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Abstract

Active learning can reduce the number of sam-
ples needed to perform a hypothesis test and
to estimate the parameters of a model. In
this paper, we revisit the work of Chernoff
that described an asymptotically optimal al-
gorithm for performing a hypothesis test. We
obtain a novel sample complexity bound for
Chernoff’s algorithm, with a non-asymptotic
term that characterizes its performance at a
fixed confidence level. We also develop an ex-
tension of Chernoff sampling that can be used
to estimate the parameters of a wide variety
of models and we obtain a non-asymptotic
bound on the estimation error. We apply our
extension of Chernoff sampling to actively
learn neural network models and to estimate
parameters in real-data linear and non-linear
regression problems, where our approach per-
forms favorably to state-of-the-art methods.

1 Introduction

In contrast to common machine learning algorithms
that use independent and identically distributed (iid)
samples for training, active learning promises to use
fewer samples by allowing the algorithm to choose the
samples it is trained on. While the benefit of active
learning has been analyzed extensively for the prob-
lem of classification (Dasgupta, 2005; Hanneke, 2007;
Dasgupta et al., 2008; Balcan et al., 2009; Balcan and
Long, 2013; Zhang and Chaudhuri, 2014; Katz-Samuels
et al., 2021), there are fewer works (Cai et al., 2016;
Wu, 2018; Wu et al., 2019; Bu et al., 2019) that utilize
active learning for regression. In this paper we extend
an asymptotically optimal algorithm for active testing,
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that was developed by Chernoff (Chernoff, 1959), to ac-
tive regression. We empirically show that this resulted
in more efficient estimation of parameters in regression
models. In addition, we obtain non-asymptotic bounds
on the sample complexity and estimation error for Cher-
noff’s algorithm in active testing and its extension in
active regression, respectively. Non-asymptotic bounds
characterize the performance of an algorithm when ex-
ecuted at a fixed confidence level, which is relevant for
real-world applications. While theoretical results for
active regression using maximum likelihood estimates
were given by Chaudhuri and Mykland (1993) and
Chaudhuri et al. (2015), our method is likelihood-free
and is applicable to sub-Gaussian observations.

To frame our contributions, let us first establish some
basic notation and a problem statement. Consider a
sequential learning problem in which the learner may
select one of n possible actions at each step. A sample
resulting from action ¢ is a realization of a sub-Gaussian
random variable with mean p;(6*), where the mean
1;(0) is a known function parameterized by 6 € ©.
The specific 8* € © that governs the observations is
not known. Each action may be performed multiple
times, resulting in i.i.d. observations, and observations
from different actions are also statistically independent.
This paper considers the problem of sequentially and
adaptively choosing actions for the following goals:

In Active Testing: © is finite and the goal is to
correctly determine the true hypothesis 68*.

In Active Regression: O isa compact (uncountable)
space and the goal is to accurately estimate 6*.

Below, we detail our contributions to both problems.

e We revisit Chernoft’s sampling algorithm for the
sequential design of experiments (Chernoff, 1959),
which is equivalent to the situation where the pa-
rameter space O is a finite set. The algorithm
provably minimizes the number of samples used to
identify 8* € © in the asymptotic high-confidence
setting. We derive a non-asymptotic sample com-
plexity bound for the algorithm in Chernoft (1959)
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that characterizes its performance in low/medium
confidence regimes. We also provide theoretical
guarantees for three variations of the Chernoff sam-
pling algorithm. We prove a minimax lower bound
that shows that the algorithm in Chernoff (1959)
can be optimal in the medium confidence regime.
We also generalize it to handle sub-Gaussian dis-
tributions. Consequently, we replace the maxi-
mum likelihood criterion (which depends on the
probability distribution) with the minimum sum-
of-squared errors criterion (which depends only on
the mean functions).

e We extend the algorithm in Chernoff (1959) to han-
dle smoothly parameterized functions u;(0) where
® C R% A brute-force approach could involve
using a finite, discrete covering of ®, but this is
impractical. Instead, we prove that an optimal
sampling distribution (according to Chernofl’s cri-
terion) is generally sparse and may be obtained by
solving a simple eigenvalue optimization problem
closely related to the notion of E-optimality in ex-
perimental design (Dette and Studden, 1993). We
provide a convergence guarantee for the smoothly
parameterized setting that utilizes a new error
metric. We demonstrate that the extension of
Chernoff (1959) outperforms existing stage-based
algorithms in benchmark real-life datasets and in
a neural network experiment.

We derive our non-asymptotic sample complexity
bound for Chernoff (1959) using the techniques in
Naghshvar and Javidi (2013). The convergence proof
for active regression extends the techniques of Frostig
et al. (2015) and applies it to our extension of Chernoff
(1959).

1.1 Related Work

The algorithm in Chernoff (1959) assumes that the
probability distribution of an observation from any ac-
tion ¢ € [n] under any hypothesis 8 € © is known to
the learner. Consider a partition of ®@ = @1 U ®5 and
a hypothesis test between 8* € @, and 6* € ©,. The
objective is to choose actions such that the hypothesis
test can be performed using as few samples as possi-
ble. Using past observations, a maximum likelihood
estimate 6 is found and let 8 € ®;. The algorithm
in Chernoff (1959) chooses the next action according
to a probability mass function (pmf) p over actions
obtained by

~

owgmase ol 3 p(0) KL (2: ) :8). (1)

where p = (p(1),...,p(n)), vi(-;0) denotes the proba-
bility distribution of an observation from action ¢ if

were the true hypothesis, and KL denotes the Kullback-
Leibler divergence. The optimization (1) is similar to
those appearing in sample complexity lower bounds for
best-arm identification in multi-armed bandits Garivier
and Kaufmann (2016); Combes et al. (2017); Degenne
et al. (2020). In those works the inf is taken over all
6’ having an optimal action that is different from that
under the true 6*.

While the algorithm in Chernoff (1959) is asymptoti-
cally optimal under certain assumptions, subsequent
works Blot and Meeter (1973), Naghshvar and Javidi
(2013), Nitinawarat et al. (2013) have proposed modi-
fications that work well outside the asymptotic limit,
strengthen theoretical guarantees, and reduce the num-
ber of assumptions needed. Naghshvar and Javidi
(2013) proposed a two-phase Bayesian policy TP which
conducts forced exploration in the first phase and com-
putes a posterior belief over the hypotheses. Then in
the second phase, it switches to the optimal Chernoff
sampling proportion in eq. (1) if the probability of
one hypothesis crosses a threshold. TP can relax an
assumption made in Chernoff (1959) which stated that
sampling any action always provides some information
about the true 6*. If that assumption is true, then
Chernoff Sampling (CS), which has no such separa-
tion of phases, empirically outperforms TP. It also
enjoys both moderate and optimal asymptotic guaran-
tees. Nitinawarat et al. (2013) have modified Chernoff
(1959) by adding a small amount of uniform exploration
to relax the previous assumption. In a different prob-
lem Vaidhiyan and Sundaresan (2017) have modified
CS to quickly identify an odd Poisson point process
having a different rate of arrival than others.

For estimating parameters of a regression model, effi-
cient methods for selecting actions have been studied
in the area of Optimum Experiment Design (Silvey,
1980; Pukelsheim, 2006; Pronzato and Pdzman, 2013).
However a major focus in these works has been on large-
sample asymptotic properties of estimators obtained
from a fixed sampling distribution. While adaptive
sampling proportions have also been proposed (e.g.
Section 8.5 in Pronzato and Pazman (2013)), there
have been fewer works characterizing their theoretical
properties. Most theoretical work on active learning
has focused on learning binary classifiers that belong to
a particular hypothesis class (Dasgupta, 2005; Hanneke,
2007; Dasgupta et al., 2008; Balcan et al., 2009; Balcan
and Long, 2013; Zhang and Chaudhuri, 2014; Katz-
Samuels et al., 2021). The works of Chaudhuri and
Mykland (1993) and Chaudhuri et al. (2015) propose
adaptive sampling methods for obtaining maximum
likelihood estimates of the parameters in a regression
model. Chaudhuri et al. (2015) propose a two-stage
algorithm ActiveS that first samples uniformly at ran-
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dom to obtain a preliminary estimate of the parameters,
which is then used to find a sampling proportion for
the second stage by solving an optimization problem.
In contrast CS is a fully adaptive algorithm and enjoys
a similar convergence under slightly stronger assump-
tions.

Sabato and Munos (2014) provides an active learning
algorithm for linear regression problems under model
mismatch. The same setting under heteroscedastic
noise has been studied by Chaudhuri et al. (2017)
where they propose a two-stage process adapted to
the noise. Fontaine et al. (2019) also studies the lin-
ear regression setting under heteroscedastic noise but
proposes a fully adaptive adaptive algorithm that is
similar to A-optimal design. Bu et al. (2019) studies a
different setting where 6* is changing with time. They
modify the algorithm of Chaudhuri et al. (2015) to
fully adaptive process where the optimization needs
to be solved at every round. Wu (2018) studies the
linear regression setting where the goal is to maximize
the diversity of the samples. Cai et al. (2016) studies
both the linear and non-linear regression setting and
proposes the heuristic EMCM without any convergence
guarantee. Similarly, Wu et al. (2019) also studies
the active regression for noiseless setting but they pro-
vide no convergence proof. As opposed to these works
CS has a convergence guarantee and performs well in
real-world benchmark problems.

Another line of work is the non-parametric setup of
Castro et al. (2005), where the objective is to estimate
an unknown function over its entire domain. Here
the error rates for learning are O (t~7), and the ex-
ponent 7y decreases as the complexity of the hypothe-
sis class of functions increases (i.e., there is a slower
decrease in error when learning a more complicated
function). For example, if the hypothesis class consists
of Holder smooth functions defined on domain [0, 1]¢
then v =1/(d — 14 1/d). In contrast, our work is in
the parametric setting, where we only want to estimate
a single parameter 8* and v = 1. We show that the CS
algorithm has a smaller problem-dependent constant
in the error bound. The work of Goetz et al. (2018)
is also in a similar framework as that of Castro et al.
(2005). Other forms of optimal experiment design have
been explored in the context of active learning by Yu
et al. (2006), and in different bandit problems by Soare
et al. (2014); Fiez et al. (2019); Degenne et al. (2020).
Note that our objective of identifying 8* is a strictly
more difficult objective than best-arm identification in
bandit problems.

2 Active Testing

A sequential policy 7 tasked to find 8* interacts with
the environment in an iterative fashion. At time ¢, the
policy samples action I; and receives a random obser-
vation Y; that follows the distribution vy, (-; 0*), where
0* is the true value of the unknown parameter that
belongs to a set ®. In active testing, ® contains J dis-
crete hypotheses. Let F; :=o(I1,Y1,15,Ys, ..., 11, Y})
denote the sigma-algebra generated by the sequence of
actions and observations till time ¢. Then 7 is said to
be §-PAC if: (1) at each ¢ the sampling rule I; is Fy_1
measurable, (2) it has a finite stopping time 75 with
respect to F¢, and (3) its final prediction 8(r5) is based
on F,, and satisfies ]P’(é(ﬂ;) # 0%) < 4. A table of
notation is provided in Appendix A.10. Based on the
observations (Y7, Ys,...,Y;), we define for every 0 € ©
the sum of squared errors and the difference between
the sum of squared errors for 8 and 8* as follows:

Ly(0) ==Y (Ys — ur,(0)), (2)

AL(0) = Ly(6) — L,(67). (3)

Assumption 1. An observation from any action un-
der any hypothesis has bounded range, i.e., Ys €
[—Vv7/2,vT/2] almost surely at every round s for some
fized n > 0.

Suppose v;(Y'; 0) are Gaussian distributions with mean
1i(0) and variance /2. Let a(t) denote the estimate for
6" at time t. Using ©; = {6(t)},0, = ©\ {6(t)} and
expressions for KL divergence of Gaussian distributions
in eq. (1), we obtain that CS, which is asymptotically
optimal, samples the next action according to a prob-
ability mass function (pmf) that is a solution to the
following max min optimization:

Payi=argmasmin 5 p(9)(u(8) — (@) )

We can solve (4) by formulating it as a linear program:

max z 8.6 p(i)(1:(0') = 1i(6(1)))* > = V0'£0(1),
i=1
(5)

where the optimization variables are the scalar z
and pmf p satisfying the constraints p(i) > 0Vi and

Do p(i) = 1.

Chernoff Sampling (CS): Inspired by the sampling
proportion in eq. (4), we use the same sampling strat-
egy even though the distributions {v;(Y;0)}_; are
only assumed to be sub-Gaussian (Algorithm 1). Our
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estimate of the most likely hypothesis (breaking ties
at random) given the data is é(t) = argming.g L(0).
The action sampled at the next time t + 1 is chosen
by the randomized rule P(I;41 = i) = pg(,) (i), Vi € [n].
We stop sampling at 75 if the sum of squared errors for
all competing hypothesis is greater than that of 6(7s)
by a threshold 3(J,d) to be defined later.

Algorithm 1 Chernoff Sampling for Active Testing

1: Input: Confidence parameter §, threshold 3(J,d)
2: Sample I; € [n] randomly, observe Y7 and find
6(1).
fort=2,3,...do
Sample I; ~ Po(i—1) from (4) and observe Y;.
Calculate L;(8) from (2) V6 € ©, find 6(t).
if L,(0')—L(6(t)) > B(J,6)V0' + 8(t) then
Return §(t) as the true hypothesis.

In Chernoff (1959) they provide a sample complexity
upper bound only for the asymptotic regime when § —
0. We give a non-asymptotic fixed confidence sample
complexity upper bound in Theorem 1. The following
assumption, originally made by Chernoff (1959), is used
to prove Theorem 1.

Assumption 2. The mean of the observation from
any action under 0* is different from its mean under
any other hypothesis, i.e., min;ep,) ming.e- |1;(6) —
pi(6%)| > 0.

In subsequent works by Nitinawarat et al. (2013) and
Naghshvar and Javidi (2013), it was shown that the
above assumption can be relaxed if the algorithm is
modified. We make the assumption since we give a non-
asymptotic sample complexity bound for the original
algorithm.

Definition 1. Define the smallest squared difference
of means between any two actions under any pair
of hypotheses 0,0" as 1 = min,¢[,) minge: (11;(0) —
wi(0"))2. By Assumption 2 we have ng > 0.

We define the threshold 3(J,d) = log(C'J/§) where C
is a constant depending on 7, and 79. The values 7 (or
an upper bound to it) and 79 are known to the learner.

Theorem 1. (CS Sample Complexity) Let 75 de-
note the stopping time of CS in Algorithm 1. Let Dy

be the objective value of the maxmin optimization in
(4) when 6 = 0*, i.e.,

L . . ) L (pF)\2
Dy = m%xelp;g*;p(z)(ul(g’) wi(0%))2.

Denote pg as the solution of (4) when 5(75) is replaced
by any 0 € O, and D1 is the minimum possible objective

value over all pg when é(t) is replaced by 0%, i.e.,

Dy = i i N (i (0") — pi(6%))2.
1= min min i:1pe(l)(u (0') — 11:(67))
Assumption 2 ensures that D1 > 0. The sample com-
plexity of the §-PAC CS has the following upper bound,

where J :=|@|, C = O((n/no)?) is a constant:

Elrs] <O ("log(c) log J | 1og(J/0) | Jc%(sfé)) .

D, Do

Proof. (sketch) Algorithm 1 stops at 75 when the
error for the returned hypothesis is smaller than the
error for all the other hypotheses by an amount of
B(J,d). To obtain an upper bound to E[rs], we instead
look at a different random time 7g+ := min{t : A,(0) >
B(J,8),¥0 # 6*}, which is the first time when the error
for the true hypothesis 8* is smaller than the error for
all other hypotheses by 5(J,0). Either the hypothesis
returned by the Algorithm 1 is 5(75) = 0*, in which
case Ts = Tg~, Or Tg= has not occurred yet and 75 < Tg«.
Hence we focus on bounding E[rg«]. The key random
quantity in the definition of 7g« is A¢(0), and using
Assumption 1 we can show that A;(0) concentrates
to its expected value. The expected value E[A(0)]
is increasing with ¢ for each 8 # 6* and for large
enough t it will be greater than (., ). Since A¢(0)
concentrates to E[A(0)], for large enough ¢, A;(#) will
also be greater than 5(J,¢) and 79« would occur. To
quantify when 7g« occurs, we lower bound E[A;(0)] as
follows:

E[A¢(0)] > E[7e- D1 + (t — 7o+ )Do], (6)

where 7o+ is the last time after which the error for the
true hypothesis 8* is always smaller than the errors for
all other hypotheses. Till the time Tg«, the CS sampling
proportion Pg(;) May not be pg+, and E[A;(0)] grows
at the slower “exploration” rate D; defined in the
Theorem. After 79~ the CS proportion is pg+, and
E[A(0)] increases at the optimal “verification” rate
Dgy. We finally bound the sample complexity by using
E[Tg*] = Zt]PJ(Tg* = t) < M+P(Tg* > Mﬂf'g* <
M)+P(rg- > M N7g- > M) where, M = 110e(C)logJ

D
%. The two tail events above is shown to be

bounded by O(JC’l/néDO/nz) in Lemma 5. The full
proof is in Appendix A.2.5. O

In the result of Theorem 1 the first term
nlog(C)log (J)/D; bounds the number of samples
taken during the exploration phase when §(t) #+ 0.
This is the non-asymptotic term that is not present
in the analysis of Chernoff (1959). The second term

log (J/&)/ Dy is the dominating term when 6 — 0, and
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it matches the asymptotic sample complexity expres-
sion of Chernoff (1959). Naghshvar and Javidi (2013)
also derive a moderate confidence bound for their pol-
icy called TP but suffer from a worse non-asymptotic
term log(J/d)/Dny where Dyy < Dy (Dyy is denoted
as I; (M) in Naghshvar and Javidi (2013)). TP do not
require the assumption that D; > 0 as it conducts
forced exploration in the first stage. The TP policy is
asymptotically optimal but performs poorly in some
instances (see Example 1 and Section 4) due to the
fixed exploration in the first stage. We discuss further
results in Appendix A.1.1.

