
Reward-Free Policy Space Compression for Reinforcement Learning

Mirco Mutti* Stefano Del Col Marcello Restelli
Politecnico di Milano Politecnico di Milano Politecnico di Milano
Università di Bologna

Abstract

In reinforcement learning, we encode the po-
tential behaviors of an agent interacting with
an environment into an infinite set of poli-
cies, the policy space, typically represented
by a family of parametric functions. Dealing
with such a policy space is a hefty challenge,
which often causes sample and computation
inefficiencies. However, we argue that a lim-
ited number of policies are actually relevant
when we also account for the structure of the
environment and of the policy parameteri-
zation, as many of them would induce very
similar interactions, i.e., state-action distri-
butions. In this paper, we seek for a reward-
free compression of the policy space into a fi-
nite set of representative policies, such that,
given any policy π, the minimum Rényi diver-
gence between the state-action distributions
of the representative policies and the state-
action distribution of π is bounded. We show
that this compression of the policy space can
be formulated as a set cover problem, and
it is inherently NP-hard. Nonetheless, we
propose a game-theoretic reformulation for
which a locally optimal solution can be ef-
ficiently found by iteratively stretching the
compressed space to cover an adversarial pol-
icy. Finally, we provide an empirical evalua-
tion to illustrate the compression procedure
in simple domains, and its ripple effects in
reinforcement learning.

1 INTRODUCTION

In the Reinforcement Learning (RL) (Sutton and
Barto, 2018) framework, an artificial agent interacts

Proceedings of the 25th International Conference on Artifi-
cial Intelligence and Statistics (AISTATS) 2022, Valencia,
Spain. PMLR: Volume 151. Copyright 2022 by the au-
thor(s). (*) Correspondence to <mirco.mutti@polimi.it>

with an environment, typically modeled through a
Markov Decision Process (MDP) (Puterman, 2014), to
maximize some form of long-term performance, which
is usually the sum of the discounted rewards collected
in the process. The agent’s behavior is encoded in a
Markovian policy, i.e., a function that maps the current
state of the environment with a probability distribu-
tion over the next action to be taken. In principle, if
the underlying MDP is small enough, we can repre-
sent a Markovian policy with a table that includes an
entry for each state-action pair, and we call it a tabu-
lar policy. However, most relevant scenarios have too
many (possibly infinite) states and actions to allow for
a tabular representation. In this case, we can turn to
function approximation (Sutton and Barto, 2018) to
encode the policy within a family of parametric func-
tions, e.g., a linear basis combination or a deep neural
network, and we call it a parametric policy. This set
of parametric policies, which we call the policy space,
is typically infinite. Therefore, learning a policy that
maximizes the performance can be a hefty challenge,
and the sheer size of the policy space often causes sam-
ple and computation inefficiencies.

A setting where these inefficiencies arise clearly and
naturally is Policy Optimization (PO) (Deisenroth
et al., 2013). In PO, we aim to find a policy that max-
imizes the performance within the policy space, i.e.,
an optimal policy, with the least amount of interac-
tions (Sutton et al., 1999; Silver et al., 2014; Schulman
et al., 2015; Metelli et al., 2018). If we also account for
the performance of the policies that are actually de-
ployed to collect these interactions, we come up with
an online PO (Papini et al., 2019; Cai et al., 2020).
In this setting, we try to minimize the regret that the
agent suffers by taking interactions with a sub-optimal
behavior before converging to an optimal policy. Re-
cent results showed that the regret of online PO is
directly related to the size of the policy space (Pap-
ini et al., 2019; Metelli et al., 2021a). In particular,
online PO with a finite policy space can enjoy a con-
stant regret, i.e., it does not scale with the number of
interactions, under certain conditions (Metelli et al.,
2021a). Instead, the regret of online PO with an infi-

Reward-Free Policy Space Compression for Reinforcement Learning

nite policy space does scale with the square root of the
number of interactions in general (Papini et al., 2019),
which means that we only have asymptotic guarantees
of reaching an optimal policy. In view of these re-
sults, one could wonder whether the expressive power
of an infinite policy space is worth the additional re-
gret it causes: Are all of these infinitely many policies
really necessary for PO? The expressive power of a pol-
icy space is related to the different distributions that
its policies can induce over the states and actions of
the environment, as the whole point of PO is to find
a policy that maximizes the probability of reaching
state-action pairs associated with high rewards. How-
ever, different parameterizations might actually induce
equivalent policies due to the specific structure of the
policy space. Similarly, even different policies can in-
duce the same state-action distribution in a given en-
vironment. These two types of policies are arguably
redundant for PO and we would like to find a policy
space that does not include either. Especially, we aim
to answer the following question:

Having an infinite parametric policy space Θ in a
given environment M, can we compress Θ into a

finite subset that retains most of its expressive power?

In this paper, we formulate this question into the Pol-
icy Space Compression problem, where we exploit the
inherent structure of M and Θ to compute the com-
pressed policy space. The general idea is to identify a
finite set of representative policies, such that for any
policy π of the original space, the minimum Rényi di-
vergence between the state-action distributions of the
representative policies and the state-action distribu-
tion of π is bounded by a given constant. This com-
pression is agnostic to the reward function, and thus
the resulting policy space can benefit the computa-
tional and sample complexity of any RL task one can
later specify over M, as it is typical in reward-free
RL (Hazan et al., 2019; Jin et al., 2020a).

Specifically, the paper includes the following contri-
butions. First, we provide a formal definition of the
policy space compression problem (Section 3). We
note that the problem can be formulated equivalently
as a set cover, and that finding an optimal compres-
sion of the policy space is NP-hard in general (Feige,
1998). Despite this negative result, we propose a
game-theoretic reformulation (Section 4) that casts the
problem to the one of reaching a differential Stackel-
berg equilibrium (Fiez et al., 2020) of a two-player se-
quential game, in which the first player tries to cover
the policy space with a finite set of policies and the
second player tries to find a policy that falls outside
this coverage. Then, we present a planning algorithm
(Section 5) to efficiently compute a compression of
the policy space in a given environment, by repeat-

edly solving, with a first-order method, the two-player
game for an increasing number of covering policies,
until the compression requirement is met globally. In
Section 6, we provide a theoretical analysis of the per-
formance guarantees attained by the compressed pol-
icy space in relevant RL tasks, namely policy evalu-
ation and policy optimization. Finally, in Section 7
we provide a brief numerical validation of both the
compression algorithm and RL with the compressed
policy space. The proofs of the theorems can be found
in Appendix A.

2 PRELIMINARIES

In this section, we introduce the essential background
on controlled Markov processes, policy optimization,
importance sampling estimation and Rényi divergence.
Throughout the paper, we will denote a vector v with
a bold typeface, as opposed to a scalar v.

2.1 Controlled Markov Processes

A discrete-time Controlled Markov Process (CMP) is
defined as a tuple M := (S,A, P, µ, γ), in which S is
the state space, A is the action space, P : S × A →
∆(S) is a transition model such that the next state is
drawn as s′ ∼ P (·|s, a) given the current state s ∈ S
and action a ∈ A, µ : ∆(S) is an initial state distribu-
tion such that the initial state is drawn as s ∼ µ(·), and
γ ∈ [0, 1] is the discount factor. The behavior of an
agent interacting with a CMP can be modeled through
a Markovian parametric policy πθ : S → ∆(A) such
that an action is drawn as a ∼ πθ(·|s) given the cur-
rent state s ∈ S, where θ ∈ Θ ⊆ Rm are the pol-
icy parameters, and the set ΠΘ is called the policy
space. A policy πθ induces a γ-discounted state distri-
bution dsπθ

: ∆(S) over the state space of the CMPM,
which is given by dsπθ

(s) = (1− γ)
∑∞
t=1 γ

tPr(st = s)
or the equivalent recursive relation dsπθ

(s) = (1 −
γ)µ(s)−γ

∫
SA d

s
πθ

(s′)πθ(a′|s′)P (s|s′, a′) ds′ da′. Simi-
larly, we define the γ-discounted state-action distribu-
tion dsaπθ

: ∆(S×A) given by dsaπθ
(s, a) = πθ(a|s)dsπθ

(s).
With a slight overloading of notation, we will indiffer-
ently denote the parametric policy space ΠΘ by Θ,
a parametric policy πθ ∈ ΠΘ by θ, and its induced
distributions dsπθ

(s), dsaπθ
(s, a) by dsθ(s), dsaθ (s, a).

