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Abstract

This paper addresses the question, “What is
the smallest object that contains all rectan-
gular partitions with n or fewer blocks?” and
shows its application to relational data analy-
sis using a new strategy we call SUPER BAYES
as an alternative to Bayesian nonparametric
(BNP) methods. Conventionally, standard
BNP methods have combined the Aldous-
Hoover-Kallenberg representation with par-
simonious stochastic processes on rectangu-
lar partitioning to construct BNP relational
models. As a result, conventional methods
face the great difficulty of searching for a par-
simonious random rectangular partition that
fits the observed data well in Bayesian in-
ference. As a way to essentially avoid such
a problem, we propose a strategy to combine
an extremely redundant rectangular partition
as a deterministic (non-probabilistic) object.
Specifically, we introduce a special kind of
rectangular partitioning, which we call super-
rectangulation, that contains all possible rect-
angular partitions. Delightfully, this strat-
egy completely eliminates the difficult task
of searching around for random rectangular
partitions, since the superrectangulation is
deterministically fixed in inference. Experi-
ments on predictive performance in relational
data analysis show that the super Bayesian
model provides a more stable analysis than
the existing BNP models, which are less likely
to be trapped in bad local optima.

1 INTRODUCTION

Parsimony plays a central role in Bayesian nonpara-
metric (BNP) machine learning. Since BNP models
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are typically defined as stochastic processes with infi-
nite dimensional parameter spaces (Orbanz and Teh|
2010} Teh), |2010; [Teh and Jordanl [2010; [Hjort et al.l
2010; (Orbanz and Royl 2013)), it is not easy to rep-
resent them accurately on a computer with only fi-
nite resources. However, if we can provide the BNP
modeﬂ with parsimony, we can induce it to behave
in such a way that it tries to represent itself with as
few active dimensions as possible out of the infinite
dimensional parameters. Thus, the remaining redun-
dant infinite dimensions of the parameter space can
be safely ignored, and as a result, the BNP model
can be approximated with high accuracy using a fi-
nite number of resources on the computer. This bene-
fit also works for Bayesian inference in the data anal-
ysis phase. It is commonly formulated as the prob-
lem of finding the value of a parameter and its active
dimension in an infinite-dimensional parameter space
(or, more precisely, learning their posterior probabil-
ity), given the observed data. Thanks to parsimony,
the search for parameters can be typically freed from
the vast space of infinite dimensions, and restricted to
only a small finite number of active dimensions. The
essence of the BNP model is that the active dimension
of the parameter space can adapt to the input data;
if the observed data desires a richer parameter, it will
make it active while saving the necessary but parsimo-
nious amount of dimensions. Indeed, the BNP model
has taken advantage of parsimony in its development,
yet we would like to return to this basic principle and
consider a completely opposite redundant model.

Redundancy has received particular attention in ma-
chine learning in recent years. An emblematic example
of this is the lottery ticket hypothesis (LTH) (Frankle
and Carbinl 2019) in deep neural networks (NNs): var-
ious forms of LTH claims have been proposed theoret-
ically (Malach et al., |2020; |[Frankle et al., |2020; |Dif-
fenderfer and Kailkhuray, [2021)), empirically (Raj and
Mishral, 2020; |Chen et al. 2020} 2021b), and experi-
mentally (Brix et al.l 2020; |Chen et al.l [2021a; |Girish
et al.|2021)), and here we would like to refer specifically
to one of the theoretical results. Very roughly speaking

'BNP models do not always have parsimony; an exam-
ple of non-parsimonious BNP models would be the Pdlya
tree (see Corollary 1.5 for details in |Orbanz| (2011)).
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Figure 1: Nonparametric Bayes vs. Super Bayes in terms of generative probabilistic models for relational
data. (a) The standard Bayesian nonparametric models are modeled in terms of a decomposition into a random
rectangular partition of [0, 1] x [0, 1] and virtual random coordinates on [0, 1] for each row and column, owing to
the Aldous-Hoover-Kallenberg representation (Aldous| 1981} [Hoover, [1979; [Kallenberg] [1989). More specifically,
which block the ith row and jth column elements of the input matrix belong to is determined by the following

generative model: the virtual coordinate on [0,1] of the ith row is drawn from U W) Uniform([0, 1]), the

virtual coordinate on [0,1] of the jth column is drawn from U;COlumn) ~ Uniform(][0, 1]), and the rectangular
partition sample of [0, 1] X [0, 1] is generated from some BNP model, such as the Mondrian process (Roy and Teh

2009) and the block-breaking process (Nakano et al.[2020). In this case, the cluster to which the ith row and jth

column elements of the input matrix belong is determined by the rectangular block to which (U;wlumn), Ui(row))

belong. (b) The new strategy is to use an extremely redundant and deterministic superrectangulation instead of
the parsimonious random rectangular partition. Some readers may be concerned that this extremely redundant
superrectangulation may cause overﬁttm To counter this, we use a sparse atomic random measure prior on
[0,1] (e.g., the Dirichlet process Ferguson ) Wlth the base measure Uniform([0, 1])) for U %) and U; (column) |

(letting us skip all the detailed assumptions since LTH
itself is not the purpose of this paper), a sufficiently
large random NN is guaranteed to contain some de-
sired NN (called a winning ticket) in its subnet (See
Theorem 2.1 in Malach et al| (2020) for a more pre-
cise statement). As a result, LTH strongly encourages
the new paradigm in NN learning. While it is standard
practice to iteratively update the parameters of an NN
in order to learn a desired NN, LTH suggests that after
creating a sufficiently redundant random NN, simply
pruning the network can be an alternative to learn-
ing. This is a striking example of the usefulness of
model redundancy in a nutshell. Inspired by LTH, the
genesis of this research lies in the idea that, even in
the BNP model, by daring to remove parsimony and
using redundancy, we could avoid the iterative search
and update of parameters in the training of the BNP
model, and replace the learning alternative with only
pruning-like operations.

According to the above con-
siderations, this paper pro-
poses a new Bayesian machine
learning strategy called SUPER
BAYEs (SB), which removes
parsimony in the BNP model
and analyzes the data using a
model with redundancy. As an

Figure 2: RPC
application that best illustrates the difference between

BNP and SB, this paper will focus in particular on the
problem of rectangular partitioned clustering (RPC) of
relational data. The goal of RPC is to find a partition
and an order of rows and columns of the input matrix
such that all blocks are rectangular, so that the ele-
ments in each block are as homogeneous as possible,
given matrix-type relational data (Figure. Here, to
clarify the motivation behind the genesis of SB, we
would like to discuss the serious affliction of the BNP
methods and the key insight of the SB method.

