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Abstract

Markov Chain Monte Carlo (MCMC) algo-
rithms ubiquitously employ complex deter-
ministic transformations to generate proposal
points that are then filtered by the Metropolis-
Hastings-Green (MHG) test. However, the
condition of the target measure invariance
puts restrictions on the design of these trans-
formations. In this paper, we first derive the
acceptance test for the stochastic Markov ker-
nel considering arbitrary deterministic maps
as proposal generators. When applied to the
transformations with orbits of period two (in-
volutions), the test reduces to the MHG test.
Based on the derived test we propose two prac-
tical algorithms: one operates by constructing
periodic orbits from any diffeomorphism, an-
other on contractions of the state space (such
as optimization trajectories). Finally, we per-
form an empirical study demonstrating the
practical advantages of both kernels.

1 INTRODUCTION

MCMC is an ubiquitous computational tool across
many different scientific fields such as statistics, bioin-
formatics, physics, chemistry, machine learning, etc.
Generation of the proposal samples for continuous state
spaces usually includes sophisticated deterministic tran-
sitions. The most popular example of such transitions
is the evolution of the Hamiltonian dynamics (Duane
et al., 1987; Hoffman & Gelman, 2014). More recently,
the combination of neural models and conventional
MCMC algorithms has attracted the community’s at-
tention (Song et al., 2017; Hoffman et al., 2019), and
such hybrid models already found their application in
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Figure 1: The illustration of the proposed algorithms.
The transparency of a point corresponds to its weight.
Red dots correspond to the initial states. From left to
right: HMC (stochastically accepts only the last state),
Orbital kernel on a periodic orbit (accepts all the states
weighted), Orbital kernel on an infinite orbit (accepts
the states within a certain region).

the problems of modern physics (Kanwar et al., 2020;
Albergo et al., 2021). These developments motivate
further studies of the possible benefits of deterministic
functions in MCMC methods.

One possible way to introduce a deterministic transition
into the MCMC kernel is to consider an involutive func-
tion inside a stochastic transition kernel as described
in (Neklyudov et al., 2020; Spanbauer et al., 2020) (we
recap Involutive MCMC in Section 2.2). One of the
practical benefits of this approach is that it allows one
to learn the kernel as a neural model improving its
mixing properties (Spanbauer et al., 2020).

Our paper extends prior works by deriving novel tran-
sition kernels that do not rely on involutions. We start
by deriving the novel acceptance test that is applica-
ble for any diffeomorphism and operates on its orbits.
However, in its general form, the test might be infeasi-
ble to compute, requiring the evaluation of the density
across the orbit, which might have an infinite number
of points. To obtain practical algorithms we consider
two special cases. Our first algorithm operates on pe-
riodic orbits, and we demonstrate how one can easily
design such orbits by introducing auxiliary variables
(Section 3). The second algorithm operates on infinite
orbits of optimization trajectories. We demonstrate
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how such orbits could be truncated, preserving the
target measure (see section 4). Finally, we provide an
empirical study of these algorithms and discuss their
advantages and disadvantages (Section 5).

2 BACKGROUND

2.1 Mean ergodic theorem

The core idea of the MCMC framework is the mean
ergodic theorem, namely, its adaptation to the space
of distributions. That is, consider the ϕ-irreducible
Markov chain (see Roberts et al. (2004)) with the
kernel k(x′ |x) that keeps the distribution p invariant.
Denoting the single step of the chain as an operator
K : [Kq](x′) =

∫
dx k(x′ |x)q(x), the mean ergodic

theorem says that its time average projects onto the
invariant subspace:

lim
n→∞

∥∥∥∥∥ 1n
n−1∑
i=0

Kip0 − p

∥∥∥∥∥ = 0, for all p0. (1)

Note, that the irreducibility condition implies the
uniqueness of the invariant distribution. In practice,
the application of K is not tractable, though. There-
fore, one resorts to Monte Carlo estimates by accepting
a set of samples {x0, . . . , xn−1}, each coming with a
weight 1/n, and distributed as xi ∼ [Kip0](x). From
this perspective, the MCMC designs and analyses the
kernels that allow for projections, as in (1).

2.2 Involutive MCMC

In this section, we briefly discuss the main idea of the
Involutive MCMC (iMCMC) framework (Neklyudov
et al., 2020; Spanbauer et al., 2020), which is the ini-
tial point of our further developments. The iMCMC
framework starts by considering the kernel

k(x′ |x) =δ(x′ − f(x))g(x) + δ(x′ − x)(1− g(x))

g(x) =min

{
1,

p(f(x))

p(x)

∣∣∣∣∂f∂x
∣∣∣∣},

(2)

where p(x) is the target density, δ(x) is the Dirac delta-
function and f(x) is a diffeomorphism. The stochastic
interpretation of this kernel is the following. Starting at
the point x the chain accepts f(x) with the probability
g(x) or stays at the same point with the probability
(1− g(x)).

For the kernel (2) to preserve the target measure
[Kp](x′) =

∫
dx k(x′ |x)p(x) = p(x′), we have

min

{
p(f−1(x))

∣∣∣∣∂f−1

∂x

∣∣∣∣, p(x)} =

= min

{
p(x), p(f(x))

∣∣∣∣∂f∂x
∣∣∣∣} ∀x.

(3)

Algorithm 1 Involutive MCMC

input target density p(x)
input density p(v |x) and a sampler from p(v |x)
input involutive f(x, v) : f(x, v) = f−1(x, v)

initialize x
for i = 0 . . . n do

sample v ∼ p(v |x)
propose (x′, v′) = f(x, v)

g(x, v) = min{1, p(x′,v′)
p(x,v)

∣∣∂f(x,v)
∂[x,v]

∣∣}
xi =

{
x′, with probability g(x, v)

x, with probability (1− g(x, v))
x← xi

end for
output samples {x0, . . . , xn}

This equation allows one to bypass the difficulties of
designing a measure-preserving function by choosing
f such that f−1(x) = f(x) or, equivalently f(f(x)) =
x. Thus, the iMCMC framework proposes a practical
way to design f that implies the invariance of p(x)
by considering the family of involutions. However,
inserting such f into the transition kernel (2) reduces
it to jump only between two points: from x to f(x)
and then back to f(f(x)) = f−1(f(x)) = x.

To be able to cover the support of the target distri-
bution with involutive f , the iMCMC framework in-
troduces an additional source of stochasticity into (2)
through auxiliary variables. That is, instead of travers-
ing the target p(x), the chain traverses the distribution
p(x, v) = p(x)p(v |x), where p(v |x) is an auxiliary
distribution that we are free to choose. The key in-
gredients for choosing p(v |x) are easy computation of
its density and the ability to efficiently sample from it.
Then, interleaving the kernel (2) with the resampling
of the auxiliary variable v |x, one can potentially reach
any state [x, v] of the target distribution p(x, v) (see
Algorithm 1). Samples from the marginal distribution
of interest p(x) can now simply be obtained by ignoring
the dimensions that correspond to the variable v.

It turns out that by choosing different involutions f
and auxiliary distributions p(v |x) in Algorithm 1 one
can formulate a large class of MCMC algorithms as
described in (Neklyudov et al., 2020). However, the
involutive property of the considered deterministic map
f enforces the iMCMC kernel (Algorithm 1) to be
reversible:

k(x′, v′ |x, v)p(x, v) = k(x, v |x′, v′)p(x′, v′). (4)

Moreover, the marginalized kernel on x:
k̂(x′ |x) =

∫
dvdv′ k(x′, v′ |x, v)p(v |x) is also re-

versible: k̂(x′ |x)p(x) = k̂(x |x′)p(x′), which might
hinder the mixing properties of the chain. To design
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irreversible kernels, the iMCMC framework proposes
to compose several reversible kernels.

3 ORBITAL KERNEL

3.1 Derivation of the acceptance test

Starting with the acceptance test (2) the iMCMC frame-
work looks for a family of suitable deterministic maps
f , and ends up with involutive functions (see Section
2.2). In this work, we approach the problem of ker-
nel design differently: given a deterministic map f we
develop a kernel that admits the target density as its
eigenfunction, generalizing the iMCMC framework.

We start our reasoning with the kernel (which we
call the escaping orbital kernel) k(x′ |x) = δ(x′ −
f(x))g(x)+δ(x′−x)(1−g(x)), where g(x) is the accep-
tance test, and the kernel tries to make a move along
the trajectory of f(x) as in iMCMC. Putting this kernel
into the condition Kp = p:

∫
dx k(x′ |x)p(x) = p(x′),

we have∫
dy δ(x′ − y)g(f−1(y))p(f−1(y))

∣∣∣∣∂f−1

∂y

∣∣∣∣+
+p(x′)−

∫
dx δ(x′ − x)g(x)p(x) = p(x′),

(5)

where in the first term we have applied a change of
variables to y = f(x). This simplifies to

g(x′)p(x′) = g(f−1(x′))p(f−1(x′))

∣∣∣∣∂f−1

∂x

∣∣∣∣
x=x′

. (6)

Let’s assume that x′ is an element of the orbit orb(x0),
which we can describe using the notation of iterated
functions (f0(x) = id(x) = x, fn+1(x) = f(fn(x)))
as orb(x0) = {fk(x0), k ∈ Z}. Then putting x′ =
fk(x0), k ∈ Z into (6) we get

∀k ∈ Z g(fk(x0))p(f
k(x0))

∣∣∣∣∂fk

∂x

∣∣∣∣
x=x0

=

= g(fk−1(x0))p(f
k−1(x0))

∣∣∣∣∂fk−1

∂x

∣∣∣∣
x=x0

.

(7)

Thus, instead of a single equation (6) at point x′ we
actually have a system of equations generated by the
recursive application of (7): ∀k ∈ Z

g(x0)p(x0) = g(fk(x0))p(f
k(x0))

∣∣∣∣∂fk

∂x

∣∣∣∣
x=x0

. (8)

The system tells us that the function f must preserve
the measure g(x)p(x) on the orbit orb(x0). Note that if
f preserves the target p(x) then any constant g(x) = c
satisfies this equation. In this case, we can set g(x) = 1
and use iterated applications of f for sampling from

the target distribution (ensuring that the chain could
densely cover the state space). However, the design of
non-trivial measure-preserving f (especially with dense
orbits) is infeasible in most cases. Therefore, we can
assume that f(x) preserves some other density q(x) on
the orbit orb(x0):

q(x0) = q(fk(x0))

∣∣∣∣∂fk

∂x

∣∣∣∣
x=x0

∀k ∈ Z. (9)

From (8), we also know that f must preserve g(x)p(x).
Thus, we can think of g(x) as an importance weight
that makes g(x)p(x) ∝ q(x). Interpreting g(x) as a
probability (0 ≤ g(x) ≤ 1), we have

0 ≤ g(fk(x0)) = c · q(f
k(x0))

p(fk(x0))
≤ 1, ∀k ∈ Z. (10)

where the constant c makes sure that g(x) ≤ 1. This
is precisely achieved by c = infk∈Z

{p(fk(x))
q(fk(x))

}
for any

x ∈ orb(x0). Finally, using the formula for c and
equations (9), (10) at x = fk(x0), the test function
g(x) for any x ∈ orb(x0) is

g(x) =
q(x)

p(x)
inf
k∈Z

{
p(fk(x))

q(fk(x))

}
= inf

k∈Z

{
p(fk(x))

p(x)

∣∣∣∣∂fk

∂x

∣∣∣∣}.