The following example shows that the non-asymptotic
term of CS may dominate.

Example 1. (Non-asymptotes matter) Consider
an environment with two actions and © = {6*,6',0"}.
The following table describes the values of u1(-), ua(+)
under these three hypotheses.

1"

6 =0 60 0
1(0) = 1 0001 0
p2(0) = 1 1.002 0.998

For a choice of § = 0.1, we can evaluate that
log(J)/Dy =~ 3 x 10° and log(.J/d)/Dg ~ 3.4. While
Theorem 1 is only an upper bound, empirically we
do see that the non-asymptotic term dominates the
sample complexity. The Figure la shows a box plot
of the stopping times of four algorithms over 100 inde-
pendent trials on the above environment. A box plot
depicts a set of numerical data using their quartiles
(Tukey, 1977). A uniform sampling baseline (Unif)
performs much better than CS, as it samples action 1
half the time in expectation, and action 1 is the best
choice to distinguish 6* from both 6’ and 6”. TP
also performs poorly compared to Unif and CS in this
setting. The non-asymptotic term of TP scales as
log(J)/Dny =~ 4 x 106.

T2 Sampling: Instead of sampling according to
the optimal verification proportion in line 4 of Al-
gorithm 1, we can use the following heuristic argu-
ment. At each time, consider the current most likely
6(t) and its “closest” competing hypothesis defined
as 0(t) = arg ming 5, L;(6). The §-PAC heuristic
called Top-2 sampling (abbreviated as T2) samples an
action that best discriminates between them, i.e.,

Ipiq = arg grel%(ui((;(t)) — w01 (7)

This strategy requires lesser computation as we don’t
need to compute Pat) which could be useful when J
or n is very large. It was proposed by Chernoff (1959)
without any sample complexity proof.

Proposition 1. (T2 Sample Complexity) Let 75
denote the stopping time of T2 following the sampling

strategy of (7). Consider the set I(68,0") C [n] of
actions that could be sampled following (7) when O(t) =

0 and é(t) = 0’, and let uge: denote a uniform pmf
supported on Z(0,0"). Define

where we assume that D} > 0. Then for a constant
C > 0 the sample complexity of T2 has the following
upper bound:

nlog(C)logJ = log(J/6)
Dy Dy

E[rs] < O ( + Jcéané’) .

The bound above has a similar form as in Theorem 1
with three terms. The first term does not scale with
error probability §, while the second term scales with
log(J/d). The denominators of the two terms are dif-
ferent from Dy and D; due to the different sampling
rule of T2 and hence T2 is not asymptotically optimal.

Batch Updates: We can solve max min optimization
for pg(t) every B rounds instead of at each round.
This reduces computation while increasing the sample
complexity by only an additive term as shown below.
Proposition 2. (Batch-CS Sample Complerity)
Let 15, Dy, D1 be defined as in Theorem 1 and B be
the batch size. Then the sample complezity of §-PAC
Batch-CS is

nlog(C)logJ log(J/d)
B+ D, + Do

E[rs] <O ( +BJC$5]35’) .

CS with Exploration: Recall that D; > 0 (Assump-
tion 2) is required to prove Theorem 1. We now relax
this assumption with the policy CSE which follows the
proportion P with probability 1—e¢; and uniform ran-
domly explores any other action i € [n] with probability
€;. The exploration parameter €; is chosen to reduce
with time. Define D, := ming/zg- > i ; = (pi(60') —
1i(6%))?% as the objective value for uniform sampling,
then D, > 0.

Proposition 3. (CSE Sample Complexity) Let
Ts, Do, C be defined as in Theorem 1, D, be defined
as above, and €, := 1/+\/t. Then the sample complexity
bound of §-PAC CSE with €, exploration is given by

nlog(C) log J n log(J/4)
D Do

e

E[75]<O< +Jc$5n2°).

We can see that the non-asymptotic term does not
depend on D; and scales with D.. Note that Dy >
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Dy and Dy > D, separately but D, and D; are not
comparable because D1 is defined as the minimum over
verification proportions for all the hypotheses while D,
is defined using a uniform sampling proportion. When
0 — 0 then the asymptotic term dominates and so
CSE is asymptotically optimal. In Example 1 we can
calculate that log(J)/D, = 2.1 and log(.J/d)/Dy=3.4.
So CSE performs similar to Unif (see Figure 1a) as
well as theoretically enjoy asymptotic and moderate
confidence guarantee similar to CS.

We now provide a brief proof sketch of the three propo-
sitions stated before. These proofs follows the tech-
nique of Theorem 1 with some key changes which
we state now. For Proposition 1 observe that T2
does not sample by pg but by the pmf uge de-
fined in Proposition 1. This enables us to calculate
E[A:(0)] > E[fe+ D7 + (t — 7o+ )D})], where 7o« is de-
fined in Theorem 1. After this we can follow a similar
line of reasoning as Theorem 1 and bound T2 sam-
ple complexity. The proof is in Appendix A.3.2. For
Proposition 2 the key difference with Theorem 1 is
that we calculate the pg after each batch of size B.
We bound the number of total number of batches ms
instead of 75. As the stopping condition is only checked
at the end of every batch we divide the time 75 into
batches of size B and use a similar argument as in
Theorem 1 to bound mg. The proof is in Appendix A.4.
Finally, for Proposition 3 the key difference is the new
exploration term D.. By setting e, := 1/4/s we obtain
E[A;(0)] > E[fg- D, + (t — 7o+ ) Do]. Then following the
same argument as in Theorem 1 we obtain the upper
bound to E[rs]. The proof is given in Appendix A.5.

Minimax lower bound: While Chernoff (1959) had
shown the policy to be optimal as 6 — 0, we demon-
strate an environment where CS has optimal sam-
ple complexity for any fixed value of §. Let I' =
Vv1/2.  The following table depicts the values for
p1(+), 2(+)y -y pon(+) under J different hypotheses:

0 = 0" 02 03 N 9]
p(@) = I T-% -2 r_—DOr
p2(0) = = 122 123 . Log (8)
:un(e) = Ilnl ln2 ln3 .. inJ

Each ¢;; is distinct and satisfies ¢;; < I'/4J. pq(-) is
such that the difference of means across any pair of
hypotheses is at least I'/J. Theorem 2 is proved in
Appendix A.6 by a change of measure argument. Note
that action 1 is better than all others in discriminating
between any pair of hypotheses, and any policy to
identify 6* cannot do better than allocating all its
samples to action 1.

Theorem 2. (Lower Bound) Any 6-PAC pol-
icy w that identifies 0* in (8) satisfies E[rs] >

Q(J?r2log(1/8)).  Applying Theorem 1 to the
same environment, the sample complexity of CS is
O (J?I'%log(J/8)) which matches the lower bound
upto log factors.

3 Active Regression

In this section, we extend the Chernoff sampling policy
to smoothly parameterized hypothesis spaces, such as
® C R? The original sampling rule in (4) asks to
solve a max min optimization, where the min is over
all possible choices of the parameter that are not equal
to the parameter @ being verified. An extension of
the rule for when 8* can take infinitely many values
was first given by Albert (1961). In it, they want to
identify which of two partitions ®; U @5 = © does
the true 8* belong to. For any given 68 € ©1, their
verification sampling rule (specialized to the case of
Gaussian noise) is

Po, = argmax inf ;p(i)(ui(&) — 1i(62))%. (9)

Recall that 6(t) := argmingcg L+(0). Suppose we
want to find the optimal verification proportion for
testing 6(t), the current best estimate of 8*. Let
BEB(t)) := {0 € RY : |6 — B(t)|| > r} denote the
complement of a ball of radius r > 0 centered at é(t)
Instantiate (9) with 6; = 8(t), ©; = © \ Bg(g(t)) and
@, =1 (5(15)) Denote the solution of this optimiza-
tion as Pat).r and let Po() = lim, g Pat), In case
of multiple solutions, we let Pai).r denote the set of all
possible maxima, and the limit is defined to be the limit
of a sequence of sets. We show in Theorem 3 that Pa)
(or an element from it) can be computed efficiently. For
any i € [n] the gradient of p;(-) evaluated at 0 is a
column vector denoted as V;(0).
Theorem 3. Assume that p;(6) for all i € [n] is a
differentiable function, and the set {V;(8(t)) : i € [n]}
of gradients evaluated at é(t) span RY.  Consider a
p.m.f. P5(1).r from (9) for verifying é(t) against all
alternatives in BE(é(t)) The limiting value of Pg,) ,
asrT — 0 s

Pou) = argmngmm <Zp(z‘)vui@(t))vm(é(t))T) )

i=1

Proof. (sketch) Define g¢;(0) = (u;(0) — 1 (8(1)))?
for any 6. Introducing a probability density function
q over ®, we can rewrite the optimization for Pai).r

from (9) as

max inf
P q:q(6)=0v0€B,.(8(t))

/@ 4(0) Y pli)g:(0)d6. (10)
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We consider a family Q, of pdfs supported on the

boundary of B,.(6(t)). We show that the value of (10)
in the limit as » — 0 is equal to

n

lim max inf /@ 9(0)> p(i)g:(0)d6. (1)

r—0 p q€Q, ‘
=1

We use the Taylor series expansion for g;(6) around 6(t)
n (11). Then Vgi(é(t)) = 0 and the second-order term
in the Taylor series is 9.5(9 - é\(j))Tvzgi(G:(t))(H -
6(t)) = (60— 0(t))"Vui(6(1)Vpi(6(t)) (0 — (). Us-
ing this in (11) along with the variational characteri-
zation of the minimum eigenvalue gives us the result.
The full proof is given in Appendix A.7. O

To illustrate the use of Theorem 3, consider the problem
of active learning in a hypothesis space of parametric
functions {fe¢ : @ € ©}. The target function is fo-
for an unknown 6* € ©. Assume that the learner
may query the value of fg« at points x1,...,x, in its
domain. If point x; is queried, then the learner observes
the value fg+(x;) plus a realization of a zero-mean sub-
Gaussian noise. This coincides with the setting above
by setting p;(0) := fo(x;).

Algorithm 2 Chernoff Sampling for Active Regression

1: Input: Parametric model {y;(0) : 0 € ©,i € [n]}.
2: Sample I; € [n] randomly, observe Y; and find
(1).

3: fort=23,...do
4: Sample I; ~ Po(i—1) (Theorem 3), observe Y.
5: Compute é(t) = arg mingee L(0).

Step 4 of Algorithm 2 requires solving the convex
eigenvalue optimization in Theorem 3, which takes
O((n® + n?d? + nd®)v/n + d) operations ignoring log
factors (Nesterov and Nemirovskii, 1994, Chap. 6). The
results of Albert (1961) imply that for any r > 0 the
iterates in Algorithm 2 will converge to within r of
0* using an optimal number of samples in the high
confidence (§ — 0) regime. In Theorem 4 we obtain
a finite time bound on the expected loss of a(t) De-
fine £4(0) := (Vs — us.(0))? as the squared error for
at round s. The average empirical loss is defined as
Py(8) == § 21 £s(6).

Assumption 3. We assume that Amax (Vzui (9)) <
A for each i € [n] and all 6 € O.

Assumption 3 is a mild assumption on the curvature
of the mean function at any 6 € ©.

Theorem 4. (Dense CS Sample Complerity)
Suppose £1(0),02(0),--- ,£,(0) : R = R are squared

loss functions from a distribution that satisfies Assump-
tion 8 and Assumption 4 in Appendiz A.8.2. Further
define P,(0) = %22:1 Er,~p,  [ls(0)|F°~1] where,
s—1
0, = argming g 22:1 £5(0). If t is large enough such
that 11o8ld) min{ L 7diameter(8)} then for a
7 <

Cl C2 ) Cg
constant v > 2 and universal constants Cy,Ca,c’, we
show that

t /2

~ 2
where o7 = E [; HVPt (6%)

(C1Cy + 22)3) |/ o8l

Proof. (sketch) The first step in the proof is to relate
V2P,(6) to V2P,(6*) for any 6 in a ball B around 6*.
The ball B is assumed in Assumption 4 to be a neigh-
borhood where V2/,(0) satisfies a Lipschitz property.
Assumption 4 in Appendix A.8.2 are standard and have
also been made by Frostig et al. (2015) and Chaudhuri
et al. (2015). Using Assumption 3 and Assumption 4,
we can show that for ¢ as large as mentioned in the
Theorem statement, (1) V2P,(0*) is sandwiched in
the positive semidefinite order by scaled multiples of
V2P,(0) for any 6 € B, and (2) the empirical error min-
imizing O(¢) is in the ball B with probability 1 — 1/t7,
which is the good event £. Using a Taylor series expan-
sion around @(t) and the fact that VP, (0(t)) = 0 along
with the relation between V2P,(0) and V2P,(6*), we
can obtain an upper bound to Hé\(t) — 0*||v2p,(p-) in

(v2Pt(9*))1}’ and =

terms of HVﬁt(O*) | (v2p,(6+))-1 that can be shown to be
decreasing with ¢. Further, ||§(t) —6%||v2p,(p) can also

~

be used to obtain an upper bound to P;(6(t)) — P;(0*)
using a Taylor series expansion. Finally we can
bound E[F;(6;) — P,(6")] = E[(P;(6:) — F:(67))1(£)] +
E[(P,(0;) — P;(6%))I(EL)] where I(-) is the indicator.
Since P(£8) < 1/t7, the second term can be bounded
as maxgeo (P:(0) — P; (0%)) /t7, while the first term
simplifies to (1 + p;)o?/t. The full proof is in Ap-
pendix A.8. O

The quantity Ej, p, [¢s(0)] characterizes the worst-case
loss we could suffer at time s due to estimation error.
This is because E[(,(0)] = E;. E[(Y, — u1.(0))? | I,] =
Er,[(pr, (0*) — pr,(6))? + /2], and the definition of
po ensures that > . pe(i)(1:(0") — p;(6))? is max-
imized for the most confusing 8’ ¢ B,(0) at small
enough e. We contrast this with the average-case loss
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E 1, ~Uniform([n]) [(1t1. (8") — w1, (6)?], which is not larger
than the expected value under I, ~ pg due to the
argmax in (9). It can thus be seen that the Chernoff
sampling allows us to bound a more stringent notion of
risk than traditionally looked at in the literature. The
theorem bounds the running average of the worst-case
losses at each time step. The simplified bound of The-
orem 4 scales as O(d+/log(dt)/t + 1/t?) (See Table 2
in Appendix A.8).

The term o7 includes a norm under (V2P,(6*))~ L. Tt
is bounded by a quantity proportional to the max-
imum eigenvalue of (V2P;(6*))~!, equivalently the
inverse of the minimum eigenvalue of V2P;(0*) =
2 e Yt Py (D Vi(0°) Vi (67)T. TF 6(t)
0%, which is true for large ¢, then Pat) is the optimiza-
tion solution in Theorem 3 and it maximizes the mini-
mum eigenvalue of Y 7" | pé(t)(i)Vui(H(t))Vm(B(t))T.
Thus CS approximately minimizes an upper bound to
the estimation error.

Q

4 Experiments

In this section we show numerical evaluations of CS
against other algorithms. The confidence intervals (CI)
that we plotted are just mean 41 standard deviation.
A wider CI means more variability in performance
across different trials. We run each experiment over 50
independent trials.

Active testing experiment (3 Group setting):
Consider an environment of 50 actions and 6 param-
eters. The actions can be divided into three groups.
The first group contains a single action that most effec-
tively discriminates * from all other hypotheses. The
second group consists of 5 actions, each of which can
discriminate one hypothesis from the others. Finally,
the third group of 44 actions are barely informative
as their means are similar under all hypotheses. The
mean values under all hypotheses are given in Appendix
A.9.1. We show the empirical performance of different
policies in the Figure 1b. Both CS and T2 outperforms
TP which conducts a uniform exploration over the ac-
tions in the second group in its first phase. T2 performs
well as it samples the action in the first group when
0* is either the most-likely or the second most-likely
hypothesis. Unif performs the worst as it uniformly
samples all actions, including the non-informative ac-
tions in the third group. CS outperforms CSE as it does
not conduct forced exploration over non-informative
actions. Batch-CS with B = 5,10, 15 has increasing
sample complexity with larger batches.

Non-Linear Model: Consider a non-linear class of
functions parameterized as y;(0) := 1/(1+exp(—x!9)),
where ||0]|2 = 1, each action has an associated feature

vector x; € R? and it returns a value whose expectation
is p;(0*). The goal is to choose actions such that the es-
timation error ||§(t)70* |l2 reduces using as few samples
as possible. The setting consist of three groups of ac-
tions: a) the optimal action, b) the informative action
(orthogonal to optimal action) that maximally reduces
the uncertainty of g(t) and c) the 48 less-informative
actions as shown in Figure 1c. Appendix A.9.2 contains
more implementation details. We apply CS and CSE
to this problem and compare it to baselines Unif, and
ActiveS. Figure 1d shows that CS outperforms ActiveS
and is able to find 8* quickly. CS performs similar
to EMCM but note that EMCM has no convergence
guarantees and requires hyper-parameter tuning.

Neural Network: Consider a collection of data points
{x; € R? : i € [n]}, each of which is assigned a ground
truth scalar mean value by a non-linear function. The
particular form for the mean function of action ¢ is the
following: 11;(0%) = c1o(Wix; + b1) + cao(Wix; + ba),
where 0* = (wy,b1,Wa,by,c1,02) is the parameter
characterizing the ground truth function, and o(-) :=
max{0, -} is the non-linear ReLU activation function.
This is a single hidden-layer neural network with in-
put layer weights wi,wo € R2, biases b1, by € R,
and output weights c;,co € {—1,1}. Our objec-
tive in the experiment is to learn the neural net-
work from noisy observations: {(x;,, ur, (6*) + noise) :
s € [t], noise is 1.i.d. zero mean Gaussian} collected by
sampling (I, I, ..., I;) according to the Chernoff pro-
portions defined in Algorithm 2. The architecture of
the network is known, but the weights and biases must
be learned. The data points are shown in a scatter
plot in Figure le. More implementation details are
in Appendix A.9.3. The non-uniformity of the data
distribution increases the difficulty of the learning task.
The performance of a learning algorithm is measured
by tracking the estimation error ||@(t) — 6*||2 during
the course of training. The plot in Figure 1f shows the
average and standard deviation of the estimation error
over 10 trials for CS, CSE, ActiveS and Unif baseline.
Again both CS and CSE outperforms Unif and ActiveS.
We note that other works (Cohn, 1996; Fukumizu, 2000)
have also considered active training of neural networks.
Other approaches for active sampling have been de-
scribed in the survey by Settles (2009). Our neural
network learning experiment shows the generality of
our approach in active sampling.