Serious affliction of BNP methods - The stan-
dard strategy of generic BNP methods for relational
data analysis is to use the Aldous-Hoover-Kallenberg
representation theorem (Aldous, 1981; Hoover} 1979;
Kallenberg) |1989)) for the construction of BNP rela-
tional models (Roy and Teh, 2009; Roy, 2011} |Choi
[and Wolfe|, 2014, [Rodriguez and Ghoshl [2009; [Shan

[and Banerjee, [2008; [Miller et al., [2009} [shiguro et al.
[2016} [Caldas and Kaskil, 2008} [Airoldi et all, 2013} [Fan|
et all 20184, 2016} [Lloyd et all, 2012} [Lovdsz, 2009; [Gel
et all 2019} [Fan et al., 2018b;[2020). Figure[l](a) illus-
trates the case of using random rectangular partition-
ing specifically as a BNP relational model, which con-
sists of a random rectangular partition on [0, 1] x [0, 1]
and uniform random variables corresponding to the
coordinates of each row and column on [0,1]. As a
result, Bayesian inference is typically based on an it-
erative algorithm that repeats two steps: (1) update
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Figure 3: Nonparametric Bayes vs. Super Bayes for Bayesian inference (e.g., Markov chain Monte Carlo).
(a) The BNP model requires alternating updates of both the rectangular partition and the coordinates of each
row and each column of the input matrix. As a result, if the chain is trapped in a bad rectangular partition, it will
lead to bad coordinates induced by it, and these bad coordinates will induce even worse rectangular partitions,
often making it easy to get trapped in bad local optima. (b) The SB model, on the other hand, only needs to
update the coordinates of each row and column sequentially, while keeping the rectangular partition fixed.

the rectangular partition on [0,1] x [0, 1], and (2) up-
date the coordinates of each row and column. See
also Figure |3| (a). Parsimony imposed by the BNP
model often has a particularly negative impact on the
former. Specifically, the former part of the inference
algorithm is continually suppressed in a conservative
way as it searches for what partitions are appropri-
ate for the data. Consequently, it often gets trapped
in bad local optima. The LTH way of explaining this
is that the BNP model should always have a winning
ticket (because it must have positive probability for
every possible lottery), but it is too difficult to find
out where it is because the winning ticket is buried in
an infinite number of losing tickets.

Key insight of SB method - The crux of the SB
method is to eliminate the need to look for the winning
ticket. In other words, we want all lotteries to be visi-
ble as being there. To be more specific, we consider the
following object, which we call superrectangulation. It
is a rectangular partition, one that contains all rectan-
gular partitions with n or fewer blocks by cutting out
parts of itself. If the superrectangulation is used in-
stead of the random rectangular partition for the rela-
tional model, as shown in Figure(l| (b), we can greatly
simplify Bayesian inference. It means that (1) updat-
ing the rectangular partitioning is no longer necessary
in Bayesian inference, and training can be completed
only by (2) updating the coordinates of each row and
column of the input matrix, as shown in Figure [3| (b).
Determining the coordinates of each row and column
means that the rectangular partitioning needed to de-
scribe the data can be achieved at the same time by
cutting a part of it out of the fixed superrectangula-
tion. Our contributions can be summarized as follows.

(1) Super Bayes framework - The first contribu-
tion of this paper is the SB framework itself, as an al-
ternative to the conventional BNP methods. Inspired
by the recent LTH for NNs, this is a method for an-
alyzing data using extremely redundant deterministic

object in Bayesian statistics, as Figures [I] and [3] illus-
trate all of its key insights. We will deal with relational
data analysis based on rectangular partitioning as an
example of the remarkable effect of the SB framework.

(2) Superrectangulation - Our second contribution
is to introduce the notion of the superrectangulation as
a universal object that contains any rectangular parti-
tion as its part. To the best of our knowledge, this is
the first time that the superrectangulation has been in-
troduced in machine learning and related fields. Aim-
ing at the ultimate goal of constructing a superrect-
angulation useful for machine learning, we collect in
Section [2] the great wisdom scattered in various fields
that we expect to be useful for its realization. In Sec-
tion |3] we give the definition of a superrectangulation
and discuss some observations and results from the
perspective of combinatorics. In particular, Proposi-
tion gives the (potentially) constructive existence
of a superrectangulation, although it is somewhat less
practical. Therefore, we further explore more prac-
tically useful constructions of a superrectangulation
with two strategies. The first strategy continues to
be based on the findings of combinatorics; specifically,
we describe the intrinsic difficulty of its construction in
Remark [3:4] and propose an object that we hope may
overcome this difficulty, the zigzag rectangulation, in
Conjecture [3.5] The second strategy is more daring,
inspired by LTH, and hypothesizes that in a random
partition with an extremely huge number of blocks, any
small rectangular partition may appear with high prob-
ability. In Section 4} we investigate how useful these
strategies are as relational data analysis.

2 PRELIMINARIES

For the discussion of superrectangulation, it is very
useful to survey the existing wisdom on closely related
research topics scattered in various research fields.
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2.1 Permutation

Word and permutation - A word is a sequence of
letters selected from a certain alphabet. For example,
the word w = 3123 is constructed as a sequence of
letters 3, 1, 2, and 3 chosen from the alphabet N.
Throughout this paper, we will use the set of nat-
ural numbers (i.e., N = {1,2,...}) or subsets (e.g.,
[n] :={1,2,...,n} and [n + 1]) of it as the alphabet.
The length of the word w, denoted |w, is its number of
letters. For example, the word w = 3123 has |w| = 4.
If a word w has at least length ¢, then we denote by
w(?) its ith letter. For w = 3123, we have w(1) = 3
and w(3) = 2. As a benefit of having the alphabet as
natural numbers, we can immediately introduce the
notion of order-isomorphism for words from the total
order in the natural numbers. Specifically, two words
w,w’ € N™ of length n are order-isomorphic if, for all
indices i, j € [n], we have

w(i) > w(j) <= w'(i) >w'(j). (1)

Note that this also implies that w(i) = w(j) <=
w'(i) = w'(j). For example, w = 3123 and w’ = 7257
are order-isomorphic. Needless to say, w = 3123 and
w’ = 7256 are not order-isomorphic. A permutation
of length n is a word consisting of letters chosen from
the alphabet [n], each occurring precisely once. For
example, w = 4123 is a permutation. Needless to say,
w = 3123 and w = 5234 are words but not permu-
tations. Since permutations are also words, we can
consider order-isomorphism between permutations ac-
cording to Equation .

