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Abstract

Ensembles of decision rules extracted from
tree ensembles, like RuleFit, promise a good
trade-off between predictive performance and
model simplicity. However, they are affected
by competing interests: While a sufficiently
large number of binary, non-smooth rules is
necessary to fit smooth, well generalizing de-
cision boundaries, a too high number of rules
in the ensemble severely jeopardizes inter-
pretability. As a way out of this dilemma,
we propose to take an extra step in the rule
extraction step and compress clusters of sim-
ilar rules into ensemble rules. The outputs of
the individual rules in each cluster are pooled
to produce a single soft output, reflecting
the original ensemble’s marginal smoothing
behaviour. The final model, that we call
Compressed Rule Ensemble (CRE), fits a lin-
ear combination of ensemble rules. We em-
pirically show that CRE is both sparse and
accurate on various datasets, carrying over
the ensemble behaviour while remaining in-
terpretable. Predictions can be explained by
looking at the active ensemble rules, allowing
external validation. We showcase that en-
semble rules are also useful for a wider range
of models that utilize decision rules extracted
from tree ensembles.

1 INTRODUCTION

Ensemble methods that use decision trees as base
learners are among the most popular and success-
ful general-purpose supervised learning methods.
They can naturally adapt to non-linearities, capture
interactions between features and often perform
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well off-the-shelf with little to no parameter tuning
(Fernandez-Delgado et al., 2014). Most tree ensemble
methods use re-sampling schemes in order to create
trees that capture different aspects of the training
data. This increased model variance in return leads
to more stable, robust and accurate predictions
compared to a single decision tree.

However, the increase in model complexity resulting
from the ensemble approach is also a major downside.
While a single decision tree is straightforward to
interpret, a forest resulting from the combination of
hundreds, deep and randomized, decision trees can not
be processed by the human mind, essentially turning
the ensemble into a black-box model. Methods for
analyzing the behaviour of the forest exist, such as
Variable Importance (Breiman, 2001) and recently
proposed variants, such as SHAP-values (Lundberg
and Lee, 2017), but the intuitive structure of the
individual trees is lost. This makes it unclear how
exactly a decision is reached, which is a fact that is
often not acceptable in high-stake situations, such as
a medical treatment choice.

One approach towards interpretable machine learning
models is to learn rule ensembles. As decision rules
are composed of simple if-else statements, they
are easier to interpret for humans compared with
deep decision trees. One such approach is RuleF'it
introduced by (Friedman and Popescu, 2008). Instead
of learning decision rules directly, the candidate rules
are extracted from decision forests and combined in
a penalized linear model. The rationale of RuleFit is
both simple and compelling: Tree ensemble methods
often have remarkable accuracy. However, their
greedy learning procedure produces overly compli-
cated models. By regularizing away the unnecessary
complexity, RuleFit takes a step towards a favourable
accuracy-complexity trade-off.

We argue that rule ensemble approaches suffer
from competing interests: In order to provide smooth
decision boundaries, a property essential for good
generalization in ensembles (Biithlmann and Yu,
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2002; Bithlmann, 2012), a sufficiently large number of
slightly different — potentially overlapping — rules need
to be selected for the final ensemble, which in return
harms the interpretability. We propose a way to solve
this dilemma based on the interpretation of ensemble
learning as a smoothing of the hard thresholding
behaviour of decision rules (Bithlmann and Yu, 2002).
Instead of using the individual decision rules directly,
we first identify clusters of similar conditions. To
this end, univariate clustering is performed on the
splitpoints in each covariate. The resulting groups
of similar conditions are then compressed into soft
conditions, which we call ensemble conditions. By
averaging the discrete outputs of the individual
conditions, ensemble conditions produce a smoother
output, which reflects the behaviour of the original
forest method. Ensemble rule compression allows to
carry over the smoothing behaviour of forest methods
while sacrificing very little in terms of interpretability
and at the same time reflecting the uncertainty about
the ‘true’ splitpoint. We argue that often already
a few compressed rules allow us to capture and
interpret the central behaviour of the forest, providing
a glimpse into the black box.

The structure of this paper is as follows. In sec-
tion 2 we give an overview of existing rule ensemble
approaches, and in section 3 we review the RuleFit ap-
proach and introduce notations. Section 4 introduces
compressed rule ensembles (CRE), that combine en-
semble rules, based on ensemble conditions, with the
RuleFit approach. We also showcase that ensemble
rules are useful in other rule ensemble frameworks.
Section 5 presents our experiments on classification
tasks. Section 6 concludes.

2 RELATED WORK

Several ways have been proposed to (greedily) in-
duce decision rule ensembles. Classical approaches
include the divide and conquer algorithms, which
sequentially induces non-overlapping rules (Cohen,
1995; Furnkranz, 1999), and boosted decision rules
(Freund and Schapire, 1996; Weiss and Indurkhya,
2000; Dembezyriski et al., 2008) that use re-weighting
schemes to induce rules that iteratively reduce the
error from the current ensemble.