Real Dataset: We consider two real world datasets
from UCI called Red Wine (Cortez et al., 2009) (1600
actions) and Air Quality (De Vito et al., 2008) (1500
actions). The performance is shown in Figure 1g and
Figure 1h respectively where CS and CSE outperforms
ActiveS and Unif. Further experiment details are in
Appendix A.9.4, including Figure 2 which shows that
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0.1. (b) Sample complexity over 3 Group setting with

0 =0.1. U = Unif, Bl = Batch-CS (B = 5), B2 = Batch-CS (B = 10), B3 = Batch-CS (B = 15). The green
triangle marker represents the mean stopping time. The horizontal line across each box represents the median.
(c) The action feature vectors in R? for active regression experiment. Inf = Informative action, Opt = Optimal
action, Less-inf = Less informative action. (d) Shows average error rate for Active Regression. (e) Training data
for neural network example shown as red dots. Yellow to red colors indicate increasing values for the target mean
function. Black lines denote “activation” boundaries of the two hidden layer neurons. (f) Learning a neural
network model. (g), (h) Experiment with Red Wine and Air Quality Dataset.

in the real-world dataset CS proportion is sparse over
the actions.

5 Conclusions, Limitations, & Future
Work

This paper proposes a unifying approach to solve ac-
tive testing and active regression problems. We obtain
non-asymptotic guarantees on the performance of CS
in active testing and extend it to the problem of active
regression. CS has comparable performance to exist-
ing state-of-the-art methods and is a relatively easy
algorithm to implement. Nevertheless, its sampling
proportion is updated before collecting each sample,
which increases the computational cost (one solution
for this is Batch-CS which solves the optimization only
after collecting a batch of samples). Further, Assump-
tion 2 is a strong assumption, and other works have
removed that in the context of active testing by modify-
ing the CS strategy (one solution for this is CSE which
incorporates a certain amount of random sampling).

CS can be excessively aggressive in the initial stages.
This is because it chooses actions according to a sam-
pling proportion that is optimal when @(t) = 6*, which
is not true initially. Other methods of exploration could
be useful in the earlier stages.

The extension of CS to active regression requires to
find the least squares estimate @(t) which could be com-
putationally expensive. Theoretical guarantees require
several assumptions which may not always be satisfied.
In addition to the regularity assumptions, we also need
the smoothness of the mean function for Theorem 4.
Future directions include obtaining a lower bound for
the active testing in the moderate confidence regime
and incorporating the geometry of the actions in the
sampling strategy for the regression setting. Another
direction is to obtain the sampling proportions when
the mean function is not differentiable everywhere.



Chernoff Sampling for Active Testing and Extension to Active Regression

Acknowledgements: This work was partially sup-
ported by AFOSR grant FA9550-18-1-0166. The first
author was supported by 2019-20 Chancellor’s Op-
portunity Fellowship by the University of Wisconsin-
Madison.

References

Albert, A. E. (1961). The sequential design of exper-
iments for infinitely many states of nature. The
Annals of Mathematical Statistics, pages 774-799.

Balcan, M.-F., Beygelzimer, A., and Langford, J.
(2009). Agnostic active learning. Journal of Com-
puter and System Sciences, 75(1):78-89.

Balcan, M.-F. and Long, P. (2013). Active and passive
learning of linear separators under log-concave dis-
tributions. In Conference on Learning Theory, pages
288-316. PMLR.

Blot, W. J. and Meeter, D. A. (1973). Sequential exper-
imental design procedures. Journal of the American
Statistical Association, 68(343):586-593.

Bu, Y., Lu, J., and Veeravalli, V. V. (2019). Active
and adaptive sequential learning with per time-step
excess risk guarantees. In 2019 53rd Asilomar Con-
ference on Signals, Systems, and Computers, pages

1606-1610. IEEE.

Cai, W., Zhang, M., and Zhang, Y. (2016). Batch mode
active learning for regression with expected model
change. IEEFE transactions on neural networks and

learning systems, 28(7):1668-1681.

Castro, R., Willett, R., and Nowak, R. (2005). Faster
rates in regression via active learning. In NIPS,
volume 18, pages 179-186.

Chaudhuri, K., Jain, P., and Natarajan, N. (2017).
Active heteroscedastic regression. In International
Conference on Machine Learning, pages 694-702.
PMLR.

Chaudhuri, K., Kakade, S. M., Netrapalli, P., and
Sanghavi, S. (2015). Convergence rates of active
learning for maximum likelihood estimation. In Ad-
vances in Neural Information Processing Systems,

pages 1090-1098.

Chaudhuri, P. and Mykland, P. A. (1993). Nonlinear
experiments: Optimal design and inference based
on likelihood. Journal of the American Statistical
Association, 88(422):538-546.

Chernoff, H. (1959). Sequential design of experiments.
The Annals of Mathematical Statistics, 30(3):755—
770.

Cohn, D. A. (1996). Neural network exploration us-
ing optimal experiment design. Neural Networks,
9(6):1071 — 1083.

Combes, R., Magureanu, S., and Proutiere, A. (2017).
Minimal exploration in structured stochastic ban-
dits. In Advances in Neural Information Processing
Systems, pages 1763-1771.

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., and
Reis, J. (2009). Modeling wine preferences by data
mining from physicochemical properties. Decision
support systems, 47(4):547-553.

Dasgupta, S. (2005). Coarse sample complexity bounds
for active learning. In NIPS, volume 18, pages 235-
242,

Dasgupta, S., Hsu, D. J., and Monteleoni, C. (2008).
A general agnostic active learning algorithm. In In-
ternational Symposium on Artificial Intelligence and
Mathematics, ISAIM 2008, Fort Lauderdale, Florida,
USA, January 2-4, 2008.

De Vito, S., Massera, E., Piga, M., Martinotto, L., and
Di Francia, G. (2008). On field calibration of an
electronic nose for benzene estimation in an urban

pollution monitoring scenario. Sensors and Actuators
B: Chemical, 129(2):750-757.

Degenne, R., Ménard, P., Shang, X., and Valko, M.
(2020). Gamification of pure exploration for linear
bandits. In Proceedings of the 37th International
Conference on Machine Learning, ICML 2020, 13-18
July 2020, Virtual Event, volume 119 of Proceed-
ings of Machine Learning Research, pages 2432-2442.
PMLR.

Dette, H. and Studden, W. J. (1993). Geometry of
e-optimality. The Annals of Statistics, 21(1):416-433.

Fiez, T., Jain, L., Jamieson, K. G., and Ratliff, L.
(2019). Sequential experimental design for transduc-
tive linear bandits. In Wallach, H., Larochelle, H.,
Beygelzimer, A., dAlché Buc, F., Fox, E., and Gar-
nett, R., editors, Advances in Neural Information
Processing Systems, volume 32, pages 10667—10677.
Curran Associates, Inc.

Fontaine, X., Perrault, P., Valko, M., and Perchet, V.
(2019). Online a-optimal design and active linear
regression. arXww preprint arXiv:1906.08509.

Frostig, R., Ge, R., Kakade, S. M., and Sidford, A.
(2015). Competing with the empirical risk minimizer
in a single pass. In Grinwald, P., Hazan, E., and
Kale, S., editors, Proceedings of The 28th Conference
on Learning Theory, volume 40 of Proceedings of
Machine Learning Research, pages 728-763, Paris,
France. PMLR.

Fukumizu, K. (2000). Statistical active learning in mul-
tilayer perceptrons. IEEFE Transactions on Neural
Networks, 11(1):17-26.

Garivier, A. and Kaufmann, E. (2016). Optimal best
arm identification with fixed confidence. In Confer-
ence on Learning Theory, pages 998-1027.



Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

Goetz, J., Tewari, A., and Zimmerman, P. (2018).
Active learning for non-parametric regression using
purely random trees. Advances in Neural Informa-
tion Processing Systems, 31.

Hanneke, S. (2007). A bound on the label complexity
of agnostic active learning. In Proceedings of the 24th
international conference on Machine learning, pages

353-360.

Hsu, D., Kakade, S., Zhang, T., et al. (2012). A tail
inequality for quadratic forms of subgaussian random
vectors. Electronic Communications in Probability,
17.

Huang, R., Ajallooeian, M. M., Szepesvari, C., and
Miiller, M. (2017). Structured best arm identification
with fixed confidence. In Hanneke, S. and Reyzin,
L., editors, International Conference on Algorithmic
Learning Theory, ALT 2017, 15-17 October 2017,
Kyoto University, Kyoto, Japan, volume 76 of Pro-
ceedings of Machine Learning Research, pages 593—
616. PMLR.

Katz-Samuels, J., Zhang, J., Jain, L., and Jamieson,
K. (2021). Improved algorithms for agnostic
pool-based active classification. arXiv preprint
arXiv:2105.06499.

Lattimore, T. and Szepesvari, C. (2020). Bandit algo-
rithms. Cambridge University Press.

Naghshvar, M. and Javidi, T. (2013). Active sequen-
tial hypothesis testing. The Annals of Statistics,
41(6):2703-2738.

Nesterov, Y. and Nemirovskii, A. (1994). Interior-
point polynomial algorithms in convexr programming.
SIAM.

Nitinawarat, S., Atia, G. K., and Veeravalli, V. V.
(2013). Controlled sensing for multihypothesis test-
ing. IEEE Transactions on Automatic Control,
58(10):2451-2464.

Pronzato, L. and Pdzman, A. (2013). Design of experi-
ments in nonlinear models. Lecture notes in statistics,
212.

Pukelsheim, F. (2006). Optimal design of experiments.
SIAM.

Sabato, S. and Munos, R. (2014). Active regression by
stratification. arXiv preprint arXiv:1410.5920.

Settles, B. (2009). Active learning literature survey.
Computer Sciences Technical Report 1648, Univer-
sity of Wisconsin—-Madison.

Silvey, S. (1980). Optimal design: an introduction to
the theory for parameter estimation. Monographs
on applied probability and statistics. Chapman and
Hall.

Soare, M., Lazaric, A., and Munos, R. (2014). Best-
arm identification in linear bandits. In Advances in
Neural Information Processing Systems, pages 828—
836.

Tsybakov, A. B. (2008). Introduction to nonparametric
estimation. Springer Science & Business Media.

Tukey, J. W. (1977). Ezploratory data analysis, vol-
ume 2. Reading, MA.

Vaidhiyan, N. K. and Sundaresan, R. (2017). Learning
to detect an oddball target. IEEE Transactions on
Information Theory, 64(2):831-852.

Wu, D. (2018). Pool-based sequential active learning
for regression. IEEE transactions on neural networks
and learning systems, 30(5):1348-1359.

Wu, D., Lin, C.-T., and Huang, J. (2019). Active learn-
ing for regression using greedy sampling. Information
Sciences, 474:90-105.

Yu, K., Bi, J., and Tresp, V. (2006). Active learning
via transductive experimental design. In Proceed-
ings of the 23rd international conference on Machine
learning, pages 1081-1088.

Zhang, C. and Chaudhuri, K. (2014). Beyond
disagreement-based agnostic active learning. In
Ghahramani, Z., Welling, M., Cortes, C., Lawrence,
N. D., and Weinberger, K. Q., editors, Advances in
Neural Information Processing Systems 27: Annual
Conference on Neural Information Processing Sys-
tems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 442—-450.



Chernoff Sampling for Active Testing and Extension to Active Regression

Contents
1 Theoretical Comparison and Probability Tools ......... ..o e Al
1.1 Theoretical COMPATISOIL . ... ..ottt ettt et e et e e e e e et All
1.2 Probability TOoIS . ... ... e Al1.2
2 Chernoff Sample Complexity Proof . ... ... . . A2
2.1 Concentration Lemma .......... .o i A21
2.2 Conecentration Of Tyt ..ot e A.2.2
2.3 Proof of correctness for General Sub-Gaussian Case ... A23
2.4 Stopping time Correctness Lemma for the Gaussian Case ............ ..., A2.4
2.5 Proof of CS Sample Complexity (Theorem 1) .........ooioiii e A25
3 Proof of T2 Sample COmPILEXITY . ...ttt e et ettt et e et et e e e e A3
3.1 Concentration Lemma . ........... .ttt A3.1
3.2 Proof of T2 Sample Complexity (Proposition 1) ...... ... A3.2
4 Proof of Sample Complexity of Batch-CS (Proposition 2) ...........c.oiuiiiiiiiiiiiiiiiiiinin.. A4
5 Proof of CSE Sample Complexity (Proposition 3) ....... ... A5
6 Minimax Optimality Proof (Theorem 2)........c. i e A6
7 Proof of Theorem 3 (Continuous hypotheses) ...........o.iuiiiiiii e AT
7.1 How to solve the optimization ......... ... ... i A7l
8 CS Proof for Continuous Hypotheses . ............oiiiiiii e A8
8.1 Theoretical Comparisons for Active Regression .......... ...t As.1
8.2 Discussion on Definitions and Assumptions for Continuous Hypotheses .......................... A8.2
8.3 Concentration Lemma for Continuous Hypotheses .......... ..o i, A8.3
8.4 Support Lemma for Continuous Hypotheses. ........ ... i i A8.4
8.5 Proof of CS Convergence for Continuous Hypotheses (Theorem 4) ... .. A85
9 Additional Experiment Details .. ... ... . A9
9.1 Hypothesis Testing Experiments ....... ... e A9.1
9.2 Active Regression Experiment for Non-linear Reward Model ............ .. ... ... ... ... ..... A.9.2
9.3 Active Regression Experiment for Neural Networks ........... ..o i i A9.3
9.4 Active Regression for the UCI Datasets .........c..oiiiiiiiii i A94
10 Table of NOGAtIONS .. ...ttt ettt et e e e A.10

A  Appendix

A.1 Theoretical Comparison of Active Testing and Probability Tools

In this section we compare theoretically our work against other existing works in active testing. We also state a
few standard lemmas in Probability Tools that we use to prove our results.
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A.1.1 Theoretical Comparison of Active Testing

Active Testing: We compare our work against Chernoff (1959), Albert (1961) which extended Chernoff (1959)
to continuous hypotheses space partitioned into two disjoint space, and the recent active testing algorithms
of Naghshvar and Javidi (2013); Nitinawarat et al. (2013). We first recall the following problem complexity
parameters as follows:

*\) 2 e 3 3 . i N _ i *\\ 2
Do := max min Zp —1i(0%))?,  Di:= {pglalge}egg*;pe(l)(uzw) 1i(6%))

2 n
Dny:= (min min Zpe/ — i (0’ ))2> max min min > p(i)(114() —1:(6))? (12)

0€® 070 £ P 0O 070
D= min 3 L (u(6)) — u(67))? (13)
0'£0% £ n,

1=

where, the quantity Dy s is defined in Naghshvar and Javidi (2013) and is an artifact of the forced exploration
conducted by their algorithm. Note that Dy; < D; by definition. Also, Dy > D, and Dy > D; and D, > 0 by
definition. Note that due to the factor Dy, TP can perform worse than CS in certain instances (see Active
testing experiment in Figure 1la, and Figure 1b). We summarize out result in context of other existing results in
the following table:

] Sample Complexity Bound \ Comments \
E[rs] < 01%0‘15 + 0 (log 3) Upper bound in Chernoff
(1959).Optimal for 6 — 0.
E[rs] < 01%0‘]/5 + 0 (log $) Upper bound in Albert (1961).

Optimal for § — 0. Extension to

compound hypotheses.

E[rs] < M + 0 (log §) Upper bound in (Nitinawarat
et al.,, 2013). Bound valid for

discrete hypotheses. It does not

require Assumption 2.

E[rs] <O (% + W) Upper bound of TP in Naghsh-
var and Javidi (2013). Valid for

any 6 € (0,1]. Asymptotically

optimal for § — 0.

E[rs] <O (% + %) CS (Ours). Valid for any § €
(0,1].  Asymptotically optimal
for 6 —0.

E[rs] <O (% + %) CSE (Ours). Valid for any § €

(0,1]. Asymptotically optimal
for § — 0. Does not require As-
sumption 2.

Table 1: Active Testing (top) and Regression (bottom) comparison. Dny < D1, D1 < Dy, and D, < Dy.

A.1.2 Probability Tools

Lemma 1. (Restatement of Lemma 15.1 in Lattimore and Szepesvdri (2020), Divergence Decom-
position) Let B and B’ be two bandit models having different optimal hypothesis 0* and 0’ respectively. Fiz
some policy m and round n. Let Pp » and Pp/ , be two probability measures induced by some n-round interaction
of ™ with B and w with B’ respectively. Then

KL (

ZIEB7r ] - KL(s(0)]|1:(67))
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where, KL (.||.) denotes the Kullback-Leibler divergence between two probability measures and Z;(n) denotes the
number of times action i has been sampled till round n.

Lemma 2. (Restatement of Lemma 2.6 in Tsybakov (2008)) Let P,Q be two probability measures on the
same measurable space (Q, F) and let £ C F be any arbitrary event then

P(€) + 0 (£0) > § exp (-KL(P|Q))

where fc denotes the complement of event § and KL(PP||Q) denotes the Kullback-Leibler divergence between P and
Q.