Note that c is the greatest lower bound on p(x)/q(x) for
x ∈ orb(x0), but any lower bound guarantees g(x) ≤ 1.
The choice of the greatest lower bound is motivated
by the stochastic interpretation of the chain, i.e., we
want to minimize the probability of staying in the same
state. Although there is a rigorous result (Peskun, 1973)
for the comparison of chains via the probabilities of
staying in the same state, it applies only for reversible
kernels, which is not always applicable to the kernel
under consideration.

Putting the test back into the kernel we have the fol-
lowing result.

Theorem 1. (Escaping orbital kernel)
Consider a target density p(x) and continuous bijective
function f . The transition kernel

k(x′ |x) =δ(x′ − f(x))g(x) + δ(x′ − x)(1− g(x))

g(x) = inf
k∈Z

{
p(fk(x))

p(x)

∣∣∣∣∂fk

∂x

∣∣∣∣} (11)

keeps the target density invariant

[Kp](x′) =

∫
dx k(x′ |x)p(x) = p(x′).

If we would like to accept several points from the same
orbit we can substitute f with fm for any integer m
and get the following test.
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Corollary 1. For the the kernel km(x′ |x) = δ(x′ −
fm(x))gm(x)+δ(x′−x)(1−gm(x)) that satisfies Kmp =
p, the maximal acceptance probability gm(x) is

gm(x) = inf
k∈Z

{
p(fmk(x))

p(x)

∣∣∣∣∂fmk

∂x

∣∣∣∣}. (12)

Once we have designed the acceptance test we can check
if it is reversible. Reversibility may hinder the mixing
properties of the kernel and is usually considered as
an undesirable property (Turitsyn et al., 2011). In
the following proposition we see that the derived test
theoretically allows us to design irreversible kernels.
Proposition 1. (Reversibility criterion)
Consider the escaping orbital kernel k(x′ |x) = δ(x′ −
f(x))g(x) + δ(x′ − x)(1− g(x)) that satisfies Kp = p,
and g(x) > 0. This kernel is reversible w.r.t. p, i.e.
k(x′ |x)p(x) = k(x |x′)p(x′), if and only if f is an
involution, i.e., f(x) = f−1(x).

Proof. See Appendix A.3.1.

The bottleneck of the proposed practical scheme is the
evaluation of the test. Indeed, it requires the evaluation
of the infimum over the whole orbit, and if we don’t
know its analytical formula its computation becomes
infeasible. However, as we demonstrate further, some
types of orbits may simplify this evaluation.

The orbit orb(x0) is periodic if there is an integer T > 0
such that for any x ∈ orb(x0), and for any k ∈ Z,
we have fk+T (x) = fk(x). The period of the orbit
orb(x0) is the minimal T > 0 satisfying fk+T (x) =
fk(x). Thus, the orbit orb(x0) with the period T can
be represented as a finite set of points: orb(x0) =
{f0(x0), f

1(x), . . . , fT−1(x)}, and the acceptance test
for periodic orbits can be reduced to the minimum over
this finite set as follows.
Proposition 2. (Periodic orbit)
For periodic orbit orb(x) with period T , the acceptance
test in the kernel (11) (from Theorem 1) becomes

g(x) = inf
k∈Z

{
p(fk(x))

p(x)

∣∣∣∣∂fk

∂x

∣∣∣∣} =

= min
k=0,...,T−1

{
p(fk(x))

p(x)

∣∣∣∣∂fk

∂x

∣∣∣∣}.

(13)

For periodic orbits with T = 2 (for instance, orbits of in-
volutions), this test immediately yields the Metropolis-
Hastings-Green test (or the iMCMC kernel (2)):

min
k=0,1

{
p(fk(x))

p(x)

∣∣∣∣∂fk

∂x

∣∣∣∣} = min

{
1,

p(f(x))

p(x)

∣∣∣∣∂f∂x
∣∣∣∣}.

By considering other lower bounds in the inequalities
(10) for periodic orbits with T = 2, one can derive other

conventional tests, for instance, the tests induced by
Barker’s lemma (Barker, 1965). Another special case
appears when the points of an orbit come arbitrarily
close to the initial point, which we consider in Appendix
A.2.

Finally, we need to be able to jump between orbits
to be able to cover the state space densely. We can
achieve it in the same way as in Algorithm 1, i.e. we
can introduce auxiliary variables that allow to jump to
another orbit by simply resampling them.

3.2 Accepting the whole orbit

Even for periodic orbits the acceptance test (13) might
be inefficient because we need to evaluate the mini-
mum across the whole orbit (and the density is not
preserved). However, the evaluation of the target den-
sity over the whole orbit allows for accepting several
samples from the orbit at once. The naive way to ac-
cept several points is to consider a linear combination
of the escaping orbital kernels starting from the same
point. We discuss it in details in Appendix B.1.

Another way to make use of the evaluated densities
over the whole orbit is as follows. Instead of switching
to another orbit after the accept/reject step, we may
let the kernel continue on the same orbit, and thus
collect more samples. Once again, we consider the
kernel k(x′ |x) = δ(x′− f(x))g(x)+ δ(x′−x)(1− g(x))
that preserves target measure Kp = p. Starting from
the delta-function at some initial point p0(x) = δ(x−
x0), the chain iterates by applying the corresponding
operator:

[Kp0](x
′) =

∫
dx k(x′ |x)p0(x) =

= (1− g(x0))δ(x
′ − x0) + g(x0)δ(x

′ − f(x0)).

(14)

Denoting the recurrence relation as pt+1 = Kpt, we
obtain the sum of weighted delta-functions along the
orbit orb(x0) of f :

pt(x) = [Ktp0](x) =

t∑
i=0

ωt
iδ(x− f i(x0)), (15)

where ωt
i is the weight of the delta-function at f i(x0)

after t steps. Thus, instead of considering the operator
K on the space of functions we consider it on the
space of sequences, and analyse the limit of the series
1/n

∑n−1
i=0 Ki, as in the mean ergodic theorem. The

result of our analysis is as follows.

Theorem 2. (Convergence on a single orbit)
Consider the proper escaping orbital kernel (Kp = p,
and g(x) > 0) applied iteratively to p0(x) = δ(x− x0).
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For aperiodic orbits, iterations yield

[Ktp0](x) =

t∑
i=0

ωt
iδ(x− f i(x0)),

lim
t→∞

t∑
t′=0

ωt′

i =
1

g(f i(x0))
, lim

t→∞

1

t

t∑
t′=0

ωt′

i = 0.

(16)

For periodic orbits with period T , the time average is

lim
t→∞

1

t

t−1∑
i=0

Kip0 =

T−1∑
i=0

ωiδ(x− f i(x0)),

ωi =
p(f i(x0))

∣∣∂fi

∂x

∣∣
x=x0∑T−1

j=0 p(f j(x0))
∣∣∂fj

∂x

∣∣
x=x0

.

(17)

Proof. See Appendix A.4.

Thus, for periodic orbits, the time average of every
weight converges to a very reasonable value, which is
proportional to the target density at this point. Now,
using the weights from (17), we can accept the whole
orbit by properly weighting each sample, and we can
verify that by accepting the whole orbit we preserve
the target measure by considering the kernel k(x′ |x) =∑T−1

i=0 ωiδ(x
′ − f i(x)), where ωi is given by (17). The

practical value of this procedure comes from the fact
that the cost of weight evaluations is equivalent to the
cost of the test in Theorem 1.

The kernel behaves differently for aperiodic orbits. In-
deed, starting from the point x0, the kernel always
moves the probability mass further along the orbit es-
caping any given point on the orbit since there is no
mass flowing backward (the weight of f−1(x0) is zero
from the beginning). Intuitively, we can think that the
weights ωt

i from (15) evolve in time as a wave packet
moving on the real line. With this intuition it becomes
evident that the time average at every single point
on the orbit converges to zero since the mass always
escapes this point. Therefore, if we want to accept
several points from the orbit, we need to wait until
the kernel “leaves” this set of points and then stop the
procedure. We derived a formula for this situation,
which turns out to be a deterministic version of SNIS
(Andrieu et al., 2003), and provide a simple example
of this procedure in Appendix B.2.

3.3 Practical algorithm

Based on the previous derivations, we propose a practi-
cal sampling scheme. Starting from some initial state x0

we would like to traverse the orbit orb(x0) and accept
all the states {f i(x0)}i∈Z with the weights ωi derived
in Proposition 2. To guarantee the unbiasedness of

Algorithm 2 Orbital MCMC (periodic)

input target density p(x)
input density p(v |x) and a sampler from p(v |x)
input continuous f(x, v)

initialize [x, d]
for N iterations do

sample v ∼ p(v |x)
collect orbit {[xj , vj , dj ] = f̂ j(x, v, d)}T−1

j=0

ωi ← p(f i(x, v))
∣∣∂f i/∂[x, v]

∣∣
ωi ← ωi/

∑
j ωj

[x, d]← [xj , dj ] with probability ωj

samples← samples ∪ {(ωi, xi)}T−1
i=0

end for
output samples

the procedure, we design a deterministic function with
periodic orbits based on f .

Given a function f , one can easily construct a periodic
function by introducing the auxiliary discrete variable
d ∈ {0, . . . , T − 1} (direction), which decides how we
apply f to the current state x. That is, we design f̂(x, d)
on the extended space of tuples [x, d] with orbits of
period T as follows.

f̂(x, d) =

{
[f(x), (d+ 1) mod T ], if d < T − 1

[f−(T−1)(x), (d+ 1) mod T ], if d = T − 1

Indeed, starting from any pair [x, d] and iteratively
applying f̂(x, d), we have

f̂T (x, d) = f̂d+1

(
[fT−1−d(x), T − 1]

)
=

= f̂d

(
[f−d(x), 0]

)
= [fd(f−d(x)), d] = [x, d].

(18)

To switch between orbits of f(x) we still need another
auxiliary variable to be able to cover the state space
densely. As in Algorithm 1, we introduce the auxil-
iary variable v assuming that we can easily sample v ∼
p(v |x, d) and evaluate the joint density p(x, v, d). Thus,
on the switching step, we sample a single point [xj , dj ]
from the orbit interpreting the weights ωj as probabili-
ties, and then resample the auxiliary variable v. For
simplicity, we consider p(d) = Uniform{0, . . . , T − 1},
and p(x, v, d) = p(x, v)p(d). Gathering all of the steps
we get Algorithm 2.