Geometric representation
- The geometric interpreta-
tion of words and permuta- Q@
tions is often very useful in re- R @
vealing their properties. For @
a word or permutation w, if . Q@
we arrange the indices ¢ ver-
tically in the order 1,2,..., )
and horizontally in the order Figure 4: 45132
w(l),w(2),..., the word w (e.g., w = 45132) can be
represented as in Figure

2.2 Universal permutation problem

Superpermutation - A historically important ques-
tion surrounding permutations is “What is the small-
est object (typically a word of minimal length) that
can contain all permutations of length n?” The same
kind of problem has been defined and proposed in vari-
ous ways, and they are collectively called the universal
permutation problem (UPP) (Engen and Vatter} 2021)).
For a more precise description of UPP, we must clar-
ify the notion of containment, i.e., how words contain

permutations. Conventionally, two different interpre-
tations of the containment have been considered:

e Factor - The word w contains the permutation
m as a factor, which means that w is represented
in the form w = uov, and o is order-isomorphic
to m. For example, the word w = 23724515 has
a factor m = 4123 since w can be expressed as
w = uov where u = 23, 0 = 7245, and v = 15,
and o = 7245 is order-isomorphic to m = 4123.

e Subsequence - The word w contains the per-
mutation 7w as a subsequence, which means that
there are indices i1,14s,...,%, so that the word
o = w(ip)w(iz) ... w(i,) is order-isomorphic to
mw. For example, the word w = 23724518 has a
Subsequence m = 12345 since there are i1 = 1,
1o = 2,13 = 5, 14 = 6, and i5 = 8, and the word
o = w(i)w(iz)w(is)w(is)w(is) = 23458 is order-
isomorphic to m = 12345.

While these two different notions of containment give
rise to essentially different UPPs, another element
known to have a significant impact on UPP is the
choice of alphabet. The most elementary problem is
the setting where the alphabet size is taken to be equal
to the length n of the permutation. In this case, UPP
becomes a problem of finding a word w € [n]™ of
length m that contains all permutations of length n
as a factor or subsequence, and whose length m is as
small as possible. On the other hand, a more flexible
setting could be to use N for the alphabet. And inter-
estingly, the case where [n+ 1] is used for the alphabet
is also well studied, as a form of in-between these two
extreme cases, [n] and N. In summary, UPP has been
studied in a total of six different ways, two for the in-
terpretation of containment and three for the choice of
alphabet. We will simply call the object that contains
all permutations of length n a superpermutation. The
upper bounds on the superpermutation size currently
known (Johnson! [2009; (Gao et al., |2019; |Radomirovic|
2012; Miller}, |2009) are summarized in Table [1| (Engen
and Vatter, [2021)).

An excellent recent survey paper for all cases can be
found in [Engen and Vatter| (2021). In this paper we
will only mention two cases in particular, “factor X
alphabet [n41]” and “subsequence x alphabet [n+1]”.
For the former, the existence of a superpermutation
called the universal cycle is shown constructivelyP}

Theorem 2.1. (See Theorem 1 in |Johnson (2009))
There is a word over the alphabet [n + 1] of length

2The specific construction of universal cycles is compli-
cated and will not be discussed here. If you are interested,
please refer to Section 2 in (Johnson, [2009)).
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Table 1: Current best upper bounds for superpermutation length in six types of UPPs.

Containment Alphabet
Words over [n] Words over [n+ 1] Words over N
Factor n—3+2?:0(n—i)! nl+n—1 nl+n—1
7 19 Z 241
Subsequence [n? — In+ 3] nAn [2L]
1 11, | 1, |
2 2 2 2
3 13, 13, |
. 1 4 1 ry
5 5 5 5 5
G G 6 G G G
7 7. 7 7 7
8 8 8 8

Figure 5: Map from permutations (e.g., 62413875) to diagonal rectangulations (Law and Reading} 2012)). We
first draw n+1 = 9 distinct diagonal points on the diagonal, with one of the points being the top-left corner and
another being the bottom-right corner. Let T be the union of the rectangles drawn in the first i —1 steps. To draw
the ith rectangle, we consider the label 7 on the diagonal. If the diagonal point p on the diagonal immediately
above or left of the label 7 is not in T', then the upper left corner of the new rectangle is the rightmost point of
T immediately to the left of p. If the diagonal point p immediately below or right of the label ¢ is not in 7', then
the lower right corner of the new rectangle is the highest point of 7" immediately below p. If p is in T, then the
lower-right corner of the new rectangle is the rightmost point of 7" immediately to the right of p.

nl4+n—1 containing factors order-isomorphic to every
permutation of length n.

For the latter, the existence of a superpermutation
called the zigzag word is shown constructively:

Theorem 2.2. (See Theorem 3.1 in|Miller and
Theorem 9 in |Engen and Vatter| (2021)) For all n >

1, there is a word over the alphabet [n + 1] of length
(n? + n)/2 containing subsequences order-isomorphic
to every permutation of length n.

Delightfully, the proof of this theorem is constructive,
and the word mentioned (i.e., the superpermutation
in this UPP setting) can be obtained concretely as fol-
lows. We first introduce the infinite zigzag word (12G),
which is defined as a Worcﬂ formed by alternating the
ascending runs of the odd natural numbers 1357...
and the descending runs of the even natural numbers
...8642. Specifically, IZG has the form of

1357... ... 86421357... ... 86421357... .... (2)
S—— Y—— Y
Ist run 2nd run 3rd run  4th run 5th run

Surprisingly, a slight modification of IZG provides
a specific configuration of the superpermutation de-
scribed in Theorem 2.2

Corollary 2.3. (Superpermutation) The restric-
tion of the first n runs of IZG to the alphabet [n +
1] contains all permutations with length n as subse-
quences, whose length is (n? +n)/2.

3Strictly speaking, this does not meet the definition of
a word, but for the sake of simplicity, we will relax the
definition_a_bit. and consider it a word in _the broad sense

For example, when n = 8, the superpermutation w is

13579 8642 13579 8642 13579 8642 13579 8642 .
e e el e i e T
1st run 2nd run 3rd run 4th run 5th run 6th run 7th run 8th run

2.3 Rectangulation

Rectangulation - A rectangular partition, also called
rectangulation, is a partition of a rectangle (or a ma-
trix) in which all blocks are disjoint rectangles. This
is a research subject that has received a great deal
of attention in recent years, especially as an intersec-

tion of multiple research areas in combinatorics (Read-

ing], [2012; Merino and Miitze, 2021} [Hong et al., 2000}
Mackisack and Miles, 1996} [Ackerman et al., 2006]),

machine learning (Kemp et al| [2006; Roy and Teh
2009; Royl, 2011} [Orbanz and Royl, 2013} [Nakano et al.
2014)), and probability and statistics (Maazoun, 2019
Borga and Maazoun, 2020; [Merino and Miitze| 2021).

Relationship between rectangulation and per-
mutation - In recent years, it has become clear that
there is a close relationship between permutations and
rectangular partitions, and in particular, the one-to-
one correspondence between special classes of both
has been studied in depth. For a bird’s eye survey

of recent developments, see for example (Merino and
2021)). Here we would particularly like to men-

tion two closely related facts: the existence of the sur-
jective map from permutations to diagonal rectangu-
lations and the surjective map from permutations to
generic rectangulations. A rectangulation is a diagonal
rectangulations if it has a representative in which each
rectangle’s interior intersects the diagonal.