Lemma 3. (Hoeffding’s Lemma) LetY be a real-valued random variable with expected value E[Y] = p, such
that a <Y < b with probability one. Then, for all A € R

B[] < e (o 2022

Lemma 4. (Proposition 2 of (Hsu et al., 2012)) Letu,...,u, be a martingale difference vector sequence
(i.e., Eu; | uy,...,u;—1] = 0 foralli=1,...,n ) such that

ZE[HWHQ |u1,...,ui_1} <v and |wl <b
i=1
foralli=1,... n, almost surely. For allt >0

-

n
> u
=1

> v+ V8ut + (4/3)bt] <et

A.2 Chernoff Sample Complexity Proof
A.2.1 Concentration Lemma

Lemma 5. Define L;(0*) as the sum squared errors for the hypothesis parameterized by 0*. Let T« = min{t :
Li(0') — Li(6*) > B(J,6),V0" # 0*}. Then we can bound the probability that e~ is larger than t as

P(Tg* > t) < JCiexp (—CQt)

2 2D? mi —1)2
where, J :=|0O|, Cq := 110 + 55 max {1, 2;7)20}, Cy = 1 min{(c ) ’C}, n > 0 defined in Definition 1 and
1

772
. . n . (RN _ o, (A*\\2
D= min, 3 iy pe(i) (ni(0) — pi(67))%.

Proof. We consider the following events when the difference of squared errors is below certain values:
€oro- (1) := {L:(0") — L(67) < B(J.0)},
Eoro- () = {L:(6") — Lo(8") < a(J)}.
Then we define the time 79+ as follows:
To+ = min{t : L;(0") — L;(0%) > B(J,6),V0' # 6*}

which is the first round when L;(6") crosses 8(J,d) threshold against L;(0*) for all 8’ # 6*. We also define the
time Tg/g~ as follows:

Torg ‘= min{t : Ly (0’) — Lt/(e*) > oz(J),th > t} (14)

which is the first round when L;(0") crosses a(J) threshold against L;(6*). We will be particularly interested in
the time

T * = T 1Q* (. 1
To ;,n;g*{Tee} (15)
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Let A4(0") denote the difference of squared errors between hypotheses 8’ and 68* (for Gaussian noise model, it is
equal to the log-likelihood ratio between hypotheses parameterized by 8’ and 6*) shown below.

A(8) = Li(8) — Ly(6). (16)

A key thing to note that for D; > 0 (Assumption 2) the E[A.(6")] > ¢tD; which is shown as follows:

Z (Vs — 1, (8%)° =Y (Vs — MIS(G))Q]

s=1

Eltayt [At(el)] = E[‘,Yt [Lt(e/) - L ( Ejt Yt

- ZEISEM [(01,6°) = 11.(8))° 1]

(@)

—ZZP (1i(0%) — 1i(8))* > tD;

s=1i=1

where, (a) follows from the definition of Dy in Theorem 1. Then it follows that,
P(€ore- (1)) = P(A(6') < a(J)) = P(A4(6') — E[A(8)] < a(J) — E[A(8)))

< B(A(0) ~ BIA(0)] < a(]) — 1Dy)

where, in (a) the choice of tD; follows as E[A.(0")] > ¢D; for D; > 0. Similarly, we can show that E[A,(6")] > Dy
for all rounds s > 7y« where 7g+ is defined in (15). Then we can show that,

P(or.0+ ()| 7o+) = P(A(8") < B(J,0)| 7p+) = P(A(8") — E[A(6")] < B(J,0) — E[A(6)]] 7o-)

B (A0 — EIAO)] < B(J.5) — (¢ — 79-)Dol 79-)
Op (200~ B8] < Do (P50 04 70)) 10

where, in (a) the choice of (¢t — 7 )Dy follows as E[A4(0")] > Dy for any round s > 7+, and finally in (b) the

B(J, ) alJ)  B(J,0) . a(J) tc
o D + Do and g« < D, + — 5 which allows

us to apply the concentration inequality for conditionally independent random variables stated in Lemma 8. Then
we can show that,

P(re- >t) <P( | oo (1))

quantity Dg ( —t+ %9*)> is negative for t > (1+c¢)

0’20~

= ({ U G-t }ﬁ{ For < i }> ( U oo} {Fe- > Dij tc})

0/ 26" 070
= ZP({&)'@ )} e*<—+ }) ZIP(%G*ZO‘I()?JF’;C)

o'#6" 0'£6*
= a(f) | te N alJ) te
- (e < G ) e (o < )
+ Z (ﬁe/ t') is true for some ¢’ > ozg:) + t;)

0'£0*

S Z ]P) (50’9* ‘ TB* < —_ ) Z Z <gg/9* (tl))
070 e

= Z P (At(el) —E[A(0")] < Do (5(;705) - t+ﬁ9*) | To- < %{) + t;)
0'40"

+ > Y P(Av(8) —E[A(0)] < a(J) — t'Dy)

0F#0" 1.y 8D y 0
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+ ) > P(Au(0) —E[Au(0)] < a(J) — t'Dy)

ox <2D%tc>
(%) exp(4) > exp <_2D%t(c/22_1)2> rep®) Y P 2

o n — 2D?
0'#0 0'#6* 1 — exp <7721>
(b) 2D3t(§ — 1) 2D?%tc n?
< exp(4) Z exp( 77) +exp (4) Z exp (— e ) (1+max{1,2D%}>
0/ 46~ 0/ £6~
(©) 2D%t(g 1) 2D?tc 2D?tc 7>
<55Zexp(— =~ )+55Zexp< >+55Zex < 7 >max{1,2D%}
0/ 46" 0/ 46" 0/ 46"
2D?tmin{(< — 1), ¢} n? (d)
< Z exp <_ 7722 ) [110 + 55 max {1, 2D%H < JCyexp (—Chat)
0'#6"
where, (a) follows from Lemma 6 and Lemma 7, (b) follows from the identity that 1/(1 — exp(—z)) < 1+
2
max{1,1/x} for z > 0, (¢) follows for 0 < ¢ < 1, and in (d) we substitute Cy := 110 + 55max{1 ;’F ,
1
2D2 min{(¢/2 — 1)2
Cy = 1 mln{(né2 Jooch and J :=|O|. O
Lemma 6. Let Ay(0') := Ly(0") — Ly(0%) from (16), Dy :== min > pe(i)(ui(0') — i (6%))2, and a(J)

00,0’ 40"
and (J, ) be the two thresholds. Then we can show that

S P (At(e’) _E[A(8')] < Dy <B(g’05) + O‘I()‘? ity t;)) <exp() Y exp <—2D%t(c/2 - 1)2) .

2
0'+£0* 0'+£0* n

for some constant ¢ such that 0 < ¢ < 1.

Proof. Let us recall that the critical number of samples is given by (1 + ¢)M where

8UL0) , ald)

M = .
Dy D,

(17)

and c is a constant. Then we can show that for some 0 < ¢ < 1,

/ / B(J,(S) OL(J) tc
0;*P<At(0)—E[At(0)]<DO< D + D —t+2)>

B(L6) al]) ’
203 (75 + s ) RS (_2D%<M+t<c/z—1>>2>
0'#6*

2 2
0’46+ tn tn
(©) 242(c/g — 1)2 24 M ()9 — (d) 2020l .
<Y e _2D{t*(¢/2—1)° + AD{tM (/2 — 1) 23 e 2D¥2(¢/2 — 1) + 4ndMt(e/2 — 1)
t772 tn2
0'+£6* 0'+£6*
(e) 2D242(c/a — 1)2 + dn2t(c/2 — 1 An2(] — ¢ 9 D24(c/s — 1)2
< Z exp [ ——2 (2= 1"+ dmi(e/2— 1) E Z exp M exp _M
tn? 72 2
0'#£6* 0'#£6*
(9) 2D2t0 _12 2D2t0 _12
< Z exp (4(1 — ¢/2)) exp (_1(/2)> < exp (4) Z exp <_1(/2))

n? e
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J, 0 J t
where (a) follows from Lemma 8 and noting that Dg (ﬁ(D,) + % —t +§c <0fort> (14 c)M, the
0 1
inequality (b) follows from definition of M and noting that Dy > Dy, (c) follows as for M > 1 we can show that
M? + 2tM(¢/2 — 1) + t2(¢/2 — 1)? > 2t M (¢/2 — 1) + t3(¢/2 — 1)2, (d) follows as Dy > 1o, (e) follows as M > 1, (f)
follows as 0 < ¢ < 1, and (g) follows as ny < 7. O

Lemma 7. Let Ap(0') := Ly(0') — Ly (0*) from (16), Dy = ee(glgp;ée* S pe(i)(pi(0') — i (0%))?, and a(J)
be the threshold depending only on J. Then for some constant 0 < c <1 and n defined in Definition 1 we show
that

( 2D§tc>
exp | ———

S > P(Av(®) -EA(8)] <al])~'Di) <exp(4) Y e
/76" prop> 2l yig 0'#6" 1 — exp (—7721)

Proof. Let us recall that

YO BAE)-EA@) <al)-tD)E Y T exp(_wu)—t/m )

t1772
0'#£0* t/:t/>%‘:)+% 0/ £0* 11y agi)_,'_%c

2D%(t')? + 2a(J)? — AD1a( )
Y Y (2RI 0) ey

tan
O0'#0" s> 200 Lo

oD e ( 21?5/7(’2) >exp (4na(J)tt//_2a(J)z)

772
0'#£6* 1t > a[()i)_,’_t;

A
INs

© Y Y ep@en (2175#) D o (0 > exp (—2D% (a[()'? + t;)/%)
n 1

D2
0'#0* et > a(i)+t70 0'#£0* 1— exp <_2>
exp <_ 2Dya(J) D%tc) exp <_ 27]0a(J)> exp <_ 2D%tc>
2 2 (e) 2 2
n n
= exp (4) g N 512 < exp (4) E 52 "
0'#0" 1—exp (—21> 0'#0" 1—exp (-21)
n n
2D%tc
(f) eXp | — n?
<exp(d) ), ———F 55y
1_ _2Dp2
0'#6~ exp( 2 )

where (a) follows from Lemma 8 and noting that a(J) —t'D; <0 for ¢’ > %‘? + L&, (b) follows as Dy <7, the
inequality (c) follows as for a(J) > 1 we can show that

4T]OZ(J)t/ ZO((J)Z ’ 2 20&(J)2 OZ(J) 1
<4 4 —2 =4 -
o = dna(J)t a(J) t'n’? t' 477a 4n? 2n \1 ﬁ

which is true in this lemma as ¢’ > %{) + %, Dy, <nand a(J) >n. Then (d) follows by applying the infinite

2 J
geometric progression formula, (e) follows as Dy > g, and (f) follows as exp (_770a2()) <1.
n
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A.2.2 Concentration of A;

Lemma 8. Define Ay(0) = £5(0) — £5,(0%). Let € > 0 be a constant and n > 0 is the constant defined in
Assumption 1. Then we can show that,

62
P(A(8) — E[A(0)] < —€) < exp (fn) .

Proof. Recall that A (0) = £5(0) — £5(0%) = (2Ys — 1, (0) — pur, (0%)) (11, (0*) — pr,(0)). Define V, = A4(0) —
E[A;(0)]. Note that E[V;] = 0 which can be shown as follows:

E[V] = E[As(6) — EIAGO)]] = 3 P(Ls = )(1:(0") — 1s(8))* = 3 P(Ls = )(11s(8") — 111(8))* = 0.

Also note that 33!, Vi = A;(8) — E[A+(8)]. Next, we show that the moment generating function of the random
variable Vy is bounded. First note that the reward Y; is bounded between —v7/2 and v7/2. It then follows that:
Vi = As(0) — E[A(0)]

n

= (2% — p1,(0) = 11, (07))(pr, (07) = 11, (8)) = D P(Iy = i) (1s(67) — i(6))* < 2.

i=1
Similarly, it can be shown that V; > —2n. Hence, for the bounded random variable V; € [—2n, 2n] we can show
from Hoeffding’s lemma in Lemma 3 that

Blexp ()] < exp (5 (20— (-20)) ) = exp (23°)

for some A € R. Now for any ¢ > 0 we can show that

P(A(0) —E[A(0)] < —¢) =P (Zt:Vs < —6> =P <— Xt:Va > €>
s=1 s=1

(2 e MR {e_)‘ - VS}

Y o-reg [JE {e"\v‘|§(t - 1)] E [e—kZi;i Velg(t — 1)”

< e MR [exp (2>\2772) E [67/\ SIVe §(t _ 1)”

— e M2V [e—A oyt VS}

©) 2, 2
< 67)\562)\ tn

(d) 2¢2

< exp TP
where (a) follows by Markov’s inequality, (b) follows as V5 is conditionally independent given é(s —1), (c) follows
by unpacking the term for ¢ times and (d) follows by taking \ = e/4tn?. O

A.2.3 Proof of correctness for General Sub-Gaussian Case

Lemma 9. Let Li(0) be the sum of squared errors of the hypothesis parameterized by 6 based on observation
vector Y* from an underlying sub-Gaussian distribution. Let Tg-g := min{t : L;(0*) — L;(0) > (J,8)}. Then we
can show that

P(L

(0%) = Lry. s (0) > 5(J,0)) <

<l

To*o Toxe
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where, 5(J,9) :=log (W})

4]

Proof. Let —Ay(0) := Li(0*) — L(0) be the difference of sum of squared errors between hypotheses parameterized
by 6* and 0. We again define 7g-¢(Y"?) := min{t : —A;(8) > 3(J,d)}. For brevity in the following proof we drop
the Y in 79+9(Y?). Then we can show that

oo

P(3t < 00,—Ay(0) > B(J,0)) =Y P (re-0 = t,—Ay(6) > B(J,0))

t=1

P (1o-9 = t,—A¢(0) — E[-A(0)] > B(J,6) — E[-A(6)])

o

~~
Il
_

P(T,, o =t,—Ay(8) —E[-A,(0)] > B(J,5) + tD1)

(@) B(J,8) +tDy)" ) ® t2D2
<Zexp< ><Zexp< ( (J,6) + i

tn?

p%g

o~
Il

2

=:§jexp(—-(ﬁ«La>+-;ﬂl)) — exp (<B(J,8)) [1 + exp(—D2/n) + exp(=2D? /n?) + exp(—=3D2/n?) + .. |

D exp (B, o € e (-8 (14 0,) €2

= exp (— xp (— L —

b 1 —exp(=D?/n?) — b ’ D?)—J

where, (a) follows from Lemma 8 and noting that —E[—A;(0)] < —tDy, (b) follows as (8(J,8) +tDo)* > 23(J, ) +

t2D3 for a,b > 0, (c) follows from the infinite geometric series sum formula, (d) follows as 1/1—exp(-2) < 1+ 1/

(L+n/n2) J
0

for z > 0, and (e) follows as B(J,¢) := log ( > and noting that Di > nyq. O

A.2.4 Stopping time Correctness Lemma for the Gaussian Case

Lemma 10. Let L;(0) be the sum of squared errors of the hypothesis parameterized by 0 based on observation
vector Y* from an underlying Gaussian distribution. Let Tg+g := min{t : L;(0*) — L;(0) > B(J,8)}. Then we can
show that

B (Lrgey (6) ~ Ly y(6) > B(J,0)) < O

where we define the threshold function as,
B(J,6) :=log(J/6) (18)

Proof. Let —A4(0) := L4(0*) — L:(0) be the log-likelihood ratio between hypotheses parameterized by 6* and 6.
Define 7g+(Y?) := min{t : —A4(0) > 5(J,0)}. For brevity in the following proof we drop the Y* in 7g-(Y?).
Then we can show that at time ¢ > 79+9 we have

—A4(0) > B(J,6) = exp(—Ay(0)) > exp (B(J,9))

(—
[1 P(YVi. = 3.1..,0)
— | ==L > exp (8(J,9))

o+

H ]P(YI —ys|fs,9)
= exp (—B(J,0)) | = > 1. (19)
1:[ (YIS = yS|Is,0*)
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Following this we can show that the probability of the event {—A.(0) > 5(J,d)} is upper bounded by

o0 oo

P(3t < 00, —A(8) > B(J,5)) ZIP’ 90 =1) = > E[l{re-0 = t}]

t

(@) & I P(Y, = ys| 1, 0)

< Y E |Hroo = thexp(—B(J,6)) [ ==
=1 H IP)(Y’Iq = ys‘Isae*)

s=1

t
11 P(Yls =ys|ls,0)
=exp (—3(J,0)) Z/ {7-0 =t} ! HP(YIS = ys|ls, 0% )dy1dys . . . dy;
H (YIS = ys|Ls, 0%) s=1

t
=exp (—(J,9)) Z/ [{rg+9 =t} H (Y1, = ys|Is, 0)dy1dys . . . dy:
Rt 1

oo

®) 5
= exp (—f(J,6)) Y _P(rg-0 = t|I',0) < exp (—B(J,0)) < 5
t=1
where, (a) follows from (19), and (b) follows from (18). The claim of the lemma follows. O

A.2.5 Proof of CS Sample Complexity (Theorem 1)

Theorem 1. (Restatement) Let 75 denote the stopping time of CS in Algorithm 1. Let Do be the objective
value of the max min optimization in (4) when 8 = 6*, i.e

D _ 70/ 10* 2'
0 mgxelp;g*z:p (1i(0') — p:(6%))

Denoting pg as the solution of (4) when g(t) is replaced by any 0 € O, let Dy be the minimum possible objective
value of (4) over all pg when O(t) is replaced by 0*, i.e

Dy = iB* 2.
1 {p;nglg@}orr;g*Zpe — wi(6%))

Assumption 2 ensures that D1 > 0. The sample complexity of the §-PAC CS has the following upper bound, where
J:=10|, C =0((n/no)?) is a constant:

log(C)1 log(J/6 , By
E[rs] < O <77 e(O)log ] | Loald/0) | ;oig ) .
Dy Dy

Proof. Step 1 (Definitions): Define L;(0) as the total sum of squared errors of hypothesis @ till round ¢. Let,
—Ay(0) := Ly (0*) — L(0) be the difference of squared errors between 8* and 6. Note that the p.m.f. pg is the
Chernoff verification proportion for verifying hypothesis 6.

Step 2 (Define 75 and partition): We define the stopping time 75 for the policy 7 as follows:
75 :==min{t : 30 € ©, L,(0") — L,(0) > 3(J,9),V0" # 0} (20)

where, 3(J, ) is the threshold function.
Step 3 (Define bad event): We define the bad event £°(8) for the sub-optimal hypothesis 8 # 8* as follows:

€9(0) = {0(r5) = 0, L, (8') — L.;(8) > B(J,5),70' # 6}. (21)
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The event £°(@) denotes that a sub-optimal hypothesis  is declared the optimal hypothesis when it has a smaller
sum of squared errors than any other hypothesis ' at 7.

