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Abstract

While large training datasets generally of-
fer improvement in model performance, the
training process becomes computationally
expensive and time consuming. Distributed
learning is a common strategy to reduce the
overall training time by exploiting multiple
computing devices. Recently, it has been
observed in the single machine setting that
overparameterization is essential for benign
overfitting in ridgeless regression in Hilbert
spaces. We show that in this regime, data
splitting has a regularizing effect, hence im-
proving statistical performance and compu-
tational complexity at the same time. We
further provide a unified framework that al-
lows to analyze both the finite and infinite
dimensional setting. We numerically demon-
strate the effect of different model parame-
ters.

1 INTRODUCTION

Modern machine learning applications often involve
learning statistical models of great complexity and
datasets of massive size become increasingly avail-
able. However, while increasing the size of the training
datasets generally offers improvement in model per-
formance, the training process is very computation-
intensive and thus time-consuming. Indeed, hardware
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architectures have physical limits in terms of storage,
memory, processing speed and communication. A cen-
tral challenge is thus to design efficient large-scale al-
gorithms.

Distributed learning and parallel computing is a com-
mon and simple approach to deal with large datasets.
The n observations are evenly split to M machines
(or local nodes, workers), each having access to only
a subset of n/M training samples. Each machine per-
forms local computations to fit a model and transmits
it to a central node for merging. This simple divide
and conquer approach having been proposed in e.g.
Mann et al. (2009) for striking best balance between
accuracy and communication is highly communication
efficient: Only one communication step is performed
to only one central node1.

The field of distributed learning has gained increasing
attention in different regimes in the last years, with
the aim of establishing conditions for the distributed
estimator to be consistent or minimax optimal, see e.g.
Chen and Xie (2014), Mackey et al. (2011), Xu et al.
(2019), Fan et al. (2019), Shi et al. (2018), Battey
et al. (2018), Fan et al. (2021), Bao and Xiong (2021).
We give a more detailed overview over approaches that
are most closely related to our approach. For a general
overview we refer to Bekkerman et al. (2011) and the
recent review Gao et al. (2021).

The learning properties of distributed (kernel) ridge
regression are well understood. The authors in Zhang
et al. (2015) show optimal learning rates with appro-
priate regularization, if the number of machines in-
creases sufficiently slowly with the sample size, though
under restrictive assumptions on the eigenfunctions of
the kernel integral operator. This has been alleviated

1This approach is also called centralized learning.
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in Lin et al. (2017). However, in these works the num-
ber of machines saturates if the target is very smooth,
meaning that large parallelization seems not possible
in this regime. This is somewhat counterintuitive as
smooth signals are easier to reconstruct. To overcome
this issue, the authors Chang et al. (2017) utilize addi-
tional unlabeled data, leading to a slight improvement.

These works have been extended to more general
spectral regularization algorithms for nonparametric
least square regression in (reproducing kernel) Hilbert
spaces in Guo et al. (2017), Mücke and Blanchard
(2018), including gradient descent (Lin and Zhou,
2018) and stochastic gradient descent (Lin and Cevher,
2018).

Finally, we mention Zhang et al. (2013), Dobriban and
Sheng (2021), Rosenblatt and Nadler (2016) who study
averaged empirical risk minimization in the underpa-
rameterized regime, the latter in the high dimensional
limit.

We consider distributed ridgeless regression over
Hilbert spaces with (local) overparameterization. This
setting has been investigated recently in e.g. Bartlett
et al. (2020), Chinot and Lerasle (2020), Shang (2021),
Muthukumar et al. (2020) in the single machine con-
text with the aim of establishing conditions when be-
nign or harmless overfitting occurs. This serves as a
proxy to understand neural network learning where
the phenomenon of benign overfitting was first ob-
served (Bartlett et al., 2021; Belkin, 2021). Indeed,
wide networks that are trained with gradient descent
can be accurately approximated by linear functions in
a Hilbert space. Our results are a step towards under-
standing the statistical effects in distributed settings
in deep learning.

Contributions. We provide a unified framework
that allows to simultaneously analyze the finite and
infinite dimensional distributed ridgeless regression
problem. All our bounds are optimal.

We show that in the presence of overparameterization
the number of data splits has a regularizing effect that
trades off bias and variance. While overparameteri-
zation induces an additional bias, averaging reduces
variance sufficiently. Hence, data splitting improves
statistical accuracy (for an increasing number of splits
until the optimal number is achieved) and scales to
large data sets at once. Our approach fits into the line
of communication efficient distributed algorithms and
is easy to implement.

To precisely quantify the interplay of statistical accu-
racy, computational complexity and signal strength we
work in a general random-effects model. We find that

the numerical speed up2 is high for low signal strength
and improves efficiency. A similar phenomenon is ob-
served in Sheng and Dobriban (2020) for distributed
ridge regression. In addition, we do not observe a sat-
uration effect for the number of machines as described
above for kernel ridge regression.

The spectral properties of the covariance operator also
highly impact the learning properties of distributed
ridgeless regression. The spectral decay needs to be
sufficiently fast for a high statistical accuracy. Note
that this is known for the single machine setting from
Bartlett et al. (2020).

Organization. In Section 2 we define the mathemat-
ical framework needed to present our main results in
Section 3. Section 4 is devoted to a discussion with a
more detailed comparison to related work. Some nu-
merical illustrations can be found in Section 5 while
the Appendix contains all proofs and additional mate-
rial.

Notation. By L(H1,H2) we denote the space of
bounded linear operators between real Hilbert spaces
H1, H2. We write L(H,H) = L(H). For Γ ∈ L(H)
we denote by ΓT the adjoint operator and for com-
pact Γ by (λj(Γ))j the sequence of eigenvalues. We
let [n] = {1, ..., n}. For two positive sequences (an)n,
(bn)n we write an . bn if an ≤ cbn for some c > 0 and
an ' bn if both an . bn and bn . an.

2 SETUP

In this section we provide the mathematical frame-
work for our analysis. More specifically, we introduce
distributed ridgeless regression and state the main as-
sumptions on our model.

2.1 Linear Regression

We consider a linear regression model over a real sep-
arable Hilbert space H in random design. More pre-
cisely, we are given a random covariate vector x ∈ H
and a random output y ∈ R following the model

y = 〈β∗, x〉+ ε , (1)

where ε ∈ R is a noise variable. The true regression
parameter β∗ ∈ H minimizes the least squares test
risk, i.e.

R(β∗) = min
β∈H
R(β) , R(β) := E[(y − 〈β, x〉)2] ,

where the expectation is taken with respect to the joint
distribution of the pair (x, y) ∈ H×R. This framework

2In the sense that the optimal number of data splits is
large and hence allows more parallelization.
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covers many common supervised learning tasks, e.g.
learning in reproducing kernel Hilbert spaces (Rosasco
and Villa, 2015).

For our analysis we need to impose some distributional
assumptions. To this end, we recall that a positive
definite operator Γ ∈ L(H) is trace class (and hence
compact), if

Tr(Γ) =
∑
j∈N

λj(Γ) <∞ ,

see e.g. Reed (2012).

Definition 2.1 (Hilbert space valued subgaussian ran-
dom variable). Let z be a random variable in H and let
Γ : H → H be a bounded, linear and self-adjoint pos-
itive definite trace class operator. Given some σ > 0
we say that z is (σ2,Γ)-subgaussian if for all v ∈ H
one has

E
[
e〈v,z−E[z]〉

]
≤ eσ

2

2 〈Γv,v〉 .

Note that (taking H = R) this definition includes the
special case of real valued variables. On H, we define
the covariance operator Σ by Σu := E[〈u, x〉x], where
E denotes expectation w.r.t. the marginal distribution.
We assume

Assumption 2.2. 1. E[x] = 0 and E[||x||2] <∞.

2. x is (σ2
x,Σ)-subgaussian and has independent

components.

3. The covariance Σ possesses an orthonormal basis
of eigenvectors vj with eigenvalues λ1 ≥ λ2 ≥ ...
(counted according to multiplicity).

4. Conditionally on x, the noise ε in equation (1)
is centered and (τ2, id)-subgaussian, where id de-
notes the identity on R.

Note that 1. and 3. imply that Σ is trace class (and
also positive and self-adjoint). Indeed, this easily fol-
lows from

E[||x||2] =
∑
j∈N
〈vj ,Σvj〉 =

∑
j∈N

λj <∞ ,

where (vj)j is an orthormal basis of eigenvectors.

To derive an estimator β̂ ∈ H for β∗ we are given an
i.i.d. dataset

D := {(x1, y1), ..., (xn, yn)} ⊂ H × R ,

following the above model (1), with i.i.d. noise ε =
(ε1, ..., εn) ∈ Rn. The corresponding random vector
of outputs is denoted as Y = (y1, . . . , yn)T ∈ Rn and
we arrange the data xj ∈ H into a data matrix X ∈
L(H,Rn) by setting (Xv)j = 〈xj , v〉 for v ∈ H, 1 ≤
j ≤ n. If H = Rd, then X is a n× d matrix (with row
vectors xj).

2.2 Distributed Ridgeless Regression

In the distributed setting, our data are evenly divided
into M local disjoint subsets

D = D1 ∪ ... ∪DM

of size |Dm| = n
M , for m = 1, ...,M . To each lo-

cal dataset we associate a local design matrix Xm ∈
L(H,R n

M ) with local output vector Ym ∈ R n
M and a

local noise vector εm ∈ R n
M .

In addition to the above distributional assumptions we
require:

Assumption 2.3. Let m ∈ [M ]. Almost surely, the
projection of the local data Xm on the space orthogonal
to any eigenvector of Σ spans a space of dimension n

M .