Pronosition 2.4. (See Pronosition 6.2 in | Law and
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1 Y 1 N
2 2 N
3 4 3 4
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8 8
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68721435 68721435
1 Ll / 4 K
3 3 -
! > K > !
o 7 7 ;
’ 2 4 2 4
68721435 Wall slides

Figure 6: Map from permutations, e.g., 62413875 (top)
and 68721435 (bottom), to generic rectangulations.
The first step is to convert from permutation to diago-
nal rectangulation (left). Then we assign to the vertex
on the walls (colored gray) the label of the block that
contains that vertex as its own upper left or lower right
corner (middle). Finally, the order of the vertices on
the wall will be rearranged according to the permuta-
tion. Specifically, vertices on the horizontal wall are
aligned in permutation order from left to right, and
vertices on the vertical wall are aligned in permuta-
tion order from bottom to top (right).

] izl

Restriction Restriction

Restriction
L totA L

Figure 7: Restriction operation (with three examples).

Reading (2012)) There is a surjective map from per-
mutations to diagonal rectangulations.

Figure [5| shows how to transform permutations into
diagonal rectangulations, which is specifically given in
Law and Reading| (2012)). Similarly, for generic rect-
angulations, that is, rectangular partitioning without
any restrictions, the result below is also known.

Proposition 2.5. (See Proposition 4.2 in |Reading
(2012)) There is a surjective map from permutations
to generic rectangulations.

Figure [6] shows how to transform permutations into
generic rectangulations, provided in [Reading (2012).

3 SUPERRECTANGULATION

This section will start with the definition of the super-
rectangulation and then continue with the key obser-
vations and results. All the details of the proofs will be
given in Appendix[B] As an intuitive definition sketch,

[ 10

H H ® 15)
135642135642135 381151052 712149 41611

-
Breaking ties Transformation to rectangulation

Figure 8: Illustration of zigzag rectangulation. Left:
Zigzag word (n = 5). Middle: Corresponding permu-
tation to the zigzag word obtained by ranking the ties
that appear in the zigzag word. Right: Zigzag rectan-
gulation obtained by applying the mapping from per-
mutations to generic rectangulations described in Sec-
tion [2.3]to the zigzag word. Interestingly, the resulting
rectangulation is a diagonal rectangulation.

the superrectangulation can be viewed as a rectangular
partition that contains all rectangular partitions with
n blocks. However, this expression is still vague; by
analogy with the factors and subsequences in the su-
perpermutation (Section7 the superrectangulation
also requires the notion of containment to be realized
first. We introduce the following restriction operation
on rectangular partitions (See also intuitive illustra-
tions in Figure :

Restriction - We consider a rectangular partition R
on [0,1] x [0,1]. Given a matrix Z = (Z)pxpm and
the [0, 1] variables Ul(mw) (I=1,...,L) and U™
(m=1,..., M) corresponding to each of its rows and
columns, we introduce the following restriction on the
rectangular partition R. Each element Z; ,, of the ma-
trix Z is assigned to the block to which the coordinates
(U,(Tfommn), Ul(row)) point in the rectangular partition R
on [0,1]x[0, 1], and we obtain the rectangular partition
of the matrix Z. We will call the resulting rectangular
partition the restriction of the original partition R.

Definition 3.1. (Superrectangulation) A rectan-
gular partition R on [0,1] x [0,1] is said to be a su-
perectangulation if, for any rectangular partition R’ of
matriz Z = (Z)xm with n blocks, there exists Ul(mw)
(I =1,...,L) and U™ (m = 1,..., M) and its
corresponding restriction of R coincides with the spec-
ified rectangular partition R’ of Z.

Our first observation is the existence of a superrectan-
gulation with a huge number of blocks that (allowing
for duplication) counts all rectangular partitions:

Proposition 3.2. (First naive observation) There
s a superrectangulation that has n - n! blocks.

This result follows immediately from the fact that
there is the surjective mapping from permutations to
generic rectangulations (Section [2.3). That is, there
are only n! permutations of length n, and the rectangu-
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Figure 9: (a, b, ¢) Subsequences that are order-isomorphic to 12345 extracted from the zigzag word (n = 5), and
the corresponding blocks in the zigzag rectangulation (right). For (a) and (b), a rectangular partition consisting
of only the selected blocks (as shown in the example on the right side of Figure |7} a rectangular partition with
five blocks lined up horizontally) can be constructed by restriction operation, but for (c), a rectangular partition
consisting of the selected five blocks cannot be created. (d, e, f) The same analysis is performed for subsequences
that are order-isomorphic to the permutation 41352. For (d) and (e), the rectangular partition on the left side
of Figure[7| can be created from the selected blocks by restriction, but for (f), this is not possible.

lations obtained by transforming these permutations
cover all rectangulations with n blocks. Needless to
say, this example would not be very useful in practice
because the number of blocks required as a superrect-
angulation is too large. Therefore, we need a strategy
to reduce the size of a superrectangulation more dra-
matically. The subsequent development of this paper
is to find a superrectangulation of smaller size.

Now that we have confirmed the existence of super-
rectangulation, how can we dramatically reduce its
size (the number of blocks)? What comes to mind
here is that instead of representing the enumeration of
rectangular partitions with permutations of length n,
we can represent them with a single superpermutation
(Section . That is, the set of all permutations is
compressed by a superpermutation. Recalling here the
sizes of the two superpermutations introduced in Sec-
tion[2:2] the length of a universal cycle is n!+n—1 and
the length of a zigzag word is (n? + n)/2. It is worth
noting that the zigzag word can be represented by a
dramatically shorter length. Thus, the strategy that
we come up with is to convert the zigzag word into
a rectangular partition, which may be used as a su-
perrectangulation, as shown in Figure [8] We will call
the rectangulation generated from the zigzag word a
zigzag rectangulation. Since the zigzag partition has
(n? + n)/2 blocks, this is a partition of dramatically
smaller size than the superrectangulation described in
Proposition Then, does zigzag partitioning really
satisfy the requirements of superrectangulation?

Remark 3.3. (Second observation) Unfortunately,
the zigzag rectangulation does mot satisfy the require-
ment of the superrectangulation because there is a rect-

angular partition with n blocks that cannot be gener-
ated by the restriction operation. For erxample, when
n = 5, the zigzag rectangulation does not contain the
rectangulation of 5 blocks arranged vertically (perpen-
dicularly). However, delightfully, it is also easy to con-
firm that the zigzag rectangulation contains most of the
116 possible generic rectangulations with 5 blocks.