Step 4 (Decomposition of bad event): In this step we decompose the bad event to show that only comparing
0 against 6 is enough to guarantee a 6-PAC policy. First we decompose the bad event £°(8) as follows:

£(0) ={0(rs) = 0, L, (0') — L., (0) > B(J.6),76' + 0}
W G(rs) = 0, L., (8') — L., (8) > B(J.8),70' € ©\ {6°}}

part A
({6(75) =0, L, (6) — L, (8) > B(J,6)}
part B
C{O(rs) = 0,L., (") — L., () > B(J,0)} (22)

where, (a) follows by decomposing the event in two parts containing 8 € © \ {6*} and {6*}, (b) follows by noting
that the intersection of events holds by taking into account only the event in part B.

Step 5 (Proof of correctness): In this step we want to show that based on the 75 definition and the bad event
€%(0) the CS stops and outputs the correct hypothesis 8* with 1 — § probability. As shown in Step 4, we can
define the error event £°(8) as follows:

£(8) C{8(r5) = 0, L, (8") — Lr; () > B(J,6)}

Define 79«9 = min{t : —A;(0) > B(J,6)}. Then we can show for the stopping time 75, the round 7g+¢ from

14+ n%/n2) J
Lemma 9 and the threshold 3(J,d) := log ((5/%)> we have

P (Ta < 0, 0(r5) £ 9*) <P(30cO\{07},3t € N: —A,(0) > B(J,5))

M%

(a)
< Y P (Lrgeg(07) = Lrgey(6) > B(J,0), 7909 < 00) < »_
040+

046"
where, (a) follows from Lemma 9.

Step 6 (Sample complexity analysis): In this step we bound the total sample complexity satisfying the
0-PAC criteria. We define the stopping time 75 as follows:

rs = min {t : L,(0') ~ Li(B(1)) > B(,6),%60' # 6(1)}
We further define the time 7o+ for the hypothesis 8* as follows:

7o« :=min {¢ : L;(0") — L.(0%) > 5(J,9),V0' + 6*}. (23)
We also define the critical number of samples as (1 + ¢)M where M is defined as follows:

Mo <a(J) N c’ +1og(J/5)> (24)

D, Do

where, C' = log (1 + 7*/n2). Hence C’ +1log(J/8) follows from the definition of 3(J, §) in Lemma 9. We define the
term D; as follows:

D = 3 . . ial _ io* 2 25
U g, gl D pe()(ui(®) — i(67)) )

and the term Dy as follows:

Do := min lee* (i) (11:(6") — p(07))? (26)
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It then follows that

e a)
E[rs] < E[re-] ZPTG*—t<1+(1+c)M—&- S Plre > )
t=0

tit>(1+c) M
® J)  C'+4log(J/s
< 1+(1+c)<a( )Jr + 4log( /)>+J 3 O expl(—Cat)
Dl DO
o (@) log(J/0)Y |
S O s el (o
a(J) 410g(J/(5)>)
exp (—Co(1+c ( N
«© 14+ (1+0) a(J) , C'+4log(J/3)\ o < 2(1+¢) ) o
Dl DO L 1_exp(_c2)
a(J)  4log(J)  4log(1/6)
—Ca(1+¢) + +
2 a(J) | C'+4log(J/9) exp( ( Do Dy Do
<
_1+(1+c)< D, + Dy +JCy e
a(J) +410g.] log 1/6
—C,
© o(J) € +log(J/s) eXP( ( ) (
<
1+(1+C)(D1 * Dy +IG l—exp
(b+4) logJ> ( 10g >)
—-C 4C.
(':)1+(1+c)<blogj O log J/‘S) exp< 2< exp 2
Dl 1 —eXp 02)
1 ’ 4 Co(b+4)/Dg
<14 (14¢) b ogJ C’' + og J/5 IO §4C2/Do 1+ max{1, }
D, o
blogJ  C'+1 J/(S (b +4) 4G,
§1+(1+C)< lo)g + Og >+012+J Dy 5Dy
1
Di(b+4) D3
(9) blogJ C’—Hog (J/5) 02 n? ! - - 1
<1+2 ( >+(165+><2—|—D>J 2n% Dy 577D0
1 D? 2

bl C/ 1 5 2 2 17% &
§1+2< ogJ +ogJ/ >+(165+n> 22Dy 512

Dy Ds
2
My (b+4) Do
(h) b1 "+ 1 0) 1* 2
o ( ;gJ C+ogJ/ )+<165+ ) o )X<M2> @
! ——
Term A Term B Term C

2
where, (a) follows from definition of M in (24), (b) follows from Lemma 5, Cy := 110 + 55 max {1 77},

"2D?
2D? min{(¢/2 — 1)?, ¢}
2

Cy = , (¢) follows by applying the geometric progression formula, (d) follows as Dy < Dy.

The inequality (e) follows as ¢ > 0, (f) follows by setting «(J) = blog J for some constant b > 1, (g) follows by
setting ¢ = 3 in Cy and Cy, and (h) follows as Dy > 1o, and Do < 1.

Now, note that in (27) the Term C <1 as ¢ € (0,1). Now for the Term B we need to find an b such that Term B
) né(b+4) b
<J 2n? nlogJ Hence,

mb+4)  mb+4) b b

2\ ? 1- + 2\ 2 _— 2
(165+nz) Jgoom o<y 2P nlegd — (165+772) < gnlogd — nlog(165+"2) <b
o Mo
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So for a constant b > 1 such that if b satisfies the following condition

Ui Uk
b=nlog <165 + 2) > log (1 + 2) (28)
Mo o

_mb+d) b

Jr
then we have that Term B < J 2 n10gJ | Hence we set the value of C' = 165 + n?/n3 > C’ which
shows up in our theorem statement. Plugging this in (27) we get that the expected sample complexity is upper
bounded by

2 2
nlog (165 + 772> logJ log (1 + 772> + log(J/5) _m(b+4) b Do
Elrs] <1+2 5 o + WOD +J 2 nlogdgn?
1 0
7]2
]2 2\ J log (165 + )

(@) nlog (165 + 7;72> logJ log ((165 + 22> 5) 1+ % Do
<142 0 0 nlogJ  5n?

<1+ B + o +J

» 1+10g(0) Do

. Ho

214 (nlog(g)logJ+ log(gJ/5)> L7 g J 52

1 0

log(C)'/" Dy
149 nlog(C)logJ+log(CJ/5) Lg.g logd s
Dy Dy

1 1 1 2
D, Dy

2

2 2
where, (a) follows as 2 log (165 + 772> > log (1 + T’2>, and in (b) we substitute C' = <165 + 772> The claim of
Uh) Uh o
the Theorem follows. O

A.3 Proof of T2 Sample Complexity
A.3.1 Concentration Lemma

This section contains concentration lemma equivalent to the Lemma 5 of Appendix A.2.

Lemma 11. Define L:(0*) as the sum of squared error of the hypothesis parameterized by 0*. Let 7o+ = min{¢ :
Li(0') — L (0*) > 5(J,06),¥0" # 0*}. Then we can bound the probability of the event

P(re+ > t) < JC7 exp (—Cht)

2 2D/2 : -1 2
where, J :=|@], C] = 110+55max{1,2nD,12}, Cy =1 m1n~E7(2c )2, c}

D} = ming e 0/ 20+ Y iy tger (1)(1:(0") — pi(67))%.

, n >0 defined in Definition 1 and

Proof. We define the event

o0+ (t) = {Li(0') — Li(07) < B(J,0)}
oo+ (t) = {L(0") — Ly(0") < a(J)}

Then we define the time 79+ as follows:

T+ = min{t : L;(0") — L,(6%) > 3(J,9),V0" # 6*}
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which is the first round L;(0") crosses 8(J,d) threshold against L;(6*) for all 8’ # 6*. We also define the time
To~ as follows:

729/9* = min{t : Lt/(O’) - Lt/(g*) > Oé(J),Vt/ > t}
which is the first round when L;(6*) crosses a(J) threshold against L;(6"). Then we define the time
To+ = m]gx{fg*gr}

as the last time 7g+g: happens. Define the term D{, and D] as

o (O*))2 - : A1 (0) — 11:(07))2
-—e{g}%*zuoe —pi(0%))?,  Dj: 9¢995§¢9*Z;UG9 (i) (1 (8') — 12:(67))

Let Ay(0') := L(0") — L:(0*) be the sum of squared errors between hypotheses parameterized by 6’ and 6*.
Then it follows that,

P(Soo- () = P(A(8') — tD} < a(J) —tD})
P(A(0") — E[A:(6)] < a(J) — tD1)

IA

Similarly, we can show that,

P(&or0+ (1))

P(A(6) — E[A(6)] < B(J,0) — E[A(8")])
(A:(0") — E[A(0")] < B(J,0) — (t — To+) D)

P
P (At( "~ B[A(0))] < D} (ﬂ(g,éa) —t+%9*)>)

Then following the same approach as in Lemma 5 we can show that,

IN

P(re- > 1) <P( | Soro-(t))

0'#6"
<P[S | Coo-(t) p[ 7o +P ({ge,g* N l(){) . )
026~ 1
< Z P <{59/9* }ﬂ{’rg* ) 4 Z Z P (59/0* (t/)>
0'46*

0'#£0* tit > D‘('/]) +te
1

) S Y P(Au(®) D] <a()) D))

0'#£6* al)
7% 11> 7 e

< 0;* (Af, —E[A(8))] < D}, (5%’65) - O‘l()‘? —t +tc>>

<> P({§9'9*}ﬂ{79* (

0/ 40~

+ > > P(A(O) D) <a(J)—t'D))

O'F0" 147> LD L ge
1

2Dt
(a) 2DPH(E — 1)? R
< Z exp (4) exp (772) + Z exp (4) 207
0'#0* 0'#6* 1—exp | ——5-
n
(b) 2DP2t(€ — 2Dt 2Dt 2
<55 Z exp( (2)+55 Z exp( c) + 55 Z exp( C> ax{1,2717)/2}
0'£6* 0’46~ 0'£0* 1

(e
< JC}exp (—C5t)
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where, (a) follows from Lemma 6 and Lemma 7 as their result holds for any Df, D{ > 0, (b) follows from the

2
same steps as in Lemma 5 as D} < D, D{ >0, D > 0, and in (¢) we substitute C] := 110 4+ 55 max {1, —23)2 },
1

_ 2Dfmin{(§ —1)%,¢}
2

Cl = ,and J = |O]. O
n

A.3.2 Proof of T2 Sample Complexity (Proposition 1)

Proposition 1. (Restatement) Let 75 denote the stopping time of T2 stops sampling following the sampling
strategy of (7). Consider the set Z(6,0") C [n] of actions that could be sampled following (7) when 6(t) = 6 and
0(t) = 0, and let ugy: denote a uniform pmf supported on Z(0,80"). Define

n

/. : . (o' _ . (O*)\2
Dy := e’g};&* : ug-g(1)(pi(0') — p:(0%))”,

=1

Dy = ‘9#91}1}91,1#6* > uger (i) (1i(0') — pi(67))?,
’ i=1

where we assume that D} > 0. Then for a constant C' > 0 the sample complezity of T2 has the following upper
bound:

nlog(C)log J n log(J/9)

E < 1ngDy/n* )
[7'6]_0( o i + Jov/ns

Proof. Step 1 (Definitions): Let the action igg: := arg max(y;(8) — 1:(6'))2. Let 6(t) denote the most
1€[n]

likely hypothesis at round s and é(t) be the second most likely hypothesis at round s. Note that T2 only
samples the action ige: at round ¢ when g(t) =0 and O(t) = @'. Again, let L;(0) denote the total sum of
squared errors of hypothesis @ till round ¢. We further define the set Z := {i € [n] : i = argmax [, (i (8) —
pir(8"))? for some 6,0’ € ©}.

Step 2 (Define stopping time 75): We define the time 75 for the policy T2 as follows:
75 :==min{t: 30 € O, L,(0") — L,(0) > 3(J,5),V0" # 0} (29)

where, (., ) is the threshold function.

Step 3 (Define bad event): We define the bad event £°(8) for the sub-optimal hypothesis 8 as follows:
€°(0) := {L.,(0") — L., (8) > B(J,0),v0' + 0}. (30)

The event £°(6) denotes that a sub-optimal hypothesis @ has been declared optimal at time  and its sum of

squared error is smaller than any other hypothesis 08’ # 6 at 7.

Step 4 (Decomposition of bad event): Decomposing the bad event follows the same approach in Theorem 1.
A crucial thing to note is that the stopping time 75 only depends on the threshold function 8(J, ) and not on the
sampling rule. Again we can decompose the bad event to show that only comparing 8 against 6* is enough to
guarantee a §-PAC policy. Finally following (22) we can decompose the bad event £°(8) as follows:

£(8) C{8(r5) = 0, Ly, (6") — Ly, (6) > B(J,8)} (31)

such that we compare the sub-optimal hypothesis @ only with optimal hypothesis 6*.

Step 5 (Control bad event): The control of the bad event follows the same approach in Theorem 1. We
want to show that based on the definition of 75 and the bad event £°(8) the T2 stops and outputs the correct
hypothesis 8* with 1 — § probability. As shown in Step 4, we can define the error event £°(8) as follows:

£°(8) C{8(r5) = 0, L1, (6") — Ly, () > B(J,8)}
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Again define 7g+¢ := min{t : —A;(0) > B(J,d)}. Then following the same steps as in Step 5 of Theorem 1 we can
show that

P (75 < 0, 0(r5) £ 0*) <P(30cO©\{07},3t c N: —A,(0) > B(J,5))
= Z P(LTB*Q(B*) - L79*9(0> > ﬁ(‘L 5),7‘9*9 < OO) (%) Z

040~ 0£0*

<l

where (a) follows follows from Lemma 9 and the definition of 8(J,4).

Step 6 (Sample complexity analysis): In this step we bound the total sample complexity of T2 satisfying
the 6-PAC criteria. Recall that the set Z := {i € [n] : i = argmax; ¢, (uir(0) — pir(6"))* for some 6,6" € ©}.
Note that T2 does not sample by the Chernoff p.m.f. pg. Rather it samples by the p.m.f.

1

PI= 2
1o o0 2
where, Z(80') := {i € T : i = argmax; ¢, (1 (8) — pir (6))? for 6,8" € @}. Hence uge: is a uniform random

p.m.f between all the maximum mean squared difference actions between hypotheses € and 6’ which are é(t) and
6(t) respectively for some rounds s € [rs]. The rest of the analysis follows the same steps as in Step 6 of Theorem
1 as the proof does not rely on any specific type of sampling proportion. We define the stopping time 75 as follows:

75 = min {t L L(6') — L(B(1)) > B(J,5),70' + é(t)} .

We further define the time 79~ for the hypothesis 8* as follows:

To+ :=min {t : L;(0") — L,(0") > 5,V0' # 6*} (33)
We also define the critical number of samples as (1 + ¢)M’ where M’ is defined as follows:
_(a(J)  C'+log(J/9)
G (34

where, C' = log(1 + 7°/n2), ¢ > 0 is a constant, and we define the term D] as follows:
D/ = i (2 i 0/ — Ui 0" 2
1 97&01},1(19?#9*;1&90 (1) (ni(8") — ps(6%))

and the term D}, as follows:

It then follows that

= ()
Elrs] <Elrg-] =Y Plro- >1) <1+ (1+c)M+ > P(rp- > 1)
t=0 tit>(14c) M

(b) blogJ C’+log(J/6
< 1+(1+c)< — + *{;?( / )> + ) > Cy exp(—Cat)
1 0 0/ £0* - a(J) +410g(J/5) (140
T\ D Dy
a(J)  4log(J/d)
exp [ —Cs +
blogJ C'+log(J/d) ( ( Dy Do
<
<14+ (1+4¢) < D + D, +9§* = 1 —exp(—Cy)
2 /
m(b+4) Dy
© / AN 7
2149 blog‘J + c +10g(‘]/5) 165 + QL J( 2773 ) X 5772 (35)
D! D! 7
1 0 0 S~——

Term A Term B Term C
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2
where, (a) follows from definition of M in (34), (b) follows from Lemma 11 where C} := 110 + 55 max {1, 2771)2},
i
2D min{(§ —1)%, ¢}
2
Again, note that in (35) the Term C <1 as § € (0,1). So for a constant b > 1 such that if b satisfies the following

condition
N N
b=nlog (165 + 2) > log (1 + 2) (36)
o o

Cy =

, and (c) follows the same steps in Theorem 1 by setting ¢ = % in C; and Cj.

_ng(b—&-él) b

+
we have that Term B < J 2 nlog.J . Hence, Plugging this in (35) we get that the expected sample
complexity is of the order of

log(C)logJ  log(J/é /
Elr) < O (" Og(D,) L Ogé,/ ) +Jcl/naDo/n2> .
1 0
0
where, C' = 165 + —5. The claim of the theorem follows. O
o

A.4 Proof of Proposition 2 (Batched Setting)

Proposition 2. (Restatement) Let 75, Do, Dy be defined as in Theorem 1 and B be the batch size. Then the

sample complezity of §-PAC Batch-CS is

nlog(C)log J n log(J/9)
Dy Dy

E[rs] <O <B+ +BJ05577'9> .

Proof. We follow the same proof technique as in Theorem 1. We define the last phase after which the algorithm
stops as mg defined as follows:

ms =min{m : Lnp(0') — Lynp(0(t)) > B(J,5),V6" # 6(t)}.
We further define the phase mg- as follows:
me+ = min{m : L,,5(0") — L,,,5(6 ( ) > B(J,0),v0" # 6*}.