RuleFit (Friedman and Popescu, 2008) combines
candidate rules in a penalized linear model. This
two-step formulation of rule learning allows the
application of standard statistical learning methods.
In its original formulation, rules are extracted from
gradient boosted decision trees (Friedman, 2002), but
also other forest types have been explored (Nalenz
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Figure 1: Left: Binary decision tree with 3 leafs, 1
internal node and the root node. Right: Further de-
composition of the decision rules into the elementary
conditions. Multiple conditions per rule are combined
with the logical AND.

and Villani, 2018; Fokkema, 2020). Inducing decision
rules jointly with learning the weight coefficients was
explored in (Jawanpuria et al., 2011) and (Wei et al.,
2019). Using quadratic programming to select the
final ruleset was explored in (Meinshausen, 2010).

Another interesting way to combine decision rules
was recently proposed with SIRUS (Bénard et al.,
2021), where paths are extracted from an adapted
version of random forests. There the data is quantile
transformed beforehand to limit the possible split-
points in trees, allowing to identify frequent patterns
across trees. The most common decision rules are
simply averaged to produce a prediction, without the
need of a linear weighting and selection step, which
significantly improves the model stability.

3 PREDICTIVE RULE ENSEMBLES

Given the N training examples (y;,x;),i = 1,..., N,
with generic variables y and x, where y is either dis-
crete or numeric and z = (21,...,2p,) € RP is the
p-dimensional covariate vector, with the j’th compo-
nent of z denoted as z(9), we seek to find a function,
that allows to predict y from z. In the context of pre-
dictive rule ensembles and assuming a regression task
we look at the class of generalized additive models

H
y=> anrn(x), 7 e{0,1}, (1)
h=1

where decision rules rp () are used as basis functions,
weighted by the coefficients ay,. Instead of learning de-
cision rules directly from the data, the RuleFit frame-
work takes a two-step procedure.
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First, a tree ensemble is generated. (Friedman and
Popescu, 2008) use gradient boosting to generate the
set of trees. As boosting shows great accuracy in many
tasks, it is reasonable to assume that the model is
able to find interesting subspaces, defined by decision
rules. The decision trees are then decomposed into
their defining decision rules and harvested across the
whole ensemble. In our approach we decompose the
rules further into their elementary conditions. s de-
notes the index of the rule that the condition origi-
nates from, v the index of the covariate used for the
comparison and t the splitpoint. Figure 1 shows an
example of this decomposition and the introduced no-
tation. A condition is thus defined by the triplet
ca = (SayVa,ta),a = 1,..; A, where A is the total
number of conditions collected from the forest and
M = |{s}| is the number of decision rules. Note that
in this step only the different paths to all nodes are
stored, not the values of the leaf nodes. The full rule
is the conjunction of its individual conditions. The
hard-thresholding split function ¢ is given by

v,t) = I(z™
¢z, v,t) = I(z)
depending on the direction that is encoded in 7} and
assuming numerical features. As the second step the
decision rules are included, together with linear terms,
as 0-1 features in a linear regression model. Using the
above notations, the full rules r;, € {0,1} are obtained

by taking the product of the conditions that are part
of rule h,

t) or (2)

T <
> =1-1=" <t) (3)

(@) = ] 6@ v ta). (4)

a:sq=h
The original forest contains a large number of rules.
L1-regression (Tibshirani, 1996) is used to reduce the
large set of candidate rules to the truly predictive ones.

4 COMPRESSED RULE
ENSEMBLES (CRE)

As in RuleFit, in a first step a tree ensemble is gen-
erated. Either the random forest or gradient boost-
ing framework can be applied. For computational effi-
ciency we use XGBoost (Chen and Guestrin, 2016) to
generate the rules. However, before transforming the
rules directly into 0-1 features using (4), we take an
additional step and compress groups of similar condi-
tions into ensemble conditions.

4.1 Ensemble Compression

When using re-sampling techniques commonly fea-
tured in random forests and (stochastic) gradient

boosting, the splitpoints inside the forests will often
appear in clusters. Depending on the sample that
is seen by a tree and the weights in this iteration,
the tree induction algorithm will often lead to similar
trees with slightly different splitpoints. This is gen-
erally beneficial in terms of predictive performance,
as it leads to a smooth decision boundary (Biithlmann
and Yu, 2002), which stabilizes predictions. However,
this also implies that when removing many rules in
RuleFit we expect the decision boundaries to become
non-smooth and the predictive performance to drop.
Therefore, the goal is to preserve smoothness but re-
shape it in a form that is accessible for human inter-
pretation.

4.2 Clustering of Similar Conditions

To preserve the forest behaviour, we identify clusters of
similar conditions that only differ in their exact split-
point and combine their binary decision into a sin-
gle smooth decision. More formally, for each covari-
ate 7,7 = 1,...,p we look at the vector of splitpoints
TW = (ty : v, = j). This step collects all split-
points from splits involving covariate j from all rules
that were extracted from the original forest. Note that
the splitpoints are taken from single condition rules or
from more complicated rules, involving several condi-
tions and other covariates. Also, no attention is drawn
to the depth of the rule in which the condition appears,
as with the symmetry in the conjunctive form of de-
cision rules, ordering is somewhat arbitrary. As we
expect the clusters of splitpoints to be fairly obvious,
we use k-means as a robust and well-understood clus-
tering method to find the clusters. We assume that the
splitpoints will appear in a relatively small number of
clusters. The k centers in the k-means algorithm are
chosen to minimize the intra-cluster variation,