Note that the directional variable forces the chain to
perform both “forward” and “backward” moves, which
can be considered as a limitation of this algorithm since
it may increase the autocorrelation. To alleviate this
effect we make the chain irreversible by shifting the
direction by T/2 after each iteration. In practice, this
update performs better than uniform sampling of d.
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4 DIFFUSING ORBITAL KERNEL

We start this section by illustrating the limits of the
escaping orbital kernel through a simple example. Con-
sider the map f(x) = x+1 in R, which has only infinite
orbits. Then the test of the escaping kernel

g(x) = inf
k∈Z

{
p(x+ k)

p(x)

}
= 0 (19)

for any target density p(x). Hence, we can’t use the
map f(x) = x+ 1 to sample even a single point from
the target distribution because the density goes to zero
faster than the Jacobian. At the same time, if we
just try to use the formula (17) saying that the period
of the orbit is infinite, we end up with a valid ker-
nel. That is, k(x′ |x) =

∑+∞
i=−∞ ωiδ(x

′ − f i(x)), where
ωi = p(f i(x))/

∑+∞
j=−∞ p(f j(x)). Inserting this kernel

into Kp = p, one can make sure that this kernel indeed
keeps the target measure invariant. This example mo-
tivates another kernel, which is able to traverse infinite
trajectories:

k(x′ |x) = δ(x− x′)(1− g+(x)− g−(x))+

+δ(x′ − f(x))g+(x) + δ(x′ − f−1(x))g−(x).
(20)

Writing the condition Kp = p for this kernel, we derive
two possible solutions (see Appendix A.6). One of the
solutions is a linear combination of escaping orbital ker-
nels that we have already mentioned before (Appendix
B.1). Another solution yields a new acceptance test:

g+(x) = p(f(x))

∣∣∣∣∂f∂x
∣∣∣∣c(x),

g−(x) = p(f−1(x))

∣∣∣∣∂f−1

∂x

∣∣∣∣c(x), (21)

where c(x) may be chosen as

c =
1

2
inf
k∈Z

{
1

p(fk(x))
∣∣∂fk

∂x

∣∣
}
, or

c = inf
k∈Z

{
1

p(fk+1(x))
∣∣∂fk+1

∂x

∣∣+ p(fk−1(x))
∣∣∂fk−1

∂x

∣∣
}

the second one is optimal in the sense of the minimum
rejection probability, but we further proceed with the
first one for simplicity. Note that taking f as an in-
volution, the kernel (20) becomes equivalent to the
iMCMC kernel (2). In Appendix A.7, we prove that
the diffusing orbital kernel is always reversible.

Proposition 3. (Reversibility)
The diffusing orbital kernel (20) with test (21) is re-
versible w.r.t. p: k(x′ |x)p(x) = k(x |x′)p(x′).

To provide the reader with the intuition we again as-
sume that the map f preserves some density q on the

orbit orb(x0), i.e. q(x0) = q(f i(x0))
∣∣∂f i/∂x

∣∣. We can
then rewrite the test slightly differently:

g+(x) = ĝ(f(x)), g−(x) = ĝ(f−1(x)),where

ĝ(x) = ĉ
p(x)

q(x)
, ĉ =

1

2
inf
k

{
q(fk(x0))

p(fk(x0))

}
.

(22)

Firstly, it is now apparent that the diffusing orbital
kernel is tightly related to rejection sampling. Indeed,
ĝ(x) accepts samples with a probability proportional
to the target density, and the constant c makes this
probability smaller than 1: ĉ ≤ q(x)/(2p(x)).

Secondly, we can compare this test with the test for
the escaping orbital kernel:

g(x) = c · q(x)
p(x)

, c = inf
k∈Z

{
p(fk(x))

q(fk(x))

}
. (23)

We see that both tests are complementary to each
other. That is, if p(x)/q(x) vanishes then c = 0 and
we cannot use the escaping orbital kernel; however, at
the same time, ĉ does not go to zero and we can use
the diffusing orbital kernel. The same logic applies
in the opposite direction when q(x)/p(x) vanishes. In
practice, having a continuous bijection f one can decide
between these kernels by estimating inf{p(x)/q(x)} and
inf{q(x)/p(x)} on the orbit. Finally, the inversion of
the density ratio under the infimum allows the diffusing
kernel to converge on aperiodic orbits as stated in the
following proposition.

Theorem 3. (Convergence on a single orbit)
Consider the diffusing orbital kernel (with test (21),
and c > 0), and the initial distribution p0(x) =
δ(x − x0). For aperiodic orbits, if the series∑+∞

j=−∞ p(f j(x0))
∣∣∂fj

∂x

∣∣ converges, we have

lim
t→∞

1

t

t−1∑
i=0

Kip0 =

+∞∑
i=−∞

ωiδ(x− f i(x0)), (24)

ωi =
p(f i(x0))

∣∣∂fi

∂x

∣∣
x=x0∑+∞

j=−∞ p(f j(x0))
∣∣∂fj

∂x

∣∣
x=x0

. (25)

For periodic orbits with period T , we have

lim
t→∞

1

t

t−1∑
i=0

Kip0 =

T−1∑
i=0

ωiδ(x− f i(x0)), (26)

ωi =
p(f i(x0))

∣∣∂fi

∂x

∣∣
x=x0∑T−1

j=0 p(f j(x0))
∣∣∂fj

∂x

∣∣
x=x0

. (27)

Proof. See Appendix A.8.
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Algorithm 3 Orbital MCMC (contracting)

input target density p(x)
input density p(v |x) and a sampler from p(v |x)
input continuous f(x, v)
input threshold value W

for N iterations do
sample v ∼ p(v |x)
ωmax ← p(x, v)
while logωi > logωmax − logW do
[xi, vi] = f i(x, v)
ωi ← p(f i(x, v))

∣∣∂f i/∂[x, v]
∣∣

ωmax ← max{ωi, ωmax}
end while
ωi ← ωi/

∑
j ωj

[x]← [xi] with probability ωi

samples← samples ∪ {(ωi, xi)}
end for

output samples

4.1 Practical algorithm

Although, the derived kernel allows us to sample using
the infinite trajectories, it still puts some restrictions
on the choice of the diffeomorphism f . The obvious
restriction is that the sum

∑+∞
j=−∞ p(f j(x0))

∣∣∂f j/∂x
∣∣

has to converge. One way to make this series con-
vergent is to choose f as the step of an optimization
algorithm maximizing the log-probability of the tar-
get distribution. For instance, f can be chosen as the
gradient ascent

f(x) = x+ ε∇ log p(x). (28)

For i→ +∞, the point converges to some local max-
imum f i(x0)→ x∗, hence, for proper target distribu-
tions, the density converges to some positive constant
p(f i(x0)) → p(x∗). At the same time, the Jacobian
vanishes

∣∣∂f i/∂x
∣∣→ 0 since the optimizer is a contrac-

tive map, implying that their product also vanishes.
When the kernel goes to minus infinity (i→ −∞) the
density vanishes p(f i(x0)) → 0 since the optimizer f
minimizes the density going backward. The conver-
gence of this part depends on the special choice of f
and how fast the Jacobian of f−1 expand the space.

The convergence of weights allows us to truncate the
infinite trajectory in both directions. Thus, we can
iterate forward and backward from the initial state until
the weights ωi become negligible. The bias introduced
by the truncation can be made arbitrarily small by
choosing the threshold value. In practice, we iterate
while the ratio (the maximum weight)/(the current
weight) is less than 103 (see Algorithm 3). Note that,
due to its discrete nature, the optimization algorithm
could be non-monotonic in ωi. This can be alleviated by
choosing smaller step sizes and setting higher threshold

W , what might negatively affect the performance.

Several hyperparameter settings related to the opti-
mization dynamics are possible in this algorithm. To
avoid expensive evaluations of the Jacobian, similar to
HMC, we consider optimization schemes in the joint
space of states x and momenta v. It is then easy to
see that, for instance, the Jacobian of SGD with mo-
mentum is just a constant. In practice, we use the
Leap-Frog integrator from (França et al., 2020), which
simulates Hamiltonian dynamics with friction. For
details, see Appendix B.3.

5 Empirical study1

To study the Algorithms 2 and 3, we consider Hamilto-
nian dynamics for the deterministic function f . Then
the joint density p(x, v, d) is the fully-factorized distri-
bution p(x, v, d) = p(x)N (v | 0,1)p(d), where p(d) =
Uniform{0, . . . , T − 1}. For Algorithm 2, the deter-
ministic transition f is the Leap-Frog integrator. For
Algorithm 3, we choose the Leap-Frog as well, but with
the friction component. We compare both algorithms
to HMC and the recycled HMC (Nishimura et al., 2020).
Recycled HMC simulates the whole trajectory using
the Leapfrog integrator and then, for each point f i(x, v)
of the trajectory, decides whether to collect the sample
or not.

To tune the hyperparameters for all algorithms we use
the ChEES criterion (Hoffman et al., 2021). During the
initial period of adaptation, this criterion optimizes the
maximum trajectory length Tmax for the HMC with
jitter (trajectory length at each iteration is sampled
∼ Uniform(0, Tmax)). To set the stepsize of HMC we
follow the common practice of keeping the acceptance
rate around 0.65 as suggested in (Beskos et al., 2013).
We set this stepsize via double averaging as proposed in
(Hoffman & Gelman, 2014) and considered in ChEES-
HMC. Note that this choice of hyperparameters is
designed especially for HMC and doesn’t generalize to
other algorithms. We leave the study of adaptation
procedures for our algorithms as a future work. For
Algorithm 3 we don’t need to set the trajectory length,
but we use the step size yielded at the adaptation step
of ChEES-HMC. The crucial hyperparameter for this
algorithm is the friction coefficient β, which we set
to n
√
0.8, where n is the number of dimensions of the

target density, thus setting the contraction rate to 0.64.

For the comparison, we take several target distribu-
tions: Banana (2-D), ill-conditioned Gaussian (50-D),
the posterior distribution of the Bayesian logistic re-
gression (25-D), and the posterior distribution of the

1we provide the code reproducing all experiments at
https://github.com/necludov/oMCMC

https://github.com/necludov/oMCMC
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Table 1: Performance of the algorithms as measured by the Effective Sample Size (ESS) per gradient evaluation
(higher values are better). For each algorithm we subsample 1000 points from the trajectory preserving their
order. For each of the 100 independent chains we measure the minimum ESS across dimensions and report the
median across chains as well as their standard deviations.