More precisely, recall that the data matrix Xm is built
up from n/M row vectors xk ∈ H. The above assump-
tion means that those row vectors almost surely are
in general position: Only with zero probability the or-
thogonal projections of those vectors are linearly de-
pendent in each hyperplane Hj := {x ∈ H; 〈x, vj〉 = 0}
orthogonal to the eigenvector vj of Σ. In particular,
data vectors xj are collinear to some vj with zero prob-
ability.

Note that Assumptions 2.2 and 2.3 are satisfied if x, y
are jointly gaussian with zero mean and rank(Σ) >
n/M .

We define the local minimum norm estimator β̂m as
the solution to the optimization problem

min
β∈H

||β||2 such that

||Xmβ −Ym||2 = min
β̃∈H
||Xmβ̃ −Ym||2 .

It is well known that β̂m has a closed form expression
(see Engl et al. (1996)) given by

β̂m = XT
m(XmXT

m)†Ym , (2)

where (XmXT
m)† denotes the pseudoinverse of the

bounded linear operator XmXT
m.

In the case that dim(H) = d < n
M and Xm has rank

d, there is a unique solution to the normal equations.
However, under Assumption 2.3 we find many local
interpolating solutions β ∈ H to the normal equations
with Xmβ = Ym.

The final estimator is defined as the uniform average

β̄M =
1

M

M∑
j=1

βm . (3)
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We aim at finding optimal bounds for the excess risk

R(β̄M )−R(β∗) = ||Σ 1
2 (β̄M − β∗)||2 ,

in high probability, as a function of the number of local
nodes M and under various model assumptions.

3 MAIN RESULTS

In this section we state our main results. We first
derive a general upper bound and consider the in-
finite and finite dimensional settings in more detail.
We complete our presentation with matching lower
bounds.

3.1 A General Error Bound

Before stating our error bounds we briefly describe the
underlying error decomposition in bias and variance.
For an estimator β̂ ∈ H let us define the bias by

B̂ias(β̂) := ||Σ1/2(Eε[β̂]− β∗)||2

and the variance as

V̂ar(β̂) := Eε
[
||Σ1/2(β̂ − Eε[β̂])||2

]
,

where Eε[·] denotes the conditional expectation given
the input data. We then have the following prelimi-
nary bound for the excess risk whose full proof is given
in Appendix A.

Lemma 3.1. Let β̄M be defined by (3) and denote by
Σ̂m = M

n X
T
mXm the local empirical covariance opera-

tor. The excess risk can be bounded almost surely by

Eε
[
||Σ 1

2 (β̄M − β∗)||2
]

= B̂ias(β̄M ) + V̂ar(β̄M ) ,

where

B̂ias(β̄M ) ≤ 1

M

M∑
m=1

∣∣∣〈β∗, (Σ− Σ̂m)β∗
〉∣∣∣ ,

V̂ar(β̄M ) ≤ 8τ2

M2

M∑
m=1

Tr
[(
X†m

)T
ΣX†m

]
.

We are interested in finding conditions such that bias
and variance (and thus the excess risk) converge to
zero with high probability. To this end, we also take
the hardness of the learning problem into account.
This can be quantified via a classical a-priori assump-
tion on the minimizer β∗.

Assumption 3.2 (General random-effects model).
Let Θ ∈ L(H) be compact. Let β∗ be randomly sam-
pled (independently of ε) with mean Eβ∗ [β∗] = 0 and
covariance Eβ∗ [β∗(β∗)T ] = Θ.

This assumption is a slight generalization of the clas-
sical concept of a source condition in inverse prob-
lems (Mathé and Pereverzev, 2003) and learning in
(reproducing kernel) Hilbert spaces (Bauer et al.,
2007; Blanchard and Mücke, 2018; Lin et al., 2020);
see also Richards et al. (2020), Sheng and Dobriban
(2020) for the context of (distributed) high dimen-
sional ridge(less) regression. We give some specific
examples in Assumptions 3.12, 3.6 below.

For bounding the variance we follow the approach in
Chinot and Lerasle (2020), Bartlett et al. (2020) and
choose an index k ∈ N and split the spectrum of Σ
accordingly. For a suitable choice of k (called effective
dimension) it will be crucial to control two notions of
the effective ranks, see e.g. Koltchinskii and Lounici
(2017); Bartlett et al. (2020)

Definition 3.3 (Effective Ranks). For k ≥ 0 with
λk+1 > 0 we define

rk(Σ) :=

∑
j>k λj(Σ)

λk+1(Σ)
, Rk(Σ) =

(∑
j>k λj(Σ)

)2

∑
j>k λ

2
j (Σ)

.

Definition 3.4 (Effective Dimension). Let a > 1 and
M ∈ [n]. Define the effective dimension as

k∗ = k∗n
M

:= min
{
k ≥ 0 : rk(Σ) ≥ a n

M

}
,

where the minimum of the empty set is defined as ∞.

Our main result gives an upper bound for the bias
and variance in terms of the source condition, effective
ranks and effective dimension.

Theorem 3.5. Suppose Assumptions 2.2, 2.3 and 3.2
are satisfied and let δ ∈ (0, 1]. There exists a universal
constant c1 > 0 such that for all n

M ≥
1
c1

log(2/δ), with
probability at least 1− δ

Eβ∗ [B̂ias(β̄M )] ≤ 4σx
c1

log
1
2

(
2M

δ

)
Tr[ΣΘ]

√
M

n
.

Additionally, there exist c2 > 1 such that, if

k∗n
M
≤ n

c2M
,

with probability at least 1− 7Me−
n

c2M

V̂ar(β̄M ) ≤ 8c2τ
2

(
k∗n
M

n
+

n

M2

1

Rk∗n
M

(Σ)

)
. (4)

Theorem 3.5 reveals that the excess risk of the aver-
aged local interpolants converges to zero if

Tr[ΣΘ]

√
Mn

n
→ 0 ,

k∗n
Mn

n
→ 0 ,



Mücke, Reiss, Rungenhagen, Klein

n

M2
n

1

Rk∗n
Mn

(Σ)
→ 0 ,

for Mn ≤ n. This imposes restrictions on the decay
of the eigenvalues of Σ. Moreover, the convergence of
the bias depends on the prior assumption on β∗.

In the following two subsections we discuss the infi-
nite dimensional and finite dimensional cases in more
detail.

3.2 Infinite Dimension

We refine the excess risk bound under more specific
assumptions on β∗ and the spectral decay of the co-
variance.

Source Condition. The a-priori assumption on β∗

from Assumption 3.2 can be expressed via an in-
creasing source function Φ : R+ → R+ by setting
Θ = Φ(Σ)3, describing how coefficients of β∗ vary
along the eigenvectors of Σ, see e.g. Richards et al.
(2020). Recall that the bias in Theorem 3.5 depends
on

Tr[ΣΘ] = Tr[ΣΦ(Σ)] =

∞∑
j=1

λjΦ(λj) .

Thus, the bias is finite if the map x 7→ xΦ(x) is non-
decreasing while the sequence of eigenvalues (λj)j∈N is
decreasing.

Assumption 3.6 (Source Condition). Assume that
Φ(x) = xα, for α ≥ 0.

This particular choice of source function goes un-
der the name Hölder-type source condition and is
a standard assumption in inverse problems Mathé
and Pereverzev (2003) and nonparametric regression
(Bauer et al., 2007; Blanchard and Mücke, 2018; Lin
et al., 2020). Indeed, it has a direct characterization in
terms of smoothness, where a larger exponent α cor-
responds to a smoother regression function. In this
regard, this assumption also quantifies the easiness of
the learning problem: Larger values of α indicate an
easier problem, as smoother functions are easier to re-
cover.

Eigenvalue Decay. Finally, to control the variance in
Theorem 3.5 we impose a specific spectral assumption
for the covariance:

Assumption 3.7. Assume that λj(Σ) = j−(1+εn) for
some positive sequence (εn)n∈N with Mn . εnn.

3Recall that the spectral Theorem (Reed, 2012) defines
the operator Φ(Σ) via a functional calculus. In particu-
lar, since Σ is trace class and self-adjoint, we may define
Φ(Σ) :=

∑
j Φ(λj)〈·, vj〉vj , where (vj)j is an orthormal ba-

sis of eigenvectors.

Polynomially decaying eigenvalues are a common as-
sumption in ridgeless regression. Indeed, it is shown
for the single machine setting in Bartlett et al. (2020)
that under this assumption, the excess risk of the least-
norm interpolant converges to zero and benign overfit-
ting occurs.

Our main result in this section is a refined upper bound
for the excess risk under the two additional assump-
tions made above. The proof is given in Appendix
A.2.

Proposition 3.8. In addition to all assumptions of
Theorem 3.5, suppose that Assumptions 3.7, 3.6 hold.
Set

Cα,n =
1

α
1{α > 0}+

1

εn
1{α = 0}

and assume that n
M ≥

1
c21

log(2/δ). With probability at

least 1− δ − 7Me−
n

c2M we have

Eβ∗,ε
[
||Σ 1

2 (β̄M − β∗)||2
]

≤ c3σx log
1
2

(
2M

δ

)
Cα,n

√
M

n
+ c4τ

2 εn
M

,

for some c3 > 0, c4 > 0.

The dependence of our error approximations on the
number of machines reveals an interesting accuracy-
complexity trade-off. Indeed, data splitting has a reg-
ularizing effect, where the number of local nodes M
acts as an explicit regularization parameter: The bias
term is increasing as

√
M while the variance is decreas-

ing as 1/M .

The source condition controls the bias: The smoother
the solution, i.e. the larger α > 0, the smaller the
bias. Notably, we observe a phase transition to the
case where α = 0 (low smoothness, harder problem).
The bias is multiplied by a factor 1/εn for a sequence
(εn)n possibly tending to zero and hence grows with n
while for α > 0 the factor is 1/α that is constant in n
and decreasing with α.

Eigenvalue decay, reflected in the sequence (εn)n con-
trols the variance: Ideally, we want εn → 0 to achieve
fast decay of the variance. However, even increasing
(εn)n is possible as long as we ensure that εn/Mn → 0.