2.2 Policy Optimization

The process of looking for the policy that maximizes
the agent’s performance on a given RL task with a
direct search in the policy space is called Policy Op-
timization (PO) (Deisenroth et al., 2013). The task
is generally modeled through a Markov Decision Pro-
cess (MDP) (Puterman, 2014) MR := M ∪ R, i.e.,

Mirco Mutti, Stefano Del Col, Marcello Restelli

the combination of a CMP M and a reward function
R : S × A → [−Rmax,Rmax] such that R(s, a) is the
bounded reward that the agent collects by selecting
action a ∈ A in state s ∈ S, and Rmax < ∞. The
agent’s performance is defined by the expected sum of
discounted rewards collected by its policy, i.e.,

J(θ) := E
s0∼µ(·),at∼πθ(·|st)
st+1∼P (·|st,at)

[∞∑
t=1

γtR(st, at)

]

=
1

(1− γ)
E

(s,a)∼dsaθ

[
R(s, a)

]
,

A Monte-Carlo estimate of the performance can be
computed from a batch of N samples {sn, an}Nn=1

taken with the policy πθ in the γ-discounted MDP
MR as Ĵ(θ) = 1

(1−γ)N

∑N
n=1R(sn, an).

2.3 Importance Sampling and Rényi
Divergence

Importance Sampling (IS) (Cochran, 2007; Owen,
2013) is a common technique to estimate the expec-
tation of a function under a target distribution by
taking samples from a different distribution. In PO,
importance sampling allows for estimating the per-
formance of a target policy πθ′ through a batch of
samples {sn, an}Nn=1 taken with a policy πθ. Espe-
cially, we define the importance weight wθ′/θ(s, a) :=
dsaθ′ (s, a)/dsaθ (s, a). A Monte-Carlo estimate of J(θ′)
via importance sampling is given by

ĴIS(θ′/θ) =
1

(1− γ)N

N∑
n=1

wθ′/θ(sn, an)R(sn, an).

The latter estimator is known to be unbiased,
i.e., Eθ[ĴIS(θ′/θ)] = J(θ′) (Owen, 2013). How-

ever, ĴIS(θ′/θ) might suffer from a large variance
whenever the importance weights wθ′/θ(s, a) have
a large variance. The variance of the importance
weights is related to the exponentiated 2-Rényi di-
vergence D2(dsaθ′ ||dsaθ) (Rényi et al., 1961) through
Var(s,a)∼dsaθ [wθ′/θ(s, a)] = D2(dsaθ′ ||dsaθ) − 1 (Cortes
et al., 2010), where

D2(dsaθ′ ||dsaθ) :=

∫
SA

dsaθ (s, a)

(
dsaθ′ (s, a)

dsaθ (s, a)

)2

dsda.

The latter has been employed in (Metelli et al.,
2018) to upper bound the variance of the impor-

tance sampling estimator as Var(s,a)∼dsaθ [ĴIS(θ′/θ)] ≤(
Rmax

1−γ
)2
D2(dsaθ′ ||dsaθ)/N . In the following, we will refer

to the exponentiated 2-Rényi divergence as the Rényi
divergence.

3 THE POLICY SPACE
COMPRESSION PROBLEM

Let us suppose to have a CMPM the agent can inter-
act with, and a parametric policy space Θ from which
the agent can select its strategy of interaction. For the
common parameterization choices, ranging from lin-
ear policies to deep neural networks, the policy space
Θ is typically infinite. Dealing with such a large pol-
icy space to address the usual RL tasks, e.g., finding
a convenient task-agnostic sampling strategy (Hazan
et al., 2019) or seeking for an optimal policy within
the set (Deisenroth et al., 2013), is often a huge chal-
lenge. Furthermore, many policies in Θ are unneces-
sary for these purposes, as they induce very similar
interactions, and thus they have very similar perfor-
mance. On the one hand, different policy parameters
θ ∈ Θ might induce nearly identical distributions over
actions. On the other hand, even different distribu-
tions over actions can lead to comparable state-action
distributions due to the structure of the environment.
Since we do not have any reward encoded in M, it
would be unwise to deem any state-action distribution
irrelevant without additional information on the task
structure. In this work, we aim to identify a subset
of the policy space Θ′ ⊆ Θ that retains most of the
expressive power of Θ, i.e., the set of the state-action
distributions it can induce, while dramatically reduc-
ing its size, to the advantage of the computational and
sample efficiency of future RL tasks. Especially, we
consider a σ-soft compression of Θ, where for any pol-
icy θ ∈ Θ we would like to have a policy θ′ ∈ Θ′

such that the Rényi divergence between their respec-
tive state-action distributions dsaθ , d

sa
θ′ is bounded by

a positive constant σ. The Rényi divergence is par-
ticularly convenient in this setting due to its relation-
ship with the variance of the importance sampling in
the off-policy estimation (Cortes et al., 2010; Metelli
et al., 2018). The following statement provides a more
formal definition of this σ-soft compression.

Definition 3.1 (σ-compression). Let M be a CMP,
let Θ be a parametric policy space forM, and let σ > 0
be a constant. We call Θσ a σ-compression of Θ inM
if it holds that |Θσ| <∞ and

∀θ ∈ Θ, min
θ′∈Θσ

D2(dsaθ ||dsaθ′) ≤ σ.

We call the task of finding a σ-compression of Θ in
M the policy space compression problem. Notably,
for some M,Θ, σ, a σ-compression of Θ in M might
not exist, as infinitely many policies θ ∈ Θ might
induce relevant state-action distributions. However,
we note that those scenarios are not interesting for
our purposes, as the PO problem would be far-fetched
as well, since one should try infinitely many policies

Reward-Free Policy Space Compression for Reinforcement Learning

to find an optimal policy. Instead, we only consider
scenarios in which the σ-compression is feasible. In
these cases, given M and Θ, we would like to extract
the smallest set of policies Θ′ that is a σ-compression
of Θ in M, and then keep this reduced policy space
to address any RL task one can define over M. Let
ΩΘ := {dsaθ | ∀θ ∈ Θ} be the set of state-action distri-
butions induced by the policy space Θ, the compres-
sion problem can be formulated as a typical set cover
problem, i.e.,

minimize
∑
ω∈ΩΘ

xω

subject to
∑

ω:D2(υ||ω)≤σ
xω ≥ 1, ∀υ ∈ ΩΘ

xω ∈ {0, 1}, ∀ω ∈ ΩΘ

(1)

where the positive integers xω denote the state-action
distributions that are active in the covering, and the
corresponding σ-compression of Θ in M can be re-
trieved as Θσ = {θ ∈ Θ | dsaθ = ω ∧ xω = 1}.
Unfortunately, the problem (1) is known to be NP-
hard (Feige, 1998), even when the model ofM is fully
available. Two aspects arguably make this problem ex-
tremely hard: On the one hand, we are looking for an
efficient solution in the number of active state-action
distributions, secondly, we are covering the set ΩΘ all
at once rather than incrementally. Instead of consider-
ing common relaxations of (1) (Johnson, 1974; Lovász,
1975), which would not strictly meet the requirements
of Definition 3.1 (Feige, 1998), in the next section we
build on these insights to reformulate the policy space
compression problem in a tractable way.

4 A GAME THEORETIC
REFORMULATION

Due to its inherent hardness, we aim to find a tractable
reformulation of the policy space compression prob-
lem (1) whose solution is a valid σ-compression of Θ
in M. Let us consider a game-theoretic perspective
to the set cover problem. A first player distributes a
set of K policies (θ1, . . . ,θK) ∈ ΘK with the inten-
tion of covering the set of state-action distributions
ΩΘ. A second player tries to find a policy µ ∈ Θ
that is not well covered by (θ1, . . . ,θK), i.e., a pol-
icy that maximizes the Rényi divergence between its
state-action distribution and the one of the closest
θk ∈ (θ1, . . . ,θK). The former player moves first, and
we call it a leader. The latter player makes his move
in response to the other player, and it is then called
a follower. The two-player, zero-sum, sequential game
that we have informally described can be represented

as the optimization problem

min
θ∈ΘK

max
µ∈Θ

f(θ,µ), (2)

f(θ,µ) := min
k∈[K]

D2(dsaµ ||dsaθk),

where θ = (θ1, . . . ,θK) and [K] = {1, . . . ,K}. It
is straightforward to see that if the σ-compression
is feasible for Θ in M and K is large enough, then
any optimal leader’s strategy for the game (2), i.e.,
θ∗ ∈ arg minθ∈ΘK maxµ∈Θ f(θ,µ), is a σ-compression
of Θ in M. Unfortunately, f(θ,µ) is a non-convex
non-concave function, and finding a globally optimal
strategy for the game (2) is still a NP-hard problem.
However, we do not actually need to find a globally op-
timal strategy for the leader, as any θ ∈ ΘK such that
minµ∈Θ f(θ,µ) ≤ σ would be a valid σ-compression
of Θ. Thus, we might instead target a locally optimal
strategy for (2), which is a stationary point of f that
is both a local maximum w.r.t. θ and a local minimum
w.r.t. µ. We formalize this solution concept as a Dif-
ferential Stackelberg Equilibrium (DSE) (Fiez et al.,
2020).