Algorithm Banana Gaussian Logistic Reg Item-response

ChEES-HMC 7.83e–5±6.95e–5 1.51e–06±6.14e–7 1.52e–5±6.90e–6 2.97e–6±1.02e–6
Recycled-HMC 7.76e–5±9.86e–5 1.43e–6±7.37e–7 2.08e–5±9.28e–6 2.63e–6±8.96e–7
Orbital-HMC 7.71e–5±8.68e–5 1.08e–6±7.30e–7 3.09e–5±1.30e–5 1.73e–6±7.21e–7
Opt-HMC 2.23e–4±2.41e–4 2.04e–7±8.90e–8 3.66e–5±1.82e–5 2.68e–6±1.53e–6

Figure 2: From left to right: the error of mean estimation on Banana, ill-conditioned Gaussian, logistic regression,
Item-Response model. Every solid line depicts the mean of the absolute error averaged across 100 independent
chains. The shaded area lies between 0.25 and 0.75 quantiles of the error. Orb-HMC corresponds to Algorithm 2
with Hamiltonian dynamics. Opt-HMC corresponds to Algorithm 3 with Hamiltonian with friction.

Item-Response model (501-D) (see description in Ap-
pendix B.4). For all experiments, we use 1000 adapta-
tion iterations of ChEES-HMC then followed by 1000
sampling iterations of ChEES-HMC. Then we fix the
computational budget in terms of density and gradient
evaluations and run all algorithms using approximately
the same computational budget.

In Figure 2, we compare the errors in the estimation
of the mean of the target distribution as a function of
the number of gradient evaluations (which we take as a
hardware-agnostic estimation of computation efforts).
Algorithm 3 (Opt-HMC) provides the best estimate
for the mean value for all distributions except for the
ill-conditioned Gaussian (where Orbital-HMC demon-
strates the fastest convergence). We can understand
the low performance of Opt-HMC for the ill-conditioned
Gaussian because of its inability to traverse long dis-
tances due to the introduced friction. This property
is crucial here since the variances along all dimensions
scale logarithmically from 10−2 to 102 forcing the chain
to keep a small step size. Note that the ChEES crite-
rion was specifically developed for HMC to solve such
problems. Another downside of Opt-HMC is that it
relatively poorly estimates the variance of the target
(we provide corresponding plots in Appendix B.3).

Given the same computational budget, all the algo-
rithms produce different amount of samples. However,
the evaluation of statistics of interest could be expen-
sive. Therefore, it is important for algorithms to output
a limited amount of low-correlated samples. We val-
idate this property by subsampling the states from
the trajectory to yield the same amount of samples as
HMC (103 samples). We evaluate the Effective Sample
Size (ESS) and report the ESS per gradient evalua-
tion (including the adaptation cost into the budget
of all algorithms). The results are provided in Table
1. Our algorithms perform relatively poorly on the
Gaussian, but perform comparably or better on other
distributions. For the Item-Response model, Opt-HMC
demonstrates the fastest convergence to the mean, but
ChEES-HMC outperforms it in terms of ESS. Thus,
the main advantage of the proposed algorithms comes
when we are able to use all of the collected samples for
the estimation.

6 CONCLUSION

In this paper, we have developed two new practical
MCMC algorithms based on iterative deterministic
maps. We believe that our orbital MCMC framework
opens the door to cross-fertilization between (possibly
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chaotic) dynamical systems theory, optimization, and
MCMC algorithm design. In Appendix B.5, we discuss
possible applications of the oMCMC framework in the
context of neural models.

The proposed acceptance rules are opposite to the con-
ventional Metropolis-Hastings test. Namely, in Sections
3 and 4, we apply the kernel an infinite amount of times
and accept the whole orbit based on the derived limit.
However, we think that the most efficient acceptance
strategy would be to minimize the rejection probability:
the probability of staying at the same point. Although,
it would require either much more computations (if
performed straightforwardly) or complex analysis esti-
mating the minimizing time.

Recently, Thin et al. (2021) proposed an importance
sampling scheme for the orbits of deterministic trans-
forms. Compared to our methods, it doesn’t require
periodicity of the orbits or weights vanishing for the in-
finite orbits. However, it requires additional iterations
for the unbiased evaluation of the importance weights.
This can be considered as a complementary approach
to the techniques considered in the current paper.
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Supplementary Material:
Orbital MCMC

A PROOFS

A.1 Orbital test

Consider the transition kernel

k(x′ |x) = δ(x′ − fm(x))g(x) + δ(x′ − x)(1− g(x)), g(x) = inf
k∈Z

{
p(fk(x))

p(x)

∣∣∣∣∂fk

∂x

∣∣∣∣} (29)

Substituting this kernel into the stationary condition∫
dx k(x′ |x)p(x) = p(x′), (30)

we obtain∫
dx δ(x′ − fm(x)) inf

k∈Z

{
p(fk(x))

∣∣∣∣∂fk

∂x

∣∣∣∣}+

∫
dx δ(x′ − x)

(
p(x)− inf

k∈Z

{
p(fk(x))

∣∣∣∣∂fk

∂x

∣∣∣∣})
= p(x′). (31)

This implies

inf
k∈Z

{
p(fk−m(x′))

∣∣∣∣∂fk

∂x

∣∣∣∣
x=f−m(x′)

}∣∣∣∣∂f−m

∂x′

∣∣∣∣ = inf
k∈Z

{
p(fk(x′))

∣∣∣∣∂fk

∂x′

∣∣∣∣} (32)

inf
k∈Z

{
p(fk−m(x′))

∣∣∣∣∂fk−m

∂x′

∣∣∣∣} = inf
k∈Z

{
p(fk(x′))

∣∣∣∣∂fk

∂x′

∣∣∣∣}. (33)

The last equation holds since the shift of the index does not affect the set of lower bounds.

A.2 Returning orbit

We call orbit orb(x0) returning if for any x ∈ orb(x0) we have infk>0

∥∥fk(x)− x
∥∥ = 0. We also can think of

this type of orbits as dense orbits on itself. Note that returning orbits is a wider class than periodic orbits. For
instance, all of the orbits of f(x) = (x+ a) mod 1 in [0, 1] are returning for any irrational a, but not periodic.
Proposition. (Returning orbit)
For continuous target density p(x), consider the kernel (11) from Theorem 1. If the orbit orb(x) is returning and
f preserves a measure with continuous density, then the acceptance test can be written as

g(x) = inf
k∈Z

{
p(fk(x))

p(x)

∣∣∣∣∂fk

∂x

∣∣∣∣} = inf
k≥0

{
p(fk(x))

p(x)

∣∣∣∣∂fk

∂x

∣∣∣∣}. (34)

Here we provide the proof for the case of returning orbits (∀x ∈ orb infk>0

∥∥fk(x)− x
∥∥ = 0) that are not periodic,

i.e. there is no such k > 0 that fk(x) = x. By the assumption the deterministic map f preserves some measure
with continuous density q(x) on the orbit orb(x):

q(x) =

∣∣∣∣∂fk

∂x

∣∣∣∣q(fk(x)). (35)

Then, we can rewrite the acceptance test from Theorem 1 as

g(x) = inf
k∈Z

{
p(fk(x))

p(x)

∣∣∣∣∂fk

∂x

∣∣∣∣} =
q(x)

p(x)
inf
k∈Z

{
p(fk(x))

q(fk(x))

}
(36)
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Using the “returning” property of the orbit orb(x) we can prove

p(fn(x))

q(fn(x))
≥ inf

k≥0

{
p(fk(x))

q(fk(x))

}
∀n ∈ Z. (37)

Indeed, for n ≥ 0, this holds by the definition of infimum. For n < 0, we consider x∗ = fn(x) as a starting
point, and use the definition of the returning orbit: infk>0

∥∥fk(x∗)− x∗
∥∥ = 0. We define the subsequence of

the sequence {fk(x∗)} that converges to x∗ as follows. Let ki be the first number greater than zero such that∥∥fki(x∗)− x∗
∥∥ ≤ 1/i, then limi→∞ fki(x∗) = x∗. This infinite subsequence exists since infk>0

∥∥fk(x∗)− x∗
∥∥ = 0

but there is no such k > 0 that fk(x) = x. By continuity of p and q,

lim
i→∞

p(fki(x∗))

q(fki(x∗))
=

p(x∗)

q(x∗)
=

p(fn(x))

q(fn(x))
. (38)

By the definition of the infimum,

p(fki(x∗))

q(fki(x∗))
≥ inf

k≥0

{
p(fk(x))

q(fk(x))

}
ki > −n, =⇒ p(fn(x))

q(fn(x))
≥ inf

k≥0

{
p(fk(x))

q(fk(x))

}
. (39)

Since

p(fn(x))

q(fn(x))
≥ inf

k≥0

{
p(fk(x))

q(fk(x))

}
∀n ∈ Z, (40)

then the infimum over the positive k is a lower bound for p(fn(x))/q(fn(x)) ∀n. Since the infimum is the
maximal lower bound, we have

inf
k∈Z

{
p(fk(x))

q(fk(x))

}
≥ inf

k≥0

{
p(fk(x))

q(fk(x))

}
. (41)

At the same time the infimum over all integers is less than the infimum over positive integers. Thus, we have

inf
k∈Z

{
p(fk(x))

q(fk(x))

}
= inf

k≥0

{
p(fk(x))

q(fk(x))

}
. (42)

A.3 Reversibility

A.3.1 Single kernel

Consider the kernel

km(x′ |x) = δ(x′ − fm(x))g(x) + δ(x′ − x)(1− g(x)), (43)

and assume that it satisfies the fixed point equation (
∫
dx km(x′ |x)p(x) = p(x′)) what reduces to the system of

equations at each point x′:

g(x′)p(x′) = g(fk(x′))p(fk(x′))

∣∣∣∣∂fk

∂x

∣∣∣∣
x=x′

∀k ∈ Z. (44)

Since it satisfies the fixed point equation, we can define the reverse kernel

rm(x′ |x) = km(x |x′)
p(x′)

p(x)
= δ(x− fm(x′))

p(x′)

p(x)
g(x′) + δ(x− x′)

(
p(x′)

p(x)
− p(x′)

p(x)
g(x′)

)
. (45)

Integrating around the point x′ = x, we obtain (assuming that f−m(x) ̸= x)∫
A(x)

dx′ rm(x′ |x) = (1− g(x)) =

∫
A(x)

dx′ km(x′ |x). (46)
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Integrating around the point x′ = f−m(x), we obtain∫
A(f−m(x))

dx′ rm(x′ |x) =
∫
A(f−m(x))

dx′ δ(x− fm(x′))g(x′)
p(x′)

p(x)
= (x′ = f−m(y)) (47)

=

∫
fm(A(f−m(x)))

dy δ(x− y)g(f−m(y))
p(f−m(y))

p(x)

∣∣∣∣∂f−m

∂y

∣∣∣∣ (48)

= g(f−m(x))
p(f−m(x))

p(x)

∣∣∣∣∂f−m

∂x

∣∣∣∣ = g(x) (49)

And for the forward kernel∫
A(f−m(x))

dx′ km(x′ |x) =
∫
A(f−m(x))

dx′δ(x′ − fm(x))g(x) (50)

Since m is a fixed number, we can choose the radius of A(f−m(x)) small enough that fm(x) does not lie in
A(f−m(x)). However, if fm(x) = f−m(x), we have∫

A(f−m(x))

dx′ km(x′ |x) = g(x) =

∫
A(f−m(x))

dx′ rm(x′ |x). (51)

Hence, the kernel km(x′ |x) is reversible if and only if f−m(x′) = fm(x′).

