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Abstract

Adversarial training defense (ATD) and vir-
tual adversarial training (VAT) are the two
most effective methods to improve model ro-
bustness against attacks and model general-
ization. While ATD is usually applied in ro-
bust machine learning, VAT is used in semi-
supervised learning and domain adaption. In
this paper, we introduce a novel adversar-
ial local distribution regularization. The ad-
versarial local distribution is defined by a
set of all adversarial examples within a ball
constraint given a natural input. We illus-
trate this regularization is a general form
of previous methods (e.g., PGD, TRADES,
VAT and VADA). We conduct comprehen-
sive experiments on MNIST, SVHN and CI-
FAR10 to illustrate that our method out-
performs well-known methods such as PGD,
TRADES and ADT in robust machine learn-
ing, VAT in semi-supervised learning and
VADA in domain adaption. Our implemen-
tation is on Github: https://github.com/
PotatoThanh/ALD-Regularization.

1 Introduction

Generalization is defined by model’s ability to react to
unseen input data, which is one of the most challeng-
ing problems in machine learning. For examples, the
model should be robust to adversarial example inputs
from attacks. The model from semi-supervised learn-
ing and domain adaptation applications should not be
overfitted to finite training data samples in order to
generalize well on unseen data. State-of-the-art deep
neural networks are reported to be susceptible to at-
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tacks [Szegedy et al., 2013, Goodfellow et al., 2014].
These attacks add crafted perturbations to clean in-
puts to create adversarial examples (e.g., Fast Gradi-
ent Sign Method (FGSM) [Goodfellow et al., 2014],
Projected Gradient Descent (PGD) [Madry et al.,
2018] and Auto-Attack [Croce and Hein, 2020]. The
most common way to find the perturbations is using
adversarial direction which leverages gradients to max-
imize the loss of a model on a particular input while
keeping the size of the perturbation smaller than a
specified amount referred to a radius constraint ep-
silon. Due to the threats, many methods have been
proposed robust regularization using adversarial ex-
amples to defense such as Madry et al. [2018], Qin
et al. [2019], Xie et al. [2019], Zhang et al. [2019].
In addition, overfitting problem occurs when model
performs well on training dataset with low error but
the true expected error (test error) is large. Regu-
larization is the most common way to reduce the gap
between the training error and the test error in real
world applications. In term of using adversarial exam-
ples as regularization to improve model generalization,
VAT has been introduced by Miyato et al. [2015] to
tackle the problem which promotes the smoothness of
model output distribution named local distributional
smoothness. This regularization shows its effective-
ness to reduce overfitting and improve generalization
in semi-supervised learning [Miyato et al., 2018]. Then
it is adopted to regularize source and target models in
domain adaption in order to boost the generalization
on the target domain [Shu et al., 2018].

Among defense techniques, adversarial training de-
fense (ATD) is one of the most effective [Athalye et al.,
2018, Dong et al., 2020b]. However, ATD heavily re-
lies on attack algorithms to find adversarial samples
during the training, which shows poor generalization
for other unseen attacks [Song et al., 2018]. Moreover,
a single attack algorithm can only create one adver-
sarial sample in a run, which could be insufficient to
completely explore the space of possible perturbations.
Even PGD attack with random initialization can also
lie together and lose diversity [Tashiro et al., 2020].
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Recently, Dong et al. [2020a] proposed a technique
to form the perturbation distributions named (ADT)
to improve model robustness. However, ADT makes
a strong assumption that the distribution of pertur-
bations follows certain parameterization forms (e.g.,
Gaussian distributions).

Training a deep learning model that can generalize well
on unseen data is a challenging problem. When neural
networks have a lot of parameters to be tuned by finite
training samples, overfitting is a common problem.
Several regularization techniques have been proposed
to overcome the overfitting such as l2 weight decay and
Dropout [Srivastava et al., 2014]. In this paper, we fo-
cus on using adversarial examples to reduce overfitting
and improve model generalization. Virtual adversarial
training (VAT) introduced local distribution smooth-
ness based regularization [Miyato et al., 2018]. With
the success of VAT, it has been adopted to domain
adaptation to improve generalization on new domains,
the corresponding method of which is named VADA
[Shu et al., 2018]. However, the drawback of this tech-
nique is that VAT cannot explore well the local distri-
bution and generate diverse adversarial examples (see
more details about VAT and VADA in following sec-
tions).

In this paper, we introduce a novel regularization
method using adversarial examples to overcome the
drawbacks of previous approaches. Our contributions
are summarized as follows: 1) We propose an adver-
sarial local distribution based regularization to encour-
age model generalization. The adversarial local dis-
tribution is defined by a set of all adversarial exam-
ples within a ball constraint that can maximize loss
function given a natural input. We also show that
this regularization is a general form of well-known
previous approaches such PGD [Madry et al., 2018],
TRADES [Zhang et al., 2019], VAT [Miyato et al.,
2018]) and VADA [Shu et al., 2018]. 2) We suffi-
ciently approximate the adversarial local distribution
without any assumptions using a multiple particle-
based search named Stein Variational Gradient De-
cent (SVGD) [Liu and Wang, 2016]. The SVGD can
create more diverse adversarial examples which signif-
icantly help to improve model performance. 3) We
show that our method can be adapted well to various
applications such as semi-supervised learning, robust
machine learning and domain adaptation. We conduct
comprehensive experiments on MNIST, SVHN and
CIFAR10 datasets to demonstrate that our method
outperforms previous well-known approaches in the
above applications, such as PGD [Madry et al., 2018],
TRADES [Zhang et al., 2019], ADT Dong et al. [2020a]
in robust machine learning, VAT [Miyato et al., 2018]
in semi-supvervised learning and VADA [Shu et al.,

2018] in domain adaptation.