Definition 4.1 (Differential Stackelberg (Fiez et al.,
2020)). The joint strategy (θ∗,µ∗) ∈ ΘK+1 in
which θ∗k ∈ arg mink∈[K](d

sa
µ∗ ||dsaθ∗k) is a differ-

ential Stackelberg equilibrium of the game (2)
if it holds ∇θ∗kf(θ∗,µ∗) = 0,∇µ∗f(θ∗,µ∗) =

0, |∇θ∗k∇
>
θ∗k
f(θ∗,µ∗)| > 0, and |∇µ∗∇>µ∗f(θ∗,µ∗)| <

0. 1

Luckily, several recent works have established a favor-
able complexity for the problem of finding a DSE (Jin
et al., 2020b; Fiez et al., 2020; Fiez and Ratliff, 2020)
in a sequential game. Especially, Jin et al. (2020b)
showed that a basic first-order method, i.e., Gradient
Descent Ascent (GDA), with an infinite time-scale sep-
aration between the leader’s and follower’s updates is
guaranteed to converge to a DSE under mild condi-
tions. This result might be surprising, as we started
with a fundamentally hard problem (1) and ended up
with a way easier formulation (2) that we can ad-
dress with a common methodology, without making
any strong assumption on the structure of the problem.
However, we still have to deal with two crucial issues
to solve the policy space compression problem through
the game-theoretic formulation. On the one hand, it is
not enough to look at the value f(θ∗,µ∗) attained by
a DSE (θ∗,µ∗) to guarantee that θ is a σ-compression
of Θ, as we should check that maxµ∈Θ f(θ∗,µ) ≤ σ,
where µ is a global maximizer. On the other hand,
it is not clear how to set a convenient value of K be-
forehand. In the next section, we present a first-order

1Let f(x) be a function of x ∈ Rm, we denote its gra-
dient vector as ∇xf(x), its Hessian matrix as ∇x∇>

x f(x),
and the determinant of its Hessian matrix as |∇x∇>

x f(x)|.

Mirco Mutti, Stefano Del Col, Marcello Restelli

method that addresses these two issues by finding a
DSE of iteratively larger instances of the game (2)
(which we will henceforth call the cover game) until
a conservative approximation of the global condition
maxµ∈Θ f(θ∗,µ) ≤ σ is finally met.

5 A PLANNING ALGORITHM TO
SOLVE THE PROBLEM

Optimization problems of the kind of (2) are typically
addressed with a GDA procedure, in which the leader’s
parameters (θ) and the follower’s parameters (µ) are
updated iteratively according to

θ ← θ − α∇θf(θ,µ), µ← µ+ β∇µf(θ,µ),

where ∇θf(θ,µ) and ∇µf(θ,µ) are the respective
gradients of the joint objective function, α > 0 and
β > 0 are learning rates. Especially, if we con-
sider a sufficiently large time-scale separation τ :=
β/α, we are guaranteed to converge to a DSE of the
game (2) (Jin et al., 2020b; Fiez and Ratliff, 2020).
In this case, we can consider τ = ∞, which means
that we update the follower’s parameters until a sta-
tionary point is reached, i.e., ∇µf(θ,µ) = 0, be-
fore updating the leader’s parameters. However, to
instantiate the cover game, we still need to spec-
ify the number K of leader-controlled policies θ =
(θ1, . . . ,θK). A straightforward solution is to start
with a small number of policies first, say K = 1, then
retrieve a DSE (θ∗,µ∗) via GDA for a cover-game in-
stance with K policies, and finally check if the result-
ing leader’s strategy θ∗ meets the global requirement
maxµ∈Θ f(θ∗,µ) ≤ σ. If the answer is positive, the
policy space compression problem is solved, and θ∗

is a σ-compression of Θ in M. Otherwise, we incre-
ment K and we repeat the process to see if we can
solve the problem with more policies in θ. If the pol-
icy space compression problem is feasible, with this
simple procedure we are guaranteed to get a valid σ-
compression eventually. We call this method the Pol-
icy Space Compression Algorithm (PSCA) and we re-
port the pseudocode in Algorithm 1. In the following
sections, we describe in details how the optimization of
the follower’s parameters (Section 5.1) and the leader’s
parameters (Section 5.2) are carried out in an adapta-
tion of the GDA method to the specific setting of the
cover game. In Section 5.3, we discuss how to verify
the global requirement maxµ∈Θ f(θ∗,µ) ≤ σ without
actually having to find a globally optimal follower’s
strategy, but instead optimizing a surrogate objective
through a tractable linear program.

Algorithm 1 PSCA

Input: CMP M, policy space Θ, constant σ
initialize K = 0 and the cover guarantee Zθ =∞
while (Zθ)2 > σ do
K ← K + 1
initialize the leader θ = (θ1, . . . ,θK) ∈ ΘK

for epoch = 1, 2, . . . , until convergence do
compute the best response µbr to θ
identify the active leader’s component θk
update the leader θk ← θk − α∇θkf(θ,µbr)

end for
compute the cover guarantee Zθ with (6)

end while
Output: return θ, a σ-compression of Θ in M

5.1 Optimizing the Follower’s Parameters

In principle, we would like to compute the gradient
∇µf(θ,µ) to perform the update µ← µ+β∇µf(θ,µ)
as in a common GDA procedure. Unfortunately, the
objective function f(θ,µ) = mink∈[K]D2(dsaµ ||dsaθk) is
not differentiable due to the minimum over the K com-
ponents of θ. However, only the leader’s component θk
that attains the minimum of f is actually relevant for
the follower’s update, as the other K − 1 components
do not affect the value of the objective. Thus, we call
θk ∈ arg minθi∈θD2(dsaµ ||dsaθk) the active leader’s com-
ponent. Conveniently, we can update the follower’s
parameters w.r.t. the gradient ∇µf(θk,µ), which is
differentiable w.r.t. µ. The following proposition pro-
vides the formula for this gradient.

Proposition 5.1 (Follower’s Gradient). Let (θ,µ) ∈
ΘK , the gradient of f(θ,µ) w.r.t. µ is given by

∇µf(θ,µ) =

2 E
(s,a)∼dsaθk

[(
dsaµ (s, a)

dsaθk(s, a)

)2

∇µ log dsaµ (s, a)

]
, (3)

where θk is the active leader’s component such that
θk ∈ arg minθi∈θD2(dsaµ ||dsaθi).

To perform a full optimization of the follower’s pa-
rameters, we just need to repeatedly apply the gradi-
ent ascent update with the gradient ∇µf(θ,µ) com-
puted as in (3). Under mild conditions on the learn-
ing rate (Robbins and Monro, 1951), this process is
guaranteed to converge to a stationary point such that
∇µf(θ,µ) = 0. We call the follower’s parameters µ at
this stationary point the best response to the leader’s
parameter θ, and we denote it as µbr.

5.2 Optimizing the Leader’s Parameters

Whenever the follower converges at the best response
µbr to the current leader’s parameters, we would like

Reward-Free Policy Space Compression for Reinforcement Learning

to make an update to θ in the direction of the gra-
dient ∇θf(θ,µ), i.e., θ ← θ − α∇θf(θ,µ). Just as
before, we can pre-compute the active leader’s com-
ponent θk ∈ arg minθi∈θD2(dsaµ ||dsaθi) to make an up-
date to θk in the direction of the gradient∇θkf(θk,µ),
which is differentiable in θk. Indeed, an update to any
other leader’s component would not have a meaningful
impact on the value of the objective, whereas updating
θk with a sufficiently small learning rate α is guaran-
teed to decrease f(θ,µ), possibly forcing the follower
to change its best response in the next epoch. The
following proposition provides the formula for the gra-
dient.