Balancing both terms allows to establish learning rates
for different smoothness regimes (see Appendix A.2):

Corollary 3.9 (Learning rate high smoothness). Sup-
pose all assumptions of Proposition 3.8 are satisfied
and let α > 0. For

1√
n
. εn . n , (5)
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the value

Mn = Cτ,σx
(
αεn
√
n
)2/3

(6)

with Cτ,σx =
(
c4τ

2

c3σx

)2/3

trades-off bias and variance

and with the same probability as above, we have

Eβ∗,ε
[
||Σ 1

2 (β̄Mn − β∗)||2
]

≤
C ′τ,σx
α2/3

log
1
2

(
4Mn

δ

)(εn
n

)1/3

, (7)

for some C ′τ,σx > 0.

Corollary 3.10 (Learning rate low smoothness). Sup-
pose all assumptions of Proposition 3.8 are satisfied
and let α = 0. For

1√
n
. ε2

n . n , (8)

the value

Mn = Cτ,σx
(
ε2
n

√
n
)2/3

with Cτ,σx =
(
c4τ

2

c3σx

)2/3

trades-off bias and variance

and with the same probability as above, we have

Eβ∗,ε
[
||Σ 1

2 (β̄Mn − β∗)||2
]

≤ C ′τ,σx log
1
2

(
4Mn

δ

)(
1

εnn

)1/3

,

for some C ′τ,σx > 0.

3.3 Finite Dimension

In this section we investigate the finite dimensional
setting in more detail and assume dim(H) = d < ∞.
To highlight the effects of all characteristics effecting
model performance, we make two particularly simple
structural assumptions. More specifically, we assume
the covariance Σ to follow a strong and weak features
model :

Assumption 3.11 (Strong-weak-features model). Let
F ∈ [d] and ρ1 ≥ ρ2 > 0. Suppose that λj(Σ) = ρ1

for all j ∈ [F ] and λj(Σ) = ρ2 for all F + 1 ≤ j ≤ d.
Without loss of generality, we assume that ||Σ|| = 1,
i.e. ρ1 = 1.

Elements in the eigenspace associated to the larger
eigenvalue ρ1 are called strong features while elements
in the eigenspace associated to the smaller eigenvalue
are called weak features, see e.g. Richards et al. (2020).

Furthermore, we work in a standard random-effects
model, see Sheng and Dobriban (2020), Dobriban and
Wager (2018), Dicker and Erdogdu (2017).

Assumption 3.12 (Random-effects model). Define
the signal-to-noise-ratio as SNR = E[||β∗||2]/τ2. The
coordinates of β∗ are independent, have zero mean and
variance SNR

d , i.e. Θ = SNR
d Idd.

The next result presents an upper bound for the excess
risk under both assumptions. The proof is provided in
Appendix A.3.

Proposition 3.13. In addition to all assumptions of
Theorem 3.5, suppose Assumptions 3.12, 3.11 hold.
Suppose that the weak features satisfy ρ2d ≤ F and

cF ≤ n

M
≤ 1

a
(d− F ) , (9)

for some a, c > 1. If n
M ≥

1
c1

log(2/δ), then with prob-

ability at least 1−δ−7Me−
n

c2M , the excess risk satisfies
for some c > 0

Eβ∗,ε
[
||Σ 1

2 (β̄M − β∗)||2
]

≤ c log
1
2

(
4M

δ

)(
SNR · F

d

√
M

n
+

+
F

n
+

1

M2

n

d− F

)
. (10)

Here, c depends on σx and τ .

The assumption ρ2d ≤ F controls the bias (see Lemma
A.7 for details) and ensures that the strength ρ2 of the
weak features is small enough relative to the dimension
d and consequently they do not contribute much, while
the amount F of strong features is sufficiently high.
The bias is further determined by the signal-to-noise
ratio SNR and the ratio F/d ≤ 1 of the number of
strong features to the dimension: The bias is small, if
both quantities are small.

The above result shows how the various model param-
eters determine statistical accuracy: As above, we ob-
serve that data splitting has a regularizing effect: The
bias term is increasing as

√
M while averaging signif-

icantly reduces the variance that decreases as 1/M2.
Minimizing the rhs in (10) in M allows to trade-off
these different contributions.

Corollary 3.14 (Optimal number of nodes). Suppose
all assumptions of Proposition 3.13 are satisfied. The
optimal number4 of local nodes Mn is given by

Mn =

(
4dn3/2

SNR · F (d− F )

)2/5

. (11)

The excess risk satisfies with probability at least 1 −
4The optimal number is defined as the minimizer of the

right hand side in (10).
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δ − 7Mne
− n
c2Mn

Eβ∗,ε
[
||Σ 1

2 (β̄Mn
− β∗)||2

]
≤ 5c log

1
2

(
4Mn

δ

) (
F

n
+

1

M2
n

n

d− F

)
, (12)

for some c > 0.

The optimal number Mn of local nodes grows with
the sample size and the the numerical speed up is high
for a low SNR (recall that the larger Mn, the more
computational savings). A similar phenomenon is ob-
served in Sheng and Dobriban (2020) for distributed
ridge regression in finite dimension where it is shown
that distributed ridge regression works well when the
signal strength is low.

Note that (9) puts a restriction on the growth of d and
F with n.

Example 3.15 (When does the error converges to
zero?). We consider now a high dimensional and
infinite-worker limit Mn → ∞. More specifically, we
let n→∞, dn ' nα for some α ≥ 1 while we assume
F = const.. This requires that the strength of the weak
features also needs to be sufficiently small (depending
on n), i.e. ρ2 ≤ F/nα. Note that for these choices,
(9) is satisfied for any n large enough. Then, Corollary
3.14 gives Mn ' n3/5 and

Eβ∗,ε
[
||Σ 1

2 (β̄Mn
− β∗)||2

]
≤ 5c log

1
2

(
4Mn

δ

)
F

n
.

We finally compare our findings from Proposition 3.13
with Dar et al. (2021) for the spiked covariance model
in the single machine case, i.e. M = 1. Eq. (29) in Dar
et al. (2021) provides a bound for the noise test error
of order F

n + n
d−F , leading to sufficient and necessary

conditions for harmless interpolation of noise, namely:
F . n . d− F . Our bound in (10) generalizes this to
the setting M > 1, with harmless local interpolation
if

F .
n

M
. d− F .

We then get for the variance

F

n
+

1

M2

n

d− F
.

1

M
,

recovering the result of Dar et al. (2021) for M = 1
and showing a reduction of variance by a factor of 1/M
for averaging.

3.4 Lower Bound

Finally, we give a matching lower bound for the ex-
cess risk for the distributed estimator with the opti-
mal choice of local nodes. All proofs of this section

are provided in Appendix A.4.
The derivation of our result requires a lower bound for
the noise variance:

Assumption 3.16. The conditional noise variance is
almost surely bounded below by some constant σ2 > 0,
i.e. E[ε2|x] ≥ σ2.

We start with a general lower bound for the excess
risk in terms of the effective ranks and the effective
dimension.

Theorem 3.17. Suppose Assumptions 3.16,2.2, 2.3
are satisfied. With probability at least 1− 10Me−

1
c
n
M

Eε[||Σ1/2(β̄M − β∗)||2]

≥ caσ2

(
k∗n
M

n
+

n

M2

1

Rk∗(Σ)

)
, (13)

for some ca > 0.

Note that the lower bound for the excess risk is of the
order of the variance bound (4). We emphasize that
the optimal number Mn of splits is derived by trading-
off bias and variance. Hence, for this value, the bound
(13) is optimal. We give now the explicit optimal rates
in the special settings from Sections 3.2, 3.3.

Corollary 3.18 (Optimal rate infinite dimension).
Suppose all Assumptions of Theorem 3.17 and Corol-
lary 3.9 are satisfied. Let εn . 1 for n sufficiently
large and recall the definition of Mn from (6). With

probability at least 1− 10Mne
− 1
c
n
Mn , the excess risk is

lower bounded by

Eε[||Σ1/2(β̄Mn − β∗)||2] ≥ C̃τ,σx,σ
α2/3

(εn
n

)1/3

,

for some C̃τ,σx,σ > 0. Hence, under the Assumptions
of Corollary 3.9, the rate of convergence is optimal
(up to a log-factor) as it matches the upper bound (7).
Note that we also obtain the optimal bound from Corol-
lary 3.10 in the low smoothness regime (see Appendix
A.4).

Corollary 3.19 (Optimal rate finite dimension). Re-
call the strong-weak-features model from Section 3.3
and suppose Assumption 3.11 is satisfied. There is a
constant c1 > 0 such that for any 0 ≤ F ≤ n

Mc1
≤

d− F , with probability at least 1− 10e−
n

Mc1

Eε[||Σ1/2(β̄M − β∗)||2] ≥ σ2c3

(
F

n
+

n

M2(d− F )

)
,

for some c3 > 0. Moreover, under the assumptions
of Corollary 3.14, this lower bound matches the upper
bound for the optimal Mn and hence is optimal (up to
a log-factor).
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3.5 Efficiency

In addition to the non-asymptotic bounds on bias and
variance we are interested in the possible gain in effi-
ciency of data splitting compared to the single machine
setting. To this end, let us introduce the ratio of the
excess risks for the single machine estimator β̄1 and
the distributed estimator β̄M , M > 1.

Definition 3.20. We define the relative prediction
efficiency by

Êff(M) :=
Eε
[
||Σ1/2(β̄1 − β∗)||2

]
Eε
[
||Σ1/2(β̄M − β∗)||2

] .
We consider the setting of Section 3.2. Note that we
obtain for the single machine setting with probability
at least 1− δ − 7e−

n
c2

εn . Eβ∗,ε
[
||Σ 1

2 (β̄1 − β∗)||2
]
. max

{
εn,

Cα,n√
n

}
,

with

Cα,n =
1

α
1{α > 0}+

1

εn
1{α = 0} .