A.3.2 Linear combination

Consider the kernel

km(x′ |x) = δ(x′ − fm(x))gm(x) + δ(x′ − x)(1− gm(x)), (52)

that preserves target measure p(x) for any integer m. Then the linear combination

k(x′ |x) =
∑
m∈Z

wmkm(x′ |x),
∑
m∈Z

wm = 1, wm ≥ 0 (53)

also preserves the target measure. Hence, we can define the reverse kernel as

r(x′ |x) = k(x |x′)
p(x′)

p(x)
=

∑
m∈Z

wmrm(x′ |x), (54)

where rm is the reverse kernel of km as we derived in Appendix A.3.1:

rm(x′ |x) = km(x |x′)
p(x′)

p(x)
= δ(x− fm(x′))

p(x′)

p(x)
gm(x′) + δ(x− x′)

(
p(x′)

p(x)
− p(x′)

p(x)
gm(x′)

)
. (55)

Further, we assume that all the points of the orbits are distinct, i.e. orbit is neither periodic nor stationary.
Integrating the kernel r(x′ |x) around the point x′ = x, we get∫

A(x)

dx′ r(x′ |x) =
∑
m∈Z

wm

∫
A(x)

dx′ rm(x′ |x) =
∑
m∈Z

wm(1− gm(x)) =

∫
A(x)

dx′ k(x′ |x). (56)

Integrating around the point x′ = f−m(x), we obtain∫
A(f−m(x))

dx′ r(x′ |x) =
∫
A(f−m(x))

dx′ wmδ(x− fm(x′))gm(x′)
p(x′)

p(x)
= (x′ = f−m(y)) (57)

=

∫
fm(A(f−m(x)))

dy wmδ(x− y)gm(f−m(y))
p(f−m(y))

p(x)

∣∣∣∣∂f−m

∂y

∣∣∣∣ (58)

= wmgm(f−m(x))
p(f−m(x))

p(x)

∣∣∣∣∂f−m

∂x

∣∣∣∣ = wmgm(x) (59)
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And for the forward kernel∫
A(f−m(x))

dx′ k(x′ |x) =
∫
A(f−m(x))

dx′ w−mk−m(x′ |x) = (60)

=

∫
A(f−m(x))

dx′w−mδ(x′ − f−m(x))g−m(x) = w−mg−m(x) (61)

In all these derivations we integrated the kernels around a single point assuming that the area A(x) around the
point x can be chosen so small that includes x and does not include other points from the orbit. However, this is
not the case for returning orbits. By definition, the returning orbit has a subsequence on the orbit that converges
to the starting point. Nevertheless, we can choose such small area A(x) that the point weights of the subsequence
inside the area A(x) go to zero since all the weights are supposed to be positive and sum up to 1.

Thus, we see that for aperiodic orbits of f the linear combination of kernels k(x′ |x) =
∑

m∈Z wmkm(x′ |x) is
reversible if and only if w−mg−m(x) = wmgm(x), ∀m ∈ Z. The same criterion can be formulated for the periodic
orbits as well if we assume that the only positive weights are w1, . . . , wT−1, where T is the period of the orbit.
Then the linear combination is reversible if and only if wT−mg−m(x) = wmgm(x), ∀m ∈ [1, T − 1].

A.4 Mean ergodic theorem for the escaping orbital kernel

We analyse the kernel

k(x′ |x) = δ(x′ − f(x))g(x) + δ(x′ − x)(1− g(x)) (62)

that preserves target measure p(x), and g(x) > 0. Applying this kernel to the delta function δ(x− x0) we obtain∫
dx k(x′ |x)δ(x− x0) = (1− g(x0))δ(x

′ − x0) + g(x0)δ(x
′ − f(x0)). (63)

Thus, the kernel leaves a part of mass (1− g(x0)) at the initial point and propagates the other part g(x0) further
in orbit. Let the initial distribution be the delta-function p0(x) = δ(x − x0). Iteratively applying the kernel
k(x′ |x), at time t+ 1, we obtain a chain of weighted delta-functions along the orbit orb(x0) of f :∫

dx k(x′ |x)pt(x) = pt+1(x
′) =

t+1∑
i=0

ωt+1
i δ(x′ − f i(x0)). (64)

Denoting the points on the orbit as xi = f i(x0), we can write the recurrence relation for the weights of the
delta-function at xi as

ωt+1
i = (1− g(xi))ω

t
i + g(xi−1)ω

t
i−1, t > 0, i > 0. (65)

For periodic orbits with period T , we consider the lower index of ωt+1
i by modulo T . Further, denoting the sum

of the weights over time as

St
i =

t∑
t′=0

ωt′

i , (66)

we obtain the following recurrence relation by summation of (65).

St+1
i − ω0

i = (1− g(xi))S
t
i + g(xi−1)S

t
i−1 (67)

Then we denote the solution of this relation as St
i = αt

iŜ
t
i , where Ŝt

i is the solution of the corresponding
homogeneous relation, and αt

i is the constant variation.

αt+1
i Ŝt+1

i = (1− g(xi))α
t
iŜ

t
i + g(xi−1)S

t
i−1 + ω0

i (68)

αt+1
i (1− g(xi))Ŝ

t
i = (1− g(xi))α

t
iŜ

t
i + g(xi−1)S

t
i−1 + ω0

i (69)

αt+1
i = αt

i +
g(xi−1)S

t
i−1 + ω0

i

(1− g(xi))Ŝt
i

(70)

αt
i = α0

i +

t−1∑
t′=0

g(xi−1)S
t′

i−1 + ω0
i

(1− g(xi))Ŝt′
i

, t > 0 (71)
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Together with the solution Ŝt
i = (1− g(xi))

tŜ0
i of the homogeneous relation, we have

St
i =

(
α0
i +

t−1∑
t′=0

g(xi−1)S
t′

i−1 + ω0
i

(1− g(xi))t
′+1S0

i

)
(1− g(xi))

tŜ0
i (72)

St
i = (1− g(xi))

tS0
i +

t−1∑
t′=0

g(xi−1)S
t′

i−1 + ω0
i

(1− g(xi))t
′−(t−1)

(73)

The first term of the solution goes to zero. Hence, for aperiodic orbits we have

lim
t→∞

St
0 =

1

g(x0)
(74)

since St
−1 = 0, and ω0

0 = 1. For i > 0, ω0
i = 0, and the last sum we can split as

lim
t→∞

St
i = lim

t→∞

[
(1− g(xi))

t−1
t1∑

t′=0

g(xi−1)S
t′

i−1

(1− g(xi))t
′ +

t−1∑
t′=t1

g(xi−1)S
t′

i−1

(1− g(xi))t
′−(t−1)

]
. (75)

Taking t1 large enough, we obtain

lim
t→∞

St
1 = lim

t→∞

t−1∑
t′=t1

g(x0)/g(x0)

(1− g(x1))t
′−(t−1)

= lim
t→∞

t−1−t1∑
t′=0

(1− g(x1))
t′ =

1

g(x1)
. (76)

Applying this recursively, we obtain

lim
t→∞

St
i = lim

t→∞

t∑
t′=0

ωt′

i =
1

g(xi)
, i ≥ 0. (77)

Note that the limiting behaviour of the chain on the aperiodic orbit depends on the initial conditions ω0
0 , . . . , ω

0
i , . . .,

and each individual weight goes to zero with time: limt→∞ ωt
i = 0. Thus, the total mass drifts away from the

initial point down the orbit.

The chain behaves differently in the case of the periodic orbit. Since the number of points on the orbit is finite,
the total mass St

i goes to infinity with number of iterations t (if g(xi) < 1). However, the average mass over
iterations remains constant

1

t

T−1∑
i=0

St
i = 1, t ≥ 0, (78)

where T is the period of orbit orb(x0). Thus, we provide the

lim
t→∞

1

t
St
i = lim

t→∞

1

t

t−1∑
t′=0

g(xi−1)S
t′

i−1 + ω0
i

(1− g(xi))t
′−(t−1)

= (79)

= lim
t→∞

[
g(xi−1)

t−1∑
t′=0

St′

i−1

t
(1− g(xi))

(t−1)−t′ +
ω0
i

t

t−1∑
t′=0

(1− g(xi))
t′
]

(80)

The second series goes to zero when t→∞. The first series converges since St′

i−1/t ≤ 1,∀t′. Denoting the limit of
St
i/t as Si and putting it into the original relation (67), we get

Si = (1− g(xi))Si + g(xi−1)Si−1 =⇒ Si =
g(xi−1)

g(xi)
Si−1. (81)

Finally, taking the limit in (78), we have

T−1∑
i=0

Si = 1 =⇒
T−1∑
i=0

S0
g(x0)

g(xi)
= 1 =⇒ S0 =

1
g(x0)∑T−1

i=0
1

g(xi)

=⇒ Sj =

1
g(xj)∑T−1

i=0
1

g(xi)

. (82)
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By the assumption, the kernel k(x′ |x) preserves the target distribution p(x). Hence, for the test g(x), we have

g(xj)

g(xi)
=

p(xi)
∣∣∂fi

∂x

∣∣
x=x0

p(xj)
∣∣∂fj

∂x

∣∣
x=x0

. (83)

Thus, for periodic orbits we have

lim
t→∞

1

t
St
i = lim

t→∞

1

t

t∑
t′=0

ωt′

i =
p(f i(x0))

∣∣∂fi

∂x

∣∣
x=x0∑T

j=1 p(f
j(x0))

∣∣∂fj

∂x

∣∣
x=x0

. (84)

Note that the limit does not depend on the initial values of the weights ω0
0 , . . . , ω

0
T−1.

A.5 Average escape time

Consider the kernel

k(x′ |x) = δ(x′ − f(x))g(x) + δ(x′ − x)(1− g(x)) (85)

that preserves target measure p(x), and g(x) > 0. Here we treat it stochastically assuming that we accept f(x)
with the acceptance probability g(x) and stay at the same point x with probability (1− g(x)). Assuming that
we start at some point x0, we define the escape time tn as the number of iterations required to leave xn−1, or
equivalently the time of the first acceptance of xn = fn(x0). Then the expectation of tn is

Etn =

∞∑
t0,...,tn−1

( n−1∑
i=0

(ti + 1)

) n−1∏
i=0

g(xi)(1− g(xi))
ti = (86)

=

∞∑
t1,...,tn−1

( n−1∑
i=1

(ti + 1)

) n−1∏
i=0

g(xi)(1− g(xi))
ti+ (87)

+

∞∑
t1,...,tn−1

∞∑
t0=0

(t0 + 1)

n−1∏
i=0

g(xi)(1− g(xi))
ti (88)

The sum over t0 in the last term is

∞∑
t0=0

(t0 + 1)g(x0)(1− g(x0))
t0 = 1 +

∞∑
t0=1

t0g(x0)(1− g(x0))
t0

︸ ︷︷ ︸
S

, (89)

where the last sum can be calculated via the index shifting trick as follows.