k
C(k,pn, TU) =" >

=1 {z:gg'j)=l,tz €TH)}

(t- = 0)* (5

where z € {1,..., Z = |T|} is the index of splitpoints
for covariate j, g\9) = (g1,-.-,9z) is the vector of clus-
ter labels for the splitpoints and § = (64, ...,60;) the
vector of mean values of the k groups. For this one-
dimensional clustering problem, the Ckmeans.1d.dp al-
gorithm (Wang and Song, 2011) can be applied, which
uses dynamic programming to find the global optimal
solution. If a certain splitpoint is very important in the
prediction task, it will often appear in the vector 71
and dominate the cluster solution in equation (5). This
is a desired property, resulting in an implicit weighting
of regions found important by the forest method. As
the appropriate number of clusters for each covariate
is unknown apriori, we determine the optimal k us-
ing the AIC criterion with a pre-specified maximum
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number of clusters ky,q,. Other clustering algorithms
that we considered were Gaussian-Mixture-Models and
density-based clustering methods, such as DBSCAN
(Schubert et al., 2017). As the results were quite sim-
ilar, we decided to stick with k-means as the most
simple and robust approach. Note that the cluster-
ing is performed on the splitpoints found in the forest,
never on the original data, making this step computa-
tionally cheap. For 500 trees, the number of splits is
typically << 1000 per covariate and therefore almost
independent from N and only linear in p.

4.3 Combining Multiple Conditions into a
Soft Condition

Given the vectors of splitpoints for group [ of covariate
j from the clustering step, TZ(J) =(t; €TV ; ggj) =1),
we combine the individual conditions to ensemble con-
ditions. The combined output of the ensemble condi-
tion is computed by average pooling of the outputs
from the individual conditions. The soft output func-
tion for ensemble condition [ becomes

®(z,v,0) =TV Y dla,v,0). (6)

teT )

Averaging over several conditions turns the individual
binary outputs ¢(z,v,t) € {0,1} into a soft output
O(z,v,1) € [0,1]. In contrast to other soft decision
rule approaches, such as Akdemir et al. (2013), our
approach is non-parametric. ® reflects the empirical
distribution from the splits found in the forest and
preserves the univariate behaviour of the full ensem-
ble, and compresses it in a single ensemble condition.
Figure 2 shows the distribution of splitpoints for the
Diabetes dataset from the UCI repository (Dua and
Graff, 2017) and the clustering result using kyq. = 4.
We observe that the ®(z) can follow arbitrary
distributions that are quite different from logistic
curves. Also, note the dense regions, forming clusters
of splitpoints that are interesting for predictions.
Lastly, suppose the underlying relationship is in fact
a stepfunction. In that case, we expect the forest
method to capture it, and in return, the clusters’
intervals become very narrow.

To finish this step, all original conditions are re-
placed by their corresponding ensemble conditions.
Using ensemble conditions turns each binary rule 7
into a smooth rule Ry, generalizing equation (4). The
output of Ry, is calculated via

Rn(z) = H (7, v4,94) € [0,1]. (7)
a:sq,=h

As all conditions in each cluster have the same output
for any given z;, ensemble compression allows to safely
remove a large number of redundant rules.

4.4 Finding a Sparse Set

Given the ensemble rules, the second step combines
them to a reduced ensemble. We investigate two ways
of rule aggregation, weighting and averaging.

4.4.1 Linear Weighting

Following RuleFit, the ensemble rules are included, to-
gether with linear terms, in the (generalized) linear
regression model:

P H
F(z)=0(fo+ ) Bjw;+ Y anRa(z)), (8)
j=1 h=1

where o is a link function. As in (Friedman and
Popescu, 2008) the rule terms are not scaled, leading
to a higher penalty on rules with low support. However
one property specific to compressed rules is that rule
support decreases slower with additional conditions,
leading to lower penalization of complicated rules. As
complicated rules are highly undesireable in terms of
interpretability, we counteract this effect by decreas-
ing the scale of each Rj proportional to the number
of conditions involved, via

__ Rz
length(Rp)"’

where 7 is a parameter that controls the amount of ex-
tra penalty for the number of conditions involved and
length(R},) is the number of conditions. This is sim-
ilar to the rule structured prior used in (Nalenz and
Villani, 2018). Penalizing depth was also found an ef-
fective way to promote simplicity in (Wei et al., 2019;
Chipman et al., 2010). We found n = 0.5 to work well
as a default choice, but 7 can also be guided by prior
knowledge, about the complexity of the underlying re-
lationship or tuned via cross validation. The weights
are found by solving the Ll-regularized regression

Rj(x) n>0, (9)

(0".0° 55} = axg i [L<y,F<x>>+ (10)

P H
MBS ol ] ()
j=1 h=1

with L being an appropriate loss function. A big ad-
vantage of the linear model approach is its easy inter-
pretability. Following (Friedman and Popescu, 2008),
we can rank rules and linear terms by their (rescaled)
effect size |a*| and |5*| respectively as a measure of im-
portance. In our experiments we use the R-package (R
Core Team, 2021) glmnet (Friedman et al., 2010), and
the penalty parameter X is chosen via cross-validation
(CV). A popular choice is to use Aige the highest A
value within one standard deviation of the minimum,
in order to promote sparsity, which is also used as a
standrad choice for CRE.
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Figure 2: Distribution of splitpoints for the 6 most used covariates in the diabetes data set (cf. Section 5.3.
and the supplementary material), using k., = 4. Colours indicate the cluster solution from the Ckmeans.1d.dp
algorithm. The dashed line shows the soft output ®(z) for each cluster (compressed condition).