This follows from Proposition 3.8 and Corollary 3.18
(in particular (22), (23)). This risk bound is optimal

if
Cα,n√
n

. εn.

Similarly, denoting by Mopt the optimal number of
splits from Corollaries 3.9, 3.10, with probability at

least 1− δ − 7Mopte
− n
c2Mopt

εn
Mopt

. Eβ∗,ε
[
||Σ 1

2 (β̄Mopt
− β∗)||2

]
.

εn
Mopt

.

As a result, optimal data splitting leads to a linear
increase in efficiency:

Corollary 3.21. Let all assumptions of Corollaries
3.9, 3.10, 3.18 be satisfied and assume that

Cα,n√
n

. εn.

Then, with probability at least 1− δ − 7Mopte
− n
c2Mopt

Êff(Mopt) 'Mopt .

4 DISCUSSION

Double Descent. The phenomenon of double de-
scent describes the shape of risk curves in the context
of modern high-complexity learning. With increas-
ing complexity, the risk initially decreases, attains a
minimum and then increases until the interpolation
threshold is reached and where the training data are
fitted perfectly. Increasing the complexity even fur-
ther, the risk decreases a second and final time, see

Belkin et al. (2020), Belkin et al. (2019) in the context
of least squares.

In Theorem B.6 we prove a general lower bound in
finite dimension under more general distributional as-
sumptions, i.e.

E
[
||Σ1/2(β̄M − β∗)||2

]
≥ τ̃2

M

min{d, nM }
max{d, nM }+ 1−min{d, nM }

.

This bound reveals that double descent occurs with
a peak at the local interpolation thresholds, i.e. at
d = n

M with height at least τ̃2 d
M . We show this phe-

nomenon in Fig. 2 on the MSDYear dataset.

Comparison to averaged ordinary least squares.
To understand the regularizing effect of the number
of data-splits we compare our approach to averaged
ordinary least squares (AOLS) for d < n, i.e. (2),
(3) in the underparameterized regime (Rosenblatt and
Nadler, 2016).

It is known that under Gaussian design, the risk of the
OLS estimator is given by d

n−1−d , provided d < n− 1
(Breiman and Freedman, 1983). Since OLS is unbi-
ased, AOLS is unbiased, too, and the risk behaves
fundamentally different as a function of M . In par-
ticular, there is no trade-off between bias and variance
and hence, data splitting has no regularizing effect.
Even worse: Since in the distributed setting there are
locally less samples, n/M , we observe a blow up in
the local variance. Averaging reduces this by a factor
of 1/M , giving d

M(n/M−1−d) for the risk. Hence, the

relative prediction efficiency (see Def. 3.20) is

Êff(M) =
d

n− 1− d
/

d

M(n/M − 1− d)

=
n

n− 1− d
−M d+ 1

n− 1− d
,

i.e. linearly decreasing in M . In other words, by par-
allelizing, we trade accuracy for speed, see Fig. 4 in
Section C.1. This is opposed to the overparametrized
regime, where we observe an additional bias and hence
an increase in efficiency until the optimal number of
splits Mopt is achieved.

Comparison to distributed Ridge Regression.
The learning properties of the distributed ridgeless es-
timator also changes with additional regularization as
for distributed (kernel) ridge regression (DRR). This
setting is extensively investigated in kernel learning
e.g. Zhang et al. (2015), Lin et al. (2017), Mücke and
Blanchard (2018). In this setup, the averaged estima-
tor suffers no loss in accuracy, i.e. has constant risk, if
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appropriately regularized and the number of machines
grows sufficiently slowly with the sample size, see Fig.
4 in Section C.1.
The work Sheng and Dobriban (2020) investigates
DRR in the high dimensional limit and finds that the
efficiency is generally high when the signal strength is
low. Note that we observe a similar phenomenon in
Corollary 3.14 through the signal-to-noise-ratio SNR.
A low SNR increases the optimal number Mn. More-
over, the authors show that even in the limit of many
machines, DRR does not lose all efficiency.

5 NUMERICAL ILLUSTRATION

In this section we present some numerical examples,
illustrating our main findings. Additional numerical
results are presented in Appendix C.

Simulated data. We illustrate the findings of Sec-
tion 3.3 in the strong-weak-features model. In a first
experiment we generate n = 200 i.i.d. training points
xj ∼ N (0,Σ), with d = 600, ρ1 = 1, ρ2 = 10−4. The
target β∗ is simulated according to Assumption 3.12
with SNR = 0.1. We illustrate the effect of the num-
ber F of strong features on the optimal number of data
splits. The left plot in Fig. 1 shows the regularizing
effect of data splitting. Interestingly, for fixed F , effi-
ciency increases until the optimal number of splits is
achieved. The optimal number of splits decreases as
F increases.

In a second experiment, we investigate the interplay of
the spectral gap ρ1 − ρ2 and the optimal splits. The
strength ρ2 of weak features varies between 10−3 and
10−1. The right plot in Fig. 1 plots the test error for
different values of the spectral gap for an increasing
number of machines. We clearly observe the regular-
izing effect of data splitting in the presence of over-
parameterization. Moreover, the optimal number of
splits decreases as the spectral gap increases.

Figure 1: Left: Interplay between number of strong
features and number of machines. Right: Interplay
between spectral gap and optimal number of machines.

Real data. We utilize the million song dataset Bertin-
Mahieux et al., consisting of 463, 715 training samples,
ntest = 51, 630 test samples and d = 90 features. To
illustrate the effect of splitting we elaborate two dif-
ferent settings: The left plot in Fig. 3 shows data
splitting in the presence of global overparameteriza-
tion. We subsampled n = 45 training samples and
report the average test error with 100 repetitions. We
observe a better accuracy with splitting. In the second
setting in Fig. 3, the total sample size is larger than
the number of parameters. As long as there is local
underparameterization, the test error increases. How-
ever, after a certain number of splits M = n/d = 15,
local overparameterization appears and the test error
starts to decrease.

Figure 2: Double descent for MSDYear dataset with
d = 90 features. We observe peaks whenever d = n

M ,
as Theorem B.6 predicts.

Figure 3: MSDYear dataset. Left: Data splitting re-
duces the test error in the presence of overparameteri-
zation. Right: The test error has a peak for M = n/d
and decreases as local overparameterization increases.
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in overparameterized regimes

A PROOFS OF SECTION 3

In this section we provide all proofs of our results in Section 3.

A.1 Proofs of Section 3.1

Lemma A.1. Let n ∈ N, β ∈ H. Define the empirical covariance operator by Σ̂ = 1
nXTX and denote by

Π̃ := Id−XT (XXT )†X

the orthogonal projection onto the nullspace of X. We have almost surely

||Σ1/2Π̃β||2 ≤
∣∣∣〈β, (Σ− Σ̂)β

〉∣∣∣ .
Proof of Lemma A.1. For the proof we will use the following facts that can be found in e.g. Reed (2012):

(a) For all β ∈ H it holds: ||β||2 = Tr[β ⊗ β].

(b) The trace is invariant under cyclic permutations: Tr[ABC] = Tr[CAB] = Tr[BCA].

(c) If A,B,C are self-adjoint, then the trace is invariant under any permutation:

Tr[ABC] = Tr[(ABC)T ] = Tr[CBA] = Tr[ACB] .

(d) If A has rank one, then |Tr[A]| = ||A||. In particular, β⊗β has rank one and |Tr[β⊗βA]| = |Tr[Aβ⊗β]| =
||β ⊗ βA||.

First observe that

||Σ1/2Π̃β∗||2 (a)
=
∣∣∣Tr
[
Σ1/2Π̃β ⊗ Σ1/2Π̃β

]∣∣∣
=
∣∣∣Tr
[
Σ1/2Π̃(β ⊗ β)Π̃Σ1/2

]∣∣∣
(b)
=
∣∣∣Tr
[
Π̃ΣΠ̃(β ⊗ β)

]∣∣∣
(d)
= ||Π̃ΣΠ̃(β ⊗ β)|| =: • .

Since Π̃ is an orthogonal projection onto the nullspace of X we have ||Π̃|| ≤ 1 and

Π̃XT = 0 , Π̃Σ̂ = 0 .
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Hence, we find

• = ||Π̃(Σ− Σ̂)Π̃(β ⊗ β)||
≤ ||Π̃|| ||(Σ− Σ̂)Π̃(β ⊗ β)||
(d)
= |Tr[(Σ− Σ̂)Π̃(β ⊗ β)]|
(c)
= |Tr[Π̃(Σ− Σ̂)(β ⊗ β)]|
(d)
= ||Π̃(Σ− Σ̂)(β ⊗ β)||
≤ ||(Σ− Σ̂)(β ⊗ β)||
(d)
= |Tr[(Σ− Σ̂)(β ⊗ β)]|

=
∣∣∣〈β, (Σ− Σ̂)β

〉∣∣∣ .

The next Proposition is useful for bounding the bias in Lemma 3.1. We follow the lines of Negrea et al. (2020),
Lemma B.1, where a similar result is shown for gaussian variables. We extend this to the subgaussian setting.

Proposition A.2. Suppose Assumption 2.2 is satisfied and let β ∈ H. There exists a universal constant c > 0
such that for any δ ≥ 2e−c

2n, with probability at least 1− δ we have∣∣∣〈β, (Σ− Σ̂)β
〉∣∣∣ ≤ 4σx

c
log

1
2 (2/δ)

||Σ 1
2 β||2√
n

.