We will continue to discuss this observation in more
detail. From this observation, we can expect that,
with very few exceptions, the zigzag word will con-
tain most of the rectangulations with n blocks. Some
readers may think that this positive observation can
be immediately extended to all n € N. We also be-
lieved that at first, however, as we tried to prove it,
we have gradually come to realize that it is not an easy
task. We were initially optimistic that since the zigzag
word contains all short permutations as subsequences
(Theorem , the zigzag rectangulation correspond-
ing to the zigzag word must also contain all the smaller
rectangular partitions. However, unfortunately, this is
not true. The reason for this is that the subsequence
extraction from the zigzag word does not necessarily
correspond to the restriction operation in the zigzag
rectangulation (See also Figure E[) More precisely, it
can be explained as follows:

Remark 3.4. (Third observation) The relationship
between the following statements is considered: (S1)
The permutation w is contained in the zigzag word
as a subsequence. (S2) The rectangular partition R
corresponding to the permutation w is contained as a

restriction in the zigzag rectangulation. At this time,
(S1) <= (52) is valid, but (S1) = (S2) is not.
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0] Q)Atating 90 degrees counterclockwise

Breaking ties

Rectangulation

3 A/Flipping horizontally

Inverse p~!

Inverse p~* Rectangulation

Figure 10: Left: Geometric interpretation of inverse of zigzag word. We apply the breaking ties operation to the
zigzag word to obtain the corresponding permutation p, and then take the inverse p~!. Right: Rectangulations
corresponding to the zigzag word and its inverse obtained by applying the mapping from permutations to generic

rectangulations described in Section [2.3

This observation clarifies the difference between the
superpermutation and the superrectangulation. Ad-
ditionally, it suggests another possibility as a means
of generating a rectangulation (i.e., another candidate
of a superrectangulation) from the zigzag word. Once
again, we will carefully inspect Figure )] We focus on
the cases (Figure[9] (a), (b), (d), (e)) where the subse-
quences in the zigzag word correspond to the rectangu-
lations in the zigzag rectangulation. In these cases, we
see that the subsequences in the zigzag word are con-
centrated in narrow vertical regions in the geometric
representation of the zigzag word. Conversely, verti-
cally spread subsequences in the zigzag word are less
likely to correspond to rectangulations in the zigzag
rectangulation. Therefore, a possible way to rescue
the vertically spread subsequences of the zigzag word
is to rotate the geometric representation of the zigzag
words by 90 degrees, so that they can be pushed into
narrow vertical regions, as shown in Figure[I0] We will
call the division that can be made from the inverse of
the zigzag word a zigzag® rectangulation.

Based on the above considerations, we expect that
zigzag partitioning and zigzag' rectangulation may in-
clude all rectangular partitions with n blocks. How-
ever, at the same time, we are finding out that the
proof does not seem to be easy. Therefore, we wish to
share this with the community as an open problem:

Conjecture 3.5. The zigzag rectangulation and the
zigzag® rectangulation contains all rectangular parti-
tions with n blocks for all n € N.

So far, we have discussed the superectangulation in
terms of combinatorics, satisfying strict requirements.
On the other hand, we would like to share some more
machine learning flavored ideas at the end. How about

adding randomness to the superectangulation? This
idea immediately leads to another interesting subject:

Hypothesis 3.6. A random rectangulation with an
extremely large number of blocks, generated from a uni-
form distribution of gemeric rectangulations, contains
every rectangular partition with some small number of
blocks with high probability.

This is exactly the hypothesis that comes from the
LTH analogy as discussed in Section The reasons
for our strong endorsements of this conjecture and hy-
pothesis will be explained in a little more depth in the
supplementary material. We believe that these topics
can be a new research direction in Bayesian modeling.
Now, in the next section, we will actually demonstrate
data analysis using the zigzag/zigzag' rectangulation
(abbreviated as Zigzag) and the random rectangula-
tion (Random) for the SB relational model.

4 SUPER BAYESIAN ANALYSIS

Super Bayesian relational model - The overall pic-
ture of the SB relational model is as described in Sec-
tion[I] and Figure[I] We suppose that the input obser-
vation relational data Z = (Z, ;) nxam consists of cat-
egorical elements, ie., Z;; € {1,2,...,D} (D € N).
The generative probabilistic model of the SB rectan-
gular partitioning is as described in Figure[l| (b). Each
block (indexed by k = 1,2,...) has a latent Dirichlet
random variable ¥, ~ Dirichlet(ag) (kK = 1,2,...),
where o is a D-dimensional non-negative hyper pa-
rameter. For the superrectangulations, as discussed in
Section [3] the number of blocks corresponding to the
representational power needs to be set in advance, so
we shall generate it from a Poisson distribution with
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Table 2: Perplexity comparison for real-world relational data analysis (mean+tstd)

Nonparametric Bayes

Super Bayes

PCRP

Zigzag

Random

MP BBP
Wiki 1.2838 £0.0094 1.2712 + 0.0056
Facebook 1.1944 4+0.0217 1.1818 £ 0.0197
Twitter 1.2316 +0.0209  1.2146 + 0.0058
Epinions  1.4098 +£0.0064 1.4006 + 0.0044

1.2583 £ 0.0041
1.1545 +0.0187
1.2057 £ 0.0092
1.3955 £ 0.0061

1.2565 £ 0.0017
1.1493 £ 0.0095
1.2077 £ 0.0071
1.3951 £ 0.0054

1.2648 £ 0.0082
1.1682 £+ 0.0234
1.2102 £+ 0.0087
1.3979 £ 0.0056

a sufficiently large mean as a simple strategy. As for
the zigzag/zigzag' rectangulation, we chose one or the
other with uniform probability for each trial. The de-
tails of the model are specified in Appendix

Datasets - We employ the standard benchmark
datasets for evaluation |Leskovec et al| (2010): Wiki
(dat, |a), Facebook (dat} |b), Twitter (dat, i), and
Epinions (dat} d). We selected the top 1000 active
nodes based on their interactions with others; sub-
sequently we randomly sampled 500 x 500 matrix to
construct the relational data, as in (Fan et al., 2020;
Nakano et al., |2020). We held out 20% cells of the
input data for testing, and each model was trained
using the remaining 80% of the cells. We evaluated
the models using perplexity as a criterion: perp(Z ) =
exp(—(log p(Z))/E), where E is the number of non-
missing cells in the partitioned matrix Z. We compare
the SB method with the existing BNP models for rect-
angular partitioning, the Mondrian process (MP) (Roy
and Tehl 2009), the block-breaking process (BBP)
(Nakano et al.; 2020), and the permuton-induced Chi-
nese restaurant process (PCRP) (Nakano et al., [2021)).
The details of experimental settings and inference al-
gorithms are provided in Appendix

Experimental results - We ran 10 trials of analysis
for each method on each data set. Table[Blsummarizes
the test perplexity comparison results. In terms of
average prediction performance, it can be confirmed
that the SB methods show equal or slightly better
performance than the BNP methods. Furthermore,
as the standard deviation of the prediction perfor-
mance shows, the SB methods have less variation in
the analysis results in multiple trials, and it can be
confirmed that it can reduce the influence of local op-
tima in Bayesian inference. This can be attributed
to the fact that the BNP model iteratively updates
two elements, the row and column coordinates and
the rectangular partition, while the SB model com-
pletely eliminates the update of the rectangular parti-
tion. Furthermore, interestingly, when comparing the
modified zigzag rectangulation and random rectangu-
lation for the SB methods, they show comparable pre-
diction performance. This may experimentally suggest
that, like LTH in NNs, a sufficiently large random rect-

angulation serves as a pseudo-superrectangulation.