4.4.2 Averaging

An alternative to the linear combination (8) is to sim-
ply count the number of occurrences of each smooth
rule Rj, and average over the most frequent rules. For
each rule the associated prediction values for cases that
are covered/not covered by a rule, iy, u_ respectively
are the weighted mean on the training data

Bt n =
Zz 1 Rh

1
S (1= Ra(w:) g

assuming y € {0,1}, which is a soft version of the
SIRUS algorithm. Predictions for the whole ensemble
rule are obtained via

Uih = Ru(xi,v,9) -ty n+(1=Ru(wi,v,9)) - p— - (14)

The output of the whole ensemble is then simply the
average of the K most frequent compressed rules Ry.
Adopting the SIRUS approach (Bénard et al., 2021)
to use compressed conditions instead of crisp decision
rules goes together quite naturally with the idea of en-
semble compression, avoiding any data discretization.
We find the core idea of SIRUS particularly interest-
ing, as it can be seen as a proxy of how good a small

Zyth xz (12)
i=1

N

f—h = yi(1 = Ra(zi)), (13)

number of ensemble rules can summarise a whole tree
ensemble.

4.5 The Effect of Ensemble Compression

4.5.1 Choice of k42

The inverse k,,,., can be interpreted as compression
rate. Setting k4, = 1 compresses all splitpoints per
covariate into a single group and results in a monotonic
transformation of the covariate, based on the distribu-
tion of the splitpoints. In this setting, only mono-
tonic effects can be captured and no change of sign is
possible. Increasing k;,q, allows changes in sign and
magnitudes of the effects, therefore finding different
regions of interest. As k — Z, where Z is the number
of splitpoints in this covariate, our model approaches
the original RuleFit model. Using ensemble compres-
sion also acts as a regularizer, as it makes it harder to
overfit on individual rules but has to take into account
the general pattern found by the forest. The choice
of kpae can be guided by visual inspection using his-
togram plots as in Figure 2, or by considering the de-
sired trade-off. For a higher degree of interpretability,
a low ky,q. should be used. Another option is to rely
on cross-validation and examine the different choices
in terms of their expected accuracy-complexity trade-
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Table 1: Runtime in s. (Data is taken from the
OpenML repository (Vanschoren et al., 2013)).

Dataset N ‘ CRE,; CREys RuleFit
Magic 19022 | 174 230 2633
EEG 14980 | 512 740 2243

off. We empirically found a relatively small value of
Emaz (6.8 kmaz € {2,3,4}) is usually a good choice,

whereas the gain in accuracy by choosing a higher k is
typically incremental and out-weighted by the increase
in model-complexity (cf. Section 5).

4.5.2 Computational Cost

The number of unique conditions is reduced to a max-
imum of k,,q, distinct ensemble conditions for each
covariate, which can be significantly lower than the
number of distinct original conditions. This also leads
to a much smaller number of unique rules in the linear
modelling step, which is important, as the design ma-
trix in equation (11) is of size (n, p+ H). As duplicates
and colinear terms can be safely removed, this effec-
tively lowers the computational cost and memory us-
age significantly, and decreasing k., lowers the com-
putation time considerably. Table 1 shows the runtime
on two medium-sized datasets, comparing RuleFit and
CRE using k € {2,4}. On these datasets, the speed-
up compared to RuleFit is quite significant. Interest-
ingly, on the Magic dataset, the speedup is much more
notable as the number of predictive covariates is rel-
atively small and around 60 % of R}, can be removed
from the initial set (using kjqr = 4). If the splits
distribute evenly over many covariates, as in the EEG
data, the reduction is smaller but still notable.

4.5.3 Interpretation of Ensemble Conditions

Ensemble conditions consist of a typically large num-
ber of thresholds, and interpreting the exact split
points would be a tedious task. For a literal descrip-
tion we suggest to instead look at summary statistics
of T, such as the mean, ( = T, or ¢ = median(T).
The rule can then be read as « $ ¢ (less than around
(), instead of the precise x < s counterpart. Another
possibility is to provide the interval [min(7"), max(T")].
For a more detailed insight in the distribution of in-
teresting rules, one can instead use histograms such as
the one shown in Figure 2. We argue that providing an
exact split point in the finite data domain neglects the
uncertainty involved about what other choices would
be reasonable. Compressed rules offer a natural way
to communicate the model uncertainty. If the original
ensemble shows a large spread of splitpoints, this is re-
flected in larger intervals, whereas in the case of clear

cut-points, the intervals will become narrow.

5 RESULTS

In this section, we test our method empirically. The
goal is to show that CRE is able to produce both accu-
rate and small models due to the smooth boundaries
introduced by the ensemble compression.

5.1 Experimental Setup

For comparison, we use 16 binary classification
datasets from the UCI repository (Dua and Graff,
2017). We chose datasets that consist of mostly nu-
merical covariates and require minimal preprocessing.
A detailed description of selection criteria and prepro-
cessing, algorithm settings and additional results can
be found in the supplementary material (SM). We limit
the experiments to binary classification but note that
CRE can also be extended to regression, multi-label
and multi-target classification (Aho et al., 2012).