Proof of Proposition A.2. Set B2 := 〈Σβ, β〉. We then write∣∣∣〈β, (Σ− Σ̂)β
〉∣∣∣ =

∣∣∣〈β, Σ̂β〉− 〈β,Σβ〉∣∣∣
=

∣∣∣∣∣∣ 1n
n∑
j=1

〈β, (xj ⊗ xj)β〉 −B2

∣∣∣∣∣∣
=

∣∣∣∣∣∣B
2

n

 n∑
j=1

〈β, xj〉2

B2
− 1

∣∣∣∣∣∣ . (14)

We next show that for any j = 1, ..., n, the real valued variables zj :=
〈β,xj〉
B are (σ2

x, id)-subgaussian. Indeed, by
Assumption 2.2 and Definition 2.1 we find for all α ∈ R

E[eαzj ] = E
[
e〈

α
B β,xj〉

]
≤ e

σ2x
2 〈Σ α

B β,
α
B β〉

= e
σ2x
2 α

2

. (15)

For bounding (14) with high probability we use the fact that for any j = 1, ..., n the random variable z2
j − 1

is 16σ2
x-subexponential. Indeed, this follows from (15) and results in Vershynin (2018, Section 2) that are

condensed in Bartlett et al. (2020, Lemma S.4). Next, Bernstein’s inequality for the independent and mean
zero subexponential variables z1, ..., zn in Vershynin (2018, Theorem 2.8.2) shows that there exists a universal
constant c > 0 such that for all t ≥ 0, with probability at least

1− 2 exp

(
−c2 min

{
t2

16σ2
xn
,
t

4σx

})
we have ∣∣∣∣∣∣B

2

n

 n∑
j=1

〈β, xj〉2

B2
− 1

∣∣∣∣∣∣ ≤ B2

n
t .
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Assuming that t ≤ 4σxn we find that

min

{
t2

16σ2
xn
,
t

4σx

}
=

t2

16σ2
xn

.

Setting now δ = 2e
− c2

16σ2x

t2

n we finally get∣∣∣〈β, (Σ− Σ̂)β
〉∣∣∣ ≤ 4σx

c

||Σ 1
2 β||2√
n

log
1
2 (2/δ) .

with probability at least 1− δ, for all δ ≥ 2e−c
2n.

The next result establishes a bound for the single machine variance. This is a first step for bounding the variance
from Lemma 3.1 in the distributed setting.

Proposition A.3 (Bartlett et al. (2020), Lemma 6). Let n ∈ N and suppose Assumption 2.2 is satisfied. Define

Ĉ := (XXT )−1XΣXT (XXT )−1 . (16)

There are constants a, c > 1 such that, if 0 ≤ k ≤ n/c, rk(Σ) ≥ a ·n, and l ≤ k, with probability at least 1−7e−
n
c

it holds

Tr[Ĉ] ≤ c

 l

n
+ n

∑
j>l λ

2
j(∑

j>k λj

)2

 ,

where (λj)j∈N are the eigenvalues of Σ, arranged in decreasing order.

Proposition A.4. Let n ∈ N and suppose Assumption 2.2 is satisfied. Define Ĉ by (16). There exists a
universal constant c > 1 and a 0 ≤ k∗n ≤ n

c such that with probability at least 1− 7e−
n
c it holds

Tr[Ĉ] ≤ c

k∗n
n

+ n

∑
j>k∗n

λ2
j(∑

j>k∗n
λj

)2

 ,

where (λj)j∈N are the eigenvalues of Σ, arranged in decreasing order.

Proof of Proposition A.4. The proof follows from Bartlett et al. (2020, Lemma 6) and Bartlett et al. (2020,
Lemma 11).

Combining now the above results allows to prove Lemma 3.1.

Proof of Lemma 3.1. We first derive a bound for the bias. Linearity of the expectation and (1) yields

Eε[β̄M ] =
1

M

M∑
m=1

XT
m(XmX

T
m)†Eε[Ym] =

1

M

M∑
m=1

XT
m(XmX

T
m)†Xmβ

∗ , (17)

since, conditionally on the inputs X, the noise is centered. Hence

β∗ − Eε[β̄M ] =
1

M

M∑
m=1

Π̃mβ
∗ ,

where we denote by

Π̃m := Id−XT
m(XmXT

m)†Xm
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the orthogonal projection onto the nullspace of Xm. Convexity and Lemma A.1 allow to deduce

B̂ias(β̄M ) = ||Σ1/2(Eε[β̄M ]− β∗)||2

≤ 1

M

M∑
m=1

||Σ1/2Π̃mβ
∗||2

≤ 1

M

M∑
m=1

∣∣∣〈β∗, (Σ− Σ̂m)β∗
〉∣∣∣ .

Next, we derive a bound for the variance. By definition of the variance, (2) and (17) we find

V̂ar(β̄M ) = Eε
[
||Σ1/2(β̄M − Eε[β̄M ])||22

]
= Eε

[
||Σ1/2

( 1

M

M∑
m=1

β̂(m) −XT
m(XmX

T
m)†Xmβ

∗
)
||2
]

= Eε
[
||Σ1/2

( 1

M

M∑
m=1

XT
m(XmX

T
m)†(Ym −Xmβ

∗)
)
||2
]

= Eε
[
||Σ1/2

( 1

M

M∑
m=1

XT
m(XmX

T
m)†εm

)
||2
]

= Eε
[
||Σ1/2

( 1

M

M∑
m=1

X†mεm

)
||2
]
.

In the last step we use XT
m(XmX

T
m)† = X†m. Recall that for any β ∈ H we may write ||β||2 = Tr[β ⊗ β]. Hence,

||Σ1/2
( 1

M

M∑
m=1

X†mεm

)
||2

Tr

[(
1

M

M∑
m=1

Σ1/2X†mεm

)
⊗

(
1

M

M∑
m′=1

Σ1/2X†m′εm′

)]

=
1

M2

M∑
m,m′=1

Tr
[
Σ1/2X†mεm ⊗ εm′(X

†
m′)

TΣ1/2
]
.

By linearity of the trace and independence, taking the expectation gives Eε[εm ⊗ εm′ ] = 0 for any m 6= m′ and
the sum reduces to

Eε
[
||Σ1/2

( 1

M

M∑
m=1

X†mεm

)
||2
]

=
1

M2

M∑
m=1

Eε
[

Tr
[
Σ1/2X†mεm ⊗ εm(X†m)TΣ1/2

]]
=

1

M2

M∑
m=1

Eε
[
||Σ1/2X†mεm||2

]
=

1

M2

M∑
m=1

Eε
[
〈εm, Cmεm〉

]
, (18)

where we set
Cm :=

(
X†m

)T
ΣX†m .

To proceed, we apply a conditional subgaussian version of the Hanson-Wright inequality taken from Page and
Grünewälder (2019, Lemma 35). This gives almost surely conditional on the data Xm, for all t ≥ 0, with
probability at least 1− e−t (w.r.t. the noise)

〈εm, Cmεm〉 ≤ τ2 Tr[Cm] + 2τ2t||Cm||+ 2τ2
√
t2||Cm||2 + tTr[C2

m]

≤ 4τ2 Tr[Cm] (t+ 1) ,
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where we use that ||Cm|| ≤ Tr[Cm] and Tr[C2
m] ≤ ||Cm||Tr[Cm] ≤ Tr[Cm]2. From Blanchard and Mücke (2018,

Lemma C.1) we obtain after integration for the conditional expectation

Eε[〈εm, Cmεm〉] ≤ 8τ2 Tr[Cm] .

Inserting the last bound into (18) finally gives almost surely

V̂ar(β̄M ) ≤ 8τ2

M2

M∑
m=1

Tr[Cm] .

Finally, we give the proof of our main result, a general upper bound for distributed ridgeless regression.

Proof of Theorem 3.5. We start with bounding the bias term.

Bounding the Bias. Recall that by Lemma 3.1 we have almost surely

B̂ias(β̄M ) ≤ 1

M

M∑
m=1

∣∣∣〈β∗, (Σ− Σ̂m)β∗
〉∣∣∣ .

Proposition A.2 gives for all δ ≥ 2e−c
2 n
M , with probability at least 1− δ∣∣∣〈β∗, (Σ− Σ̂m)β∗

〉∣∣∣ ≤ 4σx
c

log
1
2 (2/δ) ||Σ 1

2 β∗||2
√
M

n
,

for some universal constant c > 0. Performing now a union bound and invoking Assumption 3.2 finally gives
with probability at least 1− δ

Eβ∗ [B̂ias(β̄M )] ≤ 4σx
c

log
1
2 (2M/δ) Tr[ΣΘ]

√
M

n
,

where we use that
Eβ∗ [||Σ

1
2 β∗||2] = Tr[Eβ∗ [Σβ∗ ⊗ β∗]] = Tr[ΣΘ] .

Bounding the Variance. Applying Lemma 3.1 once more we have almost surely

V̂ar(β̄M ) ≤ 8τ2

M2

M∑
m=1

Tr[Cm] .

With Lemma A.4 together with a union bound we get with probability at least 1− 7Me−
n

c2M

V̂ar(β̄M ) ≤ 8c2τ
2

M2

M∑
m=1

M
n
k∗n/M +

n

M

∑
j>k∗

n/M
λ2
j(∑

j>k∗
n/M

λj

)2


= 8c2τ

2

k∗n/M
n

+
n

M2

∑
j>k∗

n/M
λ2
j(∑

j>k∗
n/M

λj

)2

 ,

for some constant c2 > 1 and 0 ≤ k∗n/M ≤
n

c2M
.
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A.2 Proofs of Section 3.2

This section establishes a refined upper bound for the excess risk in the infinite dimensional setting under the
specific Assumptions 3.6, 3.7. We start with a preliminary Lemma that is needed to estimate the variance.

Lemma A.5. Suppose all assumptions of Theorem 3.5 are satisfied. Assume that λj(Σ) = j−(1+εn) for a positive
sequence (εn)n∈N. We have

1.
k∗n
M

n ≤ a
εn
M .

2. For any n sufficiently large, n
M2

1
Rk∗n

M

(Σ) ≤
6
a
εn
M . If M . nεn, then k∗n

M
& 1.