Proposition 5.2 (Leader’s Gradient). Let (θ,µ) ∈
ΘK , the gradient of f(θ,µ) w.r.t. θk is given by

∇θkf(θ,µ) =

− E
(s,a)∼dsaθk

[(
dsaµ (s, a)

dsaθk(s, a)

)2

∇θk log dsaθk(s, a)

]
. (4)

5.3 Assessing the Global Value of the
Leader’s Parameters

The last missing piece of the PSCA algorithm requires
verifying that the leader’s strategy in the DSE (θ∗,µ∗)
obtained from the GDA procedure is actually a σ-
compression of Θ inM. In principle, we should verify
that mink∈[K]D2(θ∗k,µ) ≤ σ for any µ ∈ Θ, which is
equivalent to controlling if maxµ∈Θ f(θ∗,µ) ≤ σ. Un-
fortunately, the follower’s strategy µ∗ is only locally
optimal. Thus, checking f(θ∗,µ∗) ≤ σ is not suffi-
cient, as the globally optimal follower’s strategy might
attain a greater value of f than µ∗. Instead, we should
check Zθ∗ ≤ σ, where Zθ∗ is given by

Zθ∗ = max
ω∈ΩΘ

min
k∈[K]

∫
SA

(
ω(s, a)

)2
dsaθ∗k

(s, a)
dsda, (5)

which can be written as a quadratically constrained
quadratic program (see Appendix B.1). It might come
as no surprise that solving this problem is NP-hard.
Indeed, this is equivalent to the problem (2) with a
fixed leader’s strategy θ∗, but the objective f(θ∗,µ) is
still non-concave w.r.t. µ. Luckily, we can reformulate
this NP-hard problem in the surrogate linear program
(see Appendix B.2):

(
Zθ∗

)− 1
2 = max

ω∈ΩΘ

min
k∈[K]

∫
SA

ω(s, a)(
dsaθ∗k

(s, a)
)− 1

2

dsda, (6)

where the value Zθ∗ is a conservative approximation
of Zθ∗ , as stated in the following theorem.

Theorem 5.3. The value Zθ∗ is an upper bound to
the value Zθ∗ , i.e., Zθ∗ ≥ Zθ∗ ,∀θ∗ ∈ ΘK .

6 GUARANTEES OF RL WITH A
COMPRESSED POLICY SPACE

In the previous sections, we have motivated the pursuit
of a compression Θσ of the original policy space Θ in
the CMPM as a way to improve the computation and
sample efficiency of solving RL tasks defined uponM.
Since this compression procedure induces a loss, albeit
bounded, in the expressive power of the policy space, it
is worth investigating the performance guarantees that
we have when addressing RL tasks with Θσ. We first
analyze policy evaluation (Section 6.1) and then policy
optimization (Section 6.2). The reported theoretical
results mostly combine techniques from (Metelli et al.,
2018; Papini et al., 2019).

6.1 Policy Evaluation

In policy evaluation (Sutton and Barto, 2018), we aim
to estimate the performance J(θ) of a target policy
θ ∈ Θ through sampled interactions with an MDP
MR. In our case, we can only draw samples with the
policies in Θσ, and we have to provide an off-policy
estimate of J(θ) via importance sampling. Since for
any target policy θ we are guaranteed to have a sam-
pling policy θ′ ∈ Θσ such that D2(dsaθ ||dsaθ′) ≤ σ, by
choosing a convenient sampling policy in Θσ, we can
enjoy the following guarantee on the error we make
when evaluating any target policy θ ∈ Θ in any MDP
MR one can build upon M.

Theorem 6.1 (Policy Evaluation Error). Let Θσ be a
σ-compression of Θ in M, let R be a reward function
for M uniformly bounded by Rmax, let θ ∈ Θ be a
target policy, and let δ ∈ (0, 1) be a confidence. There
exists θ′ ∈ Θσ such that, given N i.i.d. samples from
dsaθ′ ,

2 the error of the importance sampling evaluation
of J(θ) in MR, i.e.,

ĴIS(θ/θ′) =
1

(1− γ)N

N∑
n=1

wθ/θ′(sn, an)R(sn, an),

is upper bounded with probability at least 1− δ as

|J(θ)− ĴIS(θ/θ′)| ≤ Rmax

1− γ

√
σ

δN
.

Notably, given a budget of samples N , a confidence δ,
and a requirement on the evaluation error beforehand,
we could select a proper σ to build a σ-compression
that meets the requirement in any policy evaluation

2One can generate a sample from dsaθ′ by drawing s0 ∼ µ
and then following the policy θ′. At each step t, the state
st and action at are accepted with probability γ, whereas
the simulation ends with probability 1 − γ (Metelli et al.,
2021b).

Mirco Mutti, Stefano Del Col, Marcello Restelli

task. However, choosing a sampling policy θ′ ∈ Θσ

that is best suited for a given task might be non-trivial.
Thus, one can instead take a batch of Nk samples with
each policy in Θσ, and then perform the policy evalua-
tion via Multiple Importance Sampling (MIS) (Owen,
2013; Papini et al., 2019).

Corollary 6.2. Let Θσ be a σ-compression of Θ in
M such that |Θσ| = K, let R be a reward function for
M uniformly bounded by Rmax, let θ ∈ Θ be a target
policy, and let δ ∈ (0, 1) be a confidence. Given Nk
i.i.d. samples from each dsaθk , θk ∈ Θσ, the error of
the multiple importance sampling evaluation of J(θ)
in MR, i.e.,

ĴMIS(θ/θ1, . . . ,θK) =

1

(1− γ)

K∑
k=1

Nk∑
n=1

dsaθ (sn,k, an,k)∑K
j=1Njd

sa
θj

(sn,k, an,k)
R(sn,k, an,k),

is upper bounded with probability at least 1− δ as

|J(θ)− ĴMIS(θ/θ1, . . . ,θK)| ≤ Rmax

1− γ

√
D2(dsaθ ||Φ)

δN

where N =
∑K
k=1Nk is the total number of samples

and Φ =
∑K
k=1

Nk
N dsaθk is a finite mixture.

Thanks to the result in (Metelli et al., 2020, Theorem
1), in tabular MDPs the evaluation error of the MIS
estimator is guaranteed to be lower than the one of
the IS estimator of Theorem 6.1 (as long as Nk ≥ N ,
where N is the number of samples considered by the
IS estimator).

6.2 Policy Optimization

In policy optimization (see Section 2.2), we seek for
the policy θ that maximizes J(θ) within a paramet-
ric policy space. In principle, we could look for the
policy that maximizes the performance within the σ-
compression Θσ, which can be found efficiently with
the OPTIMIST algorithm (Papini et al., 2019). Espe-
cially, in this setting OPTIMIST yields constant regret
for tabular MDPs (Metelli et al., 2021a), as the set Θσ

is finite and it is composed of stochastic policies such
that ∀θ,θ′ ∈ Θσ, D2(dsaθ ||dsaθ′) <∞. However, this op-
timal policy within Θσ might be sub-optimal w.r.t. the
optimal policy within the original policy space Θ. We
can still upper bound this sub-optimality, as reported
in the following theorem.

Theorem 6.3 (Policy Optimization in Θσ). Let Θσ

be a σ-compression of Θ in M, and let R be a reward
function for M uniformly bounded by Rmax. The pol-
icy θ∗σ ∈ arg maxθ∈Θσ J(θ) is ε-optimal for the MDP
MR, where

ε := |max
θ∈Θ

J(θ)− J(θ∗σ)| ≤ Rmax

1− γ
√

log σ.

Notably, the latter guarantee does not involve any es-
timation, and the policy θ∗ can be obtained in a finite
number of interactions. Nonetheless, one can shrink
the sub-optimality ε, and without deteriorating the
sample complexity, by coupling the OPTIMIST algo-
rithm with an additional offline optimization proce-
dure. The idea is to return the policy θ ∈ Θ that max-
imizes the importance sampling evaluation obtained
with the samples from the policies in Θσ.

Theorem 6.4 (Off-Policy Optimization in Θ). Let Θσ

be a σ-compression of Θ in M such that |Θσ| = K,
let R be a reward function for M uniformly bounded
by Rmax, and let δ ∈ (0, 1) be a confidence. Given Nk
samples from each dsaθk , θk ∈ Θσ, we can recover an

ε-optimal policy for MR as

(
, θ∗IS

)
∈ arg max
θk∈Θσ,θ∈Θ:D2(dsaθ ||dsaθk)

1

(1− γ)Nk

Nk∑
n=1

wθ/θk(sn, an)R(sn, an), (7)

such that with probability at least 1− δ

ε :=
∣∣max
θ∈Θ

J(θ)− J(θ∗IS)
∣∣ ≤ Rmax

1− γ
√

2σ/Nkδ.

Although, contrary to the guarantee in Theorem 6.3,
ε vanishes with the number of samples in the latter
result, solving the offline problem (7) is non-trivial in
general, as the policy space Θ is often infinite.