5 CONCLUSION

This paper has proposed the super Bayesian strategy
for learning with highly redundant universal objects in
Bayesian methods, inspired by the lottery ticket hy-
pothesis in deep neural networks. As a concrete ex-
ample of the super Bayesian data analysis, this paper
focused on relational data analysis, and in the pro-
cess has proposed an interesting research topic: super-
rectangulation, which is a rectangular partition that
contains every small rectangular partition. Aiming at
constructing the superrectangulation, we have taken
two approaches, one from a combinatorial perspective
and the other from a statistical machine learning per-
spective. We expect that super Bayesian strategy has
the potential to become a new framework that can be
twinned with Bayesian nonparametric methods with
models on infinite-dimensional parameter spaces.
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Supplementary Material:
Nonparametric Relational Models with Superrectangulation

A Detailed description of super Bayesian relational model

We will describe the details of the super Bayesian relational model introduced in Section 1 (Introduction)
and used in the experiments in Section 4 (Super Bayesian analysis).

A.1 Generative model of super Bayesian relational model

The basic strategy for constructing a super Bayesian relational model is to use the Aldous-Hoover-Kallenberg
(AHK) representation theorem (Aldous| 1981} Hoover} [1979; Kallenberg, [1989), as in the standard Bayesian
nonparametric (BNP) relational models. However, what is different from the BNP models is that the random
rectangular partition R on [0,1] x [0, 1], which is an intermediate random function in the AHK representation,
is replaced by a deterministic superrectangulation. We suppose that the input observation relational data
Z = (Z; ;) Nxm consists of categorical elements, i.e., Z; ; € {1,2,...,D} (D € N). The generative probabilistic
model of the super Bayesian relational model can be expressed as follows. First, we set a superrectangulation as
the rectangular partition R of [0, 1]x[0, 1]. We suppose that the rectangulation R consists of blocks indexed by k =
1,2,.... Next, we draw two atomic random measures on [0, 1], G*°") ~ DP(a;, Uniform([0, 1])) and G(covmn) ~
DP(wz, Uniform([0, 1])), where oy and «s are tunable positive real variables, and DP(«, Gy) is the Dirichlet
process (Ferguson, (1973) with the concentration parameter o > 0 and the base measure Gy. Then, we draw the
virtual coordinate on [0, 1] of the ith row from Ui(row) ~ GUoW) (7 =1,2,...,N), and draw the virtual coordinate
on [0,1] of the jth column from U;COlumn) ~ G(eolumn) " The cluster to which the ith row and jth column elements
of the input matrix belong is determined by the rectangular block to which (U ;Commn), Ui(row)) belong. We denote

the block index to which (U{“™™, U"*")) belongs by k(U™ U")). Each block (indexed by k = 1,2, ...)
has a latent Dirichlet random variable ¥y ~ Dirichlet(ay) (kK = 1,2,...), where o is a D-dimensional non-

negative hyper parameter. Finally, each element Z; ; is drawn from Categorical (ﬁk(Ugcoh.mn) U(,»ow>)>. In short,
J i

the generative probabilistic model can be summarized as follows:

R <+ Superrectangulation I -~ Dirichlet(eg) (k=1,2,...)
G ~ DP(ay, Uniform([0, 1])) Geommn) | PP (ay, Uniform([0, 1]))
U™~ G (=12, N) et~ Gl (G =12, M)

Z; o~ Categorical (ﬁk(Uﬁwlumn)’U;mm)) (i=1,2,...,N, j=12,..., M)

Again, it is important to note that the rectangular partition R of [0, 1] x [0,1] is not a random variable to be
estimated, but is definitively fixed.

A.2 Bayesian inference for super Bayesian relational model

For super Bayesian relational models, it is possible to derive Bayesian inference algorithms that are very easy
to implement. This is a very important property considering the history of BNP relational models. The infinite
relational model (IRM) (Kemp et al., |2006]), which is also the origin of the relational model, was indeed able
to derive a simple Bayesian inference algorithm based on the Gibbs sampling method due to the simplicity of
the model (i.e., the product of the Chinese restaurant processes). However, the expressive power of IRM for
rectangular partitioning is very low, and since then, models with higher expressive power have been devised,
including the Mondrian process (Roy and Teh| 2009)), the rectangular tiling process (Nakano et al., [2014)), the
block-breaking process (Nakano et al.l |2020)), and the permuton-induced Chinese restaurant process (Nakano
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et al., [2021)). However, Bayesian inference algorithms for these extended models have become very complicated
to implement. On the other hand, Bayesian inference for super Bayesian relational models can go back to its
roots and naively lead to Gibbs sampling in a form similar to IRM.

The goal of Bayesian inference is to estimate the posterior probabilities of parameters U ov)

(Ui(mw)) . , and U(ehm) . — <U ;COlumn)> , given the observed data Z. By marginalizing out
ie{l,..,N M
random atomic measures G*°%) and G(°"™1) the joint probability density can be obtained as follows.

P (Z, l-]-(rOW)7 U(Columrl) | ‘R’(IO7 aq, 0[2) = PCRP (U(IOW) ‘ al) - DCRP (U(Column) ‘ a2)

<povs. (2 | RUC U™, a) 3)

where each of these terms will be discussed in detail immediately after this. For the first term pcrp (U (row) | oy
is the posterior probabilities induced from the standard CRPs, that is, for u, -~ Uniform([0,1]) (r=1,2,...),

N,
(N, >0)
P[U < | U] ={ Mg 20 0
Nt (otherwise)

where U(f;’W) = (Ul(row), U (mw) Ul(frolw), LU ](\ﬁow)), and N, denotes the number of {i’

i(’rOW) = u,,i # Z}
Similarly, for the second term pcrp (U column) | 0[2) is the posterior probabilities induced from the standard
CRPs, that is, for u, -~ Uniform([0,1]) (¢=1,2,...),

M.