Proof of Lemma A.5. 1. We follow the lines of Bartlett et al. (2020), Proof of Theorem 31, by lower bounding
the effective rank rk(Σ). With Lemma 14 in Mücke et al. (2019) we may write

rk(Σ) = (k + 1)1+εn
∑
j>k

j−(1+εn)

≥ (k + 1)1+εn

∫ ∞
k+1

t−(1+εn)

=
k + 1

εn
.

By Definition 3.4, the effective dimension k∗n
M

is the smallest number satisfying rk∗n
M

(Σ) ≥ a nM . Hence,

k∗n
M
≤ aεn n

M .

2. A short calculation shows that

Rk(Σ) ≥ k

ε2
n

(
1− 1

k + 1

)2εn

, rk(Σ) ≤ 2k

εn
eεn .

Following the arguments in the proof of Theorem 31 in Bartlett et al. (2020) we find also in the distributed
setting that k∗n

M
≥ aε

3
n
M for sufficiently large n. Hence,

Rk∗n
M

(Σ) ≥ aεn
6

n

M
.

The second preliminary Lemma will help to bound the bias.

Lemma A.6. Suppose Assumption 3.7 is satisfied. Let α ≥ 0. Then

Tr[Σ1+α] =

∞∑
j=1

(
1

j

)(1+α)(1+εn)

≤ 1

α+ εn(1 + α)
≤
{
α = 0 : 1

εn
α > 0 : 1

α

.

Proof of Lemma A.6. Let β = (1 + α)(1 + εn). The infinite sum can easily be bounded by an integral

∞∑
j=1

(
1

j

)β
≤
∫ ∞

1

t−βdt =
1

β − 1
,

see e.g. Lemma 14 in Mücke et al. (2019).

Combining now Lemma A.5 and Lemma A.6 with Theorem 3.5 gives the main result in this section.
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Proof of Proposition 3.8. For bounding the bias we apply Lemma A.6

Tr[ΣΘ] = Tr[Σ1+α] =
∑
j∈N

λ1+α
j (Σ) ≤ 1

α
1{α > 0}+

1

εn
1{α = 0} =: Cα,n .

Combining this with Lemma A.5, Lemma 3.1 and Theorem 3.5 leads to

Eβ∗,ε
[
||Σ 1

2 (β̄M − β∗)||2
]

≤ 4σx
c1

log
1
2

(
2M

δ

)
Tr[Σ1+α]

√
M

n
+ 8c2τ

2

(
a
εn
M

+
6

a

εn
M

)
≤ 4σx

c1
Cα,n log

1
2

(
2M

δ

)√
M

n
+ 8c2caτ

2 εn
M

,

holding with probability at least 1 − δ − 7Me−
n

c2M , for any δ ≥ 2e−c
2
1
n
M . Here, we set ca = max{a, 6/a}. The

result follows with c3 = 4/c1 and c4 = 8c2ca.

Proof of Corollary 3.9 and Corollary 3.10. We determine the maximum number of local nodes by balancing bias

and variance. To this end, firstly note that 1 ≤ log
1
2
(

4Mn

δ

)
. Setting now

A := c3σx
Cα,n√
n
, B := c4τ

2εn ,

we find that

A
√
M =

B

M
⇐⇒ M =

(
B

A

)2/3

.

Hence, the value

Mn := Cτ,σx

(
εn
√
n

Cα,n

)2/3

, Cτ,σx =

(
c4τ

2

c3σx

)2/3

trades off bias and variance and the excess risk is bounded as

Eβ∗,ε
[
||Σ 1

2 (β̄Mn
− β∗)||2

]
≤ 2c4τ

2 log
1
2

(
4Mn

δ

)
εn
Mn

= C ′τ,σx log
1
2

(
4Mn

δ

)(
C2
α,nεn

n

)1/3

,

where C ′τ,σx = 2c4τ
2

Cτ,σx
.

A.3 Proofs of Section 3.3

In this section we provide the proofs for our results in finite dimension with dim(H) = d <∞ from Section 3.3.
We start with two preliminary Lemmata.

Lemma A.7. Suppose Assumption 3.12 holds and let dρ2 ≤ F . Then

Tr[ΣΘ] ≤ 2 · SNR

d
F .
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Proof of Lemma A.7. By Assumption 3.12 with Θ = SNR
d Idd and since dρ2 ≤ F we easily obtain

Tr[ΣΘ] =
SNR

d
Tr[Σ]

=
SNR

d

 F∑
j=1

ρ1 +

d∑
j=F+1

ρ2


=

SNR

d
(Fρ1 + (d− F )ρ2)

=
SNR

d
((ρ1 − ρ2)F + dρ2)

≤ SNR

d
(ρ1 − ρ2 + 1)F

≤ 2SNR

d
F .

In the last step we use that ρ1 = 1 and −ρ2 ≤ 0.

Lemma A.8. Suppose all Assumptions of Theorem 3.5 are satisfied. If additionally Assumption 3.11 holds and

cF ≤ n

M
≤ 1

a
(d− F ) ,

for some a, c > 1, then with probability at least 1− 7Me−
n
cM

V̂ar(β̄M ) ≤ 8cτ2

(
F

n
+

1

M2

n

d− F

)
.

Proof of Lemma A.8. Applying Lemma 3.1 and Proposition A.3 with k = l = F gives with probability at least
1− 7e−

n
cM

V̂ar(β̄M ) ≤ 8τ2

M2

M∑
m=1

Tr
[(
X†m

)T
ΣX†m

]

≤ c8τ2

M2

M∑
m=1

FM
n

+
n

M

∑
j>F λ

2
j(∑

j>F λj

)2


= c

8τ2

M2

M∑
m=1

(
FM

n
+

n

M

(d− F )ρ2
2

(d− F )2ρ2
2

)
= 8cτ2

(
F

n
+

1

M2

n

d− F

)
,

provided rF (Σ) ≥ a · nM and 0 ≤ F ≤ n
cM . Finally, note that by Assumption 3.11

rF (Σ) =
1

λF+1(Σ)

d∑
j=F+1

λj(Σ) = d− F .

Hence,

rF (Σ) ≥ a · n
M
⇐⇒ n

M
≤ 1

a
(d− F ) .
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Proof of Proposition 3.13. The proof follows directly from Lemma A.7, Lemma A.8, Lemma 3.1 and Theorem
3.5. Hence, if log(2/δ) ≤ c21 n

M , we find with probability at least 1− δ − 7Me−
n
cM

Eβ∗,ε
[
||Σ 1

2 (β̄M − β∗)||2
]
≤ 4σx

c1
log

1
2

(
2M

δ

)
2 · SNR

d
F

√
M

n
+ 8cτ2

(
F

n
+

1

M2

n

d− F

)
≤ c̃ log

1
2

(
4M

δ

)(
SNR · F

d

√
M

n
+
F

n
+

1

M2

n

d− F

)
,

since 1 ≤ log
1
2
(

4M
δ

)
for all δ ∈ (0, 1]. Setting c̃ = 8 max{σxc1 , cτ

2} proves our result.

Proof of Corollary 3.14. We need to determine the minimum of the function h : R+ → R+, given by

h(M) = C1

√
M +

C2

M2
+ C3 , C1 > 0 , C2 > 0 , C3 > 0 .

A short calculation shows that the optimum is achieved at

Mopt =

(
4C2

C1

)2/5

,

with value

h(Mopt) = 5C2

(
C1

4C2

)4/5

+ C3 = 5C2
1

M2
opt

+ C3 .

Setting now

C1 :=
SNR · F
d
√
n

, C2 :=
n

d− F
, C3 =

F

n

gives for the optimal number of local nodes

Mopt = Mn =

(
4dn3/2

SNR · F (d− F )

)2/5

,

and by Proposition 3.13

Eβ∗,ε
[
||Σ 1

2 (β̄Mn
− β∗)||2

]
≤ c log

1
2

(
4Mn

δ

) (
5C2

(
C1

4C2

)4/5

+ C3

)

≤ 5c log
1
2

(
4Mn

δ

) (
F

n
+

1

M2
n

n

d− F

)
≤ 2c log

1
2

(
4Mn

δ

) (
F

n
+

n

d− F

(
SNR · F (d− F )

dn3/2

)4/5
)
,

with probability at least 1− δ − 7Mne
− n
cMn .

A.4 Proofs of Section 3.4

We first recall a lower bound for the variance in the single machine setting.

Proposition A.9 (Lemma 10 and Lemma 11 in Bartlett et al. (2020)). Define

Ĉ := (XXT )−1XΣXT (XXT )−1 .
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There exists a constant c > 0 such that for any 0 ≤ k ≤ n/c and any a > 1 with probability at least 1− 10e−n/c,
if rk(Σ) ≥ a n, then

Tr[Ĉ] ≥ 1

ca
min
l≤k

(
l

n
+

a2n
∑
j>l λ

2
j

(λk+1rk(Σ))2

)
.

Moreover, for

k∗ := min{k : rk(Σ) ≥ a n}

and if k∗ <∞, then

min
l≤k∗

(
l

a n
+

a n
∑
j>l λ

2
j

(λk+1rk(Σ))2

)
=

k∗

a n
+

a n

Rk∗(Σ)
.