7 NUMERICAL VALIDATION

In this section, we provide a brief numerical validation
of the policy space compression problem (Section 7.1)
and how it benefits RL (Section 7.2, 7.3). To the pur-
pose of the analysis, we consider the River Swim do-
main (Strehl and Littman, 2008), in which an agent
navigates a chain of six states by taking one of two ac-
tions: either swim up, to move upstream towards the
upper states, or swim down, to go downstream back to
the lower states. Swimming upstream is harder than
swimming downstream, thus the action swim up fails
with a positive probability, such that only a sequence
of swim up is likely to lead to the final state (an il-
lustration of the corresponding CMP is reported in
Figure 1a). In Appendix C, we report further details
on the experimental settings, along with some addi-
tional results in a Grid World environment. We leave
as future work a more extensive experimental evalua-
tion of the policy space compression problem beyond
toy domains.

Reward-Free Policy Space Compression for Reinforcement Learning

0 1 2 3 4 5 0.3

0.3
0.7

0.3

0.1

0.6
0.3

0.1

0.6
0.3

0.1

0.6
0.3

0.1

0.6

0.7

(a) River Swim

1 2 3
0

20

40

60

number of policies

Z
Z
σ

0 100 200

0

100

200

300

iteration

Z
Z
σ

(b) Policy Space Compression

0 50 100

0

20

40

60

iteration

J(θ)

OPTIM. (Θσ)
OPTIM. (Θ3)
OPTIM (Θ20)

(c) Policy Optimization

θ θ1 θ2 θ3 θU
0

5

10

ĴIS(θ)

θ1 θ2 θ3 θU
0

10

20

ĴIS(θ)

(d) IS Policy Evaluation

Θσ Θ3

0

10

20

ĴMIS(θ)

Θσ Θ3

0

10

25

ĴMIS(θ)

(e) MIS Policy Evaluation

Figure 1: Set of experiments in the River Swim domain, which is illustrated in (a). (b) The value of the
compression guarantee Z, its upper bound Z, and the requirement σ as a function of the number of policies K
(left) and as a function of the iterations with K = 1 (right) obtained with PSCA. (c) The average return J(θ)
obtained by OPTIMIST with the σ-compression Θσ (3 policies), a 3-policies discretization Θ3, and a 20-policies
discretization Θ20 (95% c.i. over 50 runs). (d,e) IS and MIS evaluation of J(θ) by taking samples with θ,
θk ∈ Θσ, a uniform policy θU , the mixture Θσ, or a mixture of 3 random policies Θ3. We provide both the
empirical (left, 95% c.i. over 50 runs) and the hindsight (right) values.

7.1 Policy Space Compression

In the River Swim, we consider the policy space
Θ ⊆ R|S|×(|A|−1) of the softmax policies πθ(a|s) =
exp(θsa)/

∑
j∈A exp(θsj), and we seek for a compres-

sion Θσ with the requirement σ = 10, such that Θσ is
a valid σ-compression if minθ∈Θσ maxµ∈Θ f(θ,µ) ≤
10. In Figure 1b, we report the values of Z =
maxµ∈Θ f(θ,µ) (5) and its upper bound Z ≥ Z (6).
Especially, we can see that PSCA effectively found a
valid σ-compression Θσ of just K = 3 policies (Fig-
ure 1b, left), and that the values of Z and Z smoothly
decreases during the GDA procedure for a fixed num-
ber of policies (Figure 1b, right). Notably, K = 2 poli-
cies are actually sufficient to meet the σ requirement in
this setting. However, PSCA cannot access Z but its
conservative approximation Z, and thus stops when-
ever Z ≤ σ. In Appendix C, we report an illustration
of the obtained policies θk ∈ Θσ. This set coarsely
includes two policies that swims up most of the time,
either mixing the actions when the rightmost state is
reached (θ1) or swimming up there as well (θ2), and
a policy that swims down in the leftmost state and
swims up in the others (θ3).

7.2 Policy Evaluation with a Compressed
Policy Space

We now show that the obtained σ-compression Θσ can
be employed with benefit in the most challenging pol-
icy evaluation task one can define in the River Swim,
which is the off-policy evaluation of an ε-greedy pol-
icy θ for the reward function that assigns Rmax = 100
for taking the action swim up in the rightmost state.
In Figure 1d, we show that sampling with the policies
θ1,θ2 ∈ Θσ lead to an IS off-policy evaluation that is
comparable to the exact J(θ) (dashed line) and its on-
policy estimate (θ). Instead, the policy θ3 and a uni-
form policy θU lead to significantly worse evaluations,
as they collect too many samples in the leftmost state.
Even by sampling from a uniform mixture of the poli-
cies in Θσ, the performance of the MIS evaluation is
significantly better than the one obtained by a uniform
mixture of three random policies (Θ3), as reported in
Figure 1e. For both the IS and the MIS regime, we
provide the empirical evaluations (on the left) and the
hindsight evaluations (right) obtained with the exact
values of the importance weights wθ/θ′ and the confi-
dence bounds of the Theorem 6.1, 6.2 respectively.

Mirco Mutti, Stefano Del Col, Marcello Restelli

7.3 Policy Optimization with a Compressed
Policy Space

Finally, we show that the compression Θσ allows for
efficient policy optimization. We consider the same
reward function of the previous section, and the OP-
TIMIST (Papini et al., 2019) algorithm equipped with
Θσ, or a uniform discretization of the original policy
space Θ with either three policies (Θ3) or twenty poli-
cies (Θ20). In Figure 1c, we show that OPTIMIST
with Θσ swiftly converges (less than five iterations) to
the optimal policy within the space. Instead, the pol-
icy space Θ3 leads to a huge sub-optimality in the final
performance, and OPTIMIST with Θ20 is way slower
to converge to the optimal policy within the space.
These results are a testament of the ability of PSCA
to incorporate the peculiar structure of the domain in
a small set of representative policies Θσ, and to allows
for a remarkable balance between sample efficiency and
sub-optimality in subsequent policy optimization.

8 DISCUSSION AND
CONCLUSION

In this paper, we considered the problem of compress-
ing an infinite parametric policy space into a finite
set of representative policies for a given environment.
First, we provided a formal definition of the prob-
lem, and we highlighted its inherent hardness. Then,
we proposed a tractable game-theoretic reformulation,
for which a locally optimal solution can be efficiently
found through an iterative GDA procedure. Finally,
we provided a theoretical characterization of the guar-
antees that the compression brings to subsequent RL
tasks, and a numerical validation of the approach.

8.1 Related Works

Previous works (Gregor et al., 2016; Eysenbach et al.,
2018; Achiam et al., 2018; Hansen et al., 2019) have
considered heuristic methods to extract a convenient
set of policies from the policy space, but they lack the
formalization and the theoretical guarantees that we
provided. Especially, Eysenbach et al. (2021) argue
that the set of policies learned by those methods can-
not be used to solve all the relevant policy optimization
tasks. Those policies should be generally intended as
effective initializations for subsequent adaptation pro-
cedures, operating in the original policy space once the
task is revealed, rather than a minimal set of sufficient
policies. To the best of our knowledge, the only other
work considering a formal criterion to operate a selec-
tion of the policies is (Zahavy et al., 2021). Having
some similarieties, our work and (Zahavy et al., 2021)
still differ for some crucial aspects. Whereas they look

for a set of policies that maximizes the performance
under the worst-case reward, we look for a set of poli-
cies that guarantees ε-optimality for any task. They do
not consider the parameterization of the policy space
as an additional source of structure, and thus they
do not fully exploit the interplay between the policy
space and the environment as we do. Their problem
formulation is multi-task, as they restrict the class of
rewards to linear combinations of a feature vector, our
formulation is instead fully reward-free. Overall, our
policy space compression problem is more general, as
it is solving the problem in (Zahavy et al., 2021) as
a by-product. However, their problem might be eas-
ier in nature,3 and thus preferable if one only cares
about the worst-case performance. Finally, Eysenbach
et al. (2021) provide interesting insights on the infor-
mation geometry of the space of the state distributions
induced by a policy in a CMP, which can lead to com-
pelling geometric interpretations of our policy space
compression problem.