(M. >0)
P |:U](column) ‘ U column) 042] _ N 3_2a2 7 (5)
Mt (otherwise)
where U .= (Ul(commn)7. Uj(collumn) Uj(iollumn), e UI(\?Olumn)), and M, denotes the number of
{j’ Uj(,commn) = U, j # j}. Finally, the third term is
e} D
row column F Da F &1 Jr E )
Pobs. (Z‘RaU( )7U( ! ),a()>OCH < ( g) H ( 19\ kd))a (6)
o1 \P(Dao + 32571 Li,a) 325 (o)

where Lj q denotes the number of elements in both the k-th block and the d-th category of the categorical
distribution.

The Gibbs sampling algorithm for the super Bayesian relational model described in Section can be described
as follows. We will iteratively repeat the following two update rules:

e For each i = 1,2,.. N, we iteratively draw a new sample of Ui(mw) from the conditional probability

row

distribution on U obtained from Equation (|3

e For each j = 1,2,..., M, we iteratively draw a new sample of U ;Commn) from the conditional probability
distribution on U ](Commn) obtained from Equation .

It is important to emphasize that the conditional probability distribution for each Ul-(mw) and U™ can be
computed exactly (without approximation), since the rectangular partition R of [0, 1] x [0, 1] is fixed.

B Proofs and additional notes omitted in Section 3 (Superrectangulation)

In this section, we give proofs for all the propositions in Section 3 (Superrectangulation) of the main text,
and supplement them with some remarks, conjectures and hypotheses. The goal throughout this section is
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Figure 11: Illustration of breaking ties operation. This operation can be used to convert words into permutations.
Left: Word. Second from left: Tie. Third from left: Breaking ties. Right: Corresponding permutation.

to construct a universal object that we call superrectangulation, which contains within itself all rectangular
partitions with n blocks. In order to make what turns out and what remains unresolved more clear, we would
like to distinguish between two cases of the superpermutation:

e Superrectangulation? - If a rectangular partition of [0,1] x [0,1] can generate every diagonal rectan-
gulation of the number of blocks n by restriction (i.e., the restriction operation described in Section 3
(Superrectangulation) of the main text, we call it a superrectangulationd.

e Superrectangulation® - If a rectangular partition of [0, 1] X [0, 1] can generate every generic rectangulation
of the number of blocks n by restriction, we call it a superrectangulation®.

When there is no need to explicitly distinguish between the superrectangulation? and the superrectangulation®,
we will simply write them as the superrectangulation. It follows immediately from the definition that if a partition
is a superpartition®, then it is also a superpartition?. This is because the set of diagonal rectangulations is a
subset of the set of generic rectangulations, so if a partition contains all generic rectangulations, then it also
contains all diagonal rectangulations. For simplicity of notation, we would like to write the maps that convert
permutations to rectangular partitions as follows. These symbols are in accordance with Reading (2012)) that
introduced these transformations.

e Map p from permutations to diagonal rectangulations - Figure [5| shows the details of this transfor-
mation. For every permutation p, we can obtain a unique diagonal rectangulation p(p).

e Map v from permutations to generic rectangulations - Figure 6 of the main text shows the details
of this transformation. For every permutation p, we can obtain a unique diagonal rectangulation ~y(p).

The first naive observation is that the superrectangulation® does indeed exist.

Proposition B.1. (Proposition 3.2 in the main text) There is a superrectangulation? that has n-n! blocks.

Proof. (Proposition ) As a constructive proof, we indeed construct a superrectangulation® with n -n! blocks.
There are n! permutations of length n, and for all of them, we construct a generic rectangulation of block number
n using the mapping (described in Section 2.3 in the main text). The n! rectangular partitions created in this
way cover all the general rectangular partitions (Proposition 2.5 in the main text). Finally, we generate one
rectangular partition on [0, 1] x [0, 1] with n! blocks, and for each block, we fill in one of the n!. This rectangular
partition on [0,1] x [0,1] has n - n! blocks and satisfies the requirement of the superrectangulation since it can
generate arbitrary generic rectangulations with n blocks by restriction. We have completed the proof. O

The first observation above is very naive, since it is based on a method that exhausts all rectangular partitions
through permutations, but we can reduce the size of the superrectangulation a bit by making the expression
of the permutation for a superpermutation. This result is non-trivial because it is not obvious whether the
rectangular partition corresponding to a superpermutation is a superrectangulation or not. In order to construct
this superrectangulation, we need to convert the superpermutation (word) to a permutation, and then convert
the permutation to a rectangulation. Therefore, we will first introduce the breaking ties operation to convert
words into permutations.
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Figure 12: Difficulty of extracting generic rectangulations by restriction from generic rectangulations

e Breaking ties operation - Figure shows an intuitive illustration of this operation. We suppose that
a word w whose alphabet is natural numbers N has I ties w(i1), w(ia), ..., w(im,) (¢ =1,2,...,I), that is,
w(iy) = wliz) = -+ = W(iy,) (@ € {1,...,1}). Then, we obtain a word w’ whose alphabet is a rational
number Q obtained as follows. First, we set up a copy of the word w as the word w’. Next, we make some
modifications to the word w’. For each tie w'(i1),w’(i2), ..., w (im,), we modify w’ as

m; — 1 . ) m; — 2 . :
;ni R w/('LQ)(*w/(ZQ)ﬁ» ;nl s ..,’w/(zmi)(*w/(lmi)ﬁ’ e

W' (in) — w'(i1) + i =i

(7)

Now that we have obtained w’ with rational numbers as its alphabet, the last step is to convert it to a
permutation. For the word w’, there is a unique permutation p that is an order-isomorphic to w’. We will
denote such a transformation by the map 8 : w +— p and call it the breaking ties operation.

In addition, we also use the inverse operation of a permutation:

¢ Inverse of permutations - A permutation p can be viewed as a map from N to N. The inverse map p~!
is then called the inverse of the permutation p. For example, the inverse of the permutation p = 35241
is p~! = 53142. Using the two-line notation for permutations, the inverse p~! of a permutation p can be
obtained more intuitively by reading the permutation p “upside down”:

(1 2 3 45 1 _ (1 2 3 45 (8)
P={3 524 1) P T\5 3142
In addition, the inverse of a permutation corresponds in geometric representation to the operation of rotating
90 degrees counterclockwise and then flipping horizontally, as shown in Figure [10| (middle).

The superrectangulations described in Proposition are somewhat difficult to handle in practical applications
of relational data analysis, since they are too large to be practical. Therefore, we need a strategy to reduce the size
of the superrectangulation more dramatically. It is worth recalling that the size of the superpermutation could
be dramatically reduced by using the zigzag word. Therefore, the strategy we can come up with is to convert the
zigzag word into a rectangular partition. Will the rectangular partition obtained by this transformation from
the zigzag word be a superrectangulation? The issues of interest to us can be summarized as follows:

Problem B.2. Let w be the zigzag word containing all permutations of length n as subsequences, as defined in
Section 2.1 of the main text.