Proof of Theorem 3.17. From Lemma 3.1 and its proof, in particular by (18), and by Assumption 3.16 we may
lower bound the excess risk by the variance and find

Eε[||Σ1/2(β̄M − β∗)||2] ≥ 1

M2

M∑
m=1

Eε
[

Tr
[
Σ1/2X†mεm ⊗ εm(X†m)TΣ1/2

]]
(19)

=
1

M2

M∑
m=1

Tr
[
Σ1/2X†mEε[εm ⊗ εm](X†m)TΣ1/2

]
(20)

≥ σ2

M2

M∑
m=1

Tr
[
Cm

]
, (21)

where Cm = (X†m)TΣX†m. Recall that by definition of k∗n
M

from Definition 3.4 we have rk∗n
M

(Σ) ≥ a nM . Hence,

we may apply Proposition A.9 and obtain with probability at least 1− 10Me−
1
c
n
M

Eε[||Σ1/2(β̄M − β∗)||2] ≥ σ2

caM2

M∑
m=1

(
Mk∗n

M

n
+
a2n

M

∑
j>k∗ λ

2
j

(λk∗+1rk∗(Σ))2

)

=
σ2

ca

(
k∗n
M

n
+
a2n

M2

∑
j>k∗ λ

2
j

(λk∗+1rk∗(Σ))2

)

≥ caσ2

(
k∗n
M

n
+
a2n

M2

∑
j>k∗ λ

2
j

(λk∗+1rk∗(Σ))2

)
,

where we set ca := 1
ca and use that a > 1.

Proof of Corollary 3.18. The proof of Lemma A.5 shows that rk(Σ) ≥ k+1
εn

, for any k. A similar calculation gives
as upper bound

rk(Σ) = (k + 1)1+εn
∑
j>k

j−(1+εn)

≤
∫ ∞
k

t−(1+εn)dt

=
(k + 1)1+εn

εnkεn

≤ (2k)1+εn

εnkεn

≤ 4k

εn
,
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where we use that 1 ≤ k and 21+εn ≤ 4, since εn ≤ 1 for n sufficiently large. In particular,

a
n

M
≤ k∗ + 1

εn
≤ rk∗(Σ) ≤ 4k∗

εn
. (22)

Thus, k∗ ≥ a
4
n
M εn.

High Smoothness α > 0. Moreover, the definition of Mn in Corollary 3.9 gives

k∗n
Mn

n
≥ a

4

εn
Mn

=
a

4Cτ,σx
α−2/3

(
1

n

)1/3

.

Hence, applying Theorem 3.17 gives with probability at least 1− 10Me−
1
c
n
M

Eε[||Σ1/2(β̄Mn
− β∗)||2] ≥ caσ2

(
k∗n
Mn

n
+
a2n

M2
n

∑
j>k∗ λ

2
j

(λk∗+1rk∗(Σ))2

)

≥ caσ2
k∗n
Mn

n
(23)

≥ C̃τ,σx,σ
α2/3

(εn
n

)1/3

,

with C̃τ,σx,σ = acaσ
2

4Cτ,σx
.

Low Smoothness α = 0. The result in this regime follows from the same arguments as above by inserting the
definition of Mn in Corollary 3.10 in the above equations. Indeed, one easily finds with (22) and (23)

Eε[||Σ1/2(β̄Mn
− β∗)||2] ≥ caσ2

k∗n
Mn

n

≥ C̃τ,σx,σ
(

1

εnn

)1/3

,

for some C̃τ,σx,σ > 0.

Lemma A.10 (Lower Bound Variance Single Machine). Define

Ĉ := (XXT )−1XΣXT (XXT )−1 .

Suppose Assumption 3.11 is satisfied and let q < 1/
√

2. Assume further that n ≤ d−F and that for n sufficiently
large

ρ2

ρ1
(d− F ) ≤ n

(
1
√
q
− 2

)
. (24)

There is a constant c1 > 0 such that for any 0 ≤ F ≤ n/c1, with probability at least 1− 10e−n/c1

Tr
[
Ĉ
]
≥ min{q, 1/9}

c1

(
F

n
+

n

d− F

)
.

Proof of Lemma A.10. The proof of Lemma 10 in Bartlett et al. (2020) in conjunction with our Assumption 3.11
show that with probability at least 1− 10e−n/c1

Tr
[
Ĉ
]
≥ 1

c1n

d∑
i=1

1 +
1

n

d∑
j=F+1

λj
λi

+
λF+1

λi

−2

=
1

c1n

F∑
i=1

1 +
1

n

d∑
j=F+1

λj
λi

+
λF+1

λi

−2

+
1

c1n

d∑
i=F+1

1 +
1

n

d∑
j=F+1

λj
λi

+
λF+1

λi

−2

(25)

=
F

c1n

(
1 +

d− F
n

ρ2

ρ1
+
ρ2

ρ1

)−2

+
d− F
c1n

(
2 +

d− F
n

)−2

. (26)
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We lower bound the first term in (25). To this end, we let q < 1/
√

2 and we show that(
1 +

d− F
n

ρ2

ρ1
+
ρ2

ρ1

)−2

≥ q , (27)

provided
ρ2

ρ1
(d− F ) ≤ n

(
1
√
q
− 2

)
,

for any n sufficiently large. Indeed, since ρ2
ρ1
< 1, this assumption implies

d− F
n
≤ ρ1

ρ2

(
1
√
q
− 2

)
≤ ρ1

ρ2

(
1
√
q
− 1− ρ2

ρ1

)
,

being equivalent to (27). Hence,

F

c1n

(
1 +

d− F
n

ρ2

ρ1
+
ρ2

ρ1

)−2

≥ q

c1

F

n
. (28)

To lower bound the second term in (25), recall that we assume n ≤ d − F , implying 2n + (d − F ) ≤ 3(d − F ).
Hence,

1(
2 + d−F

n

)2 =
n2

(2n+ (d− F ))
2 ≥

n2

9(d− F )
2 . (29)

Thus,

d− F
c1n

(
2 +

d− F
n

)−2

≥ d− F
c1n

n2

9(d− F )
2 =

1

9c1

n

d− F
. (30)

Combining (28) with (30) and (25) finally gives with probability at least 1− 10e−n/c1

Tr
[
Ĉ
]
≥ q

c1

F

n
+

1

9c1

n

d− F
≥ min{q, 1/9}

c1

(
F

n
+

n

d− F

)
.

Corollary A.11 (Optimal rate finite dimension). Recall the strong-weak-features model from Section 3.3 and
suppose Assumption 3.11 is satisfied. There is a constant c1 > 0 such that for any 0 ≤ F ≤ n

Mc1
≤ d− F , with

probability at least 1− 10e−
n

Mc1

Eε[||Σ1/2(β̄M − β∗)||2] ≥ σ2c3

(
F

n
+

n

M2(d− F )

)
,

for some c3 > 0. Moreover, under the assumptions of Corollary 3.14, this lower bound matches the upper bound
for the optimal Mn and hence is optimal (up to a log-factor).

Proof of Corollary A.11. We apply Lemma A.10 to the local variances and need to ensure, that all assumptions
are satisfied. Note that the conditions ρ2d ≤ F ≤ n

Mc1
and ρ1 = 1 imply

ρ2(d− F ) ≤ ρ2d ≤
n

Mc1

and hence (24) is satisfied for some well chosen q. Applying (19) and Lemma A.10 shows with probability at
least 1− 10e−n/Mc1

Eε[||Σ1/2(β̄M − β∗)||2] ≥ σ2

M2

M∑
m=1

Tr
[
(X†m)TΣX†m

]
≥ min{q, 1/9}

c1

σ2

M2

M∑
m=1

(
MF

n
+

n

M(d− F )

)
=
σ2 min{q, 1/9}

c1

(
F

n
+

n

M2(d− F )

)
,
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for some q < 1/
√

2.

B ADDITIONAL RESULTS IN FINITE DIMENSION

In this section we collect some additional results. We first analyze the finite dimensional setting under a more
general source condition and investigate the impact of the hardness of the problem on the number of optimal
machines. In addition, we give a general lower bound in finite dimension under general distributional assumptions.

B.1 General source condition in the strong-weak-features model

In this section we analyze the setting of Section 3.3 under a more general prior assumption. Here, the covariance
of β∗ will have a specific structure, described by a source function Φ : R+ → R+, with t 7→ tΦ(t) non-decreasing.

Assumption B.1 (Source Condition). Assume that β∗ ∼ N (0, R
2

d Φ(Σ)), for some R > 0. Note that R2 can be
intepreted as the expected signal strength.

Lemma B.2. Suppose Assumption 3.11 is satisfied. Let ρ2Φ(ρ2)d ≤ F . Then

Tr[ΣΦ(Σ))] ≤ (ρ1Φ(ρ1) + 1)F .

Proof of Lemma B.2. We write

Tr[ΣΦ(Σ))] =

F∑
j=1

ρ1Φ(ρ1) +

d∑
j=F+1

ρ2Φ(ρ2)

= (ρ1Φ(ρ1)− ρ2Φ(ρ2))F + ρ2Φ(ρ2)d

≤ (ρ1Φ(ρ1)− ρ2Φ(ρ2) + 1)F

≤ (ρ1Φ(ρ1) + 1)F .

Proposition B.3. In addition to all assumptions of Theorem 3.5, suppose that Assumptions B.1 and 3.11 are
satisfied. Assume that ρ2Φ(ρ2)d ≤ F . For any δ ≥ 2e−c

2
1
n
M , with probability at least 1− δ − 7Me−

n
c2M we have

Eβ∗,ε
[
||Σ 1

2 (β̄M − β∗)||2
]
≤ c3Cρ1 log

1
2

(
2M

δ

)
R2F

d

√
M

n
+ c4 ∆−1(ρ1, ρ2)

n

M2

1

F
,

where Cρ1 = ρ1Φ(ρ1) + 1 and ∆(ρ1, ρ2) := (ρ1 − ρ2)2 and for some c1, c2, c3, c4 > 0.

Proof of Proposition B.3. We combine Theorem 3.5, Lemma A.8 and Lemma B.2. This gives with probability
at least 1− δ − 7Me−

n
c2M

Eβ∗,ε
[
||Σ 1

2 (β̄M − β∗)||2
]
≤ 4σx

c1
log

1
2

(
2M

δ

)
Tr[ΣΘ]

√
M

n
+ 16c2τ

2 1

(ρ1 − ρ2)2

n

M2

1

F

≤ 4σx
c1

(ρ1Φ(ρ1) + 1)
R2F

d
log

1
2

(
2M

δ

)√
M

n
+ 16c2τ

2 1

(ρ1 − ρ2)2

n

M2

1

F
.