8.2 Limitations and Future Directions

The main limitation of our work is that the proposed
algorithm is assuming full knowledge of the environ-
ment, which is uncommon in RL literature. However,
we believe that PSCA is providing a clear blueprint
for future works that might target the compression
problem from interactions with an unknown environ-
ment, to pave the way for scalable policy space com-
pression. Especially, such an extension would require
sample-based estimates of the gradients (3), (4), and
the global guarantee (6). Whereas estimating the gra-
dients of state-action distributions is not an easy feat,
previous works provide useful inspiration (Morimura
et al., 2010; Schroecker and Isbell, 2017; Schroecker
et al., 2018). Similarly, sample-based estimates of (6)
can take inspiration from approximate linear program-
ming methods for MDPs (De Farias and Van Roy,
2003; Pazis and Parr, 2011). Another potential limita-
tion of the proposed approach is the memory complex-
ity required to store the compression, in contrast to
the compact representations of common policy spaces,
such as a small set of basis functions or a neural net-
work architecture. A future work might focus on com-
pact representations for a given compression. Other
interesting future directions include an extension of the
policy space compression problem to the parameter-
based perspective (Sehnke et al., 2008; Metelli et al.,
2018; Papini et al., 2019), and the development of pol-
icy optimization algorithms that are tailored to exploit
a compression of the policy space.

3This is purely speculative as (Zahavy et al., 2021) does
not provide a formal study of the computational complex-
ity of the problem.

Reward-Free Policy Space Compression for Reinforcement Learning

References

Achiam, J., Edwards, H., Amodei, D., and Abbeel,
P. (2018). Variational option discovery algorithms.
arXiv preprint arXiv:1807.10299.

Cai, Q., Yang, Z., Jin, C., and Wang, Z. (2020). Prov-
ably efficient exploration in policy optimization. In
Proceedings of the International Conference on Ma-
chine Learning.

Cochran, W. G. (2007). Sampling techniques. John
Wiley & Sons.

Cortes, C., Mansour, Y., and Mohri, M. (2010). Learn-
ing bounds for importance weighting. In Advances
in Neural Information Processing Systems.

De Farias, D. P. and Van Roy, B. (2003). The lin-
ear programming approach to approximate dynamic
programming. Operations research, 51(6):850–865.

Deisenroth, M. P., Neumann, G., Peters, J., et al.
(2013). A survey on policy search for robotics. Foun-
dations and trends in Robotics, 2(1-2):388–403.

Eysenbach, B., Gupta, A., Ibarz, J., and Levine, S.
(2018). Diversity is all you need: Learning skills
without a reward function. In International Confer-
ence on Learning Representations.

Eysenbach, B., Salakhutdinov, R., and Levine, S.
(2021). The information geometry of unsu-
pervised reinforcement learning. arXiv preprint
arXiv:2110.02719.

Feige, U. (1998). A threshold of ln n for approximating
set cover. Journal of the ACM (JACM).

Fiez, T., Chasnov, B., and Ratliff, L. (2020). Implicit
learning dynamics in stackelberg games: Equilibria
characterization, convergence analysis, and empiri-
cal study. In Proceedings of the International Con-
ference on Machine Learning.

Fiez, T. and Ratliff, L. J. (2020). Local conver-
gence analysis of gradient descent ascent with finite
timescale separation. In International Conference
on Learning Representations.

Gregor, K., Rezende, D. J., and Wierstra, D.
(2016). Variational intrinsic control. arXiv preprint
arXiv:1611.07507.

Hansen, S., Dabney, W., Barreto, A., Warde-Farley,
D., Van de Wiele, T., and Mnih, V. (2019). Fast
task inference with variational intrinsic successor
features. In International Conference on Learning
Representations.

Hazan, E., Kakade, S., Singh, K., and Van Soest, A.
(2019). Provably efficient maximum entropy explo-
ration. In Proceedings of the International Confer-
ence on Machine Learning.

Jin, C., Krishnamurthy, A., Simchowitz, M., and Yu,
T. (2020a). Reward-free exploration for reinforce-
ment learning. In Proceedings of the International
Conference on Machine Learning.

Jin, C., Netrapalli, P., and Jordan, M. (2020b). What
is local optimality in nonconvex-nonconcave mini-
max optimization? In Proceedings of the Interna-
tional Conference on Machine Learning.

Johnson, D. S. (1974). Approximation algorithms for
combinatorial problems. Journal of computer and
system sciences.

Lovász, L. (1975). On the ratio of optimal integral and
fractional covers. Discrete mathematics.

Metelli, A. M., Papini, M., D’Oro, P., and Restelli,
M. (2021a). Policy optimization as online learning
with mediator feedback. In Proceedings of the AAAI
Conference on Artificial Intelligence.

Metelli, A. M., Papini, M., Faccio, F., and Restelli,
M. (2018). Policy optimization via importance sam-
pling. Advances in Neural Information Processing
Systems.

Metelli, A. M., Papini, M., Montali, N., and Restelli,
M. (2020). Importance sampling techniques for pol-
icy optimization. Journal of Machine Learning Re-
search, 21(141):1–75.

Metelli, A. M., Pirotta, M., Calandriello, D., and
Restelli, M. (2021b). Safe policy iteration: A mono-
tonically improving approximate policy iteration ap-
proach. Journal of Machine Learning Research,
22(97):1–83.

Morimura, T., Uchibe, E., Yoshimoto, J., Peters, J.,
and Doya, K. (2010). Derivatives of logarithmic sta-
tionary distributions for policy gradient reinforce-
ment learning. Neural computation.

Owen, A. B. (2013). Monte Carlo theory, methods and
examples.

Papini, M., Metelli, A. M., Lupo, L., and Restelli, M.
(2019). Optimistic policy optimization via multiple
importance sampling. In Proceedings of the Inter-
national Conference on Machine Learning.

Paulin, D. (2015). Concentration inequalities for
markov chains by marton couplings and spectral
methods. Electronic Journal of Probability, 20:1–32.

Pazis, J. and Parr, R. (2011). Non-parametric approx-
imate linear programming for mdps. In Proceedings
of the AAAI Conference on Artificial Intelligence.

Puterman, M. L. (2014). Markov decision processes:
discrete stochastic dynamic programming. John Wi-
ley & Sons.

Rényi, A. et al. (1961). On measures of entropy and
information. In Proceedings of the Fourth Berkeley

Mirco Mutti, Stefano Del Col, Marcello Restelli

Symposium on Mathematical Statistics and Proba-
bility, Volume 1: Contributions to the Theory of
Statistics. The Regents of the University of Califor-
nia.

Robbins, H. and Monro, S. (1951). A stochastic ap-
proximation method. The annals of mathematical
statistics.

Schroecker, Y. and Isbell, C. L. (2017). State aware
imitation learning. In Advances in Neural Informa-
tion Processing Systems.

Schroecker, Y., Vecerik, M., and Scholz, J. (2018).
Generative predecessor models for sample-efficient
imitation learning. In International Conference on
Learning Representations.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and
Moritz, P. (2015). Trust region policy optimization.
In Proceedings of the International Conference on
Machine Learning.

Sehnke, F., Osendorfer, C., Rückstieß, T., Graves,
A., Peters, J., and Schmidhuber, J. (2008). Pol-
icy gradients with parameter-based exploration for
control. In International Conference on Artificial
Neural Networks.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra,
D., and Riedmiller, M. (2014). Deterministic policy
gradient algorithms. In Proceedings of the Interna-
tional Conference on Machine Learning.

Sobel, M. J. (1982). The variance of discounted
markov decision processes. Journal of Applied Prob-
ability.

Strehl, A. L. and Littman, M. L. (2008). An analysis
of model-based interval estimation for markov de-
cision processes. Journal of Computer and System
Sciences.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement
learning: An introduction. MIT press.

Sutton, R. S., McAllester, D. A., Singh, S. P., Man-
sour, Y., et al. (1999). Policy gradient methods for
reinforcement learning with function approximation.
In Advances in Neural Information Processing Sys-
tems.

Xie, T., Ma, Y., and Wang, Y.-X. (2019). Towards op-
timal off-policy evaluation for reinforcement learn-
ing with marginalized importance sampling. In Ad-
vances in Neural Information Processing Systems.

Zahavy, T., Barreto, A., Mankowitz, D. J., Hou, S.,
O’Donoghue, B., Kemaev, I., and Singh, S. (2021).
Discovering a set of policies for the worst case re-
ward. In International Conference on Learning Rep-
resentations.

Reward-Free Policy Space Compression for Reinforcement Learning

A Proofs

A.1 Proofs of Section 5

Proposition 5.1 (Follower’s Gradient). Let (θ,µ) ∈ ΘK , the gradient of f(θ,µ) w.r.t. µ is given by

∇µf(θ,µ) =

2 E
(s,a)∼dsaθk

[(
dsaµ (s, a)

dsaθk(s, a)

)2

∇µ log dsaµ (s, a)

]
, (3)

where θk is the active leader’s component such that θk ∈ arg minθi∈θD2(dsaµ ||dsaθi).