Then we can show that the expected last phase ms is bounded as follows:

E[ms] < E[me-] Z P(mg- >m) <1+ (1+c)M;+ Z P(me- > m') (37)
m=1 Part A m/:m/>(1+c) Ma Part B

where, in Part A we define the critical number of phases

alJ) , BL0)

My = .
'~ BD, " BD,

and Dg, D, as defined in Theorem 1. Note that this definition of Mj is different that the critical number of
samples defined in Theorem 1. Now we control the Part B. As like Lemma 5 we define the following bad events

€00+ (m) = {Lmp(0') — Lmp(07) < B(J,0)}
€0+ (m) = {Linp(8') — Linp(67) < a(J)}

We further define the last good phase mgg~ as follows:

L
Ly,

Merg = min{m : Lm/B(el) — L, 5(0%) > a(J),Vm' > m}

and 'ﬁ’le* = 91}1;,9}&{77’7,9/0*}
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denote the last phase after which in all subsequent phases we have 0* is §(t) We further define mg- as

. = 2J) | e
= BD, 2

Note that this definition of mg- is different that 7g~ in Lemma 5. Using Lemma 6 we can further show the event
£gr9+ is bounded as follows:

P(¢grg«(m)) =P | Lp(0') — Lynp(0%) < B(J,0)

:ZAWLB(HI;G*)
<P (AmB(0I70*) — E[AmB(e’,B*)] < Dy (6%7 5) — B(m — Thg*)))
0
(@) 2D2Bm (& —1)°
< exp (4B) Z exp (— ! mg2 ) ) (38)
0'#0* K

where, (a) follows usinf the same steps as in Lemma 6. Similarly we can show that,

P (€po-(m) = 3 Y P(Aws—E[Aws] <a(J) ~EAws)

676’ a(J) me
m’:m/>BiD1+7
ox ( 2D%ch>
(Z) Z Z ]P)(A 'B — E[A 'B] < O[(J) - m/BDl) (2) exXp (4) Z 2 (39)
— 0#0/ m m - 6/¢6* 1 . (_ 2D%0B>
m/:m/>oz(J) me exp 9
BD,
where, (a) follows as E[A,, 5] > m'BD; for all m’ > %(b]) + 2¢ and (b) follows using the same steps as in

Lemma 7.

Finally using eq. (38) and eq. (39) we can show that the Part B is bounded as follows:

Pone- > m) <P (3 U toom) g ({io < 5+ 54+ X 8 F(éw)

0'70* 076’ a(J) me
e p Ty

B 2D?Bmin{(¢/2 — 1)2, ¢}
2
=C1 =C5

2
< Z [110+55max{1 D2B}} exp m | < JCyexp(—Cam)

0'£6*

where, (a) follows from the same steps as in Lemma 5, and using eq. (38) and eq. (39). Plugging this back in
eq. (37) we get that

J J,0
Elms] <1+ (1+¢) (OBﬁ(Dz + ﬁéDg) +J Z Cy exp (—Caom)
m:m> OC(J) + ﬁ(J7 5)
"> BD, " BD,
J log (165 + 7°/Bn2
log (1+7°/u2B) + log ( = 0g (165 + 7/Bn})
(i) 142 nlog (165 + 7°/Bn3) log J + o8 (L + /i) +log (5) +J ! log J §Po/n*
= BD, BD,

®) nlog(C)logJ = log(J/6) 1/6 s Do /2
< o/n
<0 (1 + X + 5 Dy + JC°S
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where, (a) follows using the same steps as in Step 6 of Theorem 1, and in (b) we substitute C' := (165 + 7°/52) >
(165 + nQ/Bng). Finally, the expected total number of samples is given by

nlog(C)log J n log(J/d)
D, Dy

E[rs] < BE[ms] = O (B + + BJCl/‘;éDO/”Q) :

The claim of the proposition follows. O

A.5 Sample Complexity Proof of CSE

Proposition 3. (Restatement) Let 75, Doy, C be defined as in Theorem 1, D, be defined as above, and
€; := 1/+/t. Then the sample complexity bound of §-PAC CSE with €; exploration is given by

Elrs] <0 (nlog(C) log J N log(J/d)

D Do

e

- Jcl/"(sDo/”2> :

Proof. Recall that

Dy = 10* 2.
15 iy 3 20 8) @)

Define D, := ming 2o+ Y+ = (1;(8’) — pi(6*))? as the objective value of uniform sampling optimization. Finally
define the quantity at round s as

D{* :=(1—¢€5)D1 + €D, (40)
Let A:(0") := L:(0") — L:(0*). Note that following Assumption 1 we can show that

(a)
Ay (0") — Dy < 4n, A(0') — Dy < 4n

where, (a) follows as D1 < n and D, < n which implies (1 —€)D; +eD, <nas e € (0,1). Now define the quantity

_ C'logJ
a(J) = D,
C" +log(J/o6
B 0) 1= CHIBIN)
0

where, the constant C’ := log (1 + 772/n§). Now define the failure events

Soro- (1) := {L:(0") — Ly(67) < B(J,0)},
Eoro-(t) 1= {L4(8") — Li(6") < 2a(J)}
C' +1log(J/9)
Dy
To+ :=min{t : L;(0") — Ly (0%) > B(J,6),V0' # 0*}
Torg« := min{t : Ly(0') — Ly (0%) > 2a(J), V' >t}

Tox 1= rln;éag(*{rg 19+ }-

C'logJ
D,

where, a(J) := ,and B(J,9) = . Then we define the time 7g~.7Tg:g+ and g« as follows:

Then we have that Assumption 2 is no longer required which can be shown as follows

D (Ye = nr(67) =D (Vs — ur, (0))21

s=1 s=1

E[t7yt [At(al)] == E[t7yt [Lt(B/) - Lt(e*)] == E1t7yt

Il
MN

Er,By.i1, [(ur.(67) = 1ur.(8))° 1]

s=1

Il
”M”

Z (Ie = 1) (1i(07) = 1i(0))*
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In the case when Dy > 0, we can show that

(a

Ere ye[A(0")] >

=

]~

((1 - 6S)Dl + GsDe)

@
I
—

1
@
*

’Tg *

t
1—63D1+265D+ Z (1 —€s)Do + Z

s=1 s=Tgx+1 s=Tg*+1
(b) To* t t
> Z e+ Z D, — Z esDo + Z

s=1 s=Tg++1 s=Tg++1 s=Tg++1

Q)
> 24/Tg~D. — 2D, -l-(t—Tg*—]_)D — kDy

= (t — 1)D, + 2+/7g- Do — 79- D, — (kDg + 2D..)
(d)

> (t—1)D, — (O‘l(?‘:) + t;) D,

:(tfl)Defa(J)—%cDe
_ <t—1—t2c>De—a(J):tDe (1_1_;>_a(,])

=c1tD. — a(J)
where, (a) follows due to the forced exploration definition, (b) follows by dropping D1, (¢) follows €, > ﬁ and
ft L ~ds = 2/s — 2 and Dy > D., and (d) follows by definition of 7p- = %‘Z) + ¥ and trivially assuming that
2\/7'9*D4 (kDo 4 2D.) > 0 for large enough 7g+, and (e) follows as t > 2. Next we can show that for ¢ > 7o«

t

[At(O’)](a) Z 1—e€5)Do+ Z €sD, > Z 1—¢€5)Do + Z eq

é=7~'9* S= 7’9* S= 7'9* s= 7'9*

= (t — 7o+)Do — Z esDo + Z 63%

s=Tg* S=Tg*

where, (a) follows from the definition of exploration, and (b) follows from as Dy < nD,, It follows that

P(€or.6+ (1)) = P(A:(0") < B(J,9))
=P(A(0") — E[A(6")] < B(J,6) — E[A:(6")])

< B (A(8) — EIAO)] < B(J,8) — (¢ - 7o — K)D)
©p (At(e') _E[A,(0')] < Dy (BU’ P k)))

Dy
Once we define the failure events we can follow the same proof technique as Theorem 2 and show that

P(Egrg- (1)) (%) P(A(0") —E[A(6')] < 2a(J) — 1t D)
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where, in (a) the choice of ¢;tD; follows as E[A;(0")] > ¢1tD. as D, > 0. It follows from Lemma 5 since Dy > D,
and D, > 0 that the probability of the failure event is bounded as follows:

P(re- > 1) <P( | Soro-(t))
0'#0~*
=P U oo (t) ¢ [N{Fo- < aﬁﬁj +5}] +P U oo ()} {Fo- > a](jJ) + %c}

0'+£0* 0'#£0* e

< Z P ({59/9* }ﬂ{Tg* < —_— }) Z Z P (59/9* (tl)> (%) JCO exp (—Czt)

0'#0" 0'#0° 11> al) | te

2 2D 2 i -1 2
where, in (a) we substitute C7 := 110+ 55 max {1 77)}, Cs = (D.) mm{(;/z ) ’C}, ¢ > 0 is a constant,

'2(D,)? U
and J :=|©|. Now we define the critical number of samples as follows:
C'logJ = C' +log(J/d)
M =
( D, Do

where, C' = log (1 + 772/773). Then we can bound the sample complexity for some constant ¢ > 0 as follows:

E[rs] < E[re-] ZPTQ*>t)<1+(1+c)M+ > P(re- > )

—0 t:it>(14+c) M
(%) O <n10g(C) log J + log(J/4) n J(C)l/n(;Do/n2>
D, D,

where, in (a) we substitute log(C') = log(165 + Z—z) > (" and the rest follows as log(C)/D, < log(C)/D,. O
0

A.6 Minimax Optimality Proof (Theorem 2)

Example 2. We define an environment model B; consisting of N actions and J hypotheses with true hypothesis
0* = 0, (j-th column) as follows:

4 = 6 02 03 . 0;
m@® = r r-L pr-2 - p D0
H2 (0) = (21 122 L23 . Log
/j‘n(e) = Ini Ln2 ln3 - lnJ

where, each ¢;; is distinct and satisfies ¢;; < I'/4J. Note that we introduce such ¢;; for different hypotheses so as
not to violate Assumption 2. 6, is the optimal hypothesis in A;, 85 is the optimal hypothesis in A5 and so on
such that for each A; and j € [J] we have column j as the optimal hypothesis.

Theorem 2. (Restatement) Any §-PAC policy 7 that identifies 6* in (8) satisfies E[rs] > Q (J2I'"2log(1/9)).

Applying Theorem 1 to the same environment, the sample complexity of CS is O (JQF_2 log(J/(S)) which matches
the lower bound upto log factors.

Proof. The proof follows the standard change of measure argument. We follow the proof technique in Theorem 1
of Huang et al. (2017). We first state a problem setup in Example 2.

Let, Ay be the set of alternate models having a different optimal hypothesis than 8* = 6, such that all models
having different optimal hypothesis than 6; such as Aj, As,... A are in A;. Let 75 be the stopping time for any
0-PAC policy 7. Let Z;(t) denote the number of times the action ¢ has been sampled till round ¢. Let 6(¢) be the
predicted optimal hypothesis at round 75. We first consider the model A;. Define the event & = {5( t) # 0*} as
the error event in model A;. Let the event £ = {0( ) # 8'*} be the corresponding error event in model Ay. Note
that €€ C ¢/, Now since 7 is -PAC policy we have Pa, »(&) < J and Pa,, +(€%) < 4. Hence we can show that,
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(@)

1
26 > IP)Ahﬂ'(g) + IP)AzﬂT(gc) > 5 exXp (_KL (PA1,TF||PA277T))

1
KL (PA1,7T||PA2,7F) > log (46)

Z]EAh (/J’l(g ) /-Ll > log

(ti1 — ti2)*Ea, »[Zi(15)] > log

- +
4+ -

1\° 1
<J) I?E A, x[Z1(75)] 222(%1 —ti2)"Ea, x| log (45>
1\ 2 2 (d) 1
(J) I2E4, [ Z1(7s) +Z 172 B nlZi(ms)] = log (45> (41)

where, (a) follows from Lemma 2, (b) follows from Lemma 1, (¢) follows from the construction of the bandit

environments, and (d) follows as (1;; — ¢;5)% < 7 J2 for any i-th action and j-th hypothesis pair.

Now, we consider the alternate model As. Again define the event & = {6(t) # 6*} as the error event in model A;
and the event & = {8(t) # 6"*} be the corresponding error event in model As. Note that ¢ ¢ €. Now since 7 is
6-PAC policy we have Pp, »(€) < & and P, »(£8) < 6. Following the same way as before we can show that,

2\* 2 @ 1
5 ) TPBa,[Zi(7) +Z4J2EA1’W[ZZ'(T5)] > log 4= |- (42)

Similarly we get the equations for all the other (J — 2) alternate models in A;. Now consider an optimization
problem

min g T;
z;:1€[n]

1
s.t. (J) Iz, —|— — le > log(1/49)

2\? I
(J) Iz + 2 in > log(1/49)
i=2

J-1 9
x; > 0,Vi € [n]
where the optimization variables are z;. It can be seen that the optimum objective value is J?T'~2log(1/44).

Interpreting x; = Ea, »[Z;(75)] for all i, we get that E4, »[75] = >, 2; which gives us the required lower bound.
Let pg~ be the sampling p.m.f for the environment A; for verifying 8*. We also know that the Chernoff verification
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in (4) has a nice linear programming formulation as stated in (5). Using that for A; we can show that,

max z

2 n
1
s.t. pe-(1)I? <J) + Zpe* (i) (vio- — vie)? = =
pe- (1) <> + Zpo* (tio~ — Lign)? > 2

> po-(i) = 1.

=1

We can relax this further by noting that (;e- — ti9/)% < % or all ¢ € [n] and 6*,0’ € ©. Hence,
1 2 n F2
maxz s.t. pg* <J> Z J2 >z
2 = F2
0 (2) 4 o) 2 -
i=2

po- 1 (151) o) 2
Zpo*(i) =1

Solving this above optimization gives that pg«(1) = 1, and pe-(2) = pe«(3) = ... = pe~(n) = 0. Similarly, for
verifying any hypothesis 8 € ® we can show that the verification proportion is given by pg = (1,0,0,...,0). This
——

(J-1) zeros
also shows that for Example 2,
1\ & I2
*\\2 2 Niiow — iar )2 = —
Dy = 91}323*21’9* — 1i(67))° = pe- (1)I <J) +Zp0*(l)(510* Lig)” = 72

a 2
D= min min Zm(z‘)(me’)w(e*)ﬁ” o1 ( ) +zpe o — o) =

{Po:0c®)} 0/76"

where, (a) follows as the verification of any hypothesis 6 is a one hot vector pg = (1,0,0,...,0). Note that
——

(J-1) zeros
n/4 = I'2. Plugging this in Theorem 1 gives us that the upper bound of CS as

r2 4 3 2 2 2 214
E[rs] <O (J L log(FFQ/%)FIOgJ 7 1°§§J/5> + Jlog(T* /pty /T g7/ (7°T ))
21 4] 21 0
<0 <J2 log(I* /)T log J + L 128L/0) °§§J/ )> <0 (J °§§J/ )> .
The claim of the theorem follows. O

A.7 Proof of Theorem 3 (Continuous hypotheses)

Theorem 3. (Restatement) Assume that 1;(0) for alli € [n] is a differentiable function, and the set {V 1;(6 ( DE
i € [n]} of gradients evaluated at 0( ) span R%. Consider a p.m.f. P51 . from (9) for verifying 0( ) against all
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alternatives in BE (é(t)) The limiting value of pg,) . asr — 0 is

t),r

Pgi(r) = ATE 03X A <Z p(i)Vui(é(t))Vui(é\(t))T> .

i=1

Proof. For brevity we drop the §(t) argument from the notation for the closed ball B, and its complement BE
centered at O(t). Denoting g;(8) := (11;(0) — p;(6(t)))? for any generic 8, we can rewrite the optimization using a
probability density function (p.d.f.) q over parameters in @, as explained subsequently.

n

Pp) = argmax inf ; p(i)9:(6)

n

= arg max inf /@ q(0) Zp(i)gi(e)de. (43)

P q:q(0)=0veeB, im1

The above equality is true because if in the LHS, the inner infimum was attained at a @ € ®, then the same value
can be attained in the RHS by a degenerate p.m.f. q that puts all its mass on that 8. Conversely, suppose the
inner infimum in the RHS was attained at a p.d.f. @*. Since the objective function is a linear in q, the objective
value is the same for a degenerate pdf that puts all its mass on one of the support points of q*, and this value
can also be attained by the LHS infimum.

Let x; = supgep, 9i(0), s = max; k;, then K — 0 as r — 0. Since gz(é\(t)) = 0 for all ¢ we have that x > 0.
Consider a family Q,. of pdfs supported on the boundary of B,., i.e.,

0, ={as [ a(®)a0 = 1.4(6) =01 | - B(0)] # <} .

For any pmf p, the suboptimality gap in (43) by restricting the infimum to be over the set Q, is non-negative,
and is upper bounded by

g > 9t | @a.(6)d0 < > o) / 4(6)rd6 < r, (44)

lo—8(t)||=r

where the first inequality is true for any ¢(@) € Q, and the second inequality is true because « is an upper bound
to the integrand at any point on the surface of B,. For any r > 0, we have that

n n

0< inf (7] 1)g;(0)d@ < inf (7] 1)g:(0)d0 < k,
< o L )2 rl0)0 @0 < inf [ 0)3p(0)0(0)
where the first inequality is due to ¢;(8) > 0, the second inequality is because the domain of inf is reduced, and
the third inequality is by (44). As r — 0, the quantity x — 0 and the suboptimality gap also tends to zero. Hence
for any pmf p,

n n

e /@ 4(6) 3" p(i)g:(6)d6 = lim. in /@ a(8) > pli)gi (6)do.

70 q:q(6) = r=0qeQ, i=1

Since the above is true for any p, it also holds for the maximizer of the infimum at each value of 7 in the convergent
series to 0. Hence, we have that

n

lim pgy, = i argmax ot [ g(6) > p(iai0)d0

r—0 P q€9,

= lim arg max inf / q(O)Zp(i)gi(B)dG.
© i=1
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Consider the multivariable Taylor series of g; around é(t), for a 6 € B,.

9:(0) = g:(8(1)) + (6 — 0(1))"Vg,(6(1))

(6 -
+0.5(0 — 0(1)TV2g;(0(1))(0 — 8(t)) + o([|6 — 8()1%).