5.2 Competing Methods

As a black box baseline with generally strong pre-
dictive performance we include random forests and
gradient boosting. Random forest (RF) is run with
default settings using the original randomForest
R-package (Breiman, 2001). Gradient boosting,
implemented with the xgboost R-package (Chen and
Guestrin, 2016), is more dependent on parameter tun-
ing. We use model based optimization with m1rMBO
(Bischl et al., 2018) inside each fold, in order to find
reasonable parameters and ensure a fair comparison.

We compare against two versions of RuleFit,
both implemented with the pre R-package (Fokkema,
2020). RuleFit uses normal CART trees as base
learners and parameter settings that most closely
resemble the original version of RuleFit. In order to
determine a reasonable tree depth, we use 5-fold CV
inside each fold. PRE is a more interpretable setting
proposed in (Fokkema, 2020) that uses A5 and an
average tree depth of 3 (without tuning).

SIRUS is built using the sirus (Bénard et al.,
2021) R-package, with the number of rules deter-
mined using the CV strategy proposed by the authors.

Also we include the recently proposed General-
ized Rule Model GLR (Wei et al.,, 2019) in our
comparison, using the aix360 python library (Arya
et al., 2019). The parameters were chosen following
the cross-validation strategy proposed by the authors.
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Table 2: Accuracy measured in AUC for the competing methods on the 16 benchmark datasets.

Data CREs CREy2 CRERs CRER¢ CRErr GLR PRE RF RuleFit SIRUS XGB
(1) Australian 0.901 0.937 0.939 0.944 0.935 0.942 0.930 0.936 0.938 0.921  0.939
(2) Banknote 0.986 1 1 1 1 1 1.000 1.000 1.000 0.972 1

(3) Biodeg 0.871 0.929 0.931 0.930 0.919 0.926 0.915 0.938  0.924 0.840  0.932
(4) Blood Transf  0.732 0.730 0.750 0.748 0.741 0.751 0.724 0.668  0.751 0.708  0.746
(5) Diabetes 0.823 0.830 0.830 0.831 0.832 0.844 0.829 0.825  0.840 0.807  0.841
(6) Haberman 0.712 0.683 0.670 0.680 0.621 0.662 0.676 0.685  0.708 0.651  0.688
(7) Heart 0.898 0.910 0.896 0.896 0.888 0.898 0.877 0.905  0.897 0.899  0.906
(8) ILPD 0.709 0.728 0.723 0.718 0.704 0.736 0.735 0.752  0.706 0.729  0.724
(9) Ionosphere 0.955 0.963 0.964 0.965 0.954 0.948 0.965 0.981 0.968 0.941  0.970
(10) Liver 0.649 0.666 0.679 0.644 0.667 0.646 0.623 0.564  0.657 0.644  0.654
(11) Parkinsons 0.906 0.945 0.959 0.950 0.968 0.915 0.857 0.953  0.960 0.888  0.962
(12) Pop Failure  0.907 0.947 0.945 0.952 0.946 0.942 0947 0.920 0.925 0.889  0.946
(13) Sonar 0.863 0.923 0.927 0.910 0.925 0.864 0.875 0.949  0.915 0.829  0.940
(14) Spambase 0.963 0.985 0.986 0.986 0.985 0.979 0.980 0.987  0.985 0.933  0.988
(15) WBCD 0.991 0.992 0.993 0.991 0.993 0.991 0.992 0.992  0.989 0.981  0.995
(16) Wilt 0.952 0.990 0.992 0.991 0.993 0.969 0.991 0.990  0.993 0.901  0.990
3 8.500 5.156 4.469 5.156 5.656 5.969 7.562 5.250  5.375 9.688  3.219
AAUC 0.034 0.012 0.011 0.014 0.018 0.021 0.028 0.019  0.012 0.051  0.008

Table 3: Left: Number of coefficients selected for the final model. Right: Figure 3: Normalized Accuracy vs.
Normalized Sparsity where 1 is the best on each dataset and 0 the worst. CRE}.2 (red circle), C RE}.4 (orange
triangle), GLR (green squares), PRE (blue cross), RuleFit (purple squares), SIRUS (brown stars).
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The CRE based models use gradient boosted trees

this article.

We also test compressed rules with

from xgboost to generate the rules. Different degrees
of compression are tested, using kpn.. = {2,4,6}
denoted as CREy.,,,.. Only CRERrp uses random
forests to generate the rules, as a way to measure
the influence of the tree generating process, and
Emaz = 4. All CRE models use n = 0.5 (cf. (9)) to
promote taking in less complex rules. No parameters,
for the rule generation ,n or k..., are tuned. Better
predictive performance may be reached, but we are
interested in the ‘out-of-the-box’ performance in

averaging of the rules, which resembles the SIRUS
approach. To estimate the influence of the rule
compression, C'RFEg uses the average number of
rules used by SIRUS on each dataset, leading to the
overall same model complexity as STRUS. We expect
the same number of ensemble rules to generalize
better compared to binary rules. An open-source
R-implementation of the CRE methods used in this
article is available under https://github.com/
maltenlz/Compressed-Rule-Ensembles.
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5.2.1 Accuracy

We report accuracy as measured by the area under
the curve (AUC). Table 2 shows the results over
the 16 datasets, together with the mean rank 7 and
average deviation from the best AUC value (AAUC)
over all datasets. Using the multiple comparison
approach from Demsar (2006); Calvo and Santafé Ro-
drigo (2016), the post-hoc Friedman-test for overall
differences in AUC indicates significant difference
between algorithm performance (p = 1.9¢77). A
Nemenyi-test indicates no statistically significant
difference in performance between XGB, all CRE
versions, RF, RuleFit and GLR (« = .05). The same
is not true for PRE, CREg and SIRUS, which perform
significantly worse. In line with our expectation and
previously reported results, a well-tuned XGB model
is on average the most accurate. CREFE}.4 achieves
the second-best rank, outperforming all rule-based
competitors, the vanilla random forest and the tuned
RuleFit model.

