU−1(ĥ; z,y),RU−1(ĥ; z̃)
}
≤ OPT + ε

∧
∣∣∣errx,y(ĥ)− errx̃,ỹ(ĥ)

∣∣∣ ≤ ε] ≥ 1− 2δ.

Finally, observe that for any predictor ĥ ∈ ∆UH(z,y, z̃)

that satisfies max
{

RU−1(ĥ; z,y),RU−1(ĥ; z̃)
}

≤

OPT + ε and |errx,y(ĥ) − errx̃,ỹ(ĥ)| ≤ ε, we can de-
duce that:

• errx,y(ĥ) ≤ OPT+ε (since RU−1(ĥ; z,y) ≤ OPT+

ε and x ∈ U−1(z)). Therefore, errx̃,ỹ(ĥ) ≤ OPT+

2ε (since |errx,y(ĥ)− errx̃,ỹ(ĥ)| ≤ ε).

• Since errx̃,ỹ(ĥ) ≤ OPT + 2ε and RU−1(ĥ; z) ≤
OPT+ ε, this implies that errz,ỹ(ĥ) ≤ 2OPT+ 3ε.

A refined bound We will show that

Pr

[
∀z ∈ U(x),∀z̃ ∈ U(x̃),∀ĥ ∈ ∆UH(x,y, z) :

max
{

RU−1(ĥ; z,y),RU−1(ĥ; z̃)
}
≤ OPT + ε

∧
∣∣∣errx,y(ĥ)− errx̃,ỹ(ĥ)

∣∣∣ ≤ ε̃] ≥ 1− δ.
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for a different ε̃ that scales with OPT and rdimU−1(H)
(instead of vc(H)). To this end, it suffices to show that
for any fixed (x,y) ∼ D2n:

Pr
σ

[
∀zσ(1:2n) ∈ U(xσ(1:2n)), ∀ĥ ∈ ∆UH(zσ(1:n),yσ(1:n),zσ(n+1:2n)) :

max
{

RU−1(ĥ;zσ(1:n),yσ(1:n)),RU−1(ĥ;zσ(n+1,2n))
}
≤

OPT + ε̃ ∧
∣∣∣errx,y(ĥ)− errx̃,ỹ(ĥ)

∣∣∣ ≤ ε̃] ≥ 1− δ,

where σ is a permutation of {1, 2, 3, . . . , 2n} sampled
uniformly at random.

We will show that for any permutation
σ, any zσ(1:2n) ∈ U(xσ(1:2n)), and any
ĥ ∈ ∆UH(zσ(1:n),yσ(1:n), zσ(n+1:2n)) it holds that
the labeling ĥ(xσ(1:2n)) is included in a finite set of
possible behaviors ΠUH defined on the entire sequence
x = (x1, . . . , x2n) by:

ΠUH(x1, . . . , x2n) ={
(h(x1), h(x2), . . . , h(x2n))

∣∣∣∣∃I⊆[2n],|I|≥(1−OPT−ε0)2n,
∀i∈I,∃zi∈U(xi),

∃h∈H:h(U−1(zi))=h(xi)∀i∈I

}
.

When it holds that RU−1(ĥ; zσ(1:n),yσ(1:n)) ≤ OPT +

ε0 and RU−1(ĥ; zσ(n+1:2n)) ≤ OPT + ε0, by definition
of RU−1 (see Equation 6), it follows that the predictor
ĥ ∈ H and zσ(1:2n) ∈ U(xσ(1:2n)) are witnesses that
satisfy (∃I ⊆ [2n], |I| ≥ (1− OPT− ε0)2n) (∀i ∈ I):

zσ(i) ∈ U(xσ(i)) ∧ ĥ(U−1(zσ(i))) = ĥ(xσ(i)).