2 Related work

Adversarial training defense (ATD) is one of the
most effective techniques to protect deep neural net-
works from attacks [Athalye et al., 2018, Dong et al.,
2020b]. ATD can be formulated as a minmax opti-
mization[Madry et al., 2018]. While the inner maxi-
mization of ATD tries to find an adversarial example
within a ball constraint that maximizes the classifica-
tion loss given a natural input, the outer minimiza-
tion aims to train a robust classifier using the gener-
ated adversarial examples. In order to solve the inner
maximization problem of ATD, previous works usu-
ally used a specific attack algorithm to find adversar-
ial examples such as FGSM [Goodfellow et al., 2014],
PGD [Madry et al., 2018] and TRADES [Zhang et al.,
2019]. The quality of ATD significantly depends on the
strength of injected perturbations of adversarial ex-
amples. For example, ATD uses non-iterative method
FGSM [Goodfellow et al., 2014], which cannot robust
to iterative PGD [Madry et al., 2018] attack. Previ-
ous work proposed by Athalye et al. [2018] suggests
that the adversarial training defense with PGD can
perform well against attacks. Therefore, many works
attempt to improve ATD with PGD such as Kannan
et al. [2018], Hoang et al. [2020], Bui et al. [2020,
2022], Le et al. [2022]. Recently, contrastive learning
[Bui et al., 2021a] and ensemble method [Bui et al.,
2021b] have been used to archive state-of-the-art per-
formance. However, these methods only generate only
one adversarial example, which could be insufficient to
explore entire space of possible perturbations. More-
over, the work proposed by Tashiro et al. [2020] shows
even the attacks with random initialization can also
lie together and lose diversity that reduce the qual-
ity of ATD. Recently, Dong et al. [2020a] proposed a
technique to form the perturbation distribution named
adversarial distributional training (ADT), where the
inner maximization aims to find adversarial distribu-
tion for each natural input. However, ADT makes a
strong assumption that the perturbation distribution
follows Gaussian distribution. This assumption could
be insufficient in practice. Therefore, our method ad-
dresses a strong diversity of adversarial examples and
sufficiently forms the adversarial distribution without
any assumption.

Virtual adversarial training (VAT) propopsed by Miy-
ato et al. [2015] is a well-known regularization for semi-
supervised learning [Miyato et al., 2018] and domain
adaptation [Shu et al., 2018] which can be defined by a
minmax optimization problem similar to the adversar-
ial training defense. The inner maximization of VAT
aims to find an adversarial example that maximizes
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KL divergence loss between model outputs of a natu-
ral input and the adversarial example input. The outer
minimization aims to smooth the local distribution
output of a model given a natural input to reduce over-
fitting and improve generalization. This technique is
called local distribution smoothness based regulariza-
tion. Similar to ATD, VAT cannot sufficiently explore
the local distribution. It is worth to note that there is
a strong connection between ATD and VAT (e.g., solv-
ing minmax optimization problem and KL divergence
loss). For example, TRADES [Zhang et al., 2019] used
in ATD solves the mimax problem and leverages KL
divergence loss to solve the inner maximization. In
this paper, we form a generalization regularization for
both ATD and VAT.

Semi-supervised learning is a method to machine
learning that combines a small amount labeled data
with a large unlabeled data during training. There
are several approaches proposed to solve this problem
such as entropy minimization [Grandvalet et al., 2005],
pseudo-labeling [Lee et al., 2013], MixMatch [Berth-
elot et al., 2019] and VAT [Miyato et al., 2018]. In this
paper, we focus on approaches using adversarial exam-
ples to improve performance by smoothing the model
output distribution such as VAT [Miyato et al., 2015,
2018].

Domain adaptation is a subcategory of transfer learn-
ing, which is addressed as the problem of leveraging
labeled data in a source domain to learn an accu-
rate model in an unlabeled dataset of target domain.
Many approaches have been proposed to solve the
domain adaptation problem such as PixelDA [Bous-
malis et al., 2017], ATT [Saito et al., 2017], kNN-
Ad [Sener et al., 2016], TIDOT [Nguyen et al., 2021a],
MOST [Nguyen et al., 2021b], LAMDA [Le et al.,
2021], and STEM [Nguyen et al., 2021c]. The work
from Ganin and Lempitsky [2015] attempts to use ad-
versarial training, where it induces a feature extractor
to match the source and target features. Recently, Shu
et al. [2018] introduced VADA, which adopted the vir-
tual adversarial training (VAT) [Miyato et al., 2018]
to boost performance by regularizing both the source
and target domains. However, VADA essentially has
drawbacks from VAT (e.g., lack of ability to explore
the local distribution).