(i) Whether or not the the diagonal rectangulation p(B(w)~!) is a superrectangulation®?
(ii) Whether or not the the diagonal rectangulation p(B3(w)) is a superrectangulation®?

(ii) Whether or not the concatenation of the generic rectangulation v(8(w)) and the generic rectangulation
Y(B(w)™1) constitutes a superrectangulation? ?

We will discuss the reasons for considering both 3(w) and B(w)~! in more detail later. Before considering these
issues, we can make some simple observations about rectangular partitioning corresponding to zigzag words.

Proposition B.3. Let w be the zigzag word containing all permutations of length n as subsequences. Then,
the generic rectangulation v(B(w)) is equivalent to the diagonal rectangulation p(S(w)). Similarly, the generic
rectangulation v(B(w)™1) is equivalent to the diagonal rectangulation p(B(w)~1).
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Proof. (Proposition ) For each wall in the generic rectangulation v(8(w)~1), by the definition of the zigzag
word w and the configuration of ~, if the wall extend vertically, then vertexes on it correspond to the descending
part of the zigzag word w. Similarly, if the wall extend horizontally, then vertexes on it correspond to the
ascending part of the zigzag word w. Therefore, by the configuration of p, we can check that v(8(w)™!)
p(B(w)~1). In the same way, we can check that v(B(w)) = p(B(w)).

o

As a result, Problem can be reformulated as follows:

Problem B.4. Let w be the zigzag word containing all permutations of length n as subsequences, as defined in
Section 2.1 of the main text.

(i) Whether or not the the diagonal rectangulation v(B3(w)~') = p(B(w)~1) is a superrectangulation®?
(ii) Whether or not the the diagonal rectangulation v(B(w)) = p(B(w)) is a superrectangulation®?

(#ii) Whether or not the concatenation of the diagonal rectangulation v(8(w)) = p(B(w)) and the diagonal rect-
angulation v(B(w)™1) = p(B(w)™1) constitutes a superrectangulation? ?

In the early stages of this study, we were initially optimistic that since the zigzag word contains every short per-
mutation p as subsequences, v(3(w) 1), v(B3(w)) and their concatenation may also contain their corresponding
rectangular partitions to p. However, unfortunately, this is not true. The reason for this is that the subse-
quence extraction from the zigzag word does not necessarily correspond to the restriction operation in the zigzag
rectangulation. More precisely, it can be explained as follows:

Proposition B.5. The relationship between the following statements is considered:

(S1) The permutation p is contained in the zigzag word w as a subsequence.

(S2) The rectangular partition ~(p) corresponding to the permutation p is contained as a restriction in y(8(w)).
At this time, (S1) < (52) is valid, but (S1) = (52) is not.

Proof. (Proposition ) First, we show the (S1) < (S2) part. For any given pair of blocks in the rectangulation
~v(B(w)), the positioning of the top-left corner (i.e., which is on top and which is on the left) is not changed by
the restriction operation. Thus, if the partition generated by restriction is to be partition ~y(p), then we can
choose the word which is order-isomorphic to the permutation p, by extracting the indexes of the blocks referred
to during restriction from the zigzag word w.

Second, we show the (S1) # (S2) part. This can be done by actually discovering counterexamples. Figure [9]
shows the counterexamples for the case of v(5(w)). O

Finally, we will discuss the reasons why we would want to consider both v(8(w)) and v(B(w)~!). As implied
by Figure [J] for a subsequence in the zigzag word to be extractable by restriction as the zigzag rectangulation
consisting of blocks with those indices, the subsequence must be concentrated in a small area in either the
horizontal or vertical direction. For example, as shown in Figure |§| (d), if a subsequence consists of elements
scattered in various positions in a zigzag word, the corresponding blocks are also scattered in various positions in
the zigzag rectangulation, and cannot be extracted as a rectangular partition by the restriction operation. From
this observation, it becomes important to consider both v(8(w)) and v(3(w)~1!). In the case of y(8(w)), if the
subsequence is concentrated in a narrow horizontal region, there is a high probability that it can be extracted
as a rectangular partition. On the other hand, for vy(8(w)~1), if the subsequence is concentrated in a narrow
area in the vertical direction, it is highly likely to be extracted as a rectangular partition. As a result, the
concatenation of vy(B(w)) and v(8(w)~!) is expected to be able to handle both cases, making it possible to
correspond subsequences to the restriction operations on the zigzag rectangulation. As a further clue to another
point of view, we find that the run required for a subsequence to appear in a zigzag word is almost always not
very large. Based on these clues, we expect that the concatenation of partitions v(8(w)) and v(8(w)~!) may be
a superrectangulation, but we would like to leave the answer to this question as an open question.
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C Notes on experimental setup

Dataset - We used four social network datasets Zafarani and Liu.| (2009): (1) Wiki (top-left) la)), consisting
of 7115 nodes and 103689 edges. (2) Facebook (top-right) b), consisting of 4039 nodes and 88234. (3)
Twitter (bottom-left) ), consisting of 81306 nodes and 1768149 edges. (4) Epinion (bottom-right) (dat]
@), consisting of 75879 nodes and 508837 edges. For each data, we selected the top 1000 active nodes based on
their interactions with others; subsequently we randomly sampled 500 x 500 matrix to construct the relational
data, as in (Fan et al) [2020} [Nakano et al| [2020). For model comparison, we held out 20% cells of the input
data for testing, and each model was trained by the MCMC using the remaining 80% of the cells.

Relational models - We compare the super Bayesian relational model with the BNP relational models based on
rectangular partitioning, such as the Mondrian process (MP) (Roy and Teh| [2009)), the block-breaking process
(BBP) (Nakano et al. |2020), and the permuton-induced Chinese restaurant process (PCRP) (Nakano et al.
2021). For MP (Roy and Teh| 2009), the intermediate random function of the AHK representation is drawn
from the MP, the budget parameter of which is set to 3, as in [Fan et al| (2020); Nakano et al. (2020). For
BBP (Nakano et al., [2020), we used the default settings provided by the original code (Nakano et al.l|2020). For
PCRP (Nakano et al.; 2021, we employed the non-informative Gamma prior on the concentration parameter for
CRP and used the uniform permuton. For our SB models, the number of blocks had to be set in advance. Since
it was difficult for us to determine the exact optimal parameter settings due to our computing environment, we
generated them from Poisson(50) based on a simple preliminary study in this experiment. We recognize that how
to determine the optimal size of the superrectangulation is an important problem to be solved in the near future.
Through our preliminary investigations, we expect that the size of the superrectangulation may contribute little
to the performance of the model, but we believe that exhaustive experiments are needed in the future to provide
stronger support for this observation.
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