For indices j, k € [d] we can evaluate

Vgi(0)

I
—
Q
IS
(g
—
D
~—
[
|
—
DO
—
=
S
—~~
D
~
I
=
S
—
—~
~
~—
~
~
Q|
S
—
D
~
[
&
=}
jol

V29:(6)

I
—
Q!
S,
Dra
=
=
—~
~
[

k
- {2(;”(9) — pi(8(t))) agjgék (6) +235:(0) 55; (B)L,k

giving that Vgi(é(t)) =0 and VQgi(é\(t)) = 2Vuz(§( ))V,ui(é\(t))T. Then pg;, ,. is the solution to the following:
inf 0 1)g:(0)d6
max inf /@ (0> p()5i6)

n

—max it [ q®)Y (i) ((6 - 6(0) Vas(O) Vis(B(0)" (6 - B(2)) + of6 - 6(1)]*)) db
0:(|6—8(t)||=r

P q€Qr 1
— max inf i (0—-6(t)" X p(i )AV pi(B(1) Vi (0(1))7 (0 — e(t))qw)”e —8(1)[2d0 + o(r*)
P acQr Jo.|0-8(t)|=r (60— 6(t)7(6 - 6(t))

= max min eigenvalue <Z p(i)Vui(A(t))Vui(é(t))T> 2+ o(r?).

i=1

The last equality uses the variational characterization of the minimum eigenvalue of a matrix and the fact that
the inf would put all its mass on the 8 aligned with the corresponding eigenvector to attain the minimum value.
In the limit » — 0, the second term is insignificant compared to the first and we get the required result. O

A.7.1 How to solve the optimization

The optimization in Theorem 3 can be solved using convex optimization software. This is because the objective
function, i.e., the minimum eigenvalue function is a concave function of the matrix argument, and the domain
of the optimization {p : Y ., p(¢) = 1,p(i) > 0Vi € [n]} is a convex set. Hence we can maximize the objective
over the domain. The set of gradients {V,uz(é\(t)) : i € [n]} span R%. Hence the optimal objective value is
positive. Note that the verification proportions are the solution to a convex optimization problem. So we can

terminate it early to get an approximate solution. Ignoring accuracy factors, a solution can be obtained in
O((n? + n%d? + nd®)v/n + d) operations (Nesterov and Nemirovskii, 1994).

A.8 CS Convergence Proof for Smooth Hypotheses Space
A.8.1 Theoretical Comparisons for Active Regression

From the result of Chaudhuri et al. (2015) we can show that the ActiveS algorithm enjoys a convergence guarantee
as follows:

E [pU (é(t)) — Py (9*)] <0 ("?fvltog(dt) + g) (45)
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where, Py is the loss under uniform measure, R is the maximum loss under any measure for any 8 € ©, and 0,2J
is defined as

(Z > Eionn VL, (6" Ee,pup [Vt (9*)TD I (0%)7" Iy (%) Ir (9*)—1]

s=1s'=1

= 3 Trace K > Etoon [VE (8] Be,mp Vi (0*>T}> Ir (6°) " Iy (67) I (0*>‘1]

® tiQTrace l 3 I (0*)) I (6°) " I (6°) I (0*)1]

= Trace [IU (%) I (0*)71} (46)

where, in (a) the loss ¢; and £y are i.i.d drawn from the same distribution D, and Ir, I;; are the Fisher information
matrix under the sampling distribution I" and U, and (b) follows from Lemma 5 of Chaudhuri et al. (2015). Note
that ActiveS is a two-stage process that samples according to the uniform distribution U to build an estimate of
0* and then solves an SDP to build the sampling proportion I' that minimizes the quantity o7 and follows that
sampling proportion I' for the second stage. It follows that

0%, = Trace {IU (0%) It (0*)71}

< Amax(IU (0*)) Amax(Il" (9*)71) d< #dC’gn

a )\min, ActiveS

where Amin, Actives = Amin(Ir (6%)). We also have that
Iy(6") = Er,nrV_g-Ls(0) = E1,nu Vo_g- (Ys — 11, ()
=Er, 02 (Ys — 1:(07) V2ur,(6) — 2V iz, (0°)Vpur, (6%)"
=2 punie(i) (Vs — 113(0%)) V21ur, (6%) = Viur, (6*)Vur, (0%)" ]
i=1
This leads to the following bound on the maximum eigenvalue of the matrix I;;(6*)
)\max[IU(e*)] S Amax[ZpunifU) (YS - Mz(e*)) VQMIS (0*)] S )\10377-
i=1

Plugging this in the statement of the result in eq. (45) we get that

E [PU (é(t)> - Py (9*)} <0 (Cl\/lotgw N g)

where we are only concerned with the scaling with the dimension d. Comparing this to our result in Theorem 4
we have the following convergence rate

E[PB) - P69 <4007+ 5 (47)



Subhojyoti Mukherjee*, Ardhendu Tripathy*, Robert Nowak

where P, is a worst case measure over the data points. Next, we can show that,

=E HVP (6"
o [ ! )<v2Pf< 0+))~1

} —E VP (60) V2P (6") ' VP (6")]

L [ (V2,09 ) VP 0917

< E e (V2P (67)") dCin]

= E | (Auin (V2P1(67))) " dCyn)

- (Amin <iz | Pa. (z‘)Vm(O*)Vm(e*)T>> dCsn
s=11i=1

< 2d0377

o )\min,CS

where, (a) follows from the min-max theorem (variational characterization of the maximum eigenvalue), in (b) the
quantity ||V P; (0*)]|? < d>Csn almost surely by assumption and Cj is a constant, and (c) follows where Apin,c's

—1
is a lower bound to E {(Amin (% S, S Pg. (i)Vui(e*)V,ui(a*)T)) } . Plugging this in our result in eq. (47)

we get
&[R@) - P07)] <0 (dvljg(d” + f) ,

where again we are only concerned with the scaling with the dimension d. The convergence result is summarized
below in this table:

] Sample Complexity Bound \ Comments ‘

E {PU (é(t)) - Py (9*)} <0 (d log(dr) | g) Loss of ActiveS (Chaudhuri et al.,

2015). The Py is loss under uni-
form measure over data points in
pool.

E [Pt(@) P (9*)} <0 <d‘/lof(dt) + f) Loss for CS (Ours). The P, is
loss under a worst-case measure
over data points.

Table 2: Active Regression comparison.

The two upper bounds have the same scaling, even though P; is a different loss measure than Py. The proof has
steps similar to that of Chaudhuri et al. (2015), with some additional arguments to handle the fact that our loss
measure varies with time.

A.8.2 Discussion on Definitions and Assumptions for Continuous Hypotheses

Definition 2. We define the following star-norm quantity at round t as

—1/2

Al = || (2P (67) -4 (73R 07)

Now we state the two following assumptions required by the Theorem 4. Also note that we define the squared
loss function £,(0) = (uur, () — Y;)?, the cumulative loss function Ly(0) = 3%, _; £(6%) =37, (u1,(0) — Yer)?,
and ¢1(0),¢5(0),...,£:(0) for any 6 € © are not independent. In contrast Chaudhuri et al. (2015) assumes that
the loss functions are independent for any time s € [t]. Next we state the assumptions used for the proof of
Theorem 4.
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Assumption 3 in Section 3 is a mild assumption on the bounded nature of the eigenvalues of the Hessian matrix
Vi_g 11, (0) evaluated at any 6’ € ©. Then following assumption states a few regularity assumptions required
for Theorem 4. A similar set of assumptions has also been used by Chaudhuri et al. (2015); Bu et al. (2019).

Assumption 4. (Assumptions for Theorem 4): We assume the following assumptions hold with probability
1:

1. (Convezity of {,): The loss function s is convex for all time s € [t].

2. (Smoothness of {;): The {s is smooth such that the first, second, and third derivatives exist at all interior
points in ©.

3. (Regularity Conditions):

(a) © is compact and £4(0) is bounded for all @ € © and for all s € [t].

(b) 0* is an interior point in ©.

(c) V20,(0%) is positive definite, for all s € [t] .

(d) There exists a neighborhood B of 0* and a constant Cy, such that V2{4(0) is Cy -Lipschitz. Hence, we
have that ||V?(,(0) — V(s (0)|, < C1 |6 — 0’|l v2p, g+, for 0,0" in this neighborhood.

4. (Concentration at 6*): We further assume that [[VLs (67)[| g2p,g+))-1 < C2 hold with probability one.

Assumption 4 (c) is different from that of Chaudhuri et al. (2015), where they assumed that V2E[ts](6*) is
positive definite, where 15 are i.i.d. loss functions from some distribution. In our case the loss functions are not
ii.d., which is why we make the assumption on the loss at every time s.

A.8.3 Concentration Lemmas for Continuous Hypotheses

~ log(dt
Lemma 12. The probability that ||V P.(67)||(y2p(e«))-1 crosses the threshold %g() > 0 is bounded by

D (n* cylog(dt) 1
P <|th(0 )||(V2Pt(g*))—1 > Oy ———2 | < —.

t A
Proof. Define ug := V(Ys — ur.(0%))2. Then we have uy, us,...,u; as random vectors such that
t 2 t .
E ZU‘S ug,...,us_1| =E ZuST (Vth(H*))7 ug |uy,...,u, | <tCF
=1 lw2pio) s=1

Also we have that ||Jus|| < Cs. Finally we have that

E[Ve—g-us] = —221)@;71(;1@(9*) — 113(0%))Vo—g-11:(0*) = 0.

Then following Lemma 4 and by setting ¢ = ¢y log(dt) we can show that
t
1 1 1 405
— — — — 2 s
(IS B S| R 22
t
B 1 2 8¢  4Cy
- ( EZuSII(VZP oy T CLH O+ =2 )

8e 9 ey log(dt)
( Z H(VZP (0%))~ 1 CQ n > <| Z SH(VQP (%))~ 1 > 402 f

1\ 1
< exp(—cylog(dt)) = T StT’Y

The claim of the lemma follows. O
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Lemma 13. Let P,(6*) = %22:1 05(0%) and V2P,(0*) = % Zs L V2E[(5(6%)|F*~1]. Then we can bound the

. 8% \2cy log(dt) 2
2 *\ _ 72 * 1
P ()\max(v P(6") — V=P,(07)) > ; (i)’

where ¢ > 0 is a constant.

Proof. Recall that P(6%) = %22:1 05(6%) and V2P,(0*) = V2E[(5(6%)|F*~1]. We define V2P,(0*) =
% Zi:l VQE[ES(G*H}-S_W. Denote, VS = 2vg:9*/,1/[s (0)vg:9*/,LIS (H)T—Q Z?:l p§571 (i)ngg*/M(B)ngg*,ui(a)-r.
Then we can show that,

P <)\max(v2f’t(9*) —V2P,(6)) > ;

. 8n%\2cy log(dt
_]P)<>\max< 0= 0*726 772v0 0* |‘F 1]) %()

P<Amx (Ve e*ii(ﬁ (0) — V3_o-E[L(6)| 7~ 1})) > W)

s=1 ¢

8% \2cylog(dt) )

t
@) 1 ; o 41
=P <>‘max (t Z (Ys — p11,(0%)) Vo_g-pu1,(6%) + 7

t

v > - 8772)\%0'ylog(dt)>

s=1 s=1 t
Ly 1 [8n%A\2cy log(dt)
< AN ) . 1
¢ 2
+P ( max (1 s) 877 )\ CFY log dt >
t
Ip (! * * 1 [8n*Njcylog(dt
S (t Z _2 (0 )) AInza‘x (VQ 0+ /J/I (0 )) 5 %()
s=1
v le v,y 5 L [P Iog(a) "
t g max Kl 2 t
() t 8n )\%c'ylog(dt) 1 (d) 1\7
< 2 Zolt

where, (a) follows from substituting the value of Va_,.05(60) — Vi_g.E[¢5(0)|F*!] from Lemma 16, and (b)
follows by triangle inequality, (c¢) follows by using two concentration inequalities stated below, and (d) follows by
simplifying the equations.
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Denote Qs = —2 (Y — 7, (0%)) Amax (Va_g-#1,(0%)). Also note that Amax (Va_g-pr. (6%)) < A1

t

P(Y —~2(Ys = 11,(07)) Amax (V—g-111,(07)) = €) = P (— > Q= 6)

=P (e_)‘ Y1 Qs > e)‘5> (%) e ME [e_)‘ Xia QS} = e ME [E {e =1
Y reg []E [e**%é(t - 1)] E [e*AEZ;i Q(g(t — 1)”
e K [exp (2X*An*) E [e”‘zt;l s A(t - 1)”

— oA 2NN [e—A st QS}

)

d 2
(2 e~ Ae 2Nt A (S) exp [ — 225 ;
tn* A

where (a) follows by Markov’s inequality, (b) follows as Qs is conditionally independent given 5(5 —1), (e) follows

by unpacking the term for ¢ times and (d) follows by taking A = €/4tA3n%. Next we bound the second term of
(48) below.

t (a) t
P> Amax (V) ()\Z Amax (V) > )xe) =P <e>‘ 2amr Amax(Ve) > ekf) < e ME [e)‘ imt Amax(Ve)

)

QR [E [P VOIg(t — 1)| B [ATizi AmaeV)
©
<

é(t-1)”
ot — 1) ]

e ME [exp (20)\2/\%72) E [e)‘ 21 Amax(V )19

oA 2N AT {e’\ poyanty Amax(Vs):|

(%) oA 2N A3 (%) exp <_2€2 )

where (a) follows by Markov’s inequality, (b) follows as Amax (V) is conditionally independent given 6(s — 1).
In the inequality (c¢) using the always valid upper bound of 2A;, we have that E[Anax(V¢)] < 2X1. So the term
in inequality (¢) will become e~*¢¢ ZATIPAL A Hence, we can upper bound the inequality (c¢) by a constant
¢ > 0 such that we have E[eMmax(V2) | §(t — 1)] < 62>‘2>‘1” M2 = exp(202A22 +4A)\) < exp(ZC/\Z/\ 2). The
inequality (d) follows by unpacking the term for ¢ times and (e) follows by taking A = €/4tc\3n

O
A.8.4 Support Lemma for Continuous Hypotheses

Lemma 14. Let the j-th row and k-th column entry in the Hessian matriz Va_g (¢5(0)) be denoted as
(Va_g ((s(0))]jk. Then we have that

2
(Voo (£s(0))]j1 = 28“6’;50) a;g;ie) +2(pr, (0) - Ys) W-

Proof. We want to evaluate the Hessian V5_g, (¢5(0)) at any 8’ € ©. We denote the j-th row and k-th column
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entry in the Hessian matrix as [V5_g (¢5(0))]j5. Then we can show that

V-0 Ol = g | V2O = B o, 0) - vy 2219
= 880] [ ms(e)mg%oim —2Ysagzl(€‘9)]
_om 81550) a’ggie) +2ur, (mm 9y, 8; o 81(9(1) on 5;§0) g}g/:
=22 5;5” ML) 4 2ur,(0) - Y2 8;5] o
The claim of the lemma follows. 0

Lemma 15. Let the j-th row and k-th column entry in the Hessian matriz Via_gq (E[ls(0)|F*~1]) be denoted as
(V2_o (E[ls(0)|F*1])]jx. Then we have that

V-0 B0 =23 ra, ) (g 222 0) — () ol ).
i=1 J !

Proof. Now we want to evaluate the Hessian V3_,, (E[(5(8)|F*~1]) at any ' € ©. We denote the j-th row and
k-th column entry in the Hessian matrix as [Vi_q (E[¢5(8)|F*~1])] ;5. Then we can show that

Voo Ells(0)|F*7'] = Voo (u? (6) + E[Y2 |77 — 2E[Y,|F* ", (0))

= Vioo Yopa, 0 (100) 20 + 5 200 n00))
= Vio Yrs, () (@) - @) + )
= Vo >_r5,, () ((u(6") — 1:(6))°) (49)

We now denote the j-th row and k-th column entry of the Hessian Matrix Vi_g ((11:(0) — pi(0%))?) as
(Vg ((11i(8) — ni(6%))?)] ... Then we can show that
j

06, 06, 06,
N PPNC/IC)
~ 00, [ 10 =5,
Opi(6) Opi(6)

=250, o, 2

[v3:9*((ui(0) 7ui(0*))2)]jk — i |:8<M1(0) /‘1(0* ] _ % |: /lz 0*))8M1<0)
Opi(

—24;(0%)

00y, }
0°11:(0)
6,0,
0 O%1i(8)  Oui(6) Opi(6%)
~ 20 56, 2 a8, oo,
Opui(6) Opi(6) 9 ui(6)
-9 2 (11:(0) — s

Plugging this back in eq. (49) we get that

(Vo Bl(0)1 7] —22% () (%22 25+ 2.(6) (e 2! ).
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Lemma 16. The sum of the difference of the Hessians Zi:l Vi_ols (0) —E[Vi_gls (0) | F5~1] is given by

t

t
0?ur.(6) Our,(0) our, (0)
2 _ v? S— 1 _ s s s
E_ Vo—ols (0) E[ o—o'ls (0) | J E ( 2(Ys — pr, (0)) 96,00, 2 00, 90,

. ) 214(6) 10
QZpg = (1) j 20, .

s=1

Proof. First note that the difference V3_g, (s (8) — E [V3_g L, (0) | F*~ 1} is given by

V3o ly (0) ~E[Vi_gty (8) | 7] 2@ 0 O) o gy ) T (6)

00, 00y 00;00,
-2 Z (2D 10) - 7)) G )
:—QQQ—MQWDizgz)+2&;im£%$f)
- 2Zpa L) 8‘5;, ) 2t8) (50)

where, (a) follows from Lemma 14 and Lemma 15. Plugging this equality in Equation (50) below we get

t

t
_ 82MI.(9) a,uI (0) 8,u1(0)
2 . 2 s—17 _ . _ . s s
> Vit (0) ~E (Vg s (0)| F1] = 32 (205 - 0) gt 22 O

n

i=1

The claim of the lemma follows. O

Lemma 17. Let ét —0* = (Vzﬁt(gt)) Vﬁt(g*) where 5,5 s between é\t and 0*. Then we can show that

Proof. We begin with the definition of Hét -

|

0, — 0

<H(v2pt(a*))1/2 (v? (et))_ (V2P (")

va 6%)

V2P, (6%) (V2P (%))t

as follows:
V2P, (%)

0, — 0

(g) Ai *\T'\72 * Ai *
Vzpt(g*)f\/(e,ﬁ 6°)TV2P, (6*) (B, — 6°)

® \/<(V2Pt(9t)) -1 VP, (0*))T V2P, (6%) ((V”@(@)) - VP, (0*))
( )
2

V2P, (6%)"/? (v2p (6, ))71 V2P, (0%)"/? \/(vﬁt 697 (V2P,(6%)) ' VP, (9*))

= H(V2Pt (9*))1/2 (Vgﬁt(gt))—l (VQPt (0* 1/2

om0

(V2P (0+)~"

~ ~ ~\—1 <
where, (a) follows as [|z||y = VaT Mz, (b) follows as ||8; — 0*||v2p,e+) = (VQPt(B)) VP;(6*), and (c) follows
from Cauchy Schwarz inequality.