3 Proposed Framework

In this section, we first recall the minmax op-
timization problem of adversarial training defense
(ATD) [Madry et al., 2018] and virtual adversarial
training (VAT) [Miyato et al., 2018]. We then formu-
late a novel adversarial local distribution which is a
general distribution for ATD and VAT. The adversar-
ial local distribution (ALD) is efficiently approximated

without any comsumption by using multiple particle-
based Stein Variational Gradient Descent (SVGD) [Liu
and Wang, 2016]. We also show that our method can
be adapted in defending against adversarial attacks,
semi-supervised learning and domain adaption.

3.1 Minmax optimization of ATD and VAT

ATD and VAT have a common minmax optimization
problem but aim to achieve different goals. For ex-
ample, ATD is used to improve the adversarial ro-
bustness of models, while VAT is applied to improve
the performance of semi-supervised learning and do-
main adaptation. Let x ∈ Rd be our d-dimensional
natural input data in a space X. Given an input
(x, y) ∼ PD (i.e., the data-label distribution), we de-
note Bε(x) = {x′ ∈ X : ||x′ − x||p ≤ ε} is the ball
constraint around the natural sample x with a radius
ε with respect to a norm ||·||p. Given a classifier fθ pa-
rameterized by θ, we define the minmax optimization
problem [Madry et al., 2018] as

min
θ

E(x,y)∼PD

[
max

x′∈Bε(x)
`(x′,x, y; θ)

]
, (1)

where `(x′,x, y; θ) depends on a particular method.
For example, FGSM [Goodfellow et al., 2014],
PGD [Madry et al., 2018] use the cross-entropy loss
(CE)

`(x′,x, y; θ) = CE(fθ(x
′), y), (2)

where y is the one-hot ground-truth label of x and
fθ(x

′) is the prediction probabilities. Another exam-
ple is TRADES [Zhang et al., 2019] and VAT [Miyato
et al., 2018], which use the Kullback-Leibler divergence
loss (DKL) in Eq.( 3)

`(x′,x, y; θ) = DKL(fθ(x
′), fθ(x)). (3)

3.2 Adversarial local distribution
regularization

Recall that the maximization problem in Eq. (1) is usu-
ally solved by the relevant methods such as FGSM,
PGD, TRADES, and VAT. However, these methods
only find one adversarial example x′ given a natural
input x. In this section, we introduce our proposed ad-
versarial local distribution (ALD) regularization. ALD
regularization considers an adversarial local distribu-
tion Pθ(x

′|x, y) within a ball constraint Bε which is
relevant the the loss function `(x′,x, y; θ) as shown in
(4).

Pθ(x
′|x, y) := e`(x

′,x,y;θ)∫
Bε(x)

e`(x′′,x,y;θ)dx′′
=
e`(x

′,x,y;θ)

Z(x, y; θ)
,

(4)
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where Pθ(·|x, y) is the conditional local distribution
over Bε(x) and Z(x, y; θ) is a normalization function.
Instead of solving directly the inner maximization as
in the aforementioned approaches, we sample a set of
adversarial examples or particles from this local distri-
bution with the aim to reach its modes and avoid the
particle collapse to increase the particle diversity. We
note that depending on the loss function `, y could be
the one-hot ground-truth label of x or the prediction
probabilities fθ(x).

Given Eq. (4), we propose the adversarial local distri-
butional regularization term at the position x

R(θ,x, y) := Ex′∼Pθ(·|x,y)[logPθ(x
′|x, y)]

= −H(Pθ(·|x, y)),
(5)

where H indicates the entropy of a given distribution.

For x and y, when minimizing R(θ,x, y) or equiva-
lently −H(Pθ(·|x, y)) w.r.t. θ, we pointwisely maxi-
mize H(Pθ(·|x, y)), which is equivalent to encourage
Pθ(·|x, y) to be more uniform distribution. This fur-
ther enforces `(x′,x, y; θ) = `(x′′,x, y; θ) = c(x, y; θ),
where x′,x′′ ∼ Pθ(·|x, y). In other words, it implies
that `(x′,x, y; θ) is close to a constant c(x, y; θ) and
smooth over x′ ∈ Bε(x). Therefore, minimizing the
adversarial local distribution regularization loss leads
to an enhancement in the model output smoothness
(i.e., the classifier does not change outputs with any
input x′ ∈ Bε(x)) to encourage model robustness. As
demonstrated later, not only strengthening the model
robustness in adversarial defense, this also encourages
the model generalization in semi-supervised learning
and domain adaptation settings.

At this outset, it is worth noting that when sam-
pling only one adversarial example from Pθ(·|x, y), the
Eq. (5) reduces to FGSM, PGD, TRADES, and VAT
respectively (see our asymptotic analysis when we as-
sume using the RBF kernel and consider the behaviors
when letting the kernel width σ → 0 or ∞ below).

3.3 Multiple particle-based search to
approximate the adversarial local
distribution

In Eq. (4), Z(x, y; θ) is intractable to find, we thus use
a particle-based method to sample x′1,x

′
2, . . . ,x

′
n ∼

Pθ(·|x, y)), where n is the number of samples (or ad-
versarial particles) to solve the optimization problem
of finding Pθ(·|x, y). Here we show that our method
can sufficiently explore the adversarial local distribu-
tion more efficiently compared to previous methods
(e.g., FGSM, PGD, TRADES, ADT, and VAT).