CRE}).5 is very competitive in terms of accuracy
to XGB, RF and RuleFit and performs similar or
better than the other rule-based competitors, despite
using a high degree of compression (using only 2
clusters per covariate). Using a higher compression
parameter C' REy.¢ is not beneficial in the analyzed
datasets. This can be attributed to the regularizing
effect of ensemble compression, making k., = 4 our
recommended default choice for prediction while in
most data situations already k... = 2 suffices.

As seen by the average deviation from the best
method, CRE and RuleFit are on average not much
behind the best method, implying a stable perfor-
mance. GLR also shows good overall performance
but has some datasets where the difference to the
best method is quite large. SIRUS, CREg and PRE
sacrifice on average a notable amount of accuracy but
still are competitive on some datasets (e.g. WBCD
and ILPD).

5.2.2 Model Complexity

Table 3 shows the number of selected rules and linear
terms. In terms of model complexity, SIRUS, CRE}.s,
CRERr, GLR and PRE produce the smallest mod-
els, with STIRUS being the winner (note that CRFEg
uses the same number of rules). However, as discussed
above, STIRUS and PRE sacrifice a substantial amount
of accuracy to achieve this goal, whereas C RE}).o on
most datasets produces similarly sparse models while
remaining competitive concerning predictive perfor-
mance. CRE}.4 takes in slightly more rules but also
produces reasonably small models on most datasets,

while maintaining strong accuracy. RuleFit produces
overall the largest models, often by quite a large mar-
gin.

5.2.3 Accuracy vs. Sparsity

The trade-off between accuracy and model size can
be seen in Figure 3, where only CRE}.5, CRE}.4 and
GLR are able to consistently achieve good accuracy
and sparsity jointly. We conclude that CRE produces
both accurate and sparse models, whereas most of the
competing methods have to compromise either aspect.
GLR and PRE also show overall very reasonable
trade-offs under the competing methods. If one is
willing to sacrifice some accuracy, also SIRUS and
CREgs become very reasonable choices as highly
interpretable but slightly less accurate models. The
standard RuleFit shows good accuracy but leads to
clearly sub-optimal trade-offs..

To summarise, while in this study a well-tuned
XGB model is the most accurate, CRE is on average
not far behind while producing small model sizes.
The good performance of CRE is enabled through
the usage of ensemble rules allowing smooth decision
boundaries even for sparse solutions.  Ensemble
compression also improves the predictive performance
of the SIRUS framework when using the same amount
of rules. CRE produces more accurate models in
terms of AUC when combined with gradient boosting,
while producing more sparse solutions when using
random forest to generate the rules.

However, we also found that ensemble compres-
sion is not always effective. For example, on the
Tonosphere dataset CRE performs worse than RuleFit
both in terms of accuracy and model size. We found
this to happen on some physical datasets when the
underlying relationship might not be smooth. In
this case, CRE does not improve performance. It
is reassuring that even in these suboptimal data
situations CRE still remains competitive.

5.3 Interpretation

Finally, we showcase how CRE allows for vivid inter-
pretation. Here we focus on the literal interpretation
of the rules, as they are the main advantage of rule
ensembles. Table 4 shows the output of C RE}.4 for
the Diabetes dataset ! using [min(T), max(7')] as sum-
mary (cf. 4.5.3). Shown here are the rescaled coeffi-
cients B as a measure of impact when the rule ‘fires’.
An alternative would be to use N~'®(z)/ as a mea-

LA description of the covariates is available in the sup-
plementary material. Y = 1: diabetes positive.
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Table 4: Model output for the Diabetes data.

Rule p
Intercept —1.41
age > [21.5;26.5] A BMI > [21.75;28.15] 0.57
age > [27.5;34.5] 0.47
BMI > [21.75;28.15] 0.38
BMI <[28.45;32.35] A preg <[5.5;6.5] —0.26
BMI <([38.45:45.45] A pedi <[0.6;0.9] —0.26
BMI > [21.75;28.15] A pedi > [0.14;0.37]  0.22
linear: plas 0.15
plas <[115.5;141.5] A preg <[5.5;6.5] —0.09
BMI <[38.45;45.45] A plas <[142;188.5] —0.06
BMI > [28.45;32.35] A pedi > [0.38;0.59] 0.06
preg > [5.5;6.5] 0.05
BMI <([38.45:45.45] A plas <[142;188.5]  —0.05
A preg <[7.5;8.5]

BMI <[28.45;32.35] A preg <[7.5;8.5] —0.05
preg <[7.5;8.5] A skin > [3.5;11.5] —0.02

sure of global importance. The rules show that dia-
betes is strongly connected to age and BMI and its
interaction. BMI appears to be the most important
covariate, appearing in almost all ensemble rules, of-
ten in interaction with different covariates. The rule
BMTI > [21.75;28.15] also demonstrates the usefulness
of ensemble rules. In this region, the risk of diabetes
starts to increase, and no single split value would de-
scribe the relationship well. The distribution of split
points and ®(z) can be visualized (cf. Figure 2).