Thus, by definition of ΠUH, it holds that ĥ(xσ(1:2n)) ∈
ΠUH(x1, . . . , x2n). Then, observe that for any ε̃ > 0

Pr
σ

[
∃ĥ ∈ ΠUH(x1, . . . , x2n) :∣∣∣errxσ(1:n),yσ(1:n)

(ĥ)− errxσ(n+1:2n),yσ(n+1:2n)
(ĥ)
∣∣∣ > ε̃

]
(i)

≤
∣∣ΠUH(x1, . . . , x2n)

∣∣ e−ε̃2n
(ii)

≤
(

2n

≤ (OPT + ε0)2n

)(
(1− OPT− ε0)2n

≤ rdimU−1(H)

)
e−ε̃

2n

(iii)

≤ 2H(OPT+ε0)2n ((1− OPT− ε0)2n)
rdimU−1 (H)

e−ε̃
2n,

where inequality (i) follows from applying a union
bound over labelings ĥ ∈ ΠUH(x1, . . . , x2n), and a stan-
dard Hoeffding bound. Inequality (ii) follows from
the definition of ΠUH and applying Sauer’s lemma
on our introduced relaxed notion of robust shatter-
ing dimension (Lemma 3). Inequality (iii) follows
from bounds on the binomial coefficients, where H
is the entropy function. Let p = OPT + ε0. Set-
ting 2H(p)2n ((1− p)2n)

rdimU−1 (H)
e−ε̃

2n less than δ
2

and solving for ε̃ yields:

ε̃ ≤
√

2 ln(2)H(p) +
rdimU−1(H) ln ((1− p)2n) + ln(1/δ)

n

≤
√

2 ln(2)H(p) +

√
rdimU−1(H) ln ((1− p)2n) + ln(1/δ)

n

≤ p+

√
rdimU−1(H) ln (2n) + ln(1/δ)

n

Combining both events from above, we get that
errz̃,ỹ(ĥ) ≤ errx̃,ỹ(ĥ) + RU−1(ĥ; z̃) ≤ errx,y(ĥ) + ε̃ +

RU−1(ĥ; z̃) ≤ OPT+ε0 + ε̃+OPT+ε0 = 2OPT+2ε0 +

ε̃ ≤ 3OPT + 3ε0 +

√
rdimU−1 (H) ln(2n)+ln(1/δ)

n .

6 DISCUSSION

Related Work Adversarially robust learning has
been mainly studied in the inductive setting (see e.g.,
Schmidt et al. (2018); Cullina et al. (2018); Khim and
Loh (2018); Bubeck et al. (2019); Yin et al. (2019);
Montasser et al. (2019). This includes studying what
learning rules should be used for robust learning and
how much training data is needed to guarantee low
robust error.

In transductive learning, the learner is given unlabeled
test examples to classify all at once or in batches,
rather than individually (Vapnik, 1998). Without ro-
bustness guarantees, it is known that ERM is nearly
minimax optimal in the transductive setting (Vap-
nik and Chervonenkis, 1974; Blumer et al., 1989; Tol-
stikhin and Lopez-Paz, 2016). In particular, addi-
tional unlabeled test data does not offer any help from
a minimax perspective. More recently, (Goldwasser
et al., 2020) gave a transductive learning algorithm
that takes as input labeled training examples from
a distribution D and arbitrary unlabeled test exam-
ples (chosen by an unbounded adversary, not neces-
sarily according to perturbation set U). For classes
H of bounded VC dimension, their algorithm guaran-
tees low error rate on the test examples but it might
abstain from classifying some (or perhaps even all) of
them. This is different from the guarantees we present
in this work, where we restrict the adversary to choose
from a perturbation set U but we do not abstain from
classifying.

On the empirical side, Wu et al. (2020) recently pro-
posed a method that leverages unlabeled test data for
adversarial robustness in the context of deep neural
networks. However, Chen et al. (2021) later proposed
an empirical attack that breaks their defense. Fur-
thermore, Chen et al. (2021) proposed another empir-
ical transductive defense but with no theoretical guar-
antees. It would be interesting to empirically eval-
uate the adaptive attacks developed in (Chen et al.,
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2021) against our proposed transductive learner. In
semi-supervised learning, recent works (Alayrac et al.,
2019; Carmon et al., 2019) have shown that (non-
adversarial) unlabeled test data can improve adver-
sarially robust generalization in practice, and there is
also theoretical work quantifying the benefit of unla-
beled data for robust generalization (Ashtiani et al.,
2020).