Proof. Let θk be the active leader’s component, i.e., θk ∈ arg minθi∈θD2(dsaµ ||dsaθi). We can compute the gradient
of the objective f(θ,µ) w.r.t. µ as

∇µf(θ,µ) = ∇µD2(dsaµ ||dsaθk)

= ∇µ
∫
SA

dsaθk(s, a)

(
dsaµ (s, a)

dsaθk(s, a)

)2

dsda

= 2

∫
SA

dsaθk(s, a)

(
dsaµ (s, a)

dsaθk(s, a)

)2

∇µ log dsaµ (s, a) dsda.

Proposition 5.2 (Leader’s Gradient). Let (θ,µ) ∈ ΘK , the gradient of f(θ,µ) w.r.t. θk is given by

∇θkf(θ,µ) =

− E
(s,a)∼dsaθk

[(
dsaµ (s, a)

dsaθk(s, a)

)2

∇θk log dsaθk(s, a)

]
. (4)

Proof. We can compute the gradient of the objective f(θ,µ) w.r.t. θk ∈ θ as

∇θkf(θ,µ) = ∇θkD2(dsaµ ||dsaθk)

= ∇θk
∫
SA

dsaθk(s, a)

(
dsaµ (s, a)

dsaθk(s, a)

)2

dsda

= −
∫
SA

dsaθk(s, a)

(
dsaµ (s, a)

dsaθk(s, a)

)2

∇θk log dsaθk(s, a) dsda.

Theorem 5.3. The value Zθ∗ is an upper bound to the value Zθ∗ , i.e., Zθ∗ ≥ Zθ∗ ,∀θ∗ ∈ ΘK .

Proof. The result is straightforward from

Zθ∗ =
((
Zθ∗

)− 1
2
)2

= max
ω∈ΩΘ

min
k∈[K]

(∫
SA

ω(s, a)
(
dsaθ∗k(s, a)

)− 1
2 dsda

)2

≥ max
ω∈ΩΘ

min
k∈[K]

∫
SA

(
ω(s, a)

(
dsaθ∗k(s, a)

)− 1
2

)2

dsda = Zθ∗ .

Mirco Mutti, Stefano Del Col, Marcello Restelli

A.2 Proofs of Section 6

Lemma A.1 (Variance of the IS Estimator). LetM be a CMP, and let θ ∈ Θ be a target policy. Let {sn, an}Nn=1

be a sample of state-action pairs taken with the policy θ′ in M. Then, the variance of the importance sampling
evaluation of J(θ) in M, i.e., ĴIS(θ/θ′) = 1

(1−γ)N

∑N
n=1 wθ/θ′(sn, an)R(sn, an), can be upper bounded as

Var
(s,a)∼dsa

θ′

[
ĴIS(θ/θ′)

]
≤ (Rmax)2D2(dsaθ ||dsaθ′)

(1− γ)2 N
.

Proof. The proof follows the derivation in (Metelli et al., 2018, Lemma 4.1). When considering state-action pairs
(as opposed to trajectories in (Metelli et al., 2018)) one should account for the dependency between state-actions
in the same trajectory. Here we consider a batch of N i.i.d. samples taken with the discounted state distribution
dsaθ′ , in which the dependency vanishes. Especially, we write

Var
(s,a)∼dsa

θ′

[
ĴIS(θ/θ′)

]
≤ 1

(1− γ)2N
Var

(s,a)∼dsa
θ′

[
wθ/θ′(s, a)R(s, a)

]
≤ 1

(1− γ)2N
E

(s,a)∼dsa
θ′

[(
dsaθ (s, a)

dsaθ′ (s, a)
R(s, a)

)2]
≤ (Rmax)2

(1− γ)2N
E

(s,a)∼dsa
θ′

[(
dsaθ (s, a)

dsaθ′ (s, a)

)2]
=

(Rmax)2D2(dsaθ ||dsaθ′)
(1− γ)2 N

.

Note that the sampling procedure from a discounted state distribution is wasteful, as one should draw exactly
N trajectories from the discounted CMP M to collect just N i.i.d. samples, while the other samples in the
trajectories are discarded (Metelli et al., 2021b). Nonetheless, one could refine this result to account for dependent
data, by either exploiting the Bellman equation of the variance (see Sobel, 1982; Xie et al., 2019) or concentration
inequalities for Markov chains (Paulin, 2015), which allows to upper bound the variance of the estimate computed
over N dependent samples from dsaθ′ .

Theorem 6.1 (Policy Evaluation Error). Let Θσ be a σ-compression of Θ in M, let R be a reward function
for M uniformly bounded by Rmax, let θ ∈ Θ be a target policy, and let δ ∈ (0, 1) be a confidence. There exists
θ′ ∈ Θσ such that, given N i.i.d. samples from dsaθ′ ,

4 the error of the importance sampling evaluation of J(θ) in
MR, i.e.,

ĴIS(θ/θ′) =
1

(1− γ)N

N∑
n=1

wθ/θ′(sn, an)R(sn, an),

is upper bounded with probability at least 1− δ as

|J(θ)− ĴIS(θ/θ′)| ≤ Rmax

1− γ

√
σ

δN
.

Proof. We would like to bound the difference |J(θ) − ĴIS(θ/θ′)| for a policy θ′ ∈ Θσ. By the definition of σ-

compression, there exists at least a policy θ′ ∈ Θσ such that D2(dsaθ ||dsaθ′) ≤ σ. Since the IS estimator ĴIS(θ/θ′)
is unbiased, and Var(s,a)∼dsa

θ′

[
ĴIS(θ/θ′)

]
< ∞ through Lemma A.1, we can use the Chebichev’s inequality to

write, ∀ε > 0,

Pr(|J(θ)− ĴIS(θ/θ′)| ≥ ε) ≤
Var(s,a)∼dsa

θ′

[
ĴIS(θ/θ′)

]
ε2

.

Then, by calling δ =
Var(s,a)∼dsa

θ′

[
ĴIS(θ/θ′)

]
ε2 and considering the complimentary event, we get

Pr
(
|J(θ)− ĴIS(θ/θ′)| ≤ Rmax

1− γ
√
σ/δN

)
≥ 1− δ

where we upper bounded the variance of ĴIS(θ/θ′) as in Lemma A.1 and the Rényi D2(dsaθ ||dsaθ′) with σ.

4One can generate a sample from dsaθ′ by drawing s0 ∼ µ and then following the policy θ′. At each step t, the state st
and action at are accepted with probability γ, whereas the simulation ends with probability 1− γ (Metelli et al., 2021b).

Reward-Free Policy Space Compression for Reinforcement Learning

Corollary 6.2. Let Θσ be a σ-compression of Θ in M such that |Θσ| = K, let R be a reward function for M
uniformly bounded by Rmax, let θ ∈ Θ be a target policy, and let δ ∈ (0, 1) be a confidence. Given Nk i.i.d.
samples from each dsaθk , θk ∈ Θσ, the error of the multiple importance sampling evaluation of J(θ) in MR, i.e.,

ĴMIS(θ/θ1, . . . ,θK) =

1

(1− γ)

K∑
k=1

Nk∑
n=1

dsaθ (sn,k, an,k)∑K
j=1Njd

sa
θj

(sn,k, an,k)
R(sn,k, an,k),

is upper bounded with probability at least 1− δ as

|J(θ)− ĴMIS(θ/θ1, . . . ,θK)| ≤ Rmax

1− γ

√
D2(dsaθ ||Φ)

δN

where N =
∑K
k=1Nk is the total number of samples and Φ =

∑K
k=1

Nk
N dsaθk is a finite mixture.

Proof. Through the combination of (Papini et al., 2019, Lemma 1) and Lemma A.1, it is straightforward to
derive

Var
(s,a)∼dsaθk

[
ĴMIS(θ/θ1, . . . ,θK)

]
≤ (Rmax)2D2(dsaθ ||Φ)

(1− γ)2 N
. (8)

Then, similarly as in Theorem 6.1, we can use the Chebichev’s inequality to write, ∀ε > 0,

Pr(|J(θ)− ĴMIS(θ/θ1, . . . ,θK)| ≥ ε) ≤
Var(s,a)∼dsaθk

[
ĴMIS(θ/θ1, . . . ,θK)

]
ε2

.