Table 5: CRE prediction explanation.

Rule B R(x) PR(x)
linear: plas 0.023 62.1 1.440
Intercept —1.410 1 —1.410
age > [27.5:34.5] 0470 0450  0.210
BMI <[38.45;45.45] —0.260 0.410 —0.110
A pedi <[0.6;0.9]

preg > [5.5;6.5] 0.050 1 0.050
BMI <[38.45;45.45] —0.060 0.200 —-0.010
A plas <[142;188.5]

BMI > [21.75;28.15] 0.380 0.020  0.010
age > [21.5;26.5] 0570 0.020  0.010

A BMI > [21.75:28.15]

CRE can also give an explanation of how a prediction
is produced. Table 5 shows the output for a ‘close
call’ observation with (age, BM1I, pedi,preg,plas) =
(32,23.3,0.67,8,62.1). It is interesting to take a closer
look at the rule age > [27.5,34.5]. If this ensemble
rule fully fires (R(x) = 1, cf. equation (4)) the risk of

diabetes increases by exp(0.47) = 1.6. In this exam-
ple, about half the splitpoints in the ensemble rule fire,
leading to an increase in the risk of exp(0.21) = 1.24.
If hard rules were used instead, the rule could only
give the full risk increase or none. While the last rule
contributes little to the current prediction, it is still
interesting: If the covariate BMI increases, this rule
will fire more strongly, and the diabetes risk will in-
crease. Instead of giving all or nothing decisions, CRE
allows to spot grey areas that may be interesting for
interventions.

6 CONCLUSION AND FUTURE
WORK DIRECTIONS

We proposed a framework to compress decision tree
ensembles into smooth decision rules. Combining
ensemble conditions with the RuleFit approach leads
to simpler and more robust models while being
competitive in terms of predictive performance. As
decision rules are a fundamental building block of
many learning algorithms, rule compression could be
beneficial for a wider range of models, as an easy way
to provide smooth and stable decision boundaries.
We argue that the increase in complexity, due to
smooth decision rules, does not harm interpretability.
On the contrary, it more closely resembles human
intuition and communicates the model’s uncertainty
about the exact rule.

We expect CRE to be more stable than RuleFit,
as the ensemble rules depend less on the specific
data sample and are more consistent between runs.
However, in this paper, we were unable to test the
stability empirically, as to the best of our knowledge,
no suitable stability measure exists to measure literal
similarity with continuous thresholds. The approach
in (Bénard et al., 2021) requires discretizing the data,
which does not make sense for CRE. Our preliminary
experiments with stability metrics that try to measure
the literal similarity between rulesets using continu-
ous thresholds were unsatisfactory. Suitable stability
measures along the lines of (Nair et al., 2021), but
tailored for continuous thresholds, would be highly
desirable as a direction for future work.

Another potential application could be to wuse
rule compression to get an insight in the inner work-
ings of a forest, by extracting the most common paths
in the forest, as was showcased by the combination
with the SIRUS approach. Future work will focus
on the summary potential of ensemble compression
as a tool for black-box interpretation by detecting
and visualizing frequent rules across the forest, rather
than building a new predictive model.
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Supplementary Material:
Compressed Rule Ensemble Learning

A Data Gathering and Preprocessing

Datasets, used in the section 5 and the diabetes dataset in section 4 of the paper are taken from the UCI machine
learning repository (Dua and Graff, 2017). These criteria are:

e In this article we only consider binary classification.
e We chose datasets with mostly numerical features or features with low cardinality.

e Only datasets with low number of missing values are considered to minimize algorithm differences in missing
value handling.

This criteria are set in order to make preprocessing as minimal as possible. Mostly numerical features are chosen
for two reasons: (1) Ensemble compression only works on numerical features. (2) Tested algorithms have different
ways to deal with discrete features, therefore we want to limit the influence of the implementation on the results.
The preprocessing takes the following steps:

e Missing values are mean-imputed.

e Categorical features are simply transformed to numerical features, using the factor levels. (only in the
Australian dataset).

e Dummy covariates are left as they are.
e For the liver dataset the Covariate ”drinks number” is used to generate the classes, as in (Turney, 1994).

e for the EEG-EYE data used in section 4.5.2 colinear covariates were removed due to numerical instabilities
in the linear modeling step (for all methods).

Generally, first the datasets were selected and the preprocessing fixed, then we ran the experiments and no
further datasets were excluded.
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B Algorithm Settings

The exact settings and software used to allow reproducibility of results in section 4 are stated below:

e RuleFit: we use the R-package pre (Fokkema, 2020) to build the RuleFit model. For reasons of comparability
we use boosted CART trees to generate the rules, but note that using the conditional random forest method
to generate the trees might improve performance, as shown in Fokkema (2020). Other settings are set to the
ones in Friedman and Popescu (2008). The most impactful parameter, treedepth is determined via internal
5-fold CV trying the values 1,2,3,4,5. A is taken as minimal value from the sequence, promoting accurate
models.

e PRE is built using the default setting of pre, which was shown in (Fokkema, 2020) to provide a good
trade-off between accuracy and interpretability.

e RandomForest (RF) are built using the R-package randomForest (Breiman, 2001). The number of features
sampled at each split is left to default (|,/p]) and normal bootstrapping used for resampling. RF is used as
a out-of-the-box baseline.