Stein Variational Gradient Decent (SVGD) [Liu and
Wang, 2016] is a particle-based inference method using

Input: A natural sample (x, y) ∼ PD; n number
of adversarial particles; ε for the
constraint Bε; r normalization function; η
initial noise factor; τ step size updating;
N number of iterations; k kernel function

Output: Set of adversarial particles
{x′1,x′2, . . . ,x′n} ∼ Pθ(·|x, y)

1 Initialise a set of n particles and project to the Bε
constraint {x′i ∈ Rd, i ∈ {1, 2, . . . , n}|x′i =∏
Bε

(x+ η ∗ Uniform_noise)};
2 for l = 1 to N do
3 for each particle x

′(l)
i do

4 x
′(l+1)
i =

∏
Bε

(
x
′(l)
i + τ ∗ r

(
φ(x

′(l)
i )
))

;

5 where φ(x′) =
1
n

∑n
j=1[k(x

′(l)
j ,x′)∇

x
′(l)
j

logP (x
′(l)
j |x, y)+

∇
x

(l)
j
k(x

′(l)
j ,x′)] ;

6 end
7 end
8 return {x′N1 ,x′N2 , . . . ,x′Nn } ;

Algorithm 1: Approximating the conditional ad-
versarial local distribution given x by using Stein
Variational Gradient Decent

a functional gradient decent to approximate a ground-
truth distribution without explicit parametric assump-
tions. To this end, SVGD is leveraged to be our
solver to approximate the adversarial local distribu-
tion Pθ(·|x, y). The core idea is to find a set of adver-
sarial particles to approximate the local distribution
using Alg. 1. More specifically, a set of adversarial
particles {x′1,x′2, . . . ,x′n} is initialized by adding uni-
form noises, then projected onto the ball Bε. Further-
more, these adversarial particles are then iteratively
updated as well as projecting onto the ball Bε (line 4
in Alg. 1) until reaching termination condition. Note
that k is a positive definite kernel for which in our ex-
periments, we use radial basic function (RBF) kernel
defined in Eq. (6), where the kernel width σ is empir-
ically set by proportional to the number of particles n
(i.e., σ = 101−n). Additionally, two terms of φ (line 5
in Alg. 1) have different roles: (i) the first one enforces
the particles move towards to the high density areas
of Pθ(·|x, y) and (ii) the second one prevents all the
particles to collapse into local modes of Pθ(·|x, y).

k(x′,x) = exp

{
−||x′ − x||2

2σ2

}
. (6)

Asymptotic analysis of adversarial local distri-
bution approximation. Considering the RBF ker-
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nel, the update function φ can be rewritten as

φ(x′) =
1

n

n∑
j=1

[
k(x

′(l)
j ,x′)∇

x
′(l)
j
`(x
′(l)
j ,x, y; θ)

−k(x′(l)j ,x′)
(x
′(l)
j − x′)

σ2

]
.

(7)

When σ →∞, it is obvious that

φ(x′)→ 1

n

n∑
j=1

∇
x

′(l)
j
`(x
′(l)
j ,x, y; θ). (8)

Therefore, our approach reduces exactly to FGSM,
PGD, TRADES, and VAT with n independent par-
ticles, where in the update quantity is the average of
the gradients at each particle as shown in Eq. (10). Ev-
idently, in the update rule in Eq. (10), there does not
exist any term that promotes the particle diversity. In
addition, when using a single particle (i.e., n = 1), our
approach under its asymptotic case reduces exactly to
the aforementioned approaches.

Particularly, in our update formula in Eq. (13), the
first term encourages the particles to seek the optimal
values of the loss surface as in FGSM, PGD, TRADES,
and VAT, while the second term plays a role of a repul-
sive term to push the particles away for enhancing the
particle diversity. The reason is that when x

′(l)
j moves

closer to x′, the weight k(x′(l)j ,x′) becomes larger to
push them further away from each other.

We present the asymptotic analysis when σ −→ 0. Con-
sidering the RBF kernel, the update function φ can be
rewritten as

φ(x′) =
1

n

n∑
j=1

[
k(x

′(l)
j ,x′)∇

x
′(l)
j
`(x
′(l)
j ,x, y; θ)

− k(x′(l)j ,x′)
(x
′(l)
j − x′)

σ2

]
.

(9)

When σ → 0, it is obvious that

φ(x′)→ 1

n

n∑
j=1

1
x′=x

′(l)
j
∇

x
′(l)
j
`(x
′(l)
j ,x, y; θ), (10)

where 1A is the indicator function which returns 1 if A
is true and 0 if otherwise. Here we note that we have
used the following equations in the above derivation.

lim
σ→0

k(x
′(l)
j ,x′)

(x
′(l)
j − x′)

σ2
= 0. (11)

lim
σ→0

k(x
′(l)
j ,x′) = 0 (12)

if x′ 6= x
′(l)
j .

lim
σ→0

k(x
′(l)
j ,x′) = 1 (13)

if x′ = x
′(l)
j .

Therefore, the update amount φ(x′) in Eq. (10) re-
duces to only one gradient. It is evident that when n =
1, our approach reduces exactly to PGD, TRADES, or
VAT.