Open Problems Can we design transductive learn-
ers that compete with OPTU instead of OPTU−1(U)?
We note that this will likely require more sophisti-
cation, in the sense that we can construct classes H
with vc(H) = 1 (similar construction to Montasser
et al. (2019)) and distributions D where OPTU = 0
but OPTU−1(U) = 1, and moreover, our simple trans-
ductive learner fails and finding a robust labeling on
the test examples no longer suffices.

At the expense of competing with OPTU−1(U), can we
obtain stronger robust learning guarantees in the in-
ductive setting, similar to the transductive guarantees
established in this work? As we discussed in Section 4,
we can not obtain such guarantees by directly reduc-
ing to the transductive problem, and we need improper
learning because proper learning will not work.
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A Proof of Lemma 3

Proof. The proof will follow a standard argument that
is used to prove Sauer-Shela-Perles lemma (see for e.g.,
Shalev-Shwartz and Ben-David (2014)). Specifically, it
suffices to prove the following stronger claim:∣∣ΠUH(z1, . . . , zn)

∣∣ ≤ |{S ⊆ {z1, . . . , zn} : S is relaxed U-robustly shattered by H}| .
(13)

This is because

|{S ⊆ {z1, . . . , zn} : S is relaxed U-robustly shattered by H}| ≤
(

n

≤ rdimU (H)

)
.

We will prove Equation 13 by induction on n. When
n = 1, both sides of Equation 13 either evaluate to 1
or 2 (the empty set is always considered to be relaxed
U-robustly shattered byH). When n > 1, assume that
Equation 13 holds for sequences of length k < n. Let
C = {z1, . . . , zn} and C ′ = {z2, . . . , zn}. Consider the
following two sets:

Y0 =
{

(y2, . . . , yn) : (+1, y2, . . . , yn) ∈ ΠUH(z1, . . . , zn) ∨ (−1, y2, . . . , yn) ∈ ΠUH(z1, . . . , zn)
}
,

and

Y1 =
{

(y2, . . . , yn) : (+1, y2, . . . , yn) ∈ ΠUH(z1, . . . , zn) ∧ (−1, y2, . . . , yn) ∈ ΠUH(z1, . . . , zn)
}
.

Observe that
∣∣ΠUH(z1, . . . , zn)

∣∣ = |Y0|+ |Y1|. Addition-
ally, note that by definition of Y0, Y0 ⊆ ΠUH(z2, . . . , zn).
Thus, by the inductive assumption,

|Y0| ≤
∣∣ΠUH(z2, . . . , zn)

∣∣ ≤ |{S ⊆ C ′ : S is relaxed U-robustly shattered by H}|
= |{S ⊆ C : z1 /∈ S ∧ S is relaxed U-robustly shattered by H}| .

Next, define H′ ⊆ H to be

H′ =
{
h ∈ H : ∃h′ ∈ H,x2:n, x̃2:n ∈ U−1(z2:n) s.t. h(U(x1)) = −h′(U(x1)) ∧ h(U(x2:n)) = h′(U(x̃2:n))

}
.

Observe that if a set S ⊆ C ′ is relaxed U-robustly shat-
tered by H′, then S ∪ {z1} is also relaxed U-robustly
shattered by H′ and vice versa. Observe also that,
by definition, Y1 = ΠUH′(z2, . . . , zn). By applying the
inductive assumption on H′ and C ′ we obtain that

|Y1| =
∣∣ΠUH′(z2, . . . , zn)

∣∣ ≤ |{S ⊆ C ′ : S is relaxed U-robustly shattered by H′}|
= |{S ⊆ C ′ : S ∪ {z1} is relaxed U-robustly shattered by H′}|
= |{S ⊆ C : z1 ∈ S ∧ S is relaxed U-robustly shattered by H′}|
≤ |{S ⊆ C : z1 ∈ S ∧ S is relaxed U-robustly shattered by H}| .

Overall, we have shown that∣∣ΠUH(z1, . . . , zn)
∣∣ = |Y0|+ |Y1|
≤ |{S ⊆ C : z1 /∈ S ∧ S is relaxed U-robustly shattered by H}|

+ |{S ⊆ C : z1 ∈ S ∧ S is relaxed U-robustly shattered by H}|
= |{S ⊆ {z1, . . . , zn} : S is relaxed U-robustly shattered by H}| ,

which concludes our proof.