e XGBoost (XGB) is tuned via Bayesian Optimization, as it relies much more on suitable parameters, which
is done with the R-package mlrMBO (Bischl et al., 2018). The learning rate is considered between
[0.005,0.1], covariates per tree between [0.7,1], subsample per tree between [0.2,1] and the mazdepth of
trees as {1,2,3,4,5,6}. The budget is set to 20 and the remaining values to default.

e The Generalized Rule Model (GLR) was built using the aix360 python library. For the tunable parameter
values Ao € {0.001,0.005,0.01,0.03,0.05,0.07,0.09} were considered and the Ay chosen that maximises the
brier score in a 5-fold cross-validation.

e SIRUS was build using the sirus R-package and using the sirus.cv routine to determine the optimal number
of rules for the final ensemble (maximizing accuracy).

e We also tested another XGBoost based RuleFit version, implemented in the R-package xrf, which was
omitted in the main manuscript for space limitations, but is shown in the following. The XRF model is run
with default settings and might lead to better results if tuned.
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C Additional Results

C.1 Graphical Representation of the Deviation in AUC.
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Figure 1: Graphical Representation of the results presented in Section 5. Shown are the boxplots of AAUC (cf.
Section 5) over the different folds and datasets, ordered by their median AAUC.

Figure 1 implies an overall stable and good performance of the CRE based model.

C.2 Graphical Representation of the number of coefficients

Figure 2 shows the distribution of the number of coefficients. CRE clearly outperforms RuleFit and some versions
of CRE are very competitive to SIRUS and GLR (while preserving a better AUC).
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Figure 2: Graphical Representation of the results presented in Section 5. Shown are the boxplots of AAUC' (cf.
Section 5) over the different folds and datasets, ordered by their median AAUC.
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C.3 Accuracy

Table 1: Results in Terms of accuracy.

dataset CREs CREy2 CREys CREg¢ CRERp PRE RF RuleFit  SIRUS  XGB XRF
Australian 0.841 0.864 0.862 0.868 0.864 0.861  0.865 0.870 0.829 0.868  0.854
Banknote 0.905 0.999 0.999 0.999 0.999 0.989  0.993 0.996 0.899 0.998  0.996
Biodeg 0.663 0.855 0.860 0.866 0.862 0.855  0.868 0.873 0.767 0.863  0.855
Blood Transf 0.762 0.765 0.761 0.762 0.767 0.762  0.751 0.781 0.762 0.789  0.773
Diabetes 0.651 0.776 0.758 0.752 0.762 0.752  0.768 0.769 0.698 0.758  0.734
Haberman 0.735 0.735 0.732 0.735 0.735 0.735  0.725 0.712 0.735 0.732  0.722
Heart 0.786 0.822 0.802 0.815 0.819 0.785  0.809 0.829 0.822 0.838  0.759
ILPD 0.714 0.715 0.714 0.705 0.722 0.714  0.705 0.696 0.714 0.700  0.703
Ionosphere 0.840 0.920 0.932 0.935 0.937 0.937  0.934 0.920 0.883 0.926  0.940
Liver 0.569 0.609 0.615 0.612 0.621 0.583  0.539 0.580 0.565 0.600  0.545
Parkinsons 0.809 0.897 0.912 0.907 0.907 0.856  0.902 0.902 0.866 0.922 0913
Pop Failure 0.915 0.952 0.948 0.952 0.944 0.944  0.922 0.948 0.915 0.946  0.956
Sonar 0.732 0.857 0.842 0.838 0.856 0.785  0.842 0.847 0.756 0.842  0.837
Spambase 0.860 0.946 0.952 0.952 0.947 0.942  0.953 0.946 0.857 0.957  0.946
WBCD 0.939 0.967 0.967 0.961 0.967 0.963  0.960 0.965 0.942 0.970  0.959
Wilt 0.946 0.983 0.982 0.986 0.984 0.984  0.982 0.986 0.946 0.986  0.982

3 9.312 4.344 5.594 4.500 3.812 6.906  6.750 5.031 8.812 4.031  6.906
AAUC 0.072 0.009 0.011 0.010 0.007 0.023  0.018 0.012 0.053 0.007  0.021

Although we believe accuracy to be less informative compared to AUC, we also provide tabular results of the
accuracy (fraction of correctly classified samples, using P(Y = 1) > 0.5 as decision rule). The results are quite
similar to the AUC results. Noteworthy difference is C REs which performs worse in terms of accuracy, implying
that the prediction outputs are not well calibrated. Another noteworthy difference is, that using the accuracy
as meassure, CRERrr shows the overall strongest performance.
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D Dataset Description of the Diabetes Data

To show the easy interpretability of CRE, we use in Section 4 the freely available Pima Diabetes data set. For
a more detailed description, see (Smith et al., 1988). The full names of covariates are:

e preg: Number of times pregnant

e plas: Plasma glucose concentration a 2 hours in an oral glucose tolerance test
e pres: Diastolic blood pressure (mm Hg)

e skin: Triceps skin fold thickness (mm)

e insu: 2-Hour serum insulin (mu U/ml)

e mass: Body mass index (weight in kg/(height in m)?) 2

e pedi: Diabetes pedigree function

e age: Age (years)

y: Class variable (0 or 1) (1 = Diabetes)

2 Also referred to as BMI in the main paper, due to better understandability.