The claim of the lemma follows. O
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A.8.5 Proof of Main Theorem 4

Theorem 4. (Restatement) Suppose (1(0),05(0),---,0,(0) : R? — R are squared loss functions from
a distribution that satisfies Assumption 3 and Assumption 4 in Appendiz A.8.2. Further define Pi(0)

%22:1 Er~ps | [05(6)|F*~Y] where, 8, = arg ming.g Y.\, £s(0). If t is large enough such that %(dt)

IA

. di t .
¢ min {ﬁ, %:r(s)} then for a constant v > 2 and universal constants Cy,Co,c’, we can show that

e " s max (P(6)—Pi (6)
(=) %~ 8 < [A@) - P (07)] < (14 p Tt 2

2
. 2y2) , /7log(dt)
<v2pt(e*>)1]’ and pu= (G4 2L VR

Proof. Step 1: We first bound the HV2ﬁt(0) — V2P, (0%)

t ’

where o2 .= E {; HVE (0%)

as follows

~ @~ ~ ~
Hv%(e) ~ V2P, (97| < ‘V2Pt(0) ~ V2B, (6% + Hvat (6%) — V2P, (6*)

(®) . 81n% \2cy log(dt

< 10— 0" gap, gy + | LB G51)

where, (a) follows from triangle inequality, and (b) is due to Assumption 4.3.d and Lemma 13.

Step 2 (Approximation of V2P, (6*)): By choosing a sufficiently smaller ball B; of radius of min {1/ (10C}),
diameter (B)} ), the first term in (51) can be made small for 8 € B;. Also, for sufficiently large ¢, the second

ylog(dt) c
t

< — . Hence for
\/277 Al

term in (51) can be made arbitrarily small (smaller than 1/10 ), which occurs if

large t and @ € By we have

1o ~
5v“‘ﬂ(a) < V2P (6%) < 2V*P,(6) (52)

Step 3 (Show 6, in B1): Fix a 6 between 6 and 0* in B;. Apply Taylor’s series approximation
~ ~ ~ 1 -
P.(0) =P, (0") + VP (0")" (8 — 6*) + 5 (0~ 6*)" V2P,(6) (6 — 6%)

We can further reduce this as follows:

D D a D * * 1 *
P8)~ P (6") L IP(6") (0-0)+ 5106 |%p,5

(b) D * * 1 £
> VP(6") (8 -0)+ ;]800 [Sup, o)

v

10 =0 llgspory [VEO)]

1 * T *
45 (18 -6"g2p,6-)) (10— 6"llg2p, o))
* D * 1
10 6"lg2p 00, (= [V 6) !

1100 lger00)) (55)

(V2P (6)~*

where, (a) follows as ||0 — B*HQVZE(E) = (0 —0%)" V2P,(0) (6 — 6*), and (b) follows as 6 is in between 6 and 6*
and then using (52). Note that in (53) if the right hand side is positive for some 8 € By, then 6 is not a local
‘vﬁt (6%)
By will have values greater than that of 8*. Hence, we must have a local minimum of P,(6) that is strictly inside
B; (for t large enough). We can ensure this local minimum condition is achieved by choosing an ¢ large enough

so that 4/ “%(dt) <c min{01102 , dia%t;r(lg)} , using Lemma 12 (and our bound on the diameter of By ). By

convexity, we have that this is the global minimum, §t, and so 5,5 € B; for t large enough. We will assume now
that ¢ is this large from here on.

minimum. Also, since HVﬁt (6*)|| — 0, for a sufficiently small value of

, all points on the boundary of
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_— )): For the §(t) that minimizes the sum of squared errors, 0 = Vﬁt(é\t). Again,

using Taylor’s theorem if 8; is an interior point, we have:

Step 4 (Bound ‘ 6, — 6

0=VPE,(8,) = VP, (6") + V2P,(8,) (ét - 9*) (54)

for some ét between 0* and §t. Now observe that gt is in By (since, for ¢ large enough, 5,5 € By ). Thus it follows
from (54) that,

b,— 0" — (v?ﬁt(@))fl VB (6" (55)

where the invertibility is guaranteed by (52) and the positive definiteness of V2P, (8*) (by Assumption 4 (3c)).

We finally derive the upper bound to ‘ ét — 6% ’ as follows
V2P, (6%)
~ (a) 1/2 ~ ~ \~1 1/2 ~
6, — 0" < |[(v2p, (o7 2P, 2p, (0* VP (6"
‘ ¢ V2P(6%) H(v (67)) (v 1 t)) (VP (67)) VA(67) (V2P (%)~
(0) log(dt
< Oy %() (56)
where (a) follows from Lemma 17, and (b) from Lemma 12, (53), and ¢ is some universal constant.
Step 5 (Introducing z): Fix a z; between 68* and 0,. Apply Taylor’s series
n * 1/s * T o~ ) *
P(8:) ~ P(6") = 5 (et .y ) V2P, (z;) (ot —0 ) (57)

Now note that both 5,5 and z; are between §t and @*, which implies gt — 0* and z; — 0* since ét — 6*. By (51)
and (56) and applying the concentration inequalities give us

Hv%ﬁt(@) ~ V2P, (6%)
V2P (z:) — V°P, (8%

where p; = ¢ (C1C + 20°)3) \/@.

Step 6 (Define M; ; and My ;): It follows from the inequality (58) that
VER(0:) 2 (1+p) V2P (67) = V2Pi(8:) = V2P, (07) < piV P, (67)
= V2P (0) 2 (P(6,) — V2P (0")V2P (07) /2 < pu1
= [IV*P(6,) ~ V2P (67)]« < pr.

§ < pt (58)
L SOz — 07| g2p,0+) < Pt (59)

Then we can use the inequalities (58) and (59) to show that
(1= pe) V2P (67) 2 V2P(0))
(1—p) V2P, (0%) 2 VP, (7))

= (1+p) V2P, (67)
= (1+p) V2P, (67).
Now we define the two quantities M, ; and My, as follows:

~ o~ —1
M, = (V2P (0) (V2RA8)) (V°P.(0)"
—1/2 —1/2

M, = (V2P (6%)) " V?P, (z,) (VP (6))

Step 7 (Lower bound P,(8;) — P, (8*)): Now for the lower bound it follows from Equation (57) that
. . T N
P.(8,) — P, (6") = (et - 9*) V2P, () <0t - 0*)

~ T 1 1 ~ 1 1 ~
(0t - e*) V2P,(07):V2P,(0°) V2P, (Z,) V2P,(0°) 2 V2P,(0%)* (0t - 9*)
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~ T 1
where, in (a) we define the vector u := (025 - 0*) V2P;(6%)2. Now observe from the definition of and then

using the min-max theorem we can show that

P6)) — P, (67) > ;)\mm (Ms.1) u"u
1 —~
= 5)\min (Ma,) [|6: — w2 p6)
1 25 5\ (2 o\l
- iAmin (M) ‘V Fi(61) <0t ~0 ) '(v"‘ﬁt((9]))’1V2Pt(9*)(v2ﬁt(§t))*1
> L Ot (M )% At (M) |vPu80) (8. - 07) ’
-2 ’ ’ (V2P (0%))~ !

—~
Q
N

| —

2 5 o
(Amin (M1,4))” Amin (M2=t)Hth S (V2P (%))

where, in (a) we use the eq. (55).

Step 8: Define I(€) as the indicator that the desired previous events hold, which we can ensure with probability
1 ol

greater than 1 — 2 <dt) . Then we can show that:

E[P(8) - P (6")] >

[
E[(Amm (M) Auin (M) [V, 6°)

1(5)}

(V2P (67))~"

[vat Calk

(V2P (6)~* I(5):|
(1 — I(not 5))]

[HVPt S

(V2P (6))~*

) 1g
)3
Ly
)3
]_ 2
(1- ~ 5E ‘ P ( I(not
) ( {V  (67) (V2Py(67))—1 (no 5)})

I(not 5)]

>(1—cp,)o? E[Hva 0|’

(V2P (8))~"

and ¢’ is an universal constant.

where, in (a) we have o7 := HV!St (6%) (V2P (6%))-1

Step 9: Define the random variable Z = HVﬁt (6%)

(V2P0 With a failure event probability of less than
V2P, (6%))”

1 ol
2 <dt> for any zg, we have:

E [Z%I(not &)] = E [Z*I(not )1 (Z° < 20)] + E [Z*I(not E)I (Z° > 2)]
< zo]E[I(not EN+E[Z°I (2% = 2)]

Z2
+E [ZQ ]
2157 20

.2 EZ]]
-2t 20
E [Z4)

- /2

I /\

where zo = t7/2,/E [Z4].
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Step 10 (Upper Bound): For an upper bound we have that:

E|PiB) — Fi(0)] =E |(R(8) — P (69) 1©)] + B[ (PiB) — F1(0")) ot £)]
maxgee (P (0) — P; (6%))
Y

<E[(P(8) - P.(67) 16)] +

1
since the probability of not £ is less than el Now for an upper bound of the first term, observe that

E (P60 = P (0) 1)] <3 | (o (M) A (M) 2

VP (6)

1(5)}

(V2P (8%)~*

e 2
<(1+dp)E [HVPt (6%)

1€
(V2P (6%)~" ( )]

<(1+cp)=E [Hvﬁt Calli

(V2Pt(0*))1:|

Q NI~ N

—(1+p)

|

where, ¢’ is another universal constant. O

A.9 Additional Experiment Details
A.9.1 Hypothesis Testing Experiments

In all the active testing experiments we use the threshold function for the Gaussian distribution as proved in
Lemma 10. Hence the threshold function used is

B =log(J/9).
Note that this threshold function is smaller than the general sub-Gaussian threshold function proved in Lemma 9.

Example 1: Recall that the Example 1 is given by the following table under the three different hypotheses
{0*, 0/7 0//}

1"

6 =0 60 0
1(0) = 1 0001 0
p2(0) = 1 1.002 0.998

We can show that under pg- we have the following optimization problem

max z
s.t. p(1)0.999% + p(2)0.002* > =
p(1)1% 4 p(2)0.002? > 2.
The solution to the above optimization is given by pg« = [p(1),p(2)] = [1,0]. Similarly we can show that pg we
have the following optimization problem
max z
s.t. p(1)0.001% + p(2)0.002* > 2
p(1)0.0012 + p(2)0.004% > 2.
The solution to the above optimization is given by pgr = [p(1),p(2)] = [0, 1]. Finally we can show that pg~ we
have the following optimization problem
max z
s.t. p(1)0.001% + p(2)0.0042 > =
p(1)1% + p(2)0.002* > 2.
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The solution to the above optimization is given by pgr = [p(1),p(2)] = [0,1]. Hence, D; :=
ming,,ce ming 2o+ » ., po(i)(1:(0') — p;(6%))?> = 0.0022 = 4 x 107%. Similarly, we can compute that
Dy := max, ming g+ y ., (1:(6’) — pi(0*))* = 0.999%. Hence the non-asymptotic term (log J)/D; = 0.3 x 10°
and the asymptotic term log(J/d)/Dg = 3.4.

Active Testing environment (3 Group setting): In this setting there are three groups of actions. In first
group there is a single action that discriminates best between all pair of hypotheses. In second group there are 5
actions which can discriminate one hypotheses from others. Finally in the third group there are 44 actions which
cannot discriminate between any pair of hypotheses. The following table describes the pq(+), pa(+), ..., pso(-)
under different hypotheses as follows:

0 = o~ 0, 0s 0, os 66
w(0) = 3 0 0 0 0 0
u2(0) = 2 3 2 2 2 2
us(@) = 2 2 3 2 2 2
na(0) = 2 2 2 3 2 2
us(0) = 2 2 2 2 3 2
us(0) = 2 2 2 2 2 3
p7(6)

= 14wy 1+ 14wz 14wg 1+4us 1+

ps0(0) = 1401 1+4+ts02 1+ts03 14+ts0a 14+ts05 1+ ts06

In the above setting,we define ¢; ; for the i-th action and j-th hypothesis as a small value close to 0 and ¢; ; # ¢y j/
for any pair of hypotheses j, 5’ € [J] and actions i,i" € [n].

A.9.2 Active Regression Experiment for Non-linear Reward Model

Algorithmic Details: We describe each of the algorithm used in this setting as follows:

1. EMCM: The EMCM algorithm of Cai et al. (2016) first quantifies the change as the difference between the
current model parameters and the new model parameters learned from enlarged training data, and then
chooses the data examples that result in the greatest change.

2. CS: The CS policy used is stated as in Section 3. To calculate the least square estimate é\(t) we use the
python scipy.optimize least-square function which solves a nonlinear least-squares problem.

3. Unif: The Unif policy samples each action uniform randomly at every round.

4. ActiveS: The ActiveS policy in Chaudhuri et al. (2015) is a two-stage algorithm. It first samples all actions
uniform randomly to build an initial estimate of 8*. It then solves an Semi-definite Programming (SDP)
to obtain a new sampling distribution that minimizes the quantity o7 as defined in Equation (46). In the
second stage ActiveS follows this new sampling distribution to sample actions.

Implementation Details: This setting consist of 50 measurement actions divided into three groups. The first
group consist of the optimal action x;+ := (1,0) in the direction of 8* := (1,0). The second group consist of the
informative action x5 := (0, 1) which is orthogonal to x;- and selecting it maximally reduces the uncertainty of

~

6(t). Finally the third group consist of 48 actions such that x; := (0.71 & ¢;,0.71 F ¢;) for ¢ € [3,50] where ¢; is a
small value close to 0 and ¢; # ;. Note that these 48 actions are less informative in comparison to action 2. This

is shown in Figure 1lc.

A.9.3 Active Regression Experiment for Neural Networks

Implementation Details: At every time step, we use the the least squares optimizer of scipy to find ét. Since
c1,co € {—1,1}, we solve four different least squares problems at each step corresponding to all (¢1,¢q) choices,
and use the values returned by the problem having the smallest sum of squares as our current estimate for
(W1, wWa,b1,b2). The derivative with respect to any parameter is found by the backward pass of automatic
differentiation.
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Red Wine Dataset Prop

‘jE==zs
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Figure 2: CS Proportions over 1600 actions in Red Wine Dataset. Note that CS Proportion is sparse.

A.9.4 Active Regression for the UCI Datasets

Implementation Details: The UCI Red Wine Quality dataset consist of 1600 samples of red wine with each
sample i having feature x; € R''. We first fit a least square estimate to the original dataset and get an estimate
of 8*. The reward model is linear and given by x£ 0" + noise where z;, is the observed action at round ¢, and the
noise is a zero-mean additive noise. Note that we consider the 1600 samples as actions. Then we run each of our
benchmark algorithms on this dataset and reward model and show the result in Figure 1g. We further show the
CS proportion on this dataset in fig. 2 and show that it is indeed sparse with proportion concentrated on few
actions. The Air quality dataset consist of 1500 samples each of which consist of 6 features. We again build an
estimate of * by fitting a least square regression on this dataset. We use a similar additive noise linear reward
model as described before and run all the benchmark algorithms on this dataset.
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A.10 Table of Notations

Notation Definition
n Total number of actions
J Total number of hypotheses
(] Parameter Space
1:(0) Mean of action 7 under hypothesis 8
s Policy
0 Probability of error of §-PAC policy
Ts Stopping time of §-PAC policy
B(J,9) log(C'J/d), C is a constant depending on 7,7
a(J) blog(J),b >0
y? Vector of rewards observed till round ¢
It Vector of actions sampled till round ¢
I action sampled at round s
Z;i(t) Number of time action i is sampled till round ¢
n Constant > 0 s.t. Y € [-1/2,n/2]
Mo min, e[,y mingcor (11(0) — 1:(6'))?
Po p.m.f. to verify hypothesis 8 (Solution to Chernoff optimization in (4))
KL(.||.) Kullback-Leibler divergence
§(t) Most likely hypothesis at round ¢
é(t) Second most likely hypothesis at round ¢
L(6) Sum of squared errors till round ¢ under hypothesis 6
£5(0) Squared error at a specific round s under hypothesis 6
A(6,0%) L(0) — Li(6%)
Ag(60,07) £5(0) — £5(0*) at a specific round s
€(0,0%) Event that {L.,(0") — L.,(0) > 5(J,9),V0" # 0}
(14+¢)M | Critical number of samples (1 + ¢)O (I8 J/D, + 108(J/%)/D,), for a constant ¢ > 0
z {i € [n] : i = argmax; ¢, (1ir (8) — pir(0"))? for some 6,0" € O}
0% Constant > 2, controlling the convergence rate
d Dimension of the parameter space @
C 165 + /g
DO max p min9/¢9* Z?:l p(’L) (,ui (0/) — M4 (0*))2
D, mingp,.oce) Ming 2o+ Y, po(i)(11i(0) — 11(8*))?
D min S0 uo-o(1) (1a(8) — 11 (6°))°
Dy ming o160 26+ 3_;— ueer (1)(1i(0") — pi(6*))*
P(6) T Y Erimpg [Ls(8)|F°~1]
Punif pmf of a uniform distribution over the actions.
PU(O) EIszunifé[LS(e)}
2 D *
o} E[vP (6%) -
2 *
= E|vP (o) R
of Trace [IU (%) I (0*)71} where Iy and It are Fisher Information matrices.

Table 3: Table of Notations