S =

∞∑
t0=1

t0g(x0)(1− g(x0))
t0 = g(x0)(1− g(x0)) +

∞∑
t0=2

t0g(x0)(1− g(x0))
t0 = (90)

= g(x0)(1− g(x0)) +

∞∑
t0=1

(t0 + 1)g(x0)(1− g(x0))
t0+1 = (91)

= g(x0)(1− g(x0)) + (1− g(x0))

∞∑
t0=1

t0g(x0)(1− g(x0))
t0

︸ ︷︷ ︸
S

+(1− g(x0))
2 (92)

Hence,

S = (1− g(x0)) +
1

g(x0)
− 2 + g(x0) =

1

g(x0)
− 1. (93)
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Substituting all the derivations back into the formula for expectation, we have

Etn =

∞∑
t1,...,tn−1

( n−1∑
i=1

(ti + 1)

) n−1∏
i=0

g(xi)(1− g(xi))
ti+ (94)

+

∞∑
t1,...,tn−1

∞∑
t0=0

(t0 + 1)

n−1∏
i=0

g(xi)(1− g(xi))
ti = (95)

=

∞∑
t1,...,tn−1

( n−1∑
i=1

(ti + 1)

) n−1∏
i=0

g(xi)(1− g(xi))
ti +

1

g(x0)
. (96)

Applying this reasoning (n− 1) more times, we obtain

Etn =

n−1∑
i=0

1

g(xi)
. (97)

A.6 Diffusing orbital kernel

We start with the kernel

k(x′ |x) = δ(x′ − f(x))g+(x) + δ(x′ − f−1(x))g−(x) + δ(x− x′)(1− g+(x)− g−(x)). (98)

Putting this kernel into Kp = p, we get∫
dx δ(x′ − f(x))g+(x)p(x) +

∫
dx δ(x′ − f−1(x))g−(x)p(x)+

+p(x′)(1− g+(x′)− g−(x′)) = p(x′),

(99)

which yields the following condition for Kp = p.

g+(f−1(x′))p(f−1(x′))

∣∣∣∣∂f−1

∂x′

∣∣∣∣+ g−(f(x′))p(f(x′))

∣∣∣∣ ∂f∂x′

∣∣∣∣ = g+(x′)p(x′) + g−(x′)p(x′) (100)

One of the solutions here is the linear combination of two escaping orbital kernels, which can be obtained by
separately matching terms with g+ and then the terms with g−. Another solution, which yields the diffusing
orbital kernel, is obtained by matching

g+(f−1(x′))p(f−1(x′))

∣∣∣∣∂f−1

∂x′

∣∣∣∣ = g−(x′)p(x′) and g−(f(x′))p(f(x′))

∣∣∣∣ ∂f∂x′

∣∣∣∣ = g+(x′)p(x′). (101)

Considering x′ as some point from the orbit orb(x0), i.e. x′ = fk(x0), both equations yield the same system

g+(fk−1(x0))

g−(fk(x0))
=

p(fk(x0))

p(fk−1(x0))

∣∣∂fk/∂x
∣∣
x=x0∣∣∂fk−1/∂x
∣∣
x=x0

, ∀k ∈ Z. (102)

Now we use the same trick as for the escaping orbital kernel assuming that f preserves some measure with the
density q(x), i.e. q(x0) = q(fk(x0))

∣∣∂fk/∂x
∣∣
x=x0

. Expressing the Jacobians in terms of the density q, we obtain

g+(fk−1(x0))

g−(fk(x0))
=

p(fk(x0))

p(fk−1(x0))

q(fk−1(x0))

q(fk(x0))
, ∀k ∈ Z. (103)

Once again, there are two options to design the test function here. One of the options is to say let g+(x) =
g−(x) ∝ q(x)/p(x), but saying so we will end up with the mixture of escaping orbital kernels. Another option is
to consider the tests as follows

g+(x) =
p(f(x))

q(f(x))
c and g−(x) =

p(f−1(x))

q(f−1(x))
c, (104)
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where the constant c comes from the fact that the rejection probability is non-negative on the whole orbit orb(x0),
i.e. (1− g+(x)− g−(x)) ≥ 0, and we have

c

(
p(fk+1(x0))

q(fk+1(x0))
+

p(fk−1(x0))

q(fk−1(x0))

)
≤ 1. (105)

Thus, we end up with the following value of c

c = inf
k∈Z

{
1

p(fk+1(x0))/q(fk+1(x0)) + p(fk−1(x0))/q(fk−1(x0))

}
, (106)

or with another lower bound, which may be not optimal, but useful in practice:

c′ =
1

2
inf
k∈Z

{
q(fk(x0))

p(fk(x0))

}
≤ c. (107)

Putting these constants back into the tests (104), we get

g+(x) = p(f(x))

∣∣∣∣∂f∂x
∣∣∣∣c(x), g−(x) = p(f−1(x))

∣∣∣∣∂f−1

∂x

∣∣∣∣c(x), (108)

where c(x) may be chosen as

c′(x) =
1

2
inf
k∈Z

{
1

p(fk(x))
∣∣∂fk

∂x

∣∣
}
, or c(x) = inf

k∈Z

{
1

p(fk+1(x))
∣∣∂fk+1

∂x

∣∣+ p(fk−1(x))
∣∣∂fk−1

∂x

∣∣
}
. (109)

A.7 Reversibility of the diffusing orbital kernel

Consider the diffusing orbital kernel

k(x′ |x) = δ(x′ − f(x))g+(x) + δ(x′ − f−1(x))g−(x) + δ(x′ − x)(1− g+(x)− g−(x)), (110)

that preserves the target measure (
∫
dx km(x′ |x)p(x) = p(x′)) what reduces to the system of equations:

g+(fk−1(x0))

g−(fk(x0))
=

p(fk(x0))

p(fk−1(x0))

∣∣∂fk/∂x
∣∣
x=x0∣∣∂fk−1/∂x
∣∣
x=x0

, ∀k ∈ Z. (111)

Since it satisfies the fixed point equation, we can define the reverse kernel

r(x′ |x) = k(x |x′)
p(x′)

p(x)
= δ(x− f(x′))

p(x′)

p(x)
g+(x′) + δ(x− f−1(x′))

p(x′)

p(x)
g−(x′)+ (112)

+δ(x− x′)
p(x′)

p(x)
(1− g+(x′)− g−(x′)). (113)

Integrating around the point x′ = x, we obtain∫
A(x)

dx′ r(x′ |x) = (1− g+(x)− g−(x)) =

∫
A(x)

dx′ k(x′ |x). (114)

Integrating around the point x′ = f−1(x), we obtain∫
A(f−1(x))

dx′ r(x′ |x) =
∫
A(f−1(x))

dx′ δ(x− f(x′))g+(x′)
p(x′)

p(x)
= (x′ = f−1(y)) (115)

=

∫
f(A(f−1(x)))

dy δ(x− y)g+(f−1(y))
p(f−1(y))

p(x)

∣∣∣∣∂f−1

∂y

∣∣∣∣ (116)

= g+(f−1(x))
p(f−1(x))

p(x)

∣∣∣∣∂f−1

∂x

∣∣∣∣ = g−(x) (117)
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And for the forward kernel, the integral around x′ = f−1(x) yields∫
A(f−1(x))

dx′ k(x′ |x) =
∫
A(f−1(x))

dx′δ(x′ − f−1(x))g−(x) = g−(x). (118)

Thus, we have ∫
A(f−1(x))

dx′ r(x′ |x) =
∫
A(f−1(x))

dx′ k(x′ |x) (119)

The same reasoning applies for the integration around x′ = f(x), hence, we conclude that the diffusing orbital
kernel is reversible since r(x′ |x) = k(x′ |x).

A.8 Mean ergodic theorem for the diffusing orbital kernel

We analyse the diffusive orbital kernel

k(x′ |x) = δ(x′ − f(x))g+(x) + δ(x′ − f−1(x))g−(x) + δ(x− x′)(1− g+(x)− g−(x)) (120)

that preserves target measure p(x), thus having (from Appendix A.6)

g+(x) =
p(f(x))

q(f(x))
c and g−(x) =

p(f−1(x))

q(f−1(x))
c. (121)

We assume that the map f preserves some density q only to simplify the derivations. One can as well consider
the tests derived in Appendix A.6.

Applying this kernel to the delta function δ(x− x0) we obtain∫
dx k(x′ |x)δ(x− x0) =g+(x0)δ(x

′ − f(x0)) + g−(x0)δ(x
′ − f(x0))+

+ (1− g+(x0)− g−(x0))δ(x
′ − x0).

(122)

That is, the kernel leaves a part of mass (1− g+(x0)− g−(x0)) at the initial point and moves the other part to
the adjacent points f(x0) and f−1(x0). Thus, starting from the delta-function p0(x) = δ(x− x0), and iteratively
applying the kernel k(x′ |x), at time t+ 1, we obtain a chain of weighted delta-functions along the orbit orb(x0)
of f : ∫

dx k(x′ |x)pt(x) = pt+1(x
′) =

t+1∑
i=−(t+1)

ωt+1
i δ(x′ − f i(x0)). (123)

Denoting the points on the orbit as xi = f i(x0), we can write the recurrence relation for the weights of the
delta-function at xi as

ωt+1
i = (1− g+(xi)− g−(xi))ω

t
i + g+(xi−1)ω

t
i−1 + g−(xi+1)ω

t
i+1, t ≥ 0. (124)

For periodic orbits with period T , we consider the lower index of ωt+1
i by modulo T . Further, denoting the sum

of the weights over time as

St
i =

t−1∑
t′=0

ωt′

i , (125)

we obtain the following recurrence relation by summation of (124).