By calling δ =
Var(s,a)∼dsa

θk

[
ĴMIS(θ/θ1,...,θK)

]
ε2 and considering the complimentary event, we get

Pr
(
|J(θ)− ĴMIS(θ/θ1, . . . ,θK)| ≤ Rmax

1− γ

√
D2(dsaθ ||Φ)

δN

)
≥ 1− δ

where we upper bounded the variance of ĴMIS(θ/θ1, . . . ,θK) as in (8).

Theorem 6.3 (Policy Optimization in Θσ). Let Θσ be a σ-compression of Θ in M, and let R be a reward
function for M uniformly bounded by Rmax. The policy θ∗σ ∈ arg maxθ∈Θσ J(θ) is ε-optimal for the MDP MR,
where

ε := |max
θ∈Θ

J(θ)− J(θ∗σ)| ≤ Rmax

1− γ
√

log σ.

Proof. Let be θ∗ ∈ arg maxθ∈Θ J(θ). From the definition of σ-compression we have that there exists at least a
policy θ′ ∈ Θσ such that D2(dsaθ∗ ||dsaθ′) ≤ σ. Then, we can write

(1− γ)|J(θ∗)− J(θ′)| =
∣∣∣∣ ∫
SA
R(s, a)

(
dsaθ∗ − dsaθ′

)
dsda

∣∣∣∣ (9)

≤ Rmax

∫
SA

∣∣dsaθ∗ − dsaθ′ ∣∣ dsda (10)

≤ Rmax

√
dKL(dsaθ∗ ||dsaθ′) (11)

≤ Rmax

√
log
(
D2(dsaθ∗ ||dsaθ′)

)
= Rmax

√
log σ (12)

where (9) is from the definition of J given in Section 2.2, (11) is obtained from (10) through the Pinsker’s
inequality, and (12) derives from dKL(p||q) = d1(p||q) ≤ d2(p||q) = D2(p||q), which is straightforward from the
definition of Rényi divergence. Finally, it is trivial to see that J(θ∗σ) ≥ J(θ′) for θ∗σ ∈ arg maxθ∈Θσ J(θ).

Mirco Mutti, Stefano Del Col, Marcello Restelli

Theorem 6.4 (Off-Policy Optimization in Θ). Let Θσ be a σ-compression of Θ in M such that |Θσ| = K, let
R be a reward function for M uniformly bounded by Rmax, and let δ ∈ (0, 1) be a confidence. Given Nk samples
from each dsaθk , θk ∈ Θσ, we can recover an ε-optimal policy for MR as(

, θ∗IS
)
∈ arg max
θk∈Θσ,θ∈Θ:D2(dsaθ ||dsaθk)

1

(1− γ)Nk

Nk∑
n=1

wθ/θk(sn, an)R(sn, an), (7)

such that with probability at least 1− δ

ε :=
∣∣max
θ∈Θ

J(θ)− J(θ∗IS)
∣∣ ≤ Rmax

1− γ
√

2σ/Nkδ.

Proof. Thanks to the definition of σ-compression and the guarantee provided by Theorem 6.1, from the collected
samples we have that there exists θk ∈ Θσ such that

ĴIS(θ/θk)− Rmax

1− γ

√
2σ

Nkδ
≤ J(θ) ≤ ĴIS(θ/θk) +

Rmax

1− γ

√
2σ

Nkδ

holds ∀θ ∈ Θ with probability at least 1 − δ/2. Then, let θ∗IS be a policy obtained as in (7), and let θ∗ ∈
arg maxθ∈Θ J(θ). We consider the event in which J(θ∗IS) falls below its lower confidence bound and J(θ∗)
exceeds its upper confidence bound. It is easy to see that this event happens with probability at most δ, whereas
the complimentary event guarantees that

|J(θ∗)− J(θ∗IS)| ≤ Rmax

1− γ

√
2σ

Nkδ
.

B Optimization Problems

B.1 Quadratic Program Formulation of (5)

The optimization problem in (5) can be formulated into a quadratically constrained quadratic program as

maximize
z∈R,ω∈RSA

z

subject to z −
∫
SA

(
ω(s, a)

)2
dsaθ∗k

(s, a)
dsda ≤ 0, ∀k ∈ [K]∫

A
ω(s, a) da = (1− γ)µ(s) + γ

∫
SA

ω(s′, a′)P (s|s′, a′) ds′ da′, ∀s ∈ S

ω(s, a) ≥ 0, ∀s ∈ S,∀a ∈ A.

B.2 Linear Program Formulation of (6)

The optimization problem in (6) can be formulated into a linear program as

maximize
z∈R,ω∈RSA

z

subject to z −
∫
SA

ω(s, a)

dsaθ∗k
(s, a)

dsda ≤ 0, ∀k ∈ [K]∫
A
ω(s, a) da = (1− γ)µ(s) + γ

∫
SA

ω(s′, a′)P (s|s′, a′) ds′ da′, ∀s ∈ S

ω(s, a) ≥ 0, ∀s ∈ S,∀a ∈ A.

Reward-Free Policy Space Compression for Reinforcement Learning

0 1 2 3 4 5 0.3

0.3
0.7

0.3

0.1

0.6
0.3

0.1

0.6
0.3

0.1

0.6
0.3

0.1

0.6

0.7

(a) River Swim

(b) θ0

(c) θ1

(d) θ2

Figure 2: (a) Illustration of the River Swim CMP. (b, c, d) Heatmap visualization of the policies in the
σ-compression θk ∈ Θσ for the River Swim domain. The background color and the label denote the state
probability, the green arrows represent the policy in the state.

C Further Details on the Numerical Validation

In Section 7.1, we commented the results of PSCA in the River Swim domain. For the sake of clarity, here
we report an illustration of the River Swim CMP (Figure 2a), heatmap visualizations of the policies in the σ-
compression obtained by PSCA (Figure 2b-2d), and the set of parameters we employed (σ = 10, α = 0.005, β =
0.1). We further report the results of an additional policy space compression experiment in a Gridworld domain
(|S| = 9, |A| = 4). In this setting, we considered σ = 40, α = 0.005, β = 0.1, and the resulting σ-compression is
composed of K = 4 policies (a visualization is provided in Figure 3a-3d).

In Section 7.2, we reported a set of policy evaluation experiments in the River Swim domain. Especially, we
considered an IS off-policy evaluation setting, in which we take a batch of samples with each policy θk ∈ Θσ,
or with a uniform policy θU , or with the target policy itself θ. For every policy, the batch is composed of
N = 100000 samples, and it is obtained by drawing 5000 trajectories of 20 steps. Similarly, we considered a MIS
off-policy evaluation setting, in which we take a batch of samples with the σ-compression Θσ, or a set of three
random policies Θ3. In both the cases, the batch is composed of N = 300000 samples (Nk = 100000 for each
policy in the space), obtained by drawing 15000 trajectories of 20 steps.

In Section 7.3, we reported a policy optimization experiment in the River Swim domain. To run this experiment,
we implemented the action-based formulation of the OPTIMIST algorithm (Papini et al., 2019, Algorithm 1).
For each seed, we run the algorithm for 100 iterations, in each iteration we collect N = 1000 samples, which are
obtained from 50 trajectories of 20 steps. The value of the importance weights truncation M and the confidence
schedule δt are taken from the theoretical analysis in (Papini et al., 2019).

Mirco Mutti, Stefano Del Col, Marcello Restelli

(a) θ0 (b) θ1

(c) θ2 (d) θ3

Figure 3: (a, b, c, d) Heatmap visualization of the policies in the σ-compression θk ∈ Θσ for the Gridworld
domain. The background color and the label denote the state probability, the green arrows represent the policy
in the state.

	INTRODUCTION
	PRELIMINARIES
	Controlled Markov Processes
	Policy Optimization
	Importance Sampling and Rényi Divergence

	THE POLICY SPACE COMPRESSION PROBLEM
	A GAME THEORETIC REFORMULATION
	A PLANNING ALGORITHM TO SOLVE THE PROBLEM
	Optimizing the Follower's Parameters
	Optimizing the Leader's Parameters
	Assessing the Global Value of the Leader's Parameters

	GUARANTEES OF RL WITH A COMPRESSED POLICY SPACE
	Policy Evaluation
	Policy Optimization

	NUMERICAL VALIDATION
	Policy Space Compression
	Policy Evaluation with a Compressed Policy Space
	Policy Optimization with a Compressed Policy Space

	DISCUSSION AND CONCLUSION
	Related Works
	Limitations and Future Directions

	Proofs
	Proofs of Section 5
	Proofs of Section 6

	Optimization Problems
	Quadratic Program Formulation of (5)
	Linear Program Formulation of (6)

	Further Details on the Numerical Validation