The results follows by setting Cρ1 := ρ1Φ(ρ1)+1, ∆(ρ1, ρ2) := ∆ := (ρ1−ρ2)2, c3 := 4σx/c1 and c4 := 16c2τ
2.

Corollary B.4 (Optimal number of machines). Suppose all assumptions of Proposition B.3 are satisfied. Let
(ρ2,n)n be decreasing and ρ2,nΦ(ρ2,n)dn ≤ Fn. Denote ∆n := (ρ1 − ρ2,n)2 and assume

n−3/2 .
dn

∆nF 2
n

. n . (31)
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The optimal number of local nodes Mn is given by

Mn = A ·
(

dnn
3/2

R2∆n · F 2
n

)2/5

, (32)

where A =
(

4c4
c3Cρ1

)2/5

. The excess risk satisfies with probability at least 1− δ − 7Mne
− n
c2Mn

Eβ∗,ε
[
||Σ 1

2 (β̄Mn − β∗)||2
]
≤ c′ log

1
2

(
2Mn

δ

) (
R2Fn
dn

)4/5 (
1

Fn · n∆n

)1/5

, (33)

where c′ = (5c4)/A2.

Proof of Corollary B.4. We need to determine the minimum of the function h : R+ → R+, given by

h(M) = C1

√
M +

C2

M2
, C1 > 0 , C2 > 0 .

A short calculation shows that the optimum is achieved at

Mopt =

(
4C2

C1

)2/5

,

with value

h(Mopt) = 5C2

(
C1

4C2

)4/5

= 5C2
1

M2
opt

.

Setting now

C1 := c3 Cρ1
R2F

d
√
n
, C2 := c4

n

∆n · F
gives for the optimal number of local nodes

Mopt = Mn = A ·
(

dn3/2

R2∆n · F 2

)2/5

, A :=

(
4c4
c3Cρ1

)2/5

,

and

Eβ∗,ε
[
||Σ 1

2 (β̄Mn − β∗)||2
]
≤ 5c4 log

1
2

(
2Mn

δ

)
n

F ·∆nM2
n

= c′ log
1
2

(
2Mn

δ

) (
R2F

d

)4/5 (
1

F · n∆n

)1/5

,

where c′ = (5c4)/A2. Moreover, for our bounds to be meaningful we have to require that 1 . Mn . n. This is
satisfied if

n−3/2 .
dn

∆nF 2
n

. n .

The two conditions

1. n−3/2 . dn
∆nF 2

n
. n

2. ρ2,nΦ(ρ2,n)dn ≤ Fn

from Corollary B.4 determine the number of optimal splits and the learning rate of the distributed minimum
norm interpolant. In particular, the a-priori assumption on β∗ through the source function Φ has an influence on
the possible number of splits and hence on the efficiency of averaging. We discuss three special examples in more
detail below. In all cases, we exclusively focus on the overparameterized regime where n . dn and 1 . Fn . dn.
Suppose that

dn ' nγ , γ > 1 and Fn ' nδ , 0 ≤ δ ≤ γ .
Condition (II) from above sets now restrictions on the decay of the strength of the weak features.
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Easy Case. We let Φ(t) = t. Condition (II) can be rewritten as ρ2,n .
(

1
n

) 1
2 (γ−δ)

. To meet condition (I) we
need to distinguish two cases:

1. If γ ≤ 2δ, we have max{1, 2δ − 3/2} < γ ≤ 2δ and δ > 1/2. In particular, the number of strong features
needs to grow at as Fn &

√
n.

2. If γ ≥ 2δ, we have max{1, 2δ} < γ ≤ 2δ+ 1 and δ < γ/2. Here, the number of strong features can not grow
faster that nγ/2.

Isotropic Case. We let Φ(t) = 1. Condition (II) can be rewritten as ρ2,n .
(

1
n

)γ−δ
. Compared to the

easy case, the strength of the weak features ρ2,n needs to decay faster. Condition (I) holds under the same
assumptions as in the easy case.

Hard Case. We let Φ(t) = t−1. Condition (II) reduces to Fn ' dn, i.e., the number of strong features needs

to grow as fast as the dimension. In this case, the optimal number of machines scales as Mn ' n
2
5 ( 3

2−δ). To
ensure 1 .Mn . n, the growth of dn can not be too fast: γ = δ ∈ (1, 3/2].

B.2 A universal lower bound

We aim at deriving a lower bound for the distributed ridgeless regression estimator under fairly general distri-
butional assumptions if dim(H) = d <∞.

Assumption B.5. 1. The input x ∈ Rd is strongly square integrable: E[||x||2] <∞.

2. The covariance matrix Σ ∈ Rd×d is invertible.

3. E[y2] <∞.

4. The conditional variance is bounded from below: For some τ̃ ≥ 0 we assume V[y|x] ≥ τ̃2 almost surely.

5. For any m = 1, ...,M , the local data matrix Xm ∈ R n
M×d has almost surely full rank, i.e., rank[Xm] =

min{ nM , d}.

Under these assumptions we have the following lower bound for the ridgeless distributed estimator in finite
dimension.

Theorem B.6 (Lower bound). Let β̄M be defined by (3). The excess risk satisfies

E
[
||Σ1/2(β̄M − β∗)||2

]
≥ τ̃2

M

min{d, nM }
max{d, nM }+ 1−min{d, nM }

.

Thus, we observe peaks at d = n
M with height at least τ̃2 d

M , see Fig. 2.

We consider functions of the form fβ : H → R, β ∈ H, with fβ(x) := 〈β, x〉 and define for any estimator β̂ ∈ H
the quantity

Ẽ := E[(fβ̂(x)− EY |X [fβ̂(x)])2] .

One easily verifies that

Ẽ ≤ E[R(β̂)]−R(β∗) . (34)

Thus, finding a lower bound for Ẽ leads to a lower bound for the excess risk.

Proof of Theorem B.6. Define the centered output variables Ỹm := Ym − EYm|X [Ym], m = 1, ...,M and set

Cov(Ym, Xm) := EYm|Xm [Ỹm ⊗ Ỹm] .
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We then write

Ẽ(X) := EY,x|X [(fβ̄0
(x)− EY |X [fβ̄0

(x)])2]

= EY,x|X

(〈x, 1

M

M∑
m=1

X†mỸm

〉)2


= EY,x|X

( 1

M

M∑
m=1

〈
x,X†mỸm

〉)2


=
1

M2

M∑
m=1

M∑
m′=1

EY,x|X
[〈
x,X†mỸm

〉〈
x,X†m′ Ỹm′

〉]
.

Note that by definition of Ỹm and linearity we have

EY,x|X
[〈
x,X†mỸm

〉]
= 0 .

Thus, by independence and Assumption B.5 we find

Ẽ(X) =
1

M

M∑
m=1

EY,x|X
[〈
x,X†mỸm

〉2
]

=
1

M

M∑
m=1

EY,x|X
[〈
x,X†mỸm

〉2
]

=
1

M

M∑
m=1

Ex
[〈

(X†m)Tx,Cov(Ym, Xm)(X†m)Tx
〉]

≥ τ̃2

M

M∑
m=1

Ex
[
||(X†m)Tx||2

]
=
τ2

M

M∑
m=1

Tr
[
(X†m)TEx[x⊗ x]X†m

]
=
τ2

M

M∑
m=1

Tr
[
(X†m)TΣX†m

]
. (35)

We proceed by introducing the whitened data matrices

Wm := XmΣ−1/2 .

We then distinguish the two cases:

d ≥ b = n
M : Following the arguments in Holzmüller (2020) (Proof of Theorem 3) shows that

EX
[
Tr
[
(X†m)TΣX†m

]]
≥ EX

[
Tr
[
(WmW

T
m)−1

]]
≥ b

d+ 1− b
.

Combining this with (35) gives by independence

Ẽ = EX [Ẽ(X)]

≥ τ̃2

M

b

d+ 1− b

=
τ̃2

M

b

d+ 1− b
.

The result follows from (34).
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d ≤ b = n
M : A short calculation shows that

Tr
[
(X†m)TΣX†m

]
= Tr

[
(WT

mWm)−1
]
.

Following again Holzmüller (2020) (Proof of Theorem 3) we readily obtain

EX
[
Tr
[
(X†m)TΣX†m

]]
= EX

[
Tr
[
(WT

mWm)−1
]]
≥ d

b+ 1− d
.

We conclude as above to obtain the result.

C ADDITIONAL NUMERICAL RESULTS

C.1 Comparison with Ordinary Least Squares (underparameterized) and Ridge Regression

We complete our discussion of Section 4 by illustrating the efficiency for OLS in the underparameterized case
(d < n) and for Ridge Regression, both under Gaussian design.

Figure 4: Left: Linear loss in efficiency for OLS with d = 10, n = 8000. Right: Comparison of Ridge Regression
with optimal regularization with no regularization. We observe a constant accuracy for optimally regularized
RR until the number of machines gets too large.

C.2 Additional Experiment with Simulated Data

In a final experiment we investigate the effect of decay of the eigenvalues on the (normalized) relative prediction
efficiency, defined in Definition 3.20. We generate n = 200 i.i.d. training points xj ∼ N (0,Σ), with d = 400,
λj(Σ) = j−(1+ε), with ε = 0.1, 0.5, 1, 1.5. The target β∗ is simulated according to Assumption 3.12 with SNR = 1.
As expected from our main results, faster decay (larger ε) allows larger parallelization, that is, the optimal number
of splits (largest efficiency) increases with faster decay.
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Figure 5: Left: ε = 0.1 Right: ε = 0.5.

Figure 6: Left: ε = 1 Right: ε = 1.5.
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