St+1
i = ω0

i + (1− g+(xi)− g−(xi))S
t
i + g+(xi−1)S

t
i−1 + g−(xi+1)S

t
i+1 (126)

Decomposing the solution as St
i = αt

iŜ
t
i , where Ŝt

i is the solution of the corresponding homogeneous relation, and
αt
i is the constant variation, we get

St
i = (1− g+(xi)− g−(xi))

tS0
i +

t−1∑
t′=0

g+(xi−1)S
t′

i−1 + g−(xi+1)S
t′

i+1 + ω0
i

(1− g+(xi)− g−(xi))t
′−(t−1)

. (127)



Kirill Neklyudov, Max Welling

Then for the time-average we have

St
i

t
= (1− g+(xi)− g−(xi))

tS
0
i

t
+

t−1∑
t′=0

g+(xi−1)S
t′

i−1/t+ g−(xi+1)S
t′

i+1/t+ ω0
i /t

(1− g+(xi)− g−(xi))t
′−(t−1)

, (128)

which clearly converges when t→∞ since
∑

i S
t
i = t, hence, St′

i+1/t < 1, St′

i−1/t < 1, and

lim
t→∞

St
i

t
= lim

t→∞

t−1∑
t′=0

g+(xi−1)S
t′

i−1/t+ g−(xi+1)S
t′

i+1/t

(1− g+(xi)− g−(xi))t
′−(t−1)

≤ (129)

≤ lim
t→∞

t−1∑
t′=0

g+(xi−1) + g−(xi+1)

(1− g+(xi)− g−(xi))t
′−(t−1)

. (130)

Thus, the time-average converges since it is dominated by the convergent series. To analyse the limit of the time
average, we first simplify the notation a little bit by noting that

g+(x) = g(f(x)) and g−(x) = g(f−1(x)), where g(x) =
p(x)

q(x)
c. (131)

Then we have g(xi) = g+(xi−1) = g−(xi+1), 0 < g(xi) ≤ 1 and 0 ≤ g(xi+1) + g(xi−1) < 1. Denoting At
i = St

i/t
in (126) we write the recurrence relation for the time average

At+1
i =

ω0
i

t
+ (1− g(xi+1)− g(xi−1))A

t
i + g(xi)(A

t
i−1 +At

i+1). (132)

Taking the time t large enough we get rid off the initial condition ω0
i and consider the stationary point of this

recurrence relation.

(g(xi+1) + g(xi−1))Ai = g(xi)(Ai−1 +Ai+1). (133)

Further, we consider the stationary point Ai ∝ g(xi), and use the fact that the sum of the average across all
points equals to 1:

∑
i S

t
i/t =

∑
i A

t
i = 1, where we take the sum over i for aperiodic orbits i ∈ Z, and for periodic

orbits we take i modulo T . Thus, we have

At
i =

At
i∑

j A
t
j

=
g(xi)∑
j g(xj)

=
p(xi)/q(xi)∑
j p(xj)/q(xj)

. (134)

Using that q(xj)
∣∣∂f j/∂x

∣∣ = q(xi)
∣∣∂f i/∂x

∣∣, we obtain

At
i =

p(xi)∑
j p(xj)(q(xi)/q(xj))

=
p(xi)

∣∣∂f i/∂x
∣∣∑

j p(xj)
∣∣∂f j/∂x

∣∣ . (135)

For periodic orbits, the time-average always converges to

At
i =

p(xi)
∣∣∂f i/∂x

∣∣∑T−1
j=0 p(xj)

∣∣∂f j/∂x
∣∣ . (136)

For aperiodic orbits, if the series
∑+∞

j=−∞ p(xj)
∣∣∂f j/∂x

∣∣ converges, then the time-average converges to

At
i =

p(xi)
∣∣∂f i/∂x

∣∣∑+∞
j=−∞ p(xj)

∣∣∂f j/∂x
∣∣ . (137)

The uniqueness of the limit follows from the mean-ergodic theorem and the stochastic interpretation of the process.
Indeed, in such case the kernel k(x′ |x) is irreducible on the orbit orb(x0).
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B APPLICATIONS

B.1 Linear combination

Algorithm 4 Linear combination of escaping orbital kernels

input target density p(x), auxiliary density p(v |x) and a sampler from p(v |x)
input continuous bijection f(x, v), weights of the combination {wm}T−1

m=0

initialize x
for i = 0 . . . n do

sample v ∼ p(v |x)
propose (xm, vm) = fm(x, v), m ∈ [0, T − 1]

evaluate p(xm, vm)
∣∣ ∂fm

∂[x,v]

∣∣ for all m ∈ [0, T − 1]

gm = mink∈[0,T−1]{p(f
mk(x,v))
p(x,v)

∣∣ ∂fmk

∂[x,v]

∣∣} m ∈ [0, T − 1] (can be done in parallel)

xm, wm ←

{
xm, wm, with probability gm

x,wm, with probability (1− gm)

samples← samples ∪ {(xm, wm)}T−1
m=0

x← xj with probability wj

end for
output samples

In this section we discuss how one can make use of the linear combination of escaping orbital kernels. The main
benefit of this procedure is that one can evaluate the tests for all powers of f (see Corollary 1) almost for free.
With more details, consider the set of kernels km(x′ |x) = δ(x′ − fm(x))gm(x) + δ(x′ − x)(1− gm(x)), ∀m ∈ Z,
where gm(x) are tests that guarantee Kmp = p. Then any linear combination of such kernels:

k(x′ |x) =
∑
m∈Z

wmkm(x′ |x),
∑
m∈Z

wm = 1, wm ≥ 0, (138)

clearly admits Kp = p. Considering periodic orbits (period T ), and taking the tests gm(x) =
infk∈Z{p(fmk(x))/p(x)

∣∣∂fmk/∂x
∣∣} (as in Corollary 1) the evaluation of all tests reduces to the measurement of

the density (and the determinant of Jacobian) over whole orbit, and then evaluation of minimums across different
subsets of points. Once all the tests are calculated, we can simulate accept/reject steps and then collect all the
simulated samples xm with corresponding weights wm. The next starting point of the chain can be selected by
sampling from the collected samples with probabilities wm. See Algorithm 4.

The reversibility criterion from Theorem 1 naturally extends to the linear combination as follows.

Proposition 4. (Reversibility of the linear combination)
Consider the linear combination of kernels (138), where for each kernel we have Kmp = p, and gm(x) > 0. Then
for the linear combination k(x′ |x) we have Kp = p, and it is reversible (k(x′ |x)p(x) = k(x |x′)p(x′)) if and only
if w−mg−m(x) = wmgm(x),∀m ∈ Z. Note that for the test from Corollary 1 we have gm(x) = g−m(x).

For periodic orbit orb(x) of f , assume that the only positive weights are w1, . . . , wT−1, where T is the period of
orb(x). Then the linear combination is reversible if and only if wT−mgT−m(x) = wmgm(x),∀m ∈ {1, . . . , T − 1}.

Proof. See Appendix A.3.2
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B.2 Importance sampling via the orbital kernel

Figure 3: The illustration of the orbital
kernel on an infinite orbit.

As we outlined in Section 3, the limiting behaviour of the orbital kernel
depends on the orbit it operates on. For infinite orbits, the kernel
always moves the probability mass further along the orbit escaping
any given point on the orbit since there is no mass flowing backward
(the weight of f−1(x0) is zero from the beginning). Intuitively, we can
think that the weights ωt

i from (15) evolve in time as a wave packet
moving on the real line (Fig. 3). With this intuition it becomes evident
that the time average at every single point on the orbit converges to
zero since the mass always escapes this point. Therefore, if we want to
accept several points from the orbit, we need to wait until the kernel
“leaves” this set of points and then stop the procedure. To avoid the
explicit simulation of the kernel, we provide an approximation for the
escape time in the following proposition.

Proposition 5. (Average escape time)
Consider the proper escaping orbital kernel (Kp = p, and g(x) > 0), and the initial distribution p0(x) = δ(x− x0).
The escape time tn is the number of iterations required to leave the set {x0, f(x0), . . . , f

n−1(x0)}, or equivalently
the time of the first acceptance of fn(x0). The expectation of tn is Etn =

∑n−1
i=0 1/g(f i(x0)).

Proof. See Appendix A.5.

Using this proposition, we approximate the time average for points {x0, . . . , f
n−1(x0)} as follows. Once the kernel

escaped fn−1(x0), the sum of each individual weight over time has converged. Moreover, from Theorem 2 we
know limt→∞

∑t
t′=0 ω

t′

i = 1/g(f i(x0)). To approximate the time-average we can divide this sum by the average
escape time from Proposition 5. Thus, we estimate pn−1(x) ≈

∑n−1
i=0 ωiδ(x− f i(x0)), where

ωi =
1

Etn
lim
t→∞

t∑
t′=0

ωt′

i =
1/g(f i(x0))∑n−1

j=0 1/g(f j(x0))
=

p(f i(x0))
∣∣∂fi

∂x

∣∣
x=x0∑n−1

j=0 p(f j(x0))
∣∣∂fj

∂x

∣∣
x=x0

. (139)

On the last step, the ratio g(f i(x0))/g(f
j(x0)) can be found from (8), i.e., using the fact that the kernel K

preserves the target density. The resulting formula is tightly related to the self-normalized importance sampling
(SNIS) (Andrieu et al., 2003). Indeed, if f preserves some density q on the orbit orb(x0), then we can rewrite the
Jacobians using this density and put it into (139) as follows.

∀i
∣∣∣∣∂f i

∂x

∣∣∣∣
x=x0

=
q(x0)

q(f i(x0))
; hence, ωi =

p(f i(x0))/q(f
i(x0))∑n−1

j=0 p(f j(x0))/q(f j(x0))
(140)

Figure 4: The comparison of deterministic
and stochastic SNIS (averaged across 200 in-
dependent runs). Solid lines demonstrate the
mean error of the estimate, and the shaded
area lies between 0.25 and 0.75 quantiles.

We illustrate the usefulness of the formula (139) with the fol-
lowing example. Consider the target distribution p, and the
proposal q. Then one can estimate the mean of the target us-
ing the conventional SNIS procedure, which we call stochastic
SNIS. Stochastic SNIS operates as follows. It samples from the
proposal distribution with density q(x), and then evaluates the
weight of sample xi as wi = p(xi)/q(xi), once all the weights
are evaluated it normalizes them as wi ← wi/

∑
j wj . The nor-

malization of the weights is usually done in the setting where
the target density is known up to the normalization constant.
Another way to collect samples is to consider a deterministic
map that preserves q and then re-weight the trajectory of this
map (we call it deterministic SNIS). To perform the determin-
istic SNIS we choose such f that (I) preserves the density of
the proposal q(x) (the same as for stochastic SNIS), and (II)
has dense aperiodic orbits on the state space. These two goals
are achieved by the map described in (Murray & Elliott, 2012).
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Namely, the deterministic map is f(x) = F−1((F (x) + a) mod 1), where a is the irrational number (to cover
densely the state space) and F is the CDF of q (to preserve q). Another way of thinking about iterations of
f(x) is that it firstly sample from Uniform[0, 1] using the Weyl’s sequence ui+1 = ui + a mod 1, and then use the
inverse CDF to obtain samples from the desired distribution.