4 Robust, semi-supervised learning
and domain adaptation

In this section, we adapt our adversarial local distribu-
tion regularization Eq. (5) to various applications such
as robust machine learning, semi-supervised learning
and domain adaptation. The previous methods (e.g.,
PGD, TRADES or VAT) can be addressed as sam-
pling only one adversarial particle in Pθ(·|x, y). More
specifically, our approach with a single particle under
its asymptotic setting can reduce to these methods as
analysed in the previous section.

We now illustrate how to apply our adversarial local
distribution regularization to specific problems such
as semi-supervised learning, robust machine learning,
and domain adaptation. Generally, our adversarial lo-
cal distribution (ADL) regularization can be applied to
a data example x with or without label to make its lo-
cal vicinity more smoothly. More specifically, if x has
a label y, we can flexibly apply R(θ,x, y) as in Eq. (2)
or R(θ,x, fθ(x)) as in Eq. (3). In contrast, if x is
an unlabeled data example, we can use R(θ,x, fθ(x))
as in Eq. (3). We hence can apply our ALD regu-
larization to both labeled and unlabeled portions in
the semi-supervised setting, both source and target
datasets in domain adaptation, and labeled dataset in
robust machine learning. Moreover, our ADL regu-
larization for each data example x can be estimated
conveniently by sampling a set of adversarial particles
{x′1,x′2, . . . ,x′n} ∼ Pθ(·|x, y) using Alg. 1.

For semi-supervised learning, (xl, y) ∼ PDl and xul ∼
PDul , where Dl and Dul is the labeled and unlabeled
dataset respectively. Based on the VAT loss, the loss
function is adapted to semi-supervised learning using
cross-entropy loss (CE) and adversarial local distribu-
tion regularizations weighted by λ1 and λ2, as shown
in (14).

min
θ

{
E(xl,y)∼PDl

[
CE(fθ(xl), y) + λ1R(θ,xl, fθ(xl))

]
+ λ2Exul∼PDul

[
R(θ,xul, fθ(xul))

]}
,

(14)

where R(θ,x, fθ(x)) is relevant to the loss in Eq. (3).

For robust machine learning, (x, y) ∼ PD, where D
is the dataset. The loss function is adapted to this
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problem using cross-entropy loss (CE) and adversarial
local distribution regularization weighted by λ. Based
on PGD or TRADES, we can adapt the loss function

min
θ

{
E(x,y)∼PD

[
CE(fθ(x), y)

]
+ λR(θ,x, ỹ)

]}
,

(15)

where in R(θ,x, ỹ), we set ỹ = y (cf. Eq. (2)) for
our PGD version and ỹ = fθ(x) (cf. Eq. (3)) for our
TRADES version.

For domain adaptation, (xs, y) ∼ PDs and xt ∼ PDt ,
where Ds and Dt is the source and target dataset re-
spectively. Based on VADA loss1, our regularization
terms for both source classifier parameterized by θs
and target classifier parameterized by θt using adver-
sarial local distribution regularization. The λ1 and λ2
are the trade-off parameters for source and target reg-
ularization respectively, as shown in (16).

min
θ

{
λ1E(xs,y)∼PDs

[
R(θs,xs, fθ(xs))

]
+ λ2Ext∼PDt

[
R(θt,xt, fθ(xt))

]}
,

(16)

where R(θ,x, fθ(x)) is relevant to the loss in Eq. (3).

5 Experiments

In this section, we conducted several comprehen-
sive experiments using MNIST [LeCun et al., 1998],
SVHN [Netzer et al., 2011] and CIFAR10 [Krizhevsky
et al., 2009] datasets. We first analyze the adversarial
particles generated by SVGD compared to adversarial
examples from PGD with random initializations. We
compare performance of our method to several well-
known approaches such as PGD [Madry et al., 2018],
TRADES [Zhang et al., 2019], ADT [Dong et al.,
2020a] in robust machine learning, VAT [Miyato et al.,
2018] in semi-supvervised learning and VADA [Shu
et al., 2018] in domain adaptation. Please refer all
experimental setup details given in the supplementary
material.

5.1 Diversity of adversarial particles vs.
random initialization

General setup. The pretrained model of MNIST and
CIFAR10 used in this experiment is LeNet [LeCun

1There are several losses in VADA; thus, we only show
our regularization for source and target domain.

(a) our (b) pgd

Figure 1: Comparison of three adversarial examples
generated by (a) our method with SVGD and (b) PGD
with random initialization. The first, second and third
column of each sub-figure is region of interest of adver-
sarial perturbations (ROIs), adversarial perturbations
and adversarial particles respectively.

2 4 8 16 24 32
Number of particles

0.9

1.0

1.1

1.2

1.3

1.4

Su
m

 S
qu

ar
e 

Er
ro

r

pgd
our

(a) MNIST

2 4 8 16 24 32
Number of particles

27.5

28.0

28.5

29.0

29.5

30.0

30.5

31.0

Su
m

 S
qu

ar
e 

Er
ro

r

pgd
our

(b) CIFAR10

Figure 2: Diversity comparison of our method and
PGD with random initialization using sum of square
error (SSE). The figure illustrates the average of mean
(point) and standard deviation (bar) of the three dif-
ferent runs.