For the target distribution we take the mixture of two Gaussians p(x) = 0.5 · N (x | − 2, 1) + 0.5 · N (x | 2, 1), and
for the proposal we take single Gaussian q(x) = N (x | 0, 2). For the irrational number a in the deterministic SNIS,
we take the float approximation of

√
2. Collecting samples from both procedures we estimate the mean of the

target distribution and evaluate the squared error of the estimation. Fig. 4 demonstrates that the deterministic
SNIS allows for a more accurate estimate having the same number of samples.

The practical benefit of the formula (139) comes from the fact that we can perform deterministic SNIS even when
we don’t know the stationary distribution q of the deterministic map.

B.3 Orbital MCMC with Hamiltonian dynamics

Building upon Algorithms 2 and 3, we consider special cases, which use the Hamiltonian dynamics for the
deterministic map f(x, v). That is, we consider the joint distribution p(x, v) = p(x)N (v | 0,1), and for the map
f(x, v) we take the Leapfrog integrator (f(x, v) = [x′, v′′]):

v′ = v − ε

2
∇x(− log p(x)),

x′ = x+ ε∇v(− log p(v′)),

v′′ = v′ − ε

2
∇x(− log p(x′)),

(141)

where ε is the step-size. Adding the directional variable as proposed in Algorithm 2 we obtain the Orbital-HMC
algorithm. Note that the Jacobian of the map is

∣∣∂f(x, v)/∂[x, v]∣∣ = 1.

For the contractive map in Algorithm 3, we consider the same Hamiltonian dynamics but with friction. To add
friction, we follow (França et al., 2020), but use the velocity Verlet integrator instead of the coordinate. The
resulting integrator is (f(x, v) = [x′, v′′]):

v′ = β
[
v − ε

2
∇x(− log p(x))

]
,

x′ = x+
ε

2
(β−1 + β)∇v(− log p(v′)),

v′′ = β
[
v′ − ε

2
∇x(− log p(x′))

]
,

(142)

where β is the contractive coefficient. Note that β = 1 yields the standard Leapfrog. The Jacobian of the map
is

∣∣∂f(x, v)/∂[x, v]∣∣ = β2n, where n is the number of dimensions of the target distribution. For β < 1, the
map becomes contractive with the stationary points at ∇x log p(x) = 0. We refer to the resulting algorithm as
Opt-HMC due to its optimization properties.

For Opt-HMC, we provide a motivation for the truncation of the weights but leave the rigorous study of dissipative
systems beyond the scope of the current work. For the Hamiltonian system with the friction, we have

dx

dt
= v,

dv

dt
= −γv −∇xU(x) =⇒ dH

dt
=

∂H

∂x

dx

dt
+

∂H

∂v

dv

dt
= −γ∥v∥2 < 0. (143)

Since the Hamiltonian is bounded from below the weights for the forward iterations ω(t) = exp(−H(t)− γnt)
converges to zero (when t→∞) exponentially fast after converging to the local minimum of H.

For the backward iterations, the situation is opposite. The Jacobian increases weights with time as γnt, while the
Hamiltonian increases decreasing the weights. Thus, we have to upper bound the following expression

logω(t) = H(0) + γnt− γ

∫
dt ∥v(t)∥2. (144)

In general, the lower bound asymptotics for
∫
dt ∥v(t)∥2 is a difficult question. Based on the equation dv/dt =

γv +∇U , we assume that eventually ⟨v,∇U⟩ becomes positive and remains positive. Then we can write

(if ⟨v,∇xU(x)⟩ ≥ 0)
d

dt
∥v(t)∥2 = 2γ∥v(t)∥2 + 2⟨v,∇xU(x)⟩ ≥ 2γ∥v(t)∥2 =⇒ ∥v∥2 ≥ exp(2γt). (145)
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Thus, logω(t) decreases exponentially fast, and the weight ω(t) decreases as exp(− exp(t)). In Fig. 1., we provide
an illustration of this process in practice. Also, in practice, we compare the algorithms by comparing the errors
in statistics estimation, hence, we can argue that the truncation doesn’t violate the correctness of sampling.

Figure 5: Banana distribution. From left to right: average log-weight for backward iterations with quantiles
(0.1− 0.9); single trajectory example on the energy landscape of Banana; weights of the trajectory points. Initial
point is denoted by the red dot.

To tune the hyperparameters for all algorithms we use the ChEES criterion (Hoffman et al., 2021). During the
initial period of adaptation, this criterion optimizes the maximum trajectory length Tmax for the HMC with jitter
(trajectory length at each iteration is sampled ∼ Uniform(0, Tmax)). To set the stepsize of HMC we follow the
common practice of keeping the acceptance rate around 0.65 as suggested in (Beskos et al., 2013). We set this
stepsize via double averaging as proposed in (Hoffman & Gelman, 2014) and considered in ChEES-HMC. For
Opt-HMC, we don’t need to set the trajectory length, but we use the step size yielded at the adaptation step of
ChEES-HMC. The crucial hyperparameter for this algorithm is the friction coefficient β, which we set to n

√
0.8,

where n is the number of dimensions of the target density, thus setting the contraction rate to 0.64.

In Figures 6 and 7, we compare the errors in the estimation of the mean and the variance of the target distribution as
a function of the number of gradient evaluations (which we take as a hardware-agnostic estimation of computation
efforts). Opt-HMC provides the best estimate for the mean value for all distributions except for the ill-conditioned
Gaussian (where Orbital-HMC demonstrates the fastest convergence). Another downside of Opt-HMC is that it
relatively poorly estimates the variance of the target as provided in Fig. 7, which could also be explained by the
introduced contraction of space. Note that Orbital-HMC always performs comparably or better than competitors.

Figure 6: From left to right: the error of mean estimation on Banana, ill-conditioned Gaussian, logistic regression,
Item-Response model. Every solid line depicts the mean of the absolute error averaged across 100 independent
chains. The shaded area lies between 0.25 and 0.75 quantiles of the error.
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Figure 7: From left to right: the error of the variance estimation on Banana, ill-conditioned Gaussian, logistic
regression, Item-Response model. Every solid line depicts the mean of the absolute error averaged across 100
independent chains. The shaded area lies between 0.25 and 0.75 quantiles of the error.

B.4 Distributions

Here we provide analytical forms of considered target distributions.

Banana (2-D):
p(x1, x2) = N (x1|0, 10)N (x2|0.03(x2

1 − 100), 1) (146)

Ill-conditioned Gaussian (50-D):
p(x) = N (x|0,Σ), (147)

where Σ is diagonal with variances from 10−2 to 102 in the log scale.

Bayesian logistic regression (25-D):
For the Bayesian logistic regression, we define likelihood and prior as

p(y = 1 |x, θ) = 1

1 + exp(−xT θw + θb)
, p(θ) = N (θ | 0,1). (148)

Then the unnormalized density of the posterior distribution for a dataset D = {(xi, yi)}i is

p(θ |D) ∝
∏
i

p(yi |xi, θ)p(θ). (149)

We use the German dataset (25 covariates, 1000 data points).

Item-response theory (501-D):
The model is defined by the joint distribution:

p(y, α, β, δ) =

N∏
n=1

Bernoulli(yn |σ(αjn − βkn + δ))· (150)

·
∏
j

N (αj | 0, 1)
∏
k

N (βk | 0, 1)N (δ | 0.75, 1). (151)

Here αj could be interpreted as the skill level of the student j; βk is the difficulty of the question k; then yn is
the answer of a student to a question. We consider 100 students, 400 questions and 30105 responses. We generate
the data from the prior.

B.5 Usage of neural models

In this section we discuss how one can possibly use the expressive learnable models (such as flows (Rezende &
Mohamed, 2015; Dinh et al., 2016)) together with the orbital kernel to design an efficient sampler. As we discuss
in Section 5 and Appendix B.3, to design an unbiased kernel one needs to design the periodic function. Therefore,
in the next two subsection we consider the design of periodic functions using the family of normalizing flows.
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B.5.1 Topologically conjugate sampler

This section operates similarly to (Hoffman et al., 2019). That is, having some simple function f and a learnable
continuous bijection T one can sample using the topologically conjugate iterated function h = T−1 ◦ f ◦T . Indeed,
if the evaluation of f is cheap, then we can evaluate iterations of h as

hn = T−1 ◦ fn ◦ T. (152)

For instance, we consider a simple periodic function f assuming that all the knowledge about the target distribution
is encapsulated in T . Namely, we take Hamiltonian dynamics that can be integrated exactly:

H(x, v) =
1

2
xTx+

1

2
vT v, (153)

xi(τ) =xi(0) cos(τ) + vi(0) sin(τ), (154)
vi(τ) =− xi(0) sin(τ) + vi(0) cos(τ). (155)

These equations define a continuous flow f(x, τ). To obtain discrete rotations, we can fix the evolution time
either as τ = 2π 1

T (obtaining periodic orbits with period T ), or τ = 2πa, where a is irrational number (obtaining
returning orbits).

B.5.2 Periodic flows

Instead of the learning of the target space embedding, as in the previous section, we can learn the deterministic
function f itself. For that purpose, we firstly introduce periodic coupling layer. Similarly to the coupling layer
from (Dinh et al., 2016), we define the periodic coupling layer l(x, τ) : RD → RD as follows.

y1:d =x1:d (156)

yd+1:D =xd+1:D ⊙ exp

(
sin(ωτ)s(x1:d)

)
+ sin(ωτ)h(x1:d) (157)

Here s(·) and h(·) are neural networks that define scale and shift respectively; ω is the circular frequency, which
is a hyperparameter. Stacking these layers we obtain the periodic flow f(x, τ), which is invertible for fixed τ and
has tractable Jacobian. To guarantee periodicity, one can choose ωi for each layer li as a natural number. Thus,
we guarantee that f(x, 0) = x and f(x, 2πn) = x for natural n.

However, such flow does not satisfy f(x, τ1 + τ2) = f(f(x, τ1), τ2). To ensure this property, we extend the state
space by the auxiliary variable τ and introduce function f̂((x, τ),∆τ) = [x′, τ ′] on the extended space:

τ ′ = (τ +∆τ) mod 2π, x′ = f

(
f−1(x, τ), τ ′

)
, (158)

where the inversion of f is performed w.r.t. the x-argument. By the straightforward evaluation, we have

f̂((x, τ), 0) = f̂((x, τ), 2π) = (x, τ), f̂

(
f̂((x, τ),∆τ1),∆τ2

)
= f̂((x, τ),∆τ1 +∆τ2). (159)

Finally, as in the previous section, we can obtain discrete rotations by considering ∆τ = 2π 1
n or ∆τ = 2πa for

irrational a.
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