et al., 1998] and ResNet18 [He et al., 2016] respec-
tively. The LeNet achieves 0.99 accuracy on MNIST,
while ResNet18 achieves 0.93 accuracy on CIFAR10.
We fix all pretrained models in order to generate adver-
sarial examples using PGD with random initialization
and adversarial particles using our method. We set the
same ε (e.g., 0.1 for MNIST, 8/255 for CIFAR10) and
number of iterations N = 200. Note that all adversar-
ial examples and particles fool the classifiers with 1.0
confident.
Experimental setup. In Fig. 1, we generate 3 adver-
sarial examples with random initializations using PGD
for an MNIST image (e.g., digit 7). Given the same
image, we also sample 3 adversarial particles in the
adversarial local distribution Pθ(·|x) using SVGD. In
Fig. 2, we generate adversarial examples using PGD
with random initializations and our SVGD method
with different numbers of particles for the MNIST and
CIFAR10 datasets. We then calculate sum squared
error (SSE) between these particles to evaluate their
diversity. At each setting of the number of particles,
we run 3 times to calculate the average of the means
and standard deviations of SSE.
Results. Recall that in Alg. 1, SVGD is designed to
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Table 1: Performance comparison between our method
and VAT using mixup technique for all adversarial par-
ticles in mini-batch on Conv-Large architecture.

n particle(s) 1 2 4 8
VAT 0.8601 0.8611 0.858 0.856
Our 0.867 0.876 0.883 0.872

VAT + Mixup 0.870 0.887 0.9013 0.893
Our + Mixup 0.913 0.925 0.930 0.927

generate diverse adversarial particles from Pθ(·|x) be-
cause the first and second terms in φ enforce the parti-
cles to stay in the high density areas and avoid collaps-
ing into local modes, respectively. Previous methods
such as PGD, TRADES and VAT reply on random ini-
tialization to generate different adversarial examples
in Pθ(·|x, y). Therefore, these previous methods can
lie together and lose diversity [Tashiro et al., 2020].
Thus, adversarial examples generated from the previ-
ous methods are not diverse enough to improve the
model performance compared to our method. As seen
in Fig. 1, our method can have significantly different
noise patterns (the middle column) compared to PGD
especially in the regions of interests in the first column.
In Fig. 2, the figure further shows that our method
can generate more diverse samples with bigger SSE
compared to PGD with random initializations in both
MNIST and CIFAR10 datasets.

5.2 Semi-supervised learning

Datasets. In order to conduct the experiment with
different numbers of labeled samples, we select 300 and
500 labeled samples from the MNIST training dataset
and the rest of training samples are unlabeled samples,
denoted by MNIST-300 and MNIST-500 respectively.
We also select 1000 and 4000 labeled samples from
the CIFAR10 training dataset and the rest of training
samples are unlabeled samples, denoted by CIFAR10-
1000 and CIFAR10-4000 respectively.
General setup. We set the radius constraint ε =

0.01 for MNIST, ε = 5e-4 for CIFAR10 and the number
of iterations N = 1 for both. We use the LeNet [LeCun
et al., 1998] architecture for MNIST and Conv-Large
architecture following VAT [Miyato et al., 2018] for CI-
FAR10. We train both of models 500 epochs using the
SGD optimizer2.
Experimental setup. We setup two experiments
for semi-supervised learning using the MNIST and
CIFAR10 datasets. The first experiment is the per-
formance comparison between our method and VAT.
VAT can generate different adversarial examples using

2Based on https://github.com/iBelieveCJM/Tricks-of-
Semi-supervisedDeepLeanring-Pytorch
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Figure 3: Performance comparison of semi-supervised
learning using MNIST with LeNet (first row) and CI-
FAR10 with Conv-Large (second row). (a) MNIST-
300 and (b) MNIST-500 use 300 and 500 labeled data
of MNIST training set respectively and the rest of
training set as unlabeled data . (c) CIFAR10-1000
and (b) CIFAR10-4000 use 1000 and 4000 labeled data
of CIFAR10 training data respectively and the rest
of training set as unlabeled data. Baseline model is
trained by using only labeled data.

random initialization; therefore, we compare between
VAT and our method at different number of adver-
sarial particles n. Note that we can encourage the
regularization strength of both VAT and our method
by increasing number of adversarial particles n. The
second experiment is to leverage the Mixup [Zhang
et al., 2017] technique to encourage global smoothness
in case of CIFAR10-4000 with Conv-Large architecture
in the work [Miyato et al., 2018]. Mixup [Zhang et al.,
2017] is a data augmentation technique which gener-
ates new training samples by weighted combinations of
random image pairs from the training data. We apply
Mixup to all adversarial particles within mini-batch to
encourage global smoothness, while the local smooth-
ness is enforced by the adversarial local distribution
regularization.
Results. Our method can significantly outperform
VAT on both MNIST and CIFAR10, as shown in
Fig. 3. When the number of adversarial particles
n=4, our method reaches 0.779 and 0.883 accuracy,
while VAT with random initializations achieves only
0.757 and 0.858 accuracy in case of CIFAR10-1000 and
CIFAR10-4000 respectively. Our method increases 6%
and 3.6% accuracy compared to the baseline models as
shown in Fig. 3c and 3d. By increasing the number
of particles, we accordingly increase the regularization
strength of our model. It is as expected that over reg-
ularization may hurt the performance. Therefore, we
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observe the dropping accuracy at n=24 for MNIST
and n=8 for CIFAR10. However, in these cases, our
method can still outperform VAT.

In Table 1, Mixup with mini-batch to encourage global
smoothness can significantly improve accuracy of both
VAT and our method. Our method achieves 0.93 ac-
curacy which outperforms VAT because our method
can generate more diverse adversarial particles.

5.3 Robust machine learning

Datasets. The MNIST and CIFAR10 datasets are
used in this experiment. For each dataset, all images
are scaled from 0 to 1 and we split 1000 samples from
the training set as the validation set.
General setup. We set the radius constraint ε = 0.3,
the number of iterations N=40 for MNIST and ε =
8/255, N=10 for CIFAR10. We also use LeNet [LeCun
et al., 1998] architecture for MNIST and ResNet18 [He
et al., 2016] architecture for CIFAR103.
Experimental setup. PGD [Madry et al., 2018] and
TRADES [Zhang et al., 2019] are two well-known de-
fense techniques in adversarial training defense. While
PGD uses the cross-entropy loss (Eq. 2), TRADES
uses the KL divergence loss (Eq. 3). Recall that our
method can be applied with any loss function; there-
fore, we compare our method with the CE loss (de-
noted by Our_PGD) vs. PGD and our method with
the KL divergence loss (denoted by Our_TRADES)
vs. TRADES. We also compare our method with ad-
versarial distributional training [Dong et al., 2020a]
(ADT) such as ADT-EXP and ADT-EXPAM, which
assume that the adversarial distribution explicitly fol-
lows normal distribution.

We evaluate natural accuracy and robust accuracy
at different number of adversarial particles in Fig. 4
and 5. Natural accuracy is accuracy of a model with
natural inputs, while robust accuracy shows the ro-
bustness of a model against adversarial examples gen-
erated by attacks. PGD [Madry et al., 2018] is widely
used to attack models because of its effectiveness and
stability. We use PGD with large number of iterations
N=200 iteration steps (PGD-200) as a major metric
to draw robust accuracy of Fig. 4 and 5. We also
use advanced attacks to evaluate the models to evalu-
ate the model robustness against various attacks such
as Auto-Attack [Croce and Hein, 2020] and B&W at-
tack [Brendel et al., 2019].
Results. As can be seen in Fig. 4 and 5, our method
outperforms PGD and TRADES in term of robust ac-
curacy with the increased number of adversarial par-
ticles. All of the four methods, PGD, TRADES,

3Based on https://github.com/tuananhbui89/Adversarial-
Divergence-Reduction
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Figure 4: Robust accuracy against PGD-200 and nat-
ural accuracy comparison using MNIST with LeNet
architecture.
Table 2: Robust accuracy comparison using CIFAR10
with ResNet18.

Method Robust accuracy
PGD-200 Auto-Attack B&B

ADT-EXP 0.458 0.458 0.465
ADT-EXPAM 0.461 0.445 0.458

PGD 0.455 0.419 0.426
Our_PGD 0.471 0.436 0.44
TRADES 0.525 0.483 0.487

Our_TRADES 0.539 0.501 0.506

Our_PGD and Our_TRADES decrease natural accu-
racy with the overly enforced regularization strength
when the number of adversarial particles is set to a
too large number. This trade-off between natural and
robust accuracy is inline with the study in Zhang et al.
[2019]. However, our method can achieve higher nat-
ural accuracy than others at the same number of par-
ticles.

In Table 3, Our_PGD and Our_TRADES can con-
sistently outperform standard PGD and TRADES
against various attacks respectively. ADT has better
robust accuracy than Our_PGD in Auto-Attack and
B&W attack but Our_TRADES achieves the best per-
formance. Here we emphasize that our method does
not assume a particular parameterization of the ad-
versarial local distribution, which is more flexible than
ADT.

5.4 Domain adaptation

General setup. We use a pair of the SVHN
and MNIST datasets to evaluate performance of our
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Figure 5: Robust accuracy against PGD-200 and
natural accuracy comparison using CIFAR10 with
ResNet18 architecture.
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Figure 6: Domain adaptation performance comparison
between VADA and our method.

method compared to VADA [Shu et al., 2018] 4. For
transferring from the SVHN source to the MNIST
target, we set the radius constraint ε = 3.5 and the
number of iterations N=1. For transferring from the
MNIST source to the SVHN target, we set the ε = 1.5
and N=1.
Results. In Fig. 6, we can achieve higher perfor-
mance when increasing the number of adversarial par-
ticles. Moreover, our method can significantly outper-
form VADA in case of SVHN to MNIST when n=8.
When the number of adversarial particles n=14, as dis-
cussed in the other tasks, over regularization can hurt
the accuracy the target domain. However, our method
remains better accuracy than VADA.

5.5 Running time

General setup. PGD, TRADES and VAT have dif-
ferent Pytorch implementations. Therefore, we adapt
our method to these individual code base. We observe
the running time on our workstation machine with a
TITAN V GPU, 16 cores CPU and 64GB of RAM. In
addition, PGD, TRADES and VAT implementations

4Based on https://github.com/ozanciga/dirt-t
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Figure 7: Running time per epoch of compared meth-
ods on MNIST and CIFAR10.
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Figure 8: Running time per epoch of our method at
different number of adversarial particles on MNIST
and CIFAR10.

do not optimized for multiple adversarial examples.
Thus, we only compare running time per epoch when
number of particles n=1 in Fig. 7. We also illustrate
the running of our method at different number of ad-
versarial particles in Fig. 8.
Results. Due to overhead of kernel computation, the
running time of our method is slightly bigger than
PGD, TRADES and VAT, as shown in Fig. 7. How-
ever, with the efficient implementation on GPUs, the
running time per epoch of our method scales linearly
with the number of adversarial particles, as shown in
Fig. 8.

6 Conclusion

In this paper, we have introduced a novel adversar-
ial local distribution regularization technique that ex-
tends and improves on previous methods (e.g., FGSM,
PGD, TRADES, VAT and VADA).In our method,
SVGD is used to approximate the adversarial local
distribution by using more diverse adversarial parti-
cles. We adapt our method to a wide range of ap-
plications where better generalization is needed, such
as semi-supervised learning, robust machine learning
and domain adaptation. Comprehensive experiments
show that our method can significantly outperform
many widely-used regularization approaches used in
the above applications, such as PGD, TRADES, ADT
in robust machine learning, VAT in semi-supvervised
learning and VADA in domain adaptation.
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Appendix

Natural accuracy of Table 2

We illustrate additional natural accuracy in the Ta-
ble 2 of main paper. As can be seen, Our_PGD can
achieve the highest natural accuracy. Our_TRADES
is more robust against various attacks but we trade
off natural accuracy. This trade-off between natural
and robust accuracy is inline with the study in [Zhang
et al., 2019].

Table 3: Robust and natural accuracy comparison us-
ing CIFAR10 with ResNet18.

Method Natural accuracy
ADT-EXP 0.83

ADT-EXPAM 0.84
PGD 0.852

Our_PGD 0.857
TRADES 0.834

Our_TRADES 0.778

Experimental setting details

Semi-supervised learning

For MNIST,

• We select 300 and 500 labeled samples from the
MNIST training dataset and the rest of training
samples (59700 and 59500) are unlabeled samples
, denoted by MNIST-300 and MNIST-500 respec-
tively. Test set consists of 10000 images. All im-
ages are scaled from 0 to 1.

• We set ε = 0.01, τ=0.01, r = l2 normalization, η
= 10, λ1 = λ2=30 and N = 1.

• We use LeNet architecture [LeCun et al., 1998]
trained by 400 epochs using SGD optimizer with
initial learning rate = 0.1, momentum = 0.9,
batch size = 128 and cosine annealing learning
rate scheduling between 1e-4 and 0.1.

For CIFAR10,

• We select 1000 and 4000 labeled samples from the
CIFAR10 training dataset and the rest of training
samples (49000 and 46000) are unlabeled samples
, denoted by CIFAR-1000 and CIFAR10-4000 re-
spectively. Test set consists of 10000 images. All
images are scaled using mean = [0.4914, 0.4822,
0.4465], std = [0.2023, 0.1994, 0.2010]

• We set ε = 5e-4 , τ=0.01, r = l2 normalization, η
= 10, λ1 = λ2=30 and N = 1.

• We use Conv-Large architecture [Miyato et al.,
2018] trained by 600 epochs using SGD optimizer
with initial learning rate = 0.1, momentum = 0.9,
batch size = 128 and cosine annealing learning
rate scheduling between 1e-4 and 0.1.

Robust machine learning

For MNIST,

• We select 59000 images for training, 1000 images
for validation and 10000 images for testing. All
images are scaled from 0 to 1.

• We set ε = 0.3, τ=0.01, r = linf normalization, η
= 1e-3, λ=1 and N = 40.

• We use LeNet architecture [LeCun et al., 1998]
trained by 100 epochs using SGD optimizer with
initial learning rate = 0.01, momentum = 0.9,
batch size = 100 and learning rate decay (0.1)
scheduling at [75, 90] epoch.

For CIFAR10,

• We select 59000 images for training, 1000 images
for validation and 10000 images for testing. All
images are scaled from 0 to 1.

• We set ε = 0.031, τ=0.007, r = linf normaliza-
tion, η = 1e-3 and N = 10. PGD and Our_PGD
use λ=1, while TRADES and Our_TRADES use
λ=6.

• We use ResNet18 architecture [He et al., 2016]
trained by 100 epochs using SGD optimizer with
learning rate = 0.1, momentum = 0.9, weight de-
cay = 5e-4, batch size = 100 and learning rate
decay (0.1) scheduling at [75, 90] epoch.

Domain adaptation

For SVHN source to MNIST target,

• We scale all images in SVHN and MNIST to [0,
1].

• We set ε = 0.35, r = l2 normalization, η = 10, λ1
= 0.1, λ2 = 1.0 and N = 1.

• We use Small-CNN-Net architecture in [DIR]
trained by 100 epochs using Adam optimizer with
learning rate = 2e-3.

For MNIST source to SVHN target,
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• We scale all images in MNIST and SVHN using
mean = 0.5 and std = 0.5.

• We set ε = 0.15, r = l2 normalization, η = 10, λ1
= 1e-2, λ2 = 1e-2 and N = 1.

• We use Large-CNN-Net architecture in [DIR]
trained by 100 epochs using Adam optimizer with
learning rate = 2e-3 and batch size =32